[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / CodeGen / SelectionDAG.h
blob8b8436f9eaab61c8860c4adef36f151ec91bba45
1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <functional>
53 #include <map>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 #include <vector>
59 namespace llvm {
61 class BlockAddress;
62 class Constant;
63 class ConstantFP;
64 class ConstantInt;
65 class DataLayout;
66 struct fltSemantics;
67 class GlobalValue;
68 struct KnownBits;
69 class LLVMContext;
70 class MachineBasicBlock;
71 class MachineConstantPoolValue;
72 class MCSymbol;
73 class OptimizationRemarkEmitter;
74 class SDDbgValue;
75 class SDDbgLabel;
76 class SelectionDAG;
77 class SelectionDAGTargetInfo;
78 class TargetLibraryInfo;
79 class TargetLowering;
80 class TargetMachine;
81 class TargetSubtargetInfo;
82 class Value;
84 class SDVTListNode : public FoldingSetNode {
85 friend struct FoldingSetTrait<SDVTListNode>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
91 /// a memory penalty.
92 FoldingSetNodeIDRef FastID;
93 const EVT *VTs;
94 unsigned int NumVTs;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
96 /// hash calculation.
97 unsigned HashValue;
99 public:
100 SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
101 FastID(ID), VTs(VT), NumVTs(Num) {
102 HashValue = ID.ComputeHash();
105 SDVTList getSDVTList() {
106 SDVTList result = {VTs, NumVTs};
107 return result;
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
114 static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
115 ID = X.FastID;
118 static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
119 unsigned IDHash, FoldingSetNodeID &TempID) {
120 if (X.HashValue != IDHash)
121 return false;
122 return ID == X.FastID;
125 static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
126 return X.HashValue;
130 template <> struct ilist_alloc_traits<SDNode> {
131 static void deleteNode(SDNode *) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
140 /// DbgValMap.
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
147 class SDDbgInfo {
148 BumpPtrAllocator Alloc;
149 SmallVector<SDDbgValue*, 32> DbgValues;
150 SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
151 SmallVector<SDDbgLabel*, 4> DbgLabels;
152 using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
153 DbgValMapType DbgValMap;
155 public:
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo &) = delete;
158 SDDbgInfo &operator=(const SDDbgInfo &) = delete;
160 void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
161 if (isParameter) {
162 ByvalParmDbgValues.push_back(V);
163 } else DbgValues.push_back(V);
164 if (Node)
165 DbgValMap[Node].push_back(V);
168 void add(SDDbgLabel *L) {
169 DbgLabels.push_back(L);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode *Node);
176 void clear() {
177 DbgValMap.clear();
178 DbgValues.clear();
179 ByvalParmDbgValues.clear();
180 DbgLabels.clear();
181 Alloc.Reset();
184 BumpPtrAllocator &getAlloc() { return Alloc; }
186 bool empty() const {
187 return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
190 ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
191 auto I = DbgValMap.find(Node);
192 if (I != DbgValMap.end())
193 return I->second;
194 return ArrayRef<SDDbgValue*>();
197 using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
198 using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
200 DbgIterator DbgBegin() { return DbgValues.begin(); }
201 DbgIterator DbgEnd() { return DbgValues.end(); }
202 DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
203 DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
204 DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
205 DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
208 void checkForCycles(const SelectionDAG *DAG, bool force = false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
219 /// linear form.
221 class SelectionDAG {
222 const TargetMachine &TM;
223 const SelectionDAGTargetInfo *TSI = nullptr;
224 const TargetLowering *TLI = nullptr;
225 const TargetLibraryInfo *LibInfo = nullptr;
226 MachineFunction *MF;
227 Pass *SDAGISelPass = nullptr;
228 LLVMContext *Context;
229 CodeGenOpt::Level OptLevel;
231 LegacyDivergenceAnalysis * DA = nullptr;
232 FunctionLoweringInfo * FLI = nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter *ORE;
238 /// The starting token.
239 SDNode EntryNode;
241 /// The root of the entire DAG.
242 SDValue Root;
244 /// A linked list of nodes in the current DAG.
245 ilist<SDNode> AllNodes;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
250 sizeof(LargestSDNode),
251 alignof(MostAlignedSDNode)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet<SDNode> CSEMap;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator;
262 ArrayRecycler<SDUse> OperandRecycler;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator;
267 /// Tracks dbg_value and dbg_label information through SDISel.
268 SDDbgInfo *DbgInfo;
270 using CallSiteInfo = MachineFunction::CallSiteInfo;
271 using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
273 struct CallSiteDbgInfo {
274 CallSiteInfo CSInfo;
275 MDNode *HeapAllocSite = nullptr;
278 DenseMap<const SDNode *, CallSiteDbgInfo> SDCallSiteDbgInfo;
280 uint16_t NextPersistentId = 0;
282 public:
283 /// Clients of various APIs that cause global effects on
284 /// the DAG can optionally implement this interface. This allows the clients
285 /// to handle the various sorts of updates that happen.
287 /// A DAGUpdateListener automatically registers itself with DAG when it is
288 /// constructed, and removes itself when destroyed in RAII fashion.
289 struct DAGUpdateListener {
290 DAGUpdateListener *const Next;
291 SelectionDAG &DAG;
293 explicit DAGUpdateListener(SelectionDAG &D)
294 : Next(D.UpdateListeners), DAG(D) {
295 DAG.UpdateListeners = this;
298 virtual ~DAGUpdateListener() {
299 assert(DAG.UpdateListeners == this &&
300 "DAGUpdateListeners must be destroyed in LIFO order");
301 DAG.UpdateListeners = Next;
304 /// The node N that was deleted and, if E is not null, an
305 /// equivalent node E that replaced it.
306 virtual void NodeDeleted(SDNode *N, SDNode *E);
308 /// The node N that was updated.
309 virtual void NodeUpdated(SDNode *N);
311 /// The node N that was inserted.
312 virtual void NodeInserted(SDNode *N);
315 struct DAGNodeDeletedListener : public DAGUpdateListener {
316 std::function<void(SDNode *, SDNode *)> Callback;
318 DAGNodeDeletedListener(SelectionDAG &DAG,
319 std::function<void(SDNode *, SDNode *)> Callback)
320 : DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
322 void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
324 private:
325 virtual void anchor();
328 /// When true, additional steps are taken to
329 /// ensure that getConstant() and similar functions return DAG nodes that
330 /// have legal types. This is important after type legalization since
331 /// any illegally typed nodes generated after this point will not experience
332 /// type legalization.
333 bool NewNodesMustHaveLegalTypes = false;
335 private:
336 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
337 friend struct DAGUpdateListener;
339 /// Linked list of registered DAGUpdateListener instances.
