1 //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the SelectionDAG class, and transitively defines the
10 // SDNode class and subclasses.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SELECTIONDAG_H
15 #define LLVM_CODEGEN_SELECTIONDAG_H
17 #include "llvm/ADT/APFloat.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/ilist.h"
27 #include "llvm/ADT/iterator.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/CodeGen/DAGCombine.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/ArrayRecycler.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/CodeGen.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MachineValueType.h"
48 #include "llvm/Support/RecyclingAllocator.h"
70 class MachineBasicBlock
;
71 class MachineConstantPoolValue
;
73 class OptimizationRemarkEmitter
;
77 class SelectionDAGTargetInfo
;
78 class TargetLibraryInfo
;
81 class TargetSubtargetInfo
;
84 class SDVTListNode
: public FoldingSetNode
{
85 friend struct FoldingSetTrait
<SDVTListNode
>;
87 /// A reference to an Interned FoldingSetNodeID for this node.
88 /// The Allocator in SelectionDAG holds the data.
89 /// SDVTList contains all types which are frequently accessed in SelectionDAG.
90 /// The size of this list is not expected to be big so it won't introduce
92 FoldingSetNodeIDRef FastID
;
95 /// The hash value for SDVTList is fixed, so cache it to avoid
100 SDVTListNode(const FoldingSetNodeIDRef ID
, const EVT
*VT
, unsigned int Num
) :
101 FastID(ID
), VTs(VT
), NumVTs(Num
) {
102 HashValue
= ID
.ComputeHash();
105 SDVTList
getSDVTList() {
106 SDVTList result
= {VTs
, NumVTs
};
111 /// Specialize FoldingSetTrait for SDVTListNode
112 /// to avoid computing temp FoldingSetNodeID and hash value.
113 template<> struct FoldingSetTrait
<SDVTListNode
> : DefaultFoldingSetTrait
<SDVTListNode
> {
114 static void Profile(const SDVTListNode
&X
, FoldingSetNodeID
& ID
) {
118 static bool Equals(const SDVTListNode
&X
, const FoldingSetNodeID
&ID
,
119 unsigned IDHash
, FoldingSetNodeID
&TempID
) {
120 if (X
.HashValue
!= IDHash
)
122 return ID
== X
.FastID
;
125 static unsigned ComputeHash(const SDVTListNode
&X
, FoldingSetNodeID
&TempID
) {
130 template <> struct ilist_alloc_traits
<SDNode
> {
131 static void deleteNode(SDNode
*) {
132 llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
136 /// Keeps track of dbg_value information through SDISel. We do
137 /// not build SDNodes for these so as not to perturb the generated code;
138 /// instead the info is kept off to the side in this structure. Each SDNode may
139 /// have one or more associated dbg_value entries. This information is kept in
141 /// Byval parameters are handled separately because they don't use alloca's,
142 /// which busts the normal mechanism. There is good reason for handling all
143 /// parameters separately: they may not have code generated for them, they
144 /// should always go at the beginning of the function regardless of other code
145 /// motion, and debug info for them is potentially useful even if the parameter
146 /// is unused. Right now only byval parameters are handled separately.
148 BumpPtrAllocator Alloc
;
149 SmallVector
<SDDbgValue
*, 32> DbgValues
;
150 SmallVector
<SDDbgValue
*, 32> ByvalParmDbgValues
;
151 SmallVector
<SDDbgLabel
*, 4> DbgLabels
;
152 using DbgValMapType
= DenseMap
<const SDNode
*, SmallVector
<SDDbgValue
*, 2>>;
153 DbgValMapType DbgValMap
;
156 SDDbgInfo() = default;
157 SDDbgInfo(const SDDbgInfo
&) = delete;
158 SDDbgInfo
&operator=(const SDDbgInfo
&) = delete;
160 void add(SDDbgValue
*V
, const SDNode
*Node
, bool isParameter
) {
162 ByvalParmDbgValues
.push_back(V
);
163 } else DbgValues
.push_back(V
);
165 DbgValMap
[Node
].push_back(V
);
168 void add(SDDbgLabel
*L
) {
169 DbgLabels
.push_back(L
);
172 /// Invalidate all DbgValues attached to the node and remove
173 /// it from the Node-to-DbgValues map.
174 void erase(const SDNode
*Node
);
179 ByvalParmDbgValues
.clear();
184 BumpPtrAllocator
&getAlloc() { return Alloc
; }
187 return DbgValues
.empty() && ByvalParmDbgValues
.empty() && DbgLabels
.empty();
190 ArrayRef
<SDDbgValue
*> getSDDbgValues(const SDNode
*Node
) const {
191 auto I
= DbgValMap
.find(Node
);
192 if (I
!= DbgValMap
.end())
194 return ArrayRef
<SDDbgValue
*>();
197 using DbgIterator
= SmallVectorImpl
<SDDbgValue
*>::iterator
;
198 using DbgLabelIterator
= SmallVectorImpl
<SDDbgLabel
*>::iterator
;
200 DbgIterator
DbgBegin() { return DbgValues
.begin(); }
201 DbgIterator
DbgEnd() { return DbgValues
.end(); }
202 DbgIterator
ByvalParmDbgBegin() { return ByvalParmDbgValues
.begin(); }
203 DbgIterator
ByvalParmDbgEnd() { return ByvalParmDbgValues
.end(); }
204 DbgLabelIterator
DbgLabelBegin() { return DbgLabels
.begin(); }
205 DbgLabelIterator
DbgLabelEnd() { return DbgLabels
.end(); }
208 void checkForCycles(const SelectionDAG
*DAG
, bool force
= false);
210 /// This is used to represent a portion of an LLVM function in a low-level
211 /// Data Dependence DAG representation suitable for instruction selection.
212 /// This DAG is constructed as the first step of instruction selection in order
213 /// to allow implementation of machine specific optimizations
214 /// and code simplifications.
216 /// The representation used by the SelectionDAG is a target-independent
217 /// representation, which has some similarities to the GCC RTL representation,
218 /// but is significantly more simple, powerful, and is a graph form instead of a
222 const TargetMachine
&TM
;
223 const SelectionDAGTargetInfo
*TSI
= nullptr;
224 const TargetLowering
*TLI
= nullptr;
225 const TargetLibraryInfo
*LibInfo
= nullptr;
227 Pass
*SDAGISelPass
= nullptr;
228 LLVMContext
*Context
;
229 CodeGenOpt::Level OptLevel
;
231 LegacyDivergenceAnalysis
* DA
= nullptr;
232 FunctionLoweringInfo
* FLI
= nullptr;
234 /// The function-level optimization remark emitter. Used to emit remarks
235 /// whenever manipulating the DAG.
236 OptimizationRemarkEmitter
*ORE
;
238 /// The starting token.
241 /// The root of the entire DAG.
244 /// A linked list of nodes in the current DAG.
245 ilist
<SDNode
> AllNodes
;
247 /// The AllocatorType for allocating SDNodes. We use
248 /// pool allocation with recycling.
249 using NodeAllocatorType
= RecyclingAllocator
<BumpPtrAllocator
, SDNode
,
250 sizeof(LargestSDNode
),
251 alignof(MostAlignedSDNode
)>;
253 /// Pool allocation for nodes.
254 NodeAllocatorType NodeAllocator
;
256 /// This structure is used to memoize nodes, automatically performing
257 /// CSE with existing nodes when a duplicate is requested.
258 FoldingSet
<SDNode
> CSEMap
;
260 /// Pool allocation for machine-opcode SDNode operands.
261 BumpPtrAllocator OperandAllocator
;
262 ArrayRecycler
<SDUse
> OperandRecycler
;
264 /// Pool allocation for misc. objects that are created once per SelectionDAG.
265 BumpPtrAllocator Allocator
;
267 /// Tracks dbg_value and dbg_label information through SDISel.
270 using CallSiteInfo
= MachineFunction::CallSiteInfo
;
271 using CallSiteInfoImpl
= MachineFunction::CallSiteInfoImpl
;
273 struct CallSiteDbgInfo
{
275 MDNode
*HeapAllocSite
= nullptr;
278 DenseMap
<const SDNode
*, CallSiteDbgInfo
> SDCallSiteDbgInfo
;
280 uint16_t NextPersistentId
= 0;
283 /// Clients of various APIs that cause global effects on
284 /// the DAG can optionally implement this interface. This allows the clients
285 /// to handle the various sorts of updates that happen.