340 /// This stack is maintained by DAGUpdateListener RAII.
341 DAGUpdateListener *UpdateListeners = nullptr;
343 /// Implementation of setSubgraphColor.
344 /// Return whether we had to truncate the search.
345 bool setSubgraphColorHelper(SDNode *N, const char *Color,
346 DenseSet<SDNode *> &visited,
347 int level, bool &printed);
349 template <typename SDNodeT, typename... ArgTypes>
350 SDNodeT *newSDNode(ArgTypes &&... Args) {
351 return new (NodeAllocator.template Allocate<SDNodeT>())
352 SDNodeT(std::forward<ArgTypes>(Args)...);
355 /// Build a synthetic SDNodeT with the given args and extract its subclass
356 /// data as an integer (e.g. for use in a folding set).
358 /// The args to this function are the same as the args to SDNodeT's
359 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
360 /// omitted.
361 template <typename SDNodeT, typename... ArgTypes>
362 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
363 ArgTypes &&... Args) {
364 // The compiler can reduce this expression to a constant iff we pass an
365 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
366 // on the subclass data.
367 return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
368 .getRawSubclassData();
371 template <typename SDNodeTy>
372 static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
373 SDVTList VTs, EVT MemoryVT,
374 MachineMemOperand *MMO) {
375 return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
376 .getRawSubclassData();
379 void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
381 void removeOperands(SDNode *Node) {
382 if (!Node->OperandList)
383 return;
384 OperandRecycler.deallocate(
385 ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
386 Node->OperandList);
387 Node->NumOperands = 0;
388 Node->OperandList = nullptr;
390 void CreateTopologicalOrder(std::vector<SDNode*>& Order);
391 public:
392 explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
393 SelectionDAG(const SelectionDAG &) = delete;
394 SelectionDAG &operator=(const SelectionDAG &) = delete;
395 ~SelectionDAG();
397 /// Prepare this SelectionDAG to process code in the given MachineFunction.
398 void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
399 Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
400 LegacyDivergenceAnalysis * Divergence);
402 void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
403 FLI = FuncInfo;
406 /// Clear state and free memory necessary to make this
407 /// SelectionDAG ready to process a new block.
408 void clear();
410 MachineFunction &getMachineFunction() const { return *MF; }
411 const Pass *getPass() const { return SDAGISelPass; }
413 const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
414 const TargetMachine &getTarget() const { return TM; }
415 const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
416 const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
417 const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
418 const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
419 const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
420 LLVMContext *getContext() const {return Context; }
421 OptimizationRemarkEmitter &getORE() const { return *ORE; }
423 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
424 void viewGraph(const std::string &Title);
425 void viewGraph();
427 #ifndef NDEBUG
428 std::map<const SDNode *, std::string> NodeGraphAttrs;
429 #endif
431 /// Clear all previously defined node graph attributes.
432 /// Intended to be used from a debugging tool (eg. gdb).
433 void clearGraphAttrs();
435 /// Set graph attributes for a node. (eg. "color=red".)
436 void setGraphAttrs(const SDNode *N, const char *Attrs);
438 /// Get graph attributes for a node. (eg. "color=red".)
439 /// Used from getNodeAttributes.
440 const std::string getGraphAttrs(const SDNode *N) const;
442 /// Convenience for setting node color attribute.
443 void setGraphColor(const SDNode *N, const char *Color);
445 /// Convenience for setting subgraph color attribute.
446 void setSubgraphColor(SDNode *N, const char *Color);
448 using allnodes_const_iterator = ilist<SDNode>::const_iterator;
450 allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
451 allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
453 using allnodes_iterator = ilist<SDNode>::iterator;
455 allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
456 allnodes_iterator allnodes_end() { return AllNodes.end(); }
458 ilist<SDNode>::size_type allnodes_size() const {
459 return AllNodes.size();
462 iterator_range<allnodes_iterator> allnodes() {
463 return make_range(allnodes_begin(), allnodes_end());
465 iterator_range<allnodes_const_iterator> allnodes() const {
466 return make_range(allnodes_begin(), allnodes_end());
469 /// Return the root tag of the SelectionDAG.
470 const SDValue &getRoot() const { return Root; }
472 /// Return the token chain corresponding to the entry of the function.
473 SDValue getEntryNode() const {
474 return SDValue(const_cast<SDNode *>(&EntryNode), 0);
477 /// Set the current root tag of the SelectionDAG.
479 const SDValue &setRoot(SDValue N) {
480 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
481 "DAG root value is not a chain!");
482 if (N.getNode())
483 checkForCycles(N.getNode(), this);
484 Root = N;
485 if (N.getNode())
486 checkForCycles(this);
487 return Root;
490 #ifndef NDEBUG
491 void VerifyDAGDiverence();
492 #endif
494 /// This iterates over the nodes in the SelectionDAG, folding
495 /// certain types of nodes together, or eliminating superfluous nodes. The
496 /// Level argument controls whether Combine is allowed to produce nodes and
497 /// types that are illegal on the target.
498 void Combine(CombineLevel Level, AliasAnalysis *AA,
499 CodeGenOpt::Level OptLevel);
501 /// This transforms the SelectionDAG into a SelectionDAG that
502 /// only uses types natively supported by the target.
503 /// Returns "true" if it made any changes.
505 /// Note that this is an involved process that may invalidate pointers into
506 /// the graph.
507 bool LegalizeTypes();
509 /// This transforms the SelectionDAG into a SelectionDAG that is
510 /// compatible with the target instruction selector, as indicated by the
511 /// TargetLowering object.
513 /// Note that this is an involved process that may invalidate pointers into
514 /// the graph.
515 void Legalize();
517 /// Transforms a SelectionDAG node and any operands to it into a node
518 /// that is compatible with the target instruction selector, as indicated by
519 /// the TargetLowering object.
521 /// \returns true if \c N is a valid, legal node after calling this.
523 /// This essentially runs a single recursive walk of the \c Legalize process
524 /// over the given node (and its operands). This can be used to incrementally
525 /// legalize the DAG. All of the nodes which are directly replaced,
526 /// potentially including N, are added to the output parameter \c
527 /// UpdatedNodes so that the delta to the DAG can be understood by the
528 /// caller.
530 /// When this returns false, N has been legalized in a way that make the
531 /// pointer passed in no longer valid. It may have even been deleted from the
532 /// DAG, and so it shouldn't be used further. When this returns true, the
533 /// N passed in is a legal node, and can be immediately processed as such.
534 /// This may still have done some work on the DAG, and will still populate
535 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
536 bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
538 /// This transforms the SelectionDAG into a SelectionDAG
539 /// that only uses vector math operations supported by the target. This is
540 /// necessary as a separate step from Legalize because unrolling a vector
541 /// operation can introduce illegal types, which requires running
542 /// LegalizeTypes again.