287 /// A DAGUpdateListener automatically registers itself with DAG when it is
288 /// constructed, and removes itself when destroyed in RAII fashion.
289 struct DAGUpdateListener
{
290 DAGUpdateListener
*const Next
;
293 explicit DAGUpdateListener(SelectionDAG
&D
)
294 : Next(D
.UpdateListeners
), DAG(D
) {
295 DAG
.UpdateListeners
= this;
298 virtual ~DAGUpdateListener() {
299 assert(DAG
.UpdateListeners
== this &&
300 "DAGUpdateListeners must be destroyed in LIFO order");
301 DAG
.UpdateListeners
= Next
;
304 /// The node N that was deleted and, if E is not null, an
305 /// equivalent node E that replaced it.
306 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
);
308 /// The node N that was updated.
309 virtual void NodeUpdated(SDNode
*N
);
311 /// The node N that was inserted.
312 virtual void NodeInserted(SDNode
*N
);
315 struct DAGNodeDeletedListener
: public DAGUpdateListener
{
316 std::function
<void(SDNode
*, SDNode
*)> Callback
;
318 DAGNodeDeletedListener(SelectionDAG
&DAG
,
319 std::function
<void(SDNode
*, SDNode
*)> Callback
)
320 : DAGUpdateListener(DAG
), Callback(std::move(Callback
)) {}
322 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{ Callback(N
, E
); }
325 virtual void anchor();
328 /// When true, additional steps are taken to
329 /// ensure that getConstant() and similar functions return DAG nodes that
330 /// have legal types. This is important after type legalization since
331 /// any illegally typed nodes generated after this point will not experience
332 /// type legalization.
333 bool NewNodesMustHaveLegalTypes
= false;
336 /// DAGUpdateListener is a friend so it can manipulate the listener stack.
337 friend struct DAGUpdateListener
;
339 /// Linked list of registered DAGUpdateListener instances.
340 /// This stack is maintained by DAGUpdateListener RAII.
341 DAGUpdateListener
*UpdateListeners
= nullptr;
343 /// Implementation of setSubgraphColor.
344 /// Return whether we had to truncate the search.
345 bool setSubgraphColorHelper(SDNode
*N
, const char *Color
,
346 DenseSet
<SDNode
*> &visited
,
347 int level
, bool &printed
);
349 template <typename SDNodeT
, typename
... ArgTypes
>
350 SDNodeT
*newSDNode(ArgTypes
&&... Args
) {
351 return new (NodeAllocator
.template Allocate
<SDNodeT
>())
352 SDNodeT(std::forward
<ArgTypes
>(Args
)...);
355 /// Build a synthetic SDNodeT with the given args and extract its subclass
356 /// data as an integer (e.g. for use in a folding set).
358 /// The args to this function are the same as the args to SDNodeT's
359 /// constructor, except the second arg (assumed to be a const DebugLoc&) is
361 template <typename SDNodeT
, typename
... ArgTypes
>
362 static uint16_t getSyntheticNodeSubclassData(unsigned IROrder
,
363 ArgTypes
&&... Args
) {
364 // The compiler can reduce this expression to a constant iff we pass an
365 // empty DebugLoc. Thankfully, the debug location doesn't have any bearing
366 // on the subclass data.
367 return SDNodeT(IROrder
, DebugLoc(), std::forward
<ArgTypes
>(Args
)...)
368 .getRawSubclassData();
371 template <typename SDNodeTy
>
372 static uint16_t getSyntheticNodeSubclassData(unsigned Opc
, unsigned Order
,
373 SDVTList VTs
, EVT MemoryVT
,
374 MachineMemOperand
*MMO
) {
375 return SDNodeTy(Opc
, Order
, DebugLoc(), VTs
, MemoryVT
, MMO
)
376 .getRawSubclassData();
379 void createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
);
381 void removeOperands(SDNode
*Node
) {
382 if (!Node
->OperandList
)
384 OperandRecycler
.deallocate(
385 ArrayRecycler
<SDUse
>::Capacity::get(Node
->NumOperands
),
387 Node
->NumOperands
= 0;
388 Node
->OperandList
= nullptr;
390 void CreateTopologicalOrder(std::vector
<SDNode
*>& Order
);
392 explicit SelectionDAG(const TargetMachine
&TM
, CodeGenOpt::Level
);
393 SelectionDAG(const SelectionDAG
&) = delete;
394 SelectionDAG
&operator=(const SelectionDAG
&) = delete;
397 /// Prepare this SelectionDAG to process code in the given MachineFunction.
398 void init(MachineFunction
&NewMF
, OptimizationRemarkEmitter
&NewORE
,
399 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
400 LegacyDivergenceAnalysis
* Divergence
);
402 void setFunctionLoweringInfo(FunctionLoweringInfo
* FuncInfo
) {
406 /// Clear state and free memory necessary to make this
407 /// SelectionDAG ready to process a new block.
410 MachineFunction
&getMachineFunction() const { return *MF
; }
411 const Pass
*getPass() const { return SDAGISelPass
; }
413 const DataLayout
&getDataLayout() const { return MF
->getDataLayout(); }
414 const TargetMachine
&getTarget() const { return TM
; }
415 const TargetSubtargetInfo
&getSubtarget() const { return MF
->getSubtarget(); }
416 const TargetLowering
&getTargetLoweringInfo() const { return *TLI
; }
417 const TargetLibraryInfo
&getLibInfo() const { return *LibInfo
; }
418 const SelectionDAGTargetInfo
&getSelectionDAGInfo() const { return *TSI
; }
419 const LegacyDivergenceAnalysis
*getDivergenceAnalysis() const { return DA
; }
420 LLVMContext
*getContext() const {return Context
; }
421 OptimizationRemarkEmitter
&getORE() const { return *ORE
; }
423 /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
424 void viewGraph(const std::string
&Title
);
428 std::map
<const SDNode
*, std::string
> NodeGraphAttrs
;
431 /// Clear all previously defined node graph attributes.
432 /// Intended to be used from a debugging tool (eg. gdb).
433 void clearGraphAttrs();
435 /// Set graph attributes for a node. (eg. "color=red".)
436 void setGraphAttrs(const SDNode
*N
, const char *Attrs
);
438 /// Get graph attributes for a node. (eg. "color=red".)
439 /// Used from getNodeAttributes.
440 const std::string
getGraphAttrs(const SDNode
*N
) const;
442 /// Convenience for setting node color attribute.
443 void setGraphColor(const SDNode
*N
, const char *Color
);
445 /// Convenience for setting subgraph color attribute.
446 void setSubgraphColor(SDNode
*N
, const char *Color
);
448 using allnodes_const_iterator
= ilist
<SDNode
>::const_iterator
;
450 allnodes_const_iterator
allnodes_begin() const { return AllNodes
.begin(); }
451 allnodes_const_iterator
allnodes_end() const { return AllNodes
.end(); }
453 using allnodes_iterator
= ilist
<SDNode
>::iterator
;
455 allnodes_iterator
allnodes_begin() { return AllNodes
.begin(); }
456 allnodes_iterator
allnodes_end() { return AllNodes
.end(); }
458 ilist
<SDNode
>::size_type
allnodes_size() const {
459 return AllNodes
.size();
462 iterator_range
<allnodes_iterator
> allnodes() {
463 return make_range(allnodes_begin(), allnodes_end());
465 iterator_range
<allnodes_const_iterator
> allnodes() const {
466 return make_range(allnodes_begin(), allnodes_end());
469 /// Return the root tag of the SelectionDAG.
470 const SDValue
&getRoot() const { return Root
; }
472 /// Return the token chain corresponding to the entry of the function.
473 SDValue
getEntryNode() const {
474 return SDValue(const_cast<SDNode
*>(&EntryNode
), 0);
477 /// Set the current root tag of the SelectionDAG.
479 const SDValue
&setRoot(SDValue N
) {
480 assert((!N
.getNode() || N
.getValueType() == MVT::Other
) &&
481 "DAG root value is not a chain!");
483 checkForCycles(N
.getNode(), this);
486 checkForCycles(this);
491 void VerifyDAGDiverence();
494 /// This iterates over the nodes in the SelectionDAG, folding
495 /// certain types of nodes together, or eliminating superfluous nodes. The
496 /// Level argument controls whether Combine is allowed to produce nodes and
497 /// types that are illegal on the target.
498 void Combine(CombineLevel Level
, AliasAnalysis
*AA
,
499 CodeGenOpt::Level OptLevel
);
501 /// This transforms the SelectionDAG into a SelectionDAG that
502 /// only uses types natively supported by the target.
503 /// Returns "true" if it made any changes.
505 /// Note that this is an involved process that may invalidate pointers into
507 bool LegalizeTypes();
509 /// This transforms the SelectionDAG into a SelectionDAG that is
510 /// compatible with the target instruction selector, as indicated by the
511 /// TargetLowering object.
513 /// Note that this is an involved process that may invalidate pointers into
517 /// Transforms a SelectionDAG node and any operands to it into a node
518 /// that is compatible with the target instruction selector, as indicated by
519 /// the TargetLowering object.
521 /// \returns true if \c N is a valid, legal node after calling this.
523 /// This essentially runs a single recursive walk of the \c Legalize process
524 /// over the given node (and its operands). This can be used to incrementally
525 /// legalize the DAG. All of the nodes which are directly replaced,
526 /// potentially including N, are added to the output parameter \c
527 /// UpdatedNodes so that the delta to the DAG can be understood by the
530 /// When this returns false, N has been legalized in a way that make the
531 /// pointer passed in no longer valid. It may have even been deleted from the
532 /// DAG, and so it shouldn't be used further. When this returns true, the
533 /// N passed in is a legal node, and can be immediately processed as such.
534 /// This may still have done some work on the DAG, and will still populate
535 /// UpdatedNodes with any new nodes replacing those originally in the DAG.
536 bool LegalizeOp(SDNode
*N
, SmallSetVector
<SDNode
*, 16> &UpdatedNodes
);
538 /// This transforms the SelectionDAG into a SelectionDAG
539 /// that only uses vector math operations supported by the target. This is
540 /// necessary as a separate step from Legalize because unrolling a vector
541 /// operation can introduce illegal types, which requires running
542 /// LegalizeTypes again.
544 /// This returns true if it made any changes; in that case, LegalizeTypes
545 /// is called again before Legalize.
547 /// Note that this is an involved process that may invalidate pointers into
549 bool LegalizeVectors();
551 /// This method deletes all unreachable nodes in the SelectionDAG.
552 void RemoveDeadNodes();
554 /// Remove the specified node from the system. This node must
555 /// have no referrers.
556 void DeleteNode(SDNode
*N
);
558 /// Return an SDVTList that represents the list of values specified.
559 SDVTList
getVTList(EVT VT
);
560 SDVTList
getVTList(EVT VT1
, EVT VT2
);
561 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
);
562 SDVTList
getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
);
563 SDVTList
getVTList(ArrayRef
<EVT
> VTs
);
565 //===--------------------------------------------------------------------===//
566 // Node creation methods.
568 /// Create a ConstantSDNode wrapping a constant value.
569 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
571 /// If only legal types can be produced, this does the necessary
572 /// transformations (e.g., if the vector element type is illegal).
574 SDValue
getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
575 bool isTarget
= false, bool isOpaque
= false);
576 SDValue
getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
577 bool isTarget
= false, bool isOpaque
= false);
579 SDValue
getAllOnesConstant(const SDLoc
&DL
, EVT VT
, bool IsTarget
= false,
580 bool IsOpaque
= false) {
581 return getConstant(APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
,
582 VT
, IsTarget
, IsOpaque
);
585 SDValue
getConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
586 bool isTarget
= false, bool isOpaque
= false);
587 SDValue
getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
588 bool isTarget
= false);
589 SDValue
getShiftAmountConstant(uint64_t Val
, EVT VT
, const SDLoc
&DL
,
590 bool LegalTypes
= true);
592 SDValue
getTargetConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
593 bool isOpaque
= false) {
594 return getConstant(Val
, DL
, VT
, true, isOpaque
);
596 SDValue
getTargetConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
597 bool isOpaque
= false) {
598 return getConstant(Val
, DL
, VT
, true, isOpaque
);
600 SDValue
getTargetConstant(const ConstantInt
&Val
, const SDLoc
&DL
, EVT VT
,
601 bool isOpaque
= false) {
602 return getConstant(Val
, DL
, VT
, true, isOpaque
);
605 /// Create a true or false constant of type \p VT using the target's
606 /// BooleanContent for type \p OpVT.
607 SDValue
getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
, EVT OpVT
);
610 /// Create a ConstantFPSDNode wrapping a constant value.
611 /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
613 /// If only legal types can be produced, this does the necessary
614 /// transformations (e.g., if the vector element type is illegal).
615 /// The forms that take a double should only be used for simple constants
616 /// that can be exactly represented in VT. No checks are made.
618 SDValue
getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
619 bool isTarget
= false);
620 SDValue
getConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
,
621 bool isTarget
= false);
622 SDValue
getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
, EVT VT
,
623 bool isTarget
= false);
624 SDValue
getTargetConstantFP(double Val
, const SDLoc
&DL
, EVT VT
) {
625 return getConstantFP(Val
, DL
, VT
, true);
627 SDValue
getTargetConstantFP(const APFloat
&Val
, const SDLoc
&DL
, EVT VT
) {
628 return getConstantFP(Val
, DL
, VT
, true);
630 SDValue
getTargetConstantFP(const ConstantFP
&Val
, const SDLoc
&DL
, EVT VT
) {
631 return getConstantFP(Val
, DL
, VT
, true);
635 SDValue
getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
636 int64_t offset
= 0, bool isTargetGA
= false,
637 unsigned TargetFlags
= 0);
638 SDValue
getTargetGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
, EVT VT
,
639 int64_t offset
= 0, unsigned TargetFlags
= 0) {
640 return getGlobalAddress(GV
, DL
, VT
, offset
, true, TargetFlags
);
642 SDValue
getFrameIndex(int FI
, EVT VT
, bool isTarget
= false);
643 SDValue
getTargetFrameIndex(int FI
, EVT VT
) {
644 return getFrameIndex(FI
, VT
, true);
646 SDValue
getJumpTable(int JTI
, EVT VT
, bool isTarget
= false,
647 unsigned TargetFlags
= 0);
648 SDValue
getTargetJumpTable(int JTI
, EVT VT
, unsigned TargetFlags
= 0) {
649 return getJumpTable(JTI
, VT
, true, TargetFlags
);
651 SDValue
getConstantPool(const Constant
*C
, EVT VT
, unsigned Align
= 0,
652 int Offs
= 0, bool isT
= false,
653 unsigned TargetFlags
= 0);
654 SDValue
getTargetConstantPool(const Constant
*C
, EVT VT
, unsigned Align
= 0,
655 int Offset
= 0, unsigned TargetFlags
= 0) {
656 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
658 SDValue
getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
659 unsigned Align
= 0, int Offs
= 0, bool isT
=false,
660 unsigned TargetFlags
= 0);
661 SDValue
getTargetConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
662 unsigned Align
= 0, int Offset
= 0,
663 unsigned TargetFlags
= 0) {
664 return getConstantPool(C
, VT
, Align
, Offset
, true, TargetFlags
);
666 SDValue
getTargetIndex(int Index
, EVT VT
, int64_t Offset
= 0,
667 unsigned TargetFlags
= 0);
668 // When generating a branch to a BB, we don't in general know enough
669 // to provide debug info for the BB at that time, so keep this one around.