544 /// This returns true if it made any changes; in that case, LegalizeTypes
545 /// is called again before Legalize.
547 /// Note that this is an involved process that may invalidate pointers into
548 /// the graph.
549 bool LegalizeVectors();
551 /// This method deletes all unreachable nodes in the SelectionDAG.
552 void RemoveDeadNodes();
554 /// Remove the specified node from the system. This node must
555 /// have no referrers.
556 void DeleteNode(SDNode *N);
558 /// Return an SDVTList that represents the list of values specified.
559 SDVTList getVTList(EVT VT);
560 SDVTList getVTList(EVT VT1, EVT VT2);
561 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
562 SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
563 SDVTList getVTList(ArrayRef<EVT> VTs);
565 //===--------------------------------------------------------------------===//
566 // Node creation methods.
568 /// Create a ConstantSDNode wrapping a constant value.
569 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
571 /// If only legal types can be produced, this does the necessary
572 /// transformations (e.g., if the vector element type is illegal).
573 /// @{
574 SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
575 bool isTarget = false, bool isOpaque = false);
576 SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
577 bool isTarget = false, bool isOpaque = false);
579 SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
580 bool IsOpaque = false) {
581 return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
582 VT, IsTarget, IsOpaque);
585 SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
586 bool isTarget = false, bool isOpaque = false);
587 SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
588 bool isTarget = false);
589 SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
590 bool LegalTypes = true);
592 SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
593 bool isOpaque = false) {
594 return getConstant(Val, DL, VT, true, isOpaque);
596 SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
597 bool isOpaque = false) {
598 return getConstant(Val, DL, VT, true, isOpaque);
600 SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
601 bool isOpaque = false) {
602 return getConstant(Val, DL, VT, true, isOpaque);
605 /// Create a true or false constant of type \p VT using the target's
606 /// BooleanContent for type \p OpVT.
607 SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
608 /// @}
610 /// Create a ConstantFPSDNode wrapping a constant value.
611 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
613 /// If only legal types can be produced, this does the necessary
614 /// transformations (e.g., if the vector element type is illegal).
615 /// The forms that take a double should only be used for simple constants
616 /// that can be exactly represented in VT. No checks are made.
617 /// @{
618 SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
619 bool isTarget = false);
620 SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
621 bool isTarget = false);
622 SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
623 bool isTarget = false);
624 SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
625 return getConstantFP(Val, DL, VT, true);
627 SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
628 return getConstantFP(Val, DL, VT, true);
630 SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
631 return getConstantFP(Val, DL, VT, true);
633 /// @}
635 SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
636 int64_t offset = 0, bool isTargetGA = false,
637 unsigned TargetFlags = 0);
638 SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
639 int64_t offset = 0, unsigned TargetFlags = 0) {
640 return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
642 SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
643 SDValue getTargetFrameIndex(int FI, EVT VT) {
644 return getFrameIndex(FI, VT, true);
646 SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
647 unsigned TargetFlags = 0);
648 SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
649 return getJumpTable(JTI, VT, true, TargetFlags);
651 SDValue getConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
652 int Offs = 0, bool isT = false,
653 unsigned TargetFlags = 0);
654 SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align = 0,
655 int Offset = 0, unsigned TargetFlags = 0) {
656 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
658 SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
659 unsigned Align = 0, int Offs = 0, bool isT=false,
660 unsigned TargetFlags = 0);
661 SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT,
662 unsigned Align = 0, int Offset = 0,
663 unsigned TargetFlags = 0) {
664 return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
666 SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
667 unsigned TargetFlags = 0);
668 // When generating a branch to a BB, we don't in general know enough
669 // to provide debug info for the BB at that time, so keep this one around.
670 SDValue getBasicBlock(MachineBasicBlock *MBB);
671 SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
672 SDValue getExternalSymbol(const char *Sym, EVT VT);
673 SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
674 SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
675 unsigned TargetFlags = 0);
676 SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
678 SDValue getValueType(EVT);
679 SDValue getRegister(unsigned Reg, EVT VT);
680 SDValue getRegisterMask(const uint32_t *RegMask);
681 SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
682 SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
683 MCSymbol *Label);
684 SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
685 bool isTarget = false, unsigned TargetFlags = 0);
686 SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
687 int64_t Offset = 0, unsigned TargetFlags = 0) {
688 return getBlockAddress(BA, VT, Offset, true, TargetFlags);
691 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
692 SDValue N) {
693 return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
694 getRegister(Reg, N.getValueType()), N);
697 // This version of the getCopyToReg method takes an extra operand, which
698 // indicates that there is potentially an incoming glue value (if Glue is not
699 // null) and that there should be a glue result.
700 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
701 SDValue Glue) {
702 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
703 SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
704 return getNode(ISD::CopyToReg, dl, VTs,
705 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
708 // Similar to last getCopyToReg() except parameter Reg is a SDValue
709 SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
710 SDValue Glue) {
711 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
712 SDValue Ops[] = { Chain, Reg, N, Glue };
713 return getNode(ISD::CopyToReg, dl, VTs,
714 makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
717 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
718 SDVTList VTs = getVTList(VT, MVT::Other);
719 SDValue Ops[] = { Chain, getRegister(Reg, VT) };
720 return getNode(ISD::CopyFromReg, dl, VTs, Ops);
723 // This version of the getCopyFromReg method takes an extra operand, which
724 // indicates that there is potentially an incoming glue value (if Glue is not
725 // null) and that there should be a glue result.
726 SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
727 SDValue Glue) {
728 SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
729 SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
730 return getNode(ISD::CopyFromReg, dl, VTs,
731 makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
734 SDValue getCondCode(ISD::CondCode Cond);
736 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
737 /// which must be a vector type, must match the number of mask elements
738 /// NumElts. An integer mask element equal to -1 is treated as undefined.
739 SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
740 ArrayRef<int> Mask);
742 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
743 /// which must be a vector type, must match the number of operands in Ops.
744 /// The operands must have the same type as (or, for integers, a type wider
745 /// than) VT's element type.
746 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
747 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
748 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
751 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
752 /// which must be a vector type, must match the number of operands in Ops.
753 /// The operands must have the same type as (or, for integers, a type wider
754 /// than) VT's element type.
755 SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
756 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
757 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
760 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
761 /// elements. VT must be a vector type. Op's type must be the same as (or,
762 /// for integers, a type wider than) VT's element type.