670 SDValue
getBasicBlock(MachineBasicBlock
*MBB
);
671 SDValue
getBasicBlock(MachineBasicBlock
*MBB
, SDLoc dl
);
672 SDValue
getExternalSymbol(const char *Sym
, EVT VT
);
673 SDValue
getExternalSymbol(const char *Sym
, const SDLoc
&dl
, EVT VT
);
674 SDValue
getTargetExternalSymbol(const char *Sym
, EVT VT
,
675 unsigned TargetFlags
= 0);
676 SDValue
getMCSymbol(MCSymbol
*Sym
, EVT VT
);
678 SDValue
getValueType(EVT
);
679 SDValue
getRegister(unsigned Reg
, EVT VT
);
680 SDValue
getRegisterMask(const uint32_t *RegMask
);
681 SDValue
getEHLabel(const SDLoc
&dl
, SDValue Root
, MCSymbol
*Label
);
682 SDValue
getLabelNode(unsigned Opcode
, const SDLoc
&dl
, SDValue Root
,
684 SDValue
getBlockAddress(const BlockAddress
*BA
, EVT VT
, int64_t Offset
= 0,
685 bool isTarget
= false, unsigned TargetFlags
= 0);
686 SDValue
getTargetBlockAddress(const BlockAddress
*BA
, EVT VT
,
687 int64_t Offset
= 0, unsigned TargetFlags
= 0) {
688 return getBlockAddress(BA
, VT
, Offset
, true, TargetFlags
);
691 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
,
693 return getNode(ISD::CopyToReg
, dl
, MVT::Other
, Chain
,
694 getRegister(Reg
, N
.getValueType()), N
);
697 // This version of the getCopyToReg method takes an extra operand, which
698 // indicates that there is potentially an incoming glue value (if Glue is not
699 // null) and that there should be a glue result.
700 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, SDValue N
,
702 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
703 SDValue Ops
[] = { Chain
, getRegister(Reg
, N
.getValueType()), N
, Glue
};
704 return getNode(ISD::CopyToReg
, dl
, VTs
,
705 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
708 // Similar to last getCopyToReg() except parameter Reg is a SDValue
709 SDValue
getCopyToReg(SDValue Chain
, const SDLoc
&dl
, SDValue Reg
, SDValue N
,
711 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
712 SDValue Ops
[] = { Chain
, Reg
, N
, Glue
};
713 return getNode(ISD::CopyToReg
, dl
, VTs
,
714 makeArrayRef(Ops
, Glue
.getNode() ? 4 : 3));
717 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
) {
718 SDVTList VTs
= getVTList(VT
, MVT::Other
);
719 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
) };
720 return getNode(ISD::CopyFromReg
, dl
, VTs
, Ops
);
723 // This version of the getCopyFromReg method takes an extra operand, which
724 // indicates that there is potentially an incoming glue value (if Glue is not
725 // null) and that there should be a glue result.
726 SDValue
getCopyFromReg(SDValue Chain
, const SDLoc
&dl
, unsigned Reg
, EVT VT
,
728 SDVTList VTs
= getVTList(VT
, MVT::Other
, MVT::Glue
);
729 SDValue Ops
[] = { Chain
, getRegister(Reg
, VT
), Glue
};
730 return getNode(ISD::CopyFromReg
, dl
, VTs
,
731 makeArrayRef(Ops
, Glue
.getNode() ? 3 : 2));
734 SDValue
getCondCode(ISD::CondCode Cond
);
736 /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
737 /// which must be a vector type, must match the number of mask elements
738 /// NumElts. An integer mask element equal to -1 is treated as undefined.
739 SDValue
getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
742 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
743 /// which must be a vector type, must match the number of operands in Ops.
744 /// The operands must have the same type as (or, for integers, a type wider
745 /// than) VT's element type.
746 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDValue
> Ops
) {
747 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
748 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
751 /// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
752 /// which must be a vector type, must match the number of operands in Ops.
753 /// The operands must have the same type as (or, for integers, a type wider
754 /// than) VT's element type.
755 SDValue
getBuildVector(EVT VT
, const SDLoc
&DL
, ArrayRef
<SDUse
> Ops
) {
756 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
757 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
760 /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
761 /// elements. VT must be a vector type. Op's type must be the same as (or,
762 /// for integers, a type wider than) VT's element type.
763 SDValue
getSplatBuildVector(EVT VT
, const SDLoc
&DL
, SDValue Op
) {
764 // VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
765 if (Op
.getOpcode() == ISD::UNDEF
) {
766 assert((VT
.getVectorElementType() == Op
.getValueType() ||
768 VT
.getVectorElementType().bitsLE(Op
.getValueType()))) &&
769 "A splatted value must have a width equal or (for integers) "
770 "greater than the vector element type!");
771 return getNode(ISD::UNDEF
, SDLoc(), VT
);
774 SmallVector
<SDValue
, 16> Ops(VT
.getVectorNumElements(), Op
);
775 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, Ops
);
778 /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
779 /// the shuffle node in input but with swapped operands.
781 /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
782 SDValue
getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
);
784 /// Convert Op, which must be of float type, to the
785 /// float type VT, by either extending or rounding (by truncation).
786 SDValue
getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
);
788 /// Convert Op, which must be of integer type, to the
789 /// integer type VT, by either any-extending or truncating it.
790 SDValue
getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
792 /// Convert Op, which must be of integer type, to the
793 /// integer type VT, by either sign-extending or truncating it.
794 SDValue
getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
796 /// Convert Op, which must be of integer type, to the
797 /// integer type VT, by either zero-extending or truncating it.
798 SDValue
getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
800 /// Return the expression required to zero extend the Op
801 /// value assuming it was the smaller SrcTy value.
802 SDValue
getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
804 /// Convert Op, which must be of integer type, to the integer type VT, by
805 /// either truncating it or performing either zero or sign extension as
806 /// appropriate extension for the pointer's semantics.
807 SDValue
getPtrExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
);
809 /// Return the expression required to extend the Op as a pointer value
810 /// assuming it was the smaller SrcTy value. This may be either a zero extend
811 /// or a sign extend.
812 SDValue
getPtrExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
);
814 /// Convert Op, which must be of integer type, to the integer type VT,
815 /// by using an extension appropriate for the target's
816 /// BooleanContent for type OpVT or truncating it.
817 SDValue
getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
, EVT OpVT
);
819 /// Create a bitwise NOT operation as (XOR Val, -1).
820 SDValue
getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
822 /// Create a logical NOT operation as (XOR Val, BooleanOne).
823 SDValue
getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
);
825 /// Create an add instruction with appropriate flags when used for
826 /// addressing some offset of an object. i.e. if a load is split into multiple
827 /// components, create an add nuw from the base pointer to the offset.
828 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, int64_t Offset
) {
829 EVT VT
= Op
.getValueType();
830 return getObjectPtrOffset(SL
, Op
, getConstant(Offset
, SL
, VT
));
833 SDValue
getObjectPtrOffset(const SDLoc
&SL
, SDValue Op
, SDValue Offset
) {
834 EVT VT
= Op
.getValueType();
836 // The object itself can't wrap around the address space, so it shouldn't be
837 // possible for the adds of the offsets to the split parts to overflow.
839 Flags
.setNoUnsignedWrap(true);
840 return getNode(ISD::ADD
, SL
, VT
, Op
, Offset
, Flags
);
843 /// Return a new CALLSEQ_START node, that starts new call frame, in which
844 /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
845 /// OutSize specifies part of the frame set up prior to the sequence.
846 SDValue
getCALLSEQ_START(SDValue Chain
, uint64_t InSize
, uint64_t OutSize
,
848 SDVTList VTs
= getVTList(MVT::Other
, MVT::Glue
);
849 SDValue Ops
[] = { Chain
,
850 getIntPtrConstant(InSize
, DL
, true),
851 getIntPtrConstant(OutSize
, DL
, true) };
852 return getNode(ISD::CALLSEQ_START
, DL
, VTs
, Ops
);
855 /// Return a new CALLSEQ_END node, which always must have a
856 /// glue result (to ensure it's not CSE'd).
857 /// CALLSEQ_END does not have a useful SDLoc.
858 SDValue
getCALLSEQ_END(SDValue Chain
, SDValue Op1
, SDValue Op2
,
859 SDValue InGlue
, const SDLoc
&DL
) {
860 SDVTList NodeTys
= getVTList(MVT::Other
, MVT::Glue
);
861 SmallVector
<SDValue
, 4> Ops
;
862 Ops
.push_back(Chain
);
865 if (InGlue
.getNode())
866 Ops
.push_back(InGlue
);
867 return getNode(ISD::CALLSEQ_END
, DL
, NodeTys
, Ops
);
870 /// Return true if the result of this operation is always undefined.