763 SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
764 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
765 if (Op.getOpcode() == ISD::UNDEF) {
766 assert((VT.getVectorElementType() == Op.getValueType() ||
767 (VT.isInteger() &&
768 VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
769 "A splatted value must have a width equal or (for integers) "
770 "greater than the vector element type!");
771 return getNode(ISD::UNDEF, SDLoc(), VT);
774 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
775 return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
778 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
779 /// the shuffle node in input but with swapped operands.
781 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
782 SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
784 /// Convert Op, which must be of float type, to the
785 /// float type VT, by either extending or rounding (by truncation).
786 SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
788 /// Convert Op, which must be of integer type, to the
789 /// integer type VT, by either any-extending or truncating it.
790 SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
792 /// Convert Op, which must be of integer type, to the
793 /// integer type VT, by either sign-extending or truncating it.
794 SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
796 /// Convert Op, which must be of integer type, to the
797 /// integer type VT, by either zero-extending or truncating it.
798 SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
800 /// Return the expression required to zero extend the Op
801 /// value assuming it was the smaller SrcTy value.
802 SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
804 /// Convert Op, which must be of integer type, to the integer type VT, by
805 /// either truncating it or performing either zero or sign extension as
806 /// appropriate extension for the pointer's semantics.
807 SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
809 /// Return the expression required to extend the Op as a pointer value
810 /// assuming it was the smaller SrcTy value. This may be either a zero extend
811 /// or a sign extend.
812 SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
814 /// Convert Op, which must be of integer type, to the integer type VT,
815 /// by using an extension appropriate for the target's
816 /// BooleanContent for type OpVT or truncating it.
817 SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
819 /// Create a bitwise NOT operation as (XOR Val, -1).
820 SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
822 /// Create a logical NOT operation as (XOR Val, BooleanOne).
823 SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
825 /// Create an add instruction with appropriate flags when used for
826 /// addressing some offset of an object. i.e. if a load is split into multiple
827 /// components, create an add nuw from the base pointer to the offset.
828 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
829 EVT VT = Op.getValueType();
830 return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
833 SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
834 EVT VT = Op.getValueType();
836 // The object itself can't wrap around the address space, so it shouldn't be
837 // possible for the adds of the offsets to the split parts to overflow.
838 SDNodeFlags Flags;
839 Flags.setNoUnsignedWrap(true);
840 return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
843 /// Return a new CALLSEQ_START node, that starts new call frame, in which
844 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
845 /// OutSize specifies part of the frame set up prior to the sequence.
846 SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
847 const SDLoc &DL) {
848 SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
849 SDValue Ops[] = { Chain,
850 getIntPtrConstant(InSize, DL, true),
851 getIntPtrConstant(OutSize, DL, true) };
852 return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
855 /// Return a new CALLSEQ_END node, which always must have a
856 /// glue result (to ensure it's not CSE'd).
857 /// CALLSEQ_END does not have a useful SDLoc.
858 SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
859 SDValue InGlue, const SDLoc &DL) {
860 SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
861 SmallVector<SDValue, 4> Ops;
862 Ops.push_back(Chain);
863 Ops.push_back(Op1);
864 Ops.push_back(Op2);
865 if (InGlue.getNode())
866 Ops.push_back(InGlue);
867 return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
870 /// Return true if the result of this operation is always undefined.
871 bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
873 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
874 SDValue getUNDEF(EVT VT) {
875 return getNode(ISD::UNDEF, SDLoc(), VT);
878 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
879 SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
880 return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
883 /// Gets or creates the specified node.
885 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
886 ArrayRef<SDUse> Ops);
887 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
888 ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
889 SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
890 ArrayRef<SDValue> Ops);
891 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
892 ArrayRef<SDValue> Ops);
894 // Specialize based on number of operands.
895 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
896 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
897 const SDNodeFlags Flags = SDNodeFlags());
898 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
899 SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
900 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
901 SDValue N2, SDValue N3,
902 const SDNodeFlags Flags = SDNodeFlags());
903 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
904 SDValue N2, SDValue N3, SDValue N4);
905 SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
906 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
908 // Specialize again based on number of operands for nodes with a VTList
909 // rather than a single VT.
910 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
911 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
912 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
913 SDValue N2);
914 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
915 SDValue N2, SDValue N3);
916 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
917 SDValue N2, SDValue N3, SDValue N4);
918 SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
919 SDValue N2, SDValue N3, SDValue N4, SDValue N5);
921 /// Compute a TokenFactor to force all the incoming stack arguments to be
922 /// loaded from the stack. This is used in tail call lowering to protect
923 /// stack arguments from being clobbered.
924 SDValue getStackArgumentTokenFactor(SDValue Chain);
926 SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
927 SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
928 bool isTailCall, MachinePointerInfo DstPtrInfo,
929 MachinePointerInfo SrcPtrInfo);
931 SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
932 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
933 MachinePointerInfo DstPtrInfo,
934 MachinePointerInfo SrcPtrInfo);
936 SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
937 SDValue Size, unsigned Align, bool isVol, bool isTailCall,
938 MachinePointerInfo DstPtrInfo);
940 SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
941 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
942 SDValue Size, Type *SizeTy, unsigned ElemSz,
943 bool isTailCall, MachinePointerInfo DstPtrInfo,
944 MachinePointerInfo SrcPtrInfo);
946 SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
947 unsigned DstAlign, SDValue Src, unsigned SrcAlign,
948 SDValue Size, Type *SizeTy, unsigned ElemSz,
949 bool isTailCall, MachinePointerInfo DstPtrInfo,
950 MachinePointerInfo SrcPtrInfo);
952 SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
953 unsigned DstAlign, SDValue Value, SDValue Size,
954 Type *SizeTy, unsigned ElemSz, bool isTailCall,
955 MachinePointerInfo DstPtrInfo);
957 /// Helper function to make it easier to build SetCC's if you just have an
958 /// ISD::CondCode instead of an SDValue.
959 SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
960 ISD::CondCode Cond) {
961 assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
962 "Cannot compare scalars to vectors");
963 assert(LHS.getValueType().isVector() == VT.isVector() &&
964 "Cannot compare scalars to vectors");
965 assert(Cond != ISD::SETCC_INVALID &&
966 "Cannot create a setCC of an invalid node.");
967 return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
970 /// Helper function to make it easier to build Select's if you just have
971 /// operands and don't want to check for vector.
972 SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
973 SDValue RHS) {
974 assert(LHS.getValueType() == RHS.getValueType() &&
975 "Cannot use select on differing types");
976 assert(VT.isVector() == LHS.getValueType().isVector() &&
977 "Cannot mix vectors and scalars");
978 auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
979 return getNode(Opcode, DL, VT, Cond, LHS, RHS);
982 /// Helper function to make it easier to build SelectCC's if you just have an
983 /// ISD::CondCode instead of an SDValue.
984 SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
985 SDValue False, ISD::CondCode Cond) {
986 return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
987 False, getCondCode(Cond));
990 /// Try to simplify a select/vselect into 1 of its operands or a constant.
991 SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
993 /// Try to simplify a shift into 1 of its operands or a constant.
994 SDValue simplifyShift(SDValue X, SDValue Y);
996 /// Try to simplify a floating-point binary operation into 1 of its operands
997 /// or a constant.
998 SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y);
1000 /// VAArg produces a result and token chain, and takes a pointer
1001 /// and a source value as input.
1002 SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1003 SDValue SV, unsigned Align);
1005 /// Gets a node for an atomic cmpxchg op. There are two
1006 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1007 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1008 /// a success flag (initially i1), and a chain.
1009 SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1010 SDVTList VTs, SDValue Chain, SDValue Ptr,
1011 SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
1013 /// Gets a node for an atomic op, produces result (if relevant)
1014 /// and chain and takes 2 operands.
1015 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
1016 SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
1018 /// Gets a node for an atomic op, produces result and chain and
1019 /// takes 1 operand.
1020 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
1021 SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
1023 /// Gets a node for an atomic op, produces result and chain and takes N
1024 /// operands.
1025 SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
1026 SDVTList VTList, ArrayRef<SDValue> Ops,
1027 MachineMemOperand *MMO);
1029 /// Creates a MemIntrinsicNode that may produce a
1030 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1031 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1032 /// less than FIRST_TARGET_MEMORY_OPCODE.
1033 SDValue getMemIntrinsicNode(
1034 unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1035 ArrayRef<SDValue> Ops, EVT MemVT,
1036 MachinePointerInfo PtrInfo,
1037 unsigned Align = 0,
1038 MachineMemOperand::Flags Flags
1039 = MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
1040 unsigned Size = 0,
1041 const AAMDNodes &AAInfo = AAMDNodes());
1043 SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
1044 ArrayRef<SDValue> Ops, EVT MemVT,
1045 MachineMemOperand *MMO);
1047 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1048 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1049 /// offsets `Offset` and `Offset + Size`.
1050 SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
1051 int FrameIndex, int64_t Size, int64_t Offset = -1);
1053 /// Create a MERGE_VALUES node from the given operands.
1054 SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
1056 /// Loads are not normal binary operators: their result type is not
1057 /// determined by their operands, and they produce a value AND a token chain.
1059 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1060 /// you want. The MOStore flag must not be set.
1061 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1062 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1063 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1064 const AAMDNodes &AAInfo = AAMDNodes(),
1065 const MDNode *Ranges = nullptr);
1066 SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1067 MachineMemOperand *MMO);
1068 SDValue
1069 getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
1070 SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
1071 unsigned Alignment = 0,
1072 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1073 const AAMDNodes &AAInfo = AAMDNodes());
1074 SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
1075 SDValue Chain, SDValue Ptr, EVT MemVT,
1076 MachineMemOperand *MMO);
1077 SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
1078 SDValue Offset, ISD::MemIndexedMode AM);
1079 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1080 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1081 MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
1082 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1083 const AAMDNodes &AAInfo = AAMDNodes(),
1084 const MDNode *Ranges = nullptr);
1085 SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
1086 const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
1087 EVT MemVT, MachineMemOperand *MMO);
1089 /// Helper function to build ISD::STORE nodes.
1091 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1092 /// you want. The MOLoad and MOInvariant flags must not be set.
1093 SDValue
1094 getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1095 MachinePointerInfo PtrInfo, unsigned Alignment = 0,
1096 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1097 const AAMDNodes &AAInfo = AAMDNodes());
1098 SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1099 MachineMemOperand *MMO);
1100 SDValue
1101 getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
1102 MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
1103 MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
1104 const AAMDNodes &AAInfo = AAMDNodes());
1105 SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1106 SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
1107 SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
1108 SDValue Offset, ISD::MemIndexedMode AM);
1110 /// Returns sum of the base pointer and offset.
1111 SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
1113 SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
1114 SDValue Mask, SDValue Src0, EVT MemVT,
1115 MachineMemOperand *MMO, ISD::LoadExtType,
1116 bool IsExpanding = false);
1117 SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
1118 SDValue Ptr, SDValue Mask, EVT MemVT,
1119 MachineMemOperand *MMO, bool IsTruncating = false,
1120 bool IsCompressing = false);
1121 SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
1122 ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1123 ISD::MemIndexType IndexType);
1124 SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
1125 ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
1126 ISD::MemIndexType IndexType);
1128 /// Return (create a new or find existing) a target-specific node.
1129 /// TargetMemSDNode should be derived class from MemSDNode.
1130 template <class TargetMemSDNode>
1131 SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
1132 const SDLoc &dl, EVT MemVT,
1133 MachineMemOperand *MMO);
1135 /// Construct a node to track a Value* through the backend.
1136 SDValue getSrcValue(const Value *v);
1138 /// Return an MDNodeSDNode which holds an MDNode.
1139 SDValue getMDNode(const MDNode *MD);
1141 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1142 /// provided type. Use getNode to set a custom SDLoc.
1143 SDValue getBitcast(EVT VT, SDValue V);
1145 /// Return an AddrSpaceCastSDNode.
1146 SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
1147 unsigned DestAS);
1149 /// Return the specified value casted to
1150 /// the target's desired shift amount type.
1151 SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
1153 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1154 SDValue expandVAArg(SDNode *Node);
1156 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1157 SDValue expandVACopy(SDNode *Node);
1159 /// Returs an GlobalAddress of the function from the current module with
1160 /// name matching the given ExternalSymbol. Additionally can provide the
1161 /// matched function.
1162 /// Panics the function doesn't exists.
1163 SDValue getSymbolFunctionGlobalAddress(SDValue Op,
1164 Function **TargetFunction = nullptr);
1166 /// *Mutate* the specified node in-place to have the
1167 /// specified operands. If the resultant node already exists in the DAG,
1168 /// this does not modify the specified node, instead it returns the node that
1169 /// already exists. If the resultant node does not exist in the DAG, the
1170 /// input node is returned. As a degenerate case, if you specify the same
1171 /// input operands as the node already has, the input node is returned.
1172 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
1173 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
1174 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1175 SDValue Op3);
1176 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1177 SDValue Op3, SDValue Op4);
1178 SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
1179 SDValue Op3, SDValue Op4, SDValue Op5);
1180 SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
1182 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1183 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1184 /// the final TokenFactor has less than 64k operands.
1185 SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
1187 /// *Mutate* the specified machine node's memory references to the provided
1188 /// list.