871 bool isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
);
873 /// Return an UNDEF node. UNDEF does not have a useful SDLoc.
874 SDValue
getUNDEF(EVT VT
) {
875 return getNode(ISD::UNDEF
, SDLoc(), VT
);
878 /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
879 SDValue
getGLOBAL_OFFSET_TABLE(EVT VT
) {
880 return getNode(ISD::GLOBAL_OFFSET_TABLE
, SDLoc(), VT
);
883 /// Gets or creates the specified node.
885 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
886 ArrayRef
<SDUse
> Ops
);
887 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
888 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
= SDNodeFlags());
889 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, ArrayRef
<EVT
> ResultTys
,
890 ArrayRef
<SDValue
> Ops
);
891 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
892 ArrayRef
<SDValue
> Ops
);
894 // Specialize based on number of operands.
895 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
);
896 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue Operand
,
897 const SDNodeFlags Flags
= SDNodeFlags());
898 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
899 SDValue N2
, const SDNodeFlags Flags
= SDNodeFlags());
900 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
901 SDValue N2
, SDValue N3
,
902 const SDNodeFlags Flags
= SDNodeFlags());
903 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
904 SDValue N2
, SDValue N3
, SDValue N4
);
905 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
, SDValue N1
,
906 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
908 // Specialize again based on number of operands for nodes with a VTList
909 // rather than a single VT.
910 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
);
911 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N
);
912 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
914 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
915 SDValue N2
, SDValue N3
);
916 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
917 SDValue N2
, SDValue N3
, SDValue N4
);
918 SDValue
getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
, SDValue N1
,
919 SDValue N2
, SDValue N3
, SDValue N4
, SDValue N5
);
921 /// Compute a TokenFactor to force all the incoming stack arguments to be
922 /// loaded from the stack. This is used in tail call lowering to protect
923 /// stack arguments from being clobbered.
924 SDValue
getStackArgumentTokenFactor(SDValue Chain
);
926 SDValue
getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
927 SDValue Size
, unsigned Align
, bool isVol
, bool AlwaysInline
,
928 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
929 MachinePointerInfo SrcPtrInfo
);
931 SDValue
getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
932 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
933 MachinePointerInfo DstPtrInfo
,
934 MachinePointerInfo SrcPtrInfo
);
936 SDValue
getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
, SDValue Src
,
937 SDValue Size
, unsigned Align
, bool isVol
, bool isTailCall
,
938 MachinePointerInfo DstPtrInfo
);
940 SDValue
getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
941 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
942 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
943 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
944 MachinePointerInfo SrcPtrInfo
);
946 SDValue
getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
947 unsigned DstAlign
, SDValue Src
, unsigned SrcAlign
,
948 SDValue Size
, Type
*SizeTy
, unsigned ElemSz
,
949 bool isTailCall
, MachinePointerInfo DstPtrInfo
,
950 MachinePointerInfo SrcPtrInfo
);
952 SDValue
getAtomicMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
953 unsigned DstAlign
, SDValue Value
, SDValue Size
,
954 Type
*SizeTy
, unsigned ElemSz
, bool isTailCall
,
955 MachinePointerInfo DstPtrInfo
);
957 /// Helper function to make it easier to build SetCC's if you just have an
958 /// ISD::CondCode instead of an SDValue.
959 SDValue
getSetCC(const SDLoc
&DL
, EVT VT
, SDValue LHS
, SDValue RHS
,
960 ISD::CondCode Cond
) {
961 assert(LHS
.getValueType().isVector() == RHS
.getValueType().isVector() &&
962 "Cannot compare scalars to vectors");
963 assert(LHS
.getValueType().isVector() == VT
.isVector() &&
964 "Cannot compare scalars to vectors");
965 assert(Cond
!= ISD::SETCC_INVALID
&&
966 "Cannot create a setCC of an invalid node.");
967 return getNode(ISD::SETCC
, DL
, VT
, LHS
, RHS
, getCondCode(Cond
));
970 /// Helper function to make it easier to build Select's if you just have
971 /// operands and don't want to check for vector.
972 SDValue
getSelect(const SDLoc
&DL
, EVT VT
, SDValue Cond
, SDValue LHS
,
974 assert(LHS
.getValueType() == RHS
.getValueType() &&
975 "Cannot use select on differing types");
976 assert(VT
.isVector() == LHS
.getValueType().isVector() &&
977 "Cannot mix vectors and scalars");
978 auto Opcode
= Cond
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
;
979 return getNode(Opcode
, DL
, VT
, Cond
, LHS
, RHS
);
982 /// Helper function to make it easier to build SelectCC's if you just have an
983 /// ISD::CondCode instead of an SDValue.
984 SDValue
getSelectCC(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
, SDValue True
,
985 SDValue False
, ISD::CondCode Cond
) {
986 return getNode(ISD::SELECT_CC
, DL
, True
.getValueType(), LHS
, RHS
, True
,
987 False
, getCondCode(Cond
));
990 /// Try to simplify a select/vselect into 1 of its operands or a constant.
991 SDValue
simplifySelect(SDValue Cond
, SDValue TVal
, SDValue FVal
);
993 /// Try to simplify a shift into 1 of its operands or a constant.
994 SDValue
simplifyShift(SDValue X
, SDValue Y
);
996 /// Try to simplify a floating-point binary operation into 1 of its operands
998 SDValue
simplifyFPBinop(unsigned Opcode
, SDValue X
, SDValue Y
);
1000 /// VAArg produces a result and token chain, and takes a pointer
1001 /// and a source value as input.
1002 SDValue
getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1003 SDValue SV
, unsigned Align
);
1005 /// Gets a node for an atomic cmpxchg op. There are two
1006 /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
1007 /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
1008 /// a success flag (initially i1), and a chain.
1009 SDValue
getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
1010 SDVTList VTs
, SDValue Chain
, SDValue Ptr
,
1011 SDValue Cmp
, SDValue Swp
, MachineMemOperand
*MMO
);
1013 /// Gets a node for an atomic op, produces result (if relevant)
1014 /// and chain and takes 2 operands.
1015 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, SDValue Chain
,
1016 SDValue Ptr
, SDValue Val
, MachineMemOperand
*MMO
);
1018 /// Gets a node for an atomic op, produces result and chain and
1019 /// takes 1 operand.
1020 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
, EVT VT
,
1021 SDValue Chain
, SDValue Ptr
, MachineMemOperand
*MMO
);
1023 /// Gets a node for an atomic op, produces result and chain and takes N
1025 SDValue
getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
1026 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1027 MachineMemOperand
*MMO
);
1029 /// Creates a MemIntrinsicNode that may produce a
1030 /// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
1031 /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
1032 /// less than FIRST_TARGET_MEMORY_OPCODE.
1033 SDValue
getMemIntrinsicNode(
1034 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1035 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1036 MachinePointerInfo PtrInfo
,
1038 MachineMemOperand::Flags Flags
1039 = MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
,
1041 const AAMDNodes
&AAInfo
= AAMDNodes());
1043 SDValue
getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
,
1044 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
1045 MachineMemOperand
*MMO
);
1047 /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
1048 /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
1049 /// offsets `Offset` and `Offset + Size`.
1050 SDValue
getLifetimeNode(bool IsStart
, const SDLoc
&dl
, SDValue Chain
,
1051 int FrameIndex
, int64_t Size
, int64_t Offset
= -1);
1053 /// Create a MERGE_VALUES node from the given operands.
1054 SDValue
getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
);
1056 /// Loads are not normal binary operators: their result type is not
1057 /// determined by their operands, and they produce a value AND a token chain.
1059 /// This function will set the MOLoad flag on MMOFlags, but you can set it if
1060 /// you want. The MOStore flag must not be set.
1061 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1062 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1063 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1064 const AAMDNodes
&AAInfo
= AAMDNodes(),
1065 const MDNode
*Ranges
= nullptr);
1066 SDValue
getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1067 MachineMemOperand
*MMO
);
1069 getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
, SDValue Chain
,
1070 SDValue Ptr
, MachinePointerInfo PtrInfo
, EVT MemVT
,
1071 unsigned Alignment
= 0,
1072 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1073 const AAMDNodes
&AAInfo
= AAMDNodes());
1074 SDValue
getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
, EVT VT
,
1075 SDValue Chain
, SDValue Ptr
, EVT MemVT
,
1076 MachineMemOperand
*MMO
);
1077 SDValue
getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
, SDValue Base
,
1078 SDValue Offset
, ISD::MemIndexedMode AM
);
1079 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1080 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1081 MachinePointerInfo PtrInfo
, EVT MemVT
, unsigned Alignment
= 0,
1082 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1083 const AAMDNodes
&AAInfo
= AAMDNodes(),
1084 const MDNode
*Ranges
= nullptr);
1085 SDValue
getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
, EVT VT
,
1086 const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
, SDValue Offset
,
1087 EVT MemVT
, MachineMemOperand
*MMO
);
1089 /// Helper function to build ISD::STORE nodes.
1091 /// This function will set the MOStore flag on MMOFlags, but you can set it if
1092 /// you want. The MOLoad and MOInvariant flags must not be set.
1094 getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1095 MachinePointerInfo PtrInfo
, unsigned Alignment
= 0,
1096 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1097 const AAMDNodes
&AAInfo
= AAMDNodes());
1098 SDValue
getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1099 MachineMemOperand
*MMO
);
1101 getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
, SDValue Ptr
,
1102 MachinePointerInfo PtrInfo
, EVT SVT
, unsigned Alignment
= 0,
1103 MachineMemOperand::Flags MMOFlags
= MachineMemOperand::MONone
,
1104 const AAMDNodes
&AAInfo
= AAMDNodes());
1105 SDValue
getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1106 SDValue Ptr
, EVT SVT
, MachineMemOperand
*MMO
);
1107 SDValue
getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
, SDValue Base
,
1108 SDValue Offset
, ISD::MemIndexedMode AM
);
1110 /// Returns sum of the base pointer and offset.
1111 SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
, const SDLoc
&DL
);
1113 SDValue
getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
, SDValue Ptr
,
1114 SDValue Mask
, SDValue Src0
, EVT MemVT
,
1115 MachineMemOperand
*MMO
, ISD::LoadExtType
,
1116 bool IsExpanding
= false);
1117 SDValue
getMaskedStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
1118 SDValue Ptr
, SDValue Mask
, EVT MemVT
,
1119 MachineMemOperand
*MMO
, bool IsTruncating
= false,
1120 bool IsCompressing
= false);
1121 SDValue
getMaskedGather(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1122 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
,
1123 ISD::MemIndexType IndexType
);
1124 SDValue
getMaskedScatter(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
1125 ArrayRef
<SDValue
> Ops
, MachineMemOperand
*MMO
,
1126 ISD::MemIndexType IndexType
);
1128 /// Return (create a new or find existing) a target-specific node.
1129 /// TargetMemSDNode should be derived class from MemSDNode.
1130 template <class TargetMemSDNode
>
1131 SDValue
getTargetMemSDNode(SDVTList VTs
, ArrayRef
<SDValue
> Ops
,
1132 const SDLoc
&dl
, EVT MemVT
,
1133 MachineMemOperand
*MMO
);
1135 /// Construct a node to track a Value* through the backend.
1136 SDValue
getSrcValue(const Value
*v
);
1138 /// Return an MDNodeSDNode which holds an MDNode.
1139 SDValue
getMDNode(const MDNode
*MD
);
1141 /// Return a bitcast using the SDLoc of the value operand, and casting to the
1142 /// provided type. Use getNode to set a custom SDLoc.
1143 SDValue
getBitcast(EVT VT
, SDValue V
);
1145 /// Return an AddrSpaceCastSDNode.
1146 SDValue
getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
, unsigned SrcAS
,
1149 /// Return the specified value casted to
1150 /// the target's desired shift amount type.
1151 SDValue
getShiftAmountOperand(EVT LHSTy
, SDValue Op
);
1153 /// Expand the specified \c ISD::VAARG node as the Legalize pass would.
1154 SDValue
expandVAArg(SDNode
*Node
);
1156 /// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
1157 SDValue
expandVACopy(SDNode
*Node
);
1159 /// Returs an GlobalAddress of the function from the current module with
1160 /// name matching the given ExternalSymbol. Additionally can provide the
1161 /// matched function.
1162 /// Panics the function doesn't exists.
1163 SDValue
getSymbolFunctionGlobalAddress(SDValue Op
,
1164 Function
**TargetFunction
= nullptr);
1166 /// *Mutate* the specified node in-place to have the
1167 /// specified operands. If the resultant node already exists in the DAG,
1168 /// this does not modify the specified node, instead it returns the node that
1169 /// already exists. If the resultant node does not exist in the DAG, the
1170 /// input node is returned. As a degenerate case, if you specify the same
1171 /// input operands as the node already has, the input node is returned.
1172 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op
);
1173 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
);
1174 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1176 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1177 SDValue Op3
, SDValue Op4
);
1178 SDNode
*UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1179 SDValue Op3
, SDValue Op4
, SDValue Op5
);
1180 SDNode
*UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
);
1182 /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
1183 /// values or more, move values into new TokenFactors in 64k-1 blocks, until
1184 /// the final TokenFactor has less than 64k operands.
1185 SDValue
getTokenFactor(const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Vals
);
1187 /// *Mutate* the specified machine node's memory references to the provided
1189 void setNodeMemRefs(MachineSDNode
*N
,
1190 ArrayRef
<MachineMemOperand
*> NewMemRefs
);
1192 // Propagates the change in divergence to users
1193 void updateDivergence(SDNode
* N
);
1195 /// These are used for target selectors to *mutate* the
1196 /// specified node to have the specified return type, Target opcode, and
1197 /// operands. Note that target opcodes are stored as
1198 /// ~TargetOpcode in the node opcode field. The resultant node is returned.
1199 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
);
1200 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
, SDValue Op1
);
1201 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1202 SDValue Op1
, SDValue Op2
);
1203 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1204 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1205 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT
,
1206 ArrayRef
<SDValue
> Ops
);
1207 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
, EVT VT2
);
1208 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1209 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1210 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1211 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1212 SDNode
*SelectNodeTo(SDNode
*N
, unsigned TargetOpc
, EVT VT1
,
1213 EVT VT2
, SDValue Op1
);
1214 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, EVT VT1
,
1215 EVT VT2
, SDValue Op1
, SDValue Op2
);
1216 SDNode
*SelectNodeTo(SDNode
*N
, unsigned MachineOpc
, SDVTList VTs
,
1217 ArrayRef
<SDValue
> Ops
);
1219 /// This *mutates* the specified node to have the specified
1220 /// return type, opcode, and operands.
1221 SDNode
*MorphNodeTo(SDNode
*N
, unsigned Opc
, SDVTList VTs
,
1222 ArrayRef
<SDValue
> Ops
);
1224 /// Mutate the specified strict FP node to its non-strict equivalent,
1225 /// unlinking the node from its chain and dropping the metadata arguments.
1226 /// The node must be a strict FP node.
1227 SDNode
*mutateStrictFPToFP(SDNode
*Node
);
1229 /// These are used for target selectors to create a new node
1230 /// with specified return type(s), MachineInstr opcode, and operands.
1232 /// Note that getMachineNode returns the resultant node. If there is already
1233 /// a node of the specified opcode and operands, it returns that node instead
1234 /// of the current one.
1235 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
);
1236 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1238 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1239 SDValue Op1
, SDValue Op2
);
1240 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1241 SDValue Op1
, SDValue Op2
, SDValue Op3
);
1242 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT
,
1243 ArrayRef
<SDValue
> Ops
);
1244 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1245 EVT VT2
, SDValue Op1
, SDValue Op2
);
1246 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1247 EVT VT2
, SDValue Op1
, SDValue Op2
, SDValue Op3
);
1248 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1249 EVT VT2
, ArrayRef
<SDValue
> Ops
);
1250 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1251 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
);
1252 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1253 EVT VT2
, EVT VT3
, SDValue Op1
, SDValue Op2
,
1255 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, EVT VT1
,
1256 EVT VT2
, EVT VT3
, ArrayRef
<SDValue
> Ops
);
1257 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
1258 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
);
1259 MachineSDNode
*getMachineNode(unsigned Opcode
, const SDLoc
&dl
, SDVTList VTs
,
1260 ArrayRef
<SDValue
> Ops
);
1262 /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
1263 SDValue
getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1266 /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
1267 SDValue
getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
1268 SDValue Operand
, SDValue Subreg
);
1270 /// Get the specified node if it's already available, or else return NULL.