1189 void setNodeMemRefs(MachineSDNode *N,
1190 ArrayRef<MachineMemOperand *> NewMemRefs);
1192 // Propagates the change in divergence to users
1193 void updateDivergence(SDNode * N);
1195 /// These are used for target selectors to *mutate* the
1196 /// specified node to have the specified return type, Target opcode, and
1197 /// operands. Note that target opcodes are stored as
1198 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1199 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
1200 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
1201 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1202 SDValue Op1, SDValue Op2);
1203 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1204 SDValue Op1, SDValue Op2, SDValue Op3);
1205 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
1206 ArrayRef<SDValue> Ops);
1207 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
1208 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1209 EVT VT2, ArrayRef<SDValue> Ops);
1210 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1211 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1212 SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
1213 EVT VT2, SDValue Op1);
1214 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
1215 EVT VT2, SDValue Op1, SDValue Op2);
1216 SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
1217 ArrayRef<SDValue> Ops);
1219 /// This *mutates* the specified node to have the specified
1220 /// return type, opcode, and operands.
1221 SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
1222 ArrayRef<SDValue> Ops);
1224 /// Mutate the specified strict FP node to its non-strict equivalent,
1225 /// unlinking the node from its chain and dropping the metadata arguments.
1226 /// The node must be a strict FP node.
1227 SDNode *mutateStrictFPToFP(SDNode *Node);
1229 /// These are used for target selectors to create a new node
1230 /// with specified return type(s), MachineInstr opcode, and operands.
1232 /// Note that getMachineNode returns the resultant node. If there is already
1233 /// a node of the specified opcode and operands, it returns that node instead
1234 /// of the current one.
1235 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
1236 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1237 SDValue Op1);
1238 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1239 SDValue Op1, SDValue Op2);
1240 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1241 SDValue Op1, SDValue Op2, SDValue Op3);
1242 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
1243 ArrayRef<SDValue> Ops);
1244 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1245 EVT VT2, SDValue Op1, SDValue Op2);
1246 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1247 EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
1248 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1249 EVT VT2, ArrayRef<SDValue> Ops);
1250 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1251 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
1252 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1253 EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
1254 SDValue Op3);
1255 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
1256 EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
1257 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
1258 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
1259 MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
1260 ArrayRef<SDValue> Ops);
1262 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1263 SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1264 SDValue Operand);
1266 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1267 SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
1268 SDValue Operand, SDValue Subreg);
1270 /// Get the specified node if it's already available, or else return NULL.
1271 SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
1272 const SDNodeFlags Flags = SDNodeFlags());
1274 /// Creates a SDDbgValue node.
1275 SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
1276 unsigned R, bool IsIndirect, const DebugLoc &DL,
1277 unsigned O);
1279 /// Creates a constant SDDbgValue node.
1280 SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
1281 const Value *C, const DebugLoc &DL,
1282 unsigned O);
1284 /// Creates a FrameIndex SDDbgValue node.
1285 SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
1286 unsigned FI, bool IsIndirect,
1287 const DebugLoc &DL, unsigned O);
1289 /// Creates a VReg SDDbgValue node.
1290 SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
1291 unsigned VReg, bool IsIndirect,
1292 const DebugLoc &DL, unsigned O);
1294 /// Creates a SDDbgLabel node.
1295 SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
1297 /// Transfer debug values from one node to another, while optionally
1298 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1299 /// is set, debug values are invalidated after they are transferred.
1300 void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
1301 unsigned SizeInBits = 0, bool InvalidateDbg = true);
1303 /// Remove the specified node from the system. If any of its
1304 /// operands then becomes dead, remove them as well. Inform UpdateListener
1305 /// for each node deleted.
1306 void RemoveDeadNode(SDNode *N);
1308 /// This method deletes the unreachable nodes in the
1309 /// given list, and any nodes that become unreachable as a result.
1310 void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
1312 /// Modify anything using 'From' to use 'To' instead.
1313 /// This can cause recursive merging of nodes in the DAG. Use the first
1314 /// version if 'From' is known to have a single result, use the second
1315 /// if you have two nodes with identical results (or if 'To' has a superset
1316 /// of the results of 'From'), use the third otherwise.
1318 /// These methods all take an optional UpdateListener, which (if not null) is
1319 /// informed about nodes that are deleted and modified due to recursive
1320 /// changes in the dag.
1322 /// These functions only replace all existing uses. It's possible that as
1323 /// these replacements are being performed, CSE may cause the From node
1324 /// to be given new uses. These new uses of From are left in place, and
1325 /// not automatically transferred to To.
1327 void ReplaceAllUsesWith(SDValue From, SDValue To);
1328 void ReplaceAllUsesWith(SDNode *From, SDNode *To);
1329 void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
1331 /// Replace any uses of From with To, leaving
1332 /// uses of other values produced by From.getNode() alone.
1333 void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
1335 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1336 /// This correctly handles the case where
1337 /// there is an overlap between the From values and the To values.
1338 void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
1339 unsigned Num);
1341 /// If an existing load has uses of its chain, create a token factor node with
1342 /// that chain and the new memory node's chain and update users of the old
1343 /// chain to the token factor. This ensures that the new memory node will have
1344 /// the same relative memory dependency position as the old load. Returns the
1345 /// new merged load chain.
1346 SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
1348 /// Topological-sort the AllNodes list and a
1349 /// assign a unique node id for each node in the DAG based on their
1350 /// topological order. Returns the number of nodes.
1351 unsigned AssignTopologicalOrder();
1353 /// Move node N in the AllNodes list to be immediately
1354 /// before the given iterator Position. This may be used to update the
1355 /// topological ordering when the list of nodes is modified.
1356 void RepositionNode(allnodes_iterator Position, SDNode *N) {
1357 AllNodes.insert(Position, AllNodes.remove(N));
1360 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1361 /// a vector type, the element semantics are returned.
1362 static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
1363 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
1364 default: llvm_unreachable("Unknown FP format");
1365 case MVT::f16: return APFloat::IEEEhalf();
1366 case MVT::f32: return APFloat::IEEEsingle();
1367 case MVT::f64: return APFloat::IEEEdouble();
1368 case MVT::f80: return APFloat::x87DoubleExtended();
1369 case MVT::f128: return APFloat::IEEEquad();
1370 case MVT::ppcf128: return APFloat::PPCDoubleDouble();
1374 /// Add a dbg_value SDNode. If SD is non-null that means the
1375 /// value is produced by SD.
1376 void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
1378 /// Add a dbg_label SDNode.
1379 void AddDbgLabel(SDDbgLabel *DB);
1381 /// Get the debug values which reference the given SDNode.
1382 ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
1383 return DbgInfo->getSDDbgValues(SD);
1386 public:
1387 /// Return true if there are any SDDbgValue nodes associated
1388 /// with this SelectionDAG.