1271 SDNode
*getNodeIfExists(unsigned Opcode
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
1272 const SDNodeFlags Flags
= SDNodeFlags());
1274 /// Creates a SDDbgValue node.
1275 SDDbgValue
*getDbgValue(DIVariable
*Var
, DIExpression
*Expr
, SDNode
*N
,
1276 unsigned R
, bool IsIndirect
, const DebugLoc
&DL
,
1279 /// Creates a constant SDDbgValue node.
1280 SDDbgValue
*getConstantDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1281 const Value
*C
, const DebugLoc
&DL
,
1284 /// Creates a FrameIndex SDDbgValue node.
1285 SDDbgValue
*getFrameIndexDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1286 unsigned FI
, bool IsIndirect
,
1287 const DebugLoc
&DL
, unsigned O
);
1289 /// Creates a VReg SDDbgValue node.
1290 SDDbgValue
*getVRegDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
1291 unsigned VReg
, bool IsIndirect
,
1292 const DebugLoc
&DL
, unsigned O
);
1294 /// Creates a SDDbgLabel node.
1295 SDDbgLabel
*getDbgLabel(DILabel
*Label
, const DebugLoc
&DL
, unsigned O
);
1297 /// Transfer debug values from one node to another, while optionally
1298 /// generating fragment expressions for split-up values. If \p InvalidateDbg
1299 /// is set, debug values are invalidated after they are transferred.
1300 void transferDbgValues(SDValue From
, SDValue To
, unsigned OffsetInBits
= 0,
1301 unsigned SizeInBits
= 0, bool InvalidateDbg
= true);
1303 /// Remove the specified node from the system. If any of its
1304 /// operands then becomes dead, remove them as well. Inform UpdateListener
1305 /// for each node deleted.
1306 void RemoveDeadNode(SDNode
*N
);
1308 /// This method deletes the unreachable nodes in the
1309 /// given list, and any nodes that become unreachable as a result.
1310 void RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
);
1312 /// Modify anything using 'From' to use 'To' instead.
1313 /// This can cause recursive merging of nodes in the DAG. Use the first
1314 /// version if 'From' is known to have a single result, use the second
1315 /// if you have two nodes with identical results (or if 'To' has a superset
1316 /// of the results of 'From'), use the third otherwise.
1318 /// These methods all take an optional UpdateListener, which (if not null) is
1319 /// informed about nodes that are deleted and modified due to recursive
1320 /// changes in the dag.
1322 /// These functions only replace all existing uses. It's possible that as
1323 /// these replacements are being performed, CSE may cause the From node
1324 /// to be given new uses. These new uses of From are left in place, and
1325 /// not automatically transferred to To.
1327 void ReplaceAllUsesWith(SDValue From
, SDValue To
);
1328 void ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
);
1329 void ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
);
1331 /// Replace any uses of From with To, leaving
1332 /// uses of other values produced by From.getNode() alone.
1333 void ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
);
1335 /// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
1336 /// This correctly handles the case where
1337 /// there is an overlap between the From values and the To values.
1338 void ReplaceAllUsesOfValuesWith(const SDValue
*From
, const SDValue
*To
,
1341 /// If an existing load has uses of its chain, create a token factor node with
1342 /// that chain and the new memory node's chain and update users of the old
1343 /// chain to the token factor. This ensures that the new memory node will have
1344 /// the same relative memory dependency position as the old load. Returns the
1345 /// new merged load chain.
1346 SDValue
makeEquivalentMemoryOrdering(LoadSDNode
*Old
, SDValue New
);
1348 /// Topological-sort the AllNodes list and a
1349 /// assign a unique node id for each node in the DAG based on their
1350 /// topological order. Returns the number of nodes.
1351 unsigned AssignTopologicalOrder();
1353 /// Move node N in the AllNodes list to be immediately
1354 /// before the given iterator Position. This may be used to update the
1355 /// topological ordering when the list of nodes is modified.
1356 void RepositionNode(allnodes_iterator Position
, SDNode
*N
) {
1357 AllNodes
.insert(Position
, AllNodes
.remove(N
));
1360 /// Returns an APFloat semantics tag appropriate for the given type. If VT is
1361 /// a vector type, the element semantics are returned.
1362 static const fltSemantics
&EVTToAPFloatSemantics(EVT VT
) {
1363 switch (VT
.getScalarType().getSimpleVT().SimpleTy
) {
1364 default: llvm_unreachable("Unknown FP format");
1365 case MVT::f16
: return APFloat::IEEEhalf();
1366 case MVT::f32
: return APFloat::IEEEsingle();
1367 case MVT::f64
: return APFloat::IEEEdouble();
1368 case MVT::f80
: return APFloat::x87DoubleExtended();
1369 case MVT::f128
: return APFloat::IEEEquad();
1370 case MVT::ppcf128
: return APFloat::PPCDoubleDouble();
1374 /// Add a dbg_value SDNode. If SD is non-null that means the
1375 /// value is produced by SD.
1376 void AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
);
1378 /// Add a dbg_label SDNode.
1379 void AddDbgLabel(SDDbgLabel
*DB
);
1381 /// Get the debug values which reference the given SDNode.
1382 ArrayRef
<SDDbgValue
*> GetDbgValues(const SDNode
* SD
) const {
1383 return DbgInfo
->getSDDbgValues(SD
);
1387 /// Return true if there are any SDDbgValue nodes associated
1388 /// with this SelectionDAG.
1389 bool hasDebugValues() const { return !DbgInfo
->empty(); }
1391 SDDbgInfo::DbgIterator
DbgBegin() const { return DbgInfo
->DbgBegin(); }
1392 SDDbgInfo::DbgIterator
DbgEnd() const { return DbgInfo
->DbgEnd(); }
1394 SDDbgInfo::DbgIterator
ByvalParmDbgBegin() const {
1395 return DbgInfo
->ByvalParmDbgBegin();
1397 SDDbgInfo::DbgIterator
ByvalParmDbgEnd() const {
1398 return DbgInfo
->ByvalParmDbgEnd();
1401 SDDbgInfo::DbgLabelIterator
DbgLabelBegin() const {
1402 return DbgInfo
->DbgLabelBegin();
1404 SDDbgInfo::DbgLabelIterator
DbgLabelEnd() const {
1405 return DbgInfo
->DbgLabelEnd();
1408 /// To be invoked on an SDNode that is slated to be erased. This
1409 /// function mirrors \c llvm::salvageDebugInfo.
1410 void salvageDebugInfo(SDNode
&N
);
1414 /// Create a stack temporary, suitable for holding the specified value type.
1415 /// If minAlign is specified, the slot size will have at least that alignment.
1416 SDValue
CreateStackTemporary(EVT VT
, unsigned minAlign
= 1);
1418 /// Create a stack temporary suitable for holding either of the specified
1420 SDValue
CreateStackTemporary(EVT VT1
, EVT VT2
);
1422 SDValue
FoldSymbolOffset(unsigned Opcode
, EVT VT
,
1423 const GlobalAddressSDNode
*GA
,
1426 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1427 SDNode
*N1
, SDNode
*N2
);
1429 SDValue
FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1430 const ConstantSDNode
*C1
,
1431 const ConstantSDNode
*C2
);
1433 SDValue
FoldConstantVectorArithmetic(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1434 ArrayRef
<SDValue
> Ops
,
1435 const SDNodeFlags Flags
= SDNodeFlags());
1437 /// Fold floating-point operations with 2 operands when both operands are
1438 /// constants and/or undefined.
1439 SDValue
foldConstantFPMath(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
1440 SDValue N1
, SDValue N2
);
1442 /// Constant fold a setcc to true or false.
1443 SDValue
FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
, ISD::CondCode Cond
,
1446 /// See if the specified operand can be simplified with the knowledge that
1447 /// only the bits specified by DemandedBits are used. If so, return the
1448 /// simpler operand, otherwise return a null SDValue.