1389 bool hasDebugValues() const { return !DbgInfo->empty(); }
1391 SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
1392 SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
1394 SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
1395 return DbgInfo->ByvalParmDbgBegin();
1397 SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
1398 return DbgInfo->ByvalParmDbgEnd();
1401 SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
1402 return DbgInfo->DbgLabelBegin();
1404 SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
1405 return DbgInfo->DbgLabelEnd();
1408 /// To be invoked on an SDNode that is slated to be erased. This
1409 /// function mirrors \c llvm::salvageDebugInfo.
1410 void salvageDebugInfo(SDNode &N);
1412 void dump() const;
1414 /// Create a stack temporary, suitable for holding the specified value type.
1415 /// If minAlign is specified, the slot size will have at least that alignment.
1416 SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
1418 /// Create a stack temporary suitable for holding either of the specified
1419 /// value types.
1420 SDValue CreateStackTemporary(EVT VT1, EVT VT2);
1422 SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
1423 const GlobalAddressSDNode *GA,
1424 const SDNode *N2);
1426 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1427 SDNode *N1, SDNode *N2);
1429 SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1430 const ConstantSDNode *C1,
1431 const ConstantSDNode *C2);
1433 SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
1434 ArrayRef<SDValue> Ops,
1435 const SDNodeFlags Flags = SDNodeFlags());
1437 /// Fold floating-point operations with 2 operands when both operands are
1438 /// constants and/or undefined.
1439 SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
1440 SDValue N1, SDValue N2);
1442 /// Constant fold a setcc to true or false.
1443 SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
1444 const SDLoc &dl);
1446 /// See if the specified operand can be simplified with the knowledge that
1447 /// only the bits specified by DemandedBits are used. If so, return the
1448 /// simpler operand, otherwise return a null SDValue.
1450 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1451 /// simplify nodes with multiple uses more aggressively.)
1452 SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
1454 /// See if the specified operand can be simplified with the knowledge that
1455 /// only the bits specified by DemandedBits are used in the elements specified
1456 /// by DemandedElts. If so, return the simpler operand, otherwise return a
1457 /// null SDValue.
1459 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1460 /// simplify nodes with multiple uses more aggressively.)
1461 SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
1462 const APInt &DemandedElts);
1464 /// Return true if the sign bit of Op is known to be zero.
1465 /// We use this predicate to simplify operations downstream.
1466 bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
1468 /// Return true if 'Op & Mask' is known to be zero. We
1469 /// use this predicate to simplify operations downstream. Op and Mask are
1470 /// known to be the same type.
1471 bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1472 unsigned Depth = 0) const;
1474 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1475 /// use this predicate to simplify operations downstream. Op and Mask are
1476 /// known to be the same type.
1477 bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
1478 const APInt &DemandedElts, unsigned Depth = 0) const;
1480 /// Return true if '(Op & Mask) == Mask'.
1481 /// Op and Mask are known to be the same type.
1482 bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
1483 unsigned Depth = 0) const;
1485 /// Determine which bits of Op are known to be either zero or one and return
1486 /// them in Known. For vectors, the known bits are those that are shared by
1487 /// every vector element.
1488 /// Targets can implement the computeKnownBitsForTargetNode method in the
1489 /// TargetLowering class to allow target nodes to be understood.
1490 KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
1492 /// Determine which bits of Op are known to be either zero or one and return
1493 /// them in Known. The DemandedElts argument allows us to only collect the
1494 /// known bits that are shared by the requested vector elements.
1495 /// Targets can implement the computeKnownBitsForTargetNode method in the
1496 /// TargetLowering class to allow target nodes to be understood.
1497 KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
1498 unsigned Depth = 0) const;
1500 /// Used to represent the possible overflow behavior of an operation.
1501 /// Never: the operation cannot overflow.
1502 /// Always: the operation will always overflow.
1503 /// Sometime: the operation may or may not overflow.
1504 enum OverflowKind {
1505 OFK_Never,
1506 OFK_Sometime,
1507 OFK_Always,
1510 /// Determine if the result of the addition of 2 node can overflow.
1511 OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
1513 /// Test if the given value is known to have exactly one bit set. This differs
1514 /// from computeKnownBits in that it doesn't necessarily determine which bit
1515 /// is set.
1516 bool isKnownToBeAPowerOfTwo(SDValue Val) const;
1518 /// Return the number of times the sign bit of the register is replicated into
1519 /// the other bits. We know that at least 1 bit is always equal to the sign
1520 /// bit (itself), but other cases can give us information. For example,
1521 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1522 /// to each other, so we return 3. Targets can implement the
1523 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1524 /// target nodes to be understood.
1525 unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
1527 /// Return the number of times the sign bit of the register is replicated into
1528 /// the other bits. We know that at least 1 bit is always equal to the sign
1529 /// bit (itself), but other cases can give us information. For example,
1530 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1531 /// to each other, so we return 3. The DemandedElts argument allows
1532 /// us to only collect the minimum sign bits of the requested vector elements.
1533 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1534 /// TargetLowering class to allow target nodes to be understood.
1535 unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
1536 unsigned Depth = 0) const;
1538 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1539 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1540 /// is guaranteed to have the same semantics as an ADD. This handles the
1541 /// equivalence:
1542 /// X|Cst == X+Cst iff X&Cst = 0.
1543 bool isBaseWithConstantOffset(SDValue Op) const;
1545 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1546 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1547 /// be a qNaN).
1548 bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
1550 /// \returns true if \p Op is known to never be a signaling NaN.
1551 bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
1552 return isKnownNeverNaN(Op, true, Depth);
1555 /// Test whether the given floating point SDValue is known to never be
1556 /// positive or negative zero.
1557 bool isKnownNeverZeroFloat(SDValue Op) const;
1559 /// Test whether the given SDValue is known to contain non-zero value(s).
1560 bool isKnownNeverZero(SDValue Op) const;
1562 /// Test whether two SDValues are known to compare equal. This
1563 /// is true if they are the same value, or if one is negative zero and the
1564 /// other positive zero.
1565 bool isEqualTo(SDValue A, SDValue B) const;
1567 /// Return true if A and B have no common bits set. As an example, this can
1568 /// allow an 'add' to be transformed into an 'or'.
1569 bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
1571 /// Test whether \p V has a splatted value for all the demanded elements.
1573 /// On success \p UndefElts will indicate the elements that have UNDEF
1574 /// values instead of the splat value, this is only guaranteed to be correct
1575 /// for \p DemandedElts.
1577 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1578 bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
1580 /// Test whether \p V has a splatted value.
1581 bool isSplatValue(SDValue V, bool AllowUndefs = false);
1583 /// If V is a splatted value, return the source vector and its splat index.
1584 SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
1586 /// If V is a splat vector, return its scalar source operand by extracting
1587 /// that element from the source vector.
1588 SDValue getSplatValue(SDValue V);
1590 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1591 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1592 /// Extract. The reduction must use one of the opcodes listed in /p
1593 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1594 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1595 /// was not matched. If \p AllowPartials is set then in the case of a
1596 /// reduction pattern that only matches the first few stages, the extracted
1597 /// subvector of the start of the reduction is returned.
1598 SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
1599 ArrayRef<ISD::NodeType> CandidateBinOps,
1600 bool AllowPartials = false);
1602 /// Utility function used by legalize and lowering to
1603 /// "unroll" a vector operation by splitting out the scalars and operating
1604 /// on each element individually. If the ResNE is 0, fully unroll the vector
1605 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1606 /// If the ResNE is greater than the width of the vector op, unroll the
1607 /// vector op and fill the end of the resulting vector with UNDEFS.
1608 SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
1610 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1611 /// This is a separate function because those opcodes have two results.
1612 std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
1613 unsigned ResNE = 0);
1615 /// Return true if loads are next to each other and can be
1616 /// merged. Check that both are nonvolatile and if LD is loading
1617 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1618 /// location that the 'Base' load is loading from.
1619 bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
1620 unsigned Bytes, int Dist) const;
1622 /// Infer alignment of a load / store address. Return 0 if
1623 /// it cannot be inferred.
1624 unsigned InferPtrAlignment(SDValue Ptr) const;
1626 /// Compute the VTs needed for the low/hi parts of a type
1627 /// which is split (or expanded) into two not necessarily identical pieces.
1628 std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
1630 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1631 /// VTs and return the low/high part.
1632 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
1633 const EVT &LoVT, const EVT &HiVT);
1635 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1636 std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
1637 EVT LoVT, HiVT;
1638 std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
1639 return SplitVector(N, DL, LoVT, HiVT);
1642 /// Split the node's operand with EXTRACT_SUBVECTOR and
1643 /// return the low/high part.
1644 std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
1646 return SplitVector(N->getOperand(OpNo), SDLoc(N));
1649 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1650 SDValue WidenVector(const SDValue &N, const SDLoc &DL);
1652 /// Append the extracted elements from Start to Count out of the vector Op
1653 /// in Args. If Count is 0, all of the elements will be extracted.
1654 void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
1655 unsigned Start = 0, unsigned Count = 0);
1657 /// Compute the default alignment value for the given type.
1658 unsigned getEVTAlignment(EVT MemoryVT) const;
1660 /// Test whether the given value is a constant int or similar node.
1661 SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
1663 /// Test whether the given value is a constant FP or similar node.
1664 SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
1666 /// \returns true if \p N is any kind of constant or build_vector of
1667 /// constants, int or float. If a vector, it may not necessarily be a splat.
1668 inline bool isConstantValueOfAnyType(SDValue N) {
1669 return isConstantIntBuildVectorOrConstantInt(N) ||
1670 isConstantFPBuildVectorOrConstantFP(N);
1673 void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
1674 SDCallSiteDbgInfo[CallNode].CSInfo = std::move(CallInfo);
1677 CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
1678 auto I = SDCallSiteDbgInfo.find(CallNode);
1679 if (I != SDCallSiteDbgInfo.end())
1680 return std::move(I->second).CSInfo;
1681 return CallSiteInfo();
1684 void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
1685 SDCallSiteDbgInfo[Node].HeapAllocSite = MD;
1688 /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1689 MDNode *getHeapAllocSite(const SDNode *Node) {
1690 auto It = SDCallSiteDbgInfo.find(Node);
1691 if (It == SDCallSiteDbgInfo.end())
1692 return nullptr;
1693 return It->second.HeapAllocSite;
1696 private:
1697 void InsertNode(SDNode *N);
1698 bool RemoveNodeFromCSEMaps(SDNode *N);
1699 void AddModifiedNodeToCSEMaps(SDNode *N);
1700 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
1701 SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
1702 void *&InsertPos);
1703 SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1704 void *&InsertPos);
1705 SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
1707 void DeleteNodeNotInCSEMaps(SDNode *N);
1708 void DeallocateNode(SDNode *N);
1710 void allnodes_clear();
1712 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1713 /// not, return the insertion token that will make insertion faster. This
1714 /// overload is for nodes other than Constant or ConstantFP, use the other one
1715 /// for those.
1716 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
1718 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1719 /// not, return the insertion token that will make insertion faster. Performs
1720 /// additional processing for constant nodes.
1721 SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
1722 void *&InsertPos);
1724 /// List of non-single value types.
1725 FoldingSet<SDVTListNode> VTListMap;
1727 /// Maps to auto-CSE operations.
1728 std::vector<CondCodeSDNode*> CondCodeNodes;
1730 std::vector<SDNode*> ValueTypeNodes;
1731 std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
1732 StringMap<SDNode*> ExternalSymbols;
1734 std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
1735 DenseMap<MCSymbol *, SDNode *> MCSymbols;
1738 template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
1739 using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
1741 static nodes_iterator nodes_begin(SelectionDAG *G) {
1742 return nodes_iterator(G->allnodes_begin());
1745 static nodes_iterator nodes_end(SelectionDAG *G) {
1746 return nodes_iterator(G->allnodes_end());
1750 template <class TargetMemSDNode>
1751 SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
1752 ArrayRef<SDValue> Ops,
1753 const SDLoc &dl, EVT MemVT,
1754 MachineMemOperand *MMO) {
1755 /// Compose node ID and try to find an existing node.
1756 FoldingSetNodeID ID;
1757 unsigned Opcode =
1758 TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
1759 ID.AddInteger(Opcode);
1760 ID.AddPointer(VTs.VTs);
1761 for (auto& Op : Ops) {
1762 ID.AddPointer(Op.getNode());
1763 ID.AddInteger(Op.getResNo());
1765 ID.AddInteger(MemVT.getRawBits());
1766 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
1767 ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
1768 dl.getIROrder(), VTs, MemVT, MMO));
1770 void *IP = nullptr;
1771 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
1772 cast<TargetMemSDNode>(E)->refineAlignment(MMO);
1773 return SDValue(E, 0);
1776 /// Existing node was not found. Create a new one.
1777 auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
1778 MemVT, MMO);
1779 createOperands(N, Ops);
1780 CSEMap.InsertNode(N, IP);
1781 InsertNode(N);
1782 return SDValue(N, 0);
1785 } // end namespace llvm
1787 #endif // LLVM_CODEGEN_SELECTIONDAG_H