1450 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1451 /// simplify nodes with multiple uses more aggressively.)
1452 SDValue
GetDemandedBits(SDValue V
, const APInt
&DemandedBits
);
1454 /// See if the specified operand can be simplified with the knowledge that
1455 /// only the bits specified by DemandedBits are used in the elements specified
1456 /// by DemandedElts. If so, return the simpler operand, otherwise return a
1459 /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
1460 /// simplify nodes with multiple uses more aggressively.)
1461 SDValue
GetDemandedBits(SDValue V
, const APInt
&DemandedBits
,
1462 const APInt
&DemandedElts
);
1464 /// Return true if the sign bit of Op is known to be zero.
1465 /// We use this predicate to simplify operations downstream.
1466 bool SignBitIsZero(SDValue Op
, unsigned Depth
= 0) const;
1468 /// Return true if 'Op & Mask' is known to be zero. We
1469 /// use this predicate to simplify operations downstream. Op and Mask are
1470 /// known to be the same type.
1471 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1472 unsigned Depth
= 0) const;
1474 /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
1475 /// use this predicate to simplify operations downstream. Op and Mask are
1476 /// known to be the same type.
1477 bool MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1478 const APInt
&DemandedElts
, unsigned Depth
= 0) const;
1480 /// Return true if '(Op & Mask) == Mask'.
1481 /// Op and Mask are known to be the same type.
1482 bool MaskedValueIsAllOnes(SDValue Op
, const APInt
&Mask
,
1483 unsigned Depth
= 0) const;
1485 /// Determine which bits of Op are known to be either zero or one and return
1486 /// them in Known. For vectors, the known bits are those that are shared by
1487 /// every vector element.
1488 /// Targets can implement the computeKnownBitsForTargetNode method in the
1489 /// TargetLowering class to allow target nodes to be understood.
1490 KnownBits
computeKnownBits(SDValue Op
, unsigned Depth
= 0) const;
1492 /// Determine which bits of Op are known to be either zero or one and return
1493 /// them in Known. The DemandedElts argument allows us to only collect the
1494 /// known bits that are shared by the requested vector elements.
1495 /// Targets can implement the computeKnownBitsForTargetNode method in the
1496 /// TargetLowering class to allow target nodes to be understood.
1497 KnownBits
computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
1498 unsigned Depth
= 0) const;
1500 /// Used to represent the possible overflow behavior of an operation.
1501 /// Never: the operation cannot overflow.
1502 /// Always: the operation will always overflow.
1503 /// Sometime: the operation may or may not overflow.
1510 /// Determine if the result of the addition of 2 node can overflow.
1511 OverflowKind
computeOverflowKind(SDValue N0
, SDValue N1
) const;
1513 /// Test if the given value is known to have exactly one bit set. This differs
1514 /// from computeKnownBits in that it doesn't necessarily determine which bit
1516 bool isKnownToBeAPowerOfTwo(SDValue Val
) const;
1518 /// Return the number of times the sign bit of the register is replicated into
1519 /// the other bits. We know that at least 1 bit is always equal to the sign
1520 /// bit (itself), but other cases can give us information. For example,
1521 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1522 /// to each other, so we return 3. Targets can implement the
1523 /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
1524 /// target nodes to be understood.
1525 unsigned ComputeNumSignBits(SDValue Op
, unsigned Depth
= 0) const;
1527 /// Return the number of times the sign bit of the register is replicated into
1528 /// the other bits. We know that at least 1 bit is always equal to the sign
1529 /// bit (itself), but other cases can give us information. For example,
1530 /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
1531 /// to each other, so we return 3. The DemandedElts argument allows
1532 /// us to only collect the minimum sign bits of the requested vector elements.
1533 /// Targets can implement the ComputeNumSignBitsForTarget method in the
1534 /// TargetLowering class to allow target nodes to be understood.
1535 unsigned ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
1536 unsigned Depth
= 0) const;
1538 /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
1539 /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
1540 /// is guaranteed to have the same semantics as an ADD. This handles the
1542 /// X|Cst == X+Cst iff X&Cst = 0.
1543 bool isBaseWithConstantOffset(SDValue Op
) const;
1545 /// Test whether the given SDValue is known to never be NaN. If \p SNaN is
1546 /// true, returns if \p Op is known to never be a signaling NaN (it may still
1548 bool isKnownNeverNaN(SDValue Op
, bool SNaN
= false, unsigned Depth
= 0) const;
1550 /// \returns true if \p Op is known to never be a signaling NaN.
1551 bool isKnownNeverSNaN(SDValue Op
, unsigned Depth
= 0) const {
1552 return isKnownNeverNaN(Op
, true, Depth
);
1555 /// Test whether the given floating point SDValue is known to never be
1556 /// positive or negative zero.
1557 bool isKnownNeverZeroFloat(SDValue Op
) const;
1559 /// Test whether the given SDValue is known to contain non-zero value(s).
1560 bool isKnownNeverZero(SDValue Op
) const;
1562 /// Test whether two SDValues are known to compare equal. This
1563 /// is true if they are the same value, or if one is negative zero and the
1564 /// other positive zero.
1565 bool isEqualTo(SDValue A
, SDValue B
) const;
1567 /// Return true if A and B have no common bits set. As an example, this can
1568 /// allow an 'add' to be transformed into an 'or'.
1569 bool haveNoCommonBitsSet(SDValue A
, SDValue B
) const;
1571 /// Test whether \p V has a splatted value for all the demanded elements.
1573 /// On success \p UndefElts will indicate the elements that have UNDEF
1574 /// values instead of the splat value, this is only guaranteed to be correct
1575 /// for \p DemandedElts.
1577 /// NOTE: The function will return true for a demanded splat of UNDEF values.
1578 bool isSplatValue(SDValue V
, const APInt
&DemandedElts
, APInt
&UndefElts
);
1580 /// Test whether \p V has a splatted value.
1581 bool isSplatValue(SDValue V
, bool AllowUndefs
= false);
1583 /// If V is a splatted value, return the source vector and its splat index.
1584 SDValue
getSplatSourceVector(SDValue V
, int &SplatIndex
);
1586 /// If V is a splat vector, return its scalar source operand by extracting
1587 /// that element from the source vector.
1588 SDValue
getSplatValue(SDValue V
);
1590 /// Match a binop + shuffle pyramid that represents a horizontal reduction
1591 /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
1592 /// Extract. The reduction must use one of the opcodes listed in /p
1593 /// CandidateBinOps and on success /p BinOp will contain the matching opcode.
1594 /// Returns the vector that is being reduced on, or SDValue() if a reduction
1595 /// was not matched. If \p AllowPartials is set then in the case of a
1596 /// reduction pattern that only matches the first few stages, the extracted
1597 /// subvector of the start of the reduction is returned.
1598 SDValue
matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
1599 ArrayRef
<ISD::NodeType
> CandidateBinOps
,
1600 bool AllowPartials
= false);
1602 /// Utility function used by legalize and lowering to
1603 /// "unroll" a vector operation by splitting out the scalars and operating
1604 /// on each element individually. If the ResNE is 0, fully unroll the vector
1605 /// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
1606 /// If the ResNE is greater than the width of the vector op, unroll the
1607 /// vector op and fill the end of the resulting vector with UNDEFS.
1608 SDValue
UnrollVectorOp(SDNode
*N
, unsigned ResNE
= 0);
1610 /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
1611 /// This is a separate function because those opcodes have two results.
1612 std::pair
<SDValue
, SDValue
> UnrollVectorOverflowOp(SDNode
*N
,
1613 unsigned ResNE
= 0);
1615 /// Return true if loads are next to each other and can be
1616 /// merged. Check that both are nonvolatile and if LD is loading
1617 /// 'Bytes' bytes from a location that is 'Dist' units away from the
1618 /// location that the 'Base' load is loading from.
1619 bool areNonVolatileConsecutiveLoads(LoadSDNode
*LD
, LoadSDNode
*Base
,
1620 unsigned Bytes
, int Dist
) const;
1622 /// Infer alignment of a load / store address. Return 0 if
1623 /// it cannot be inferred.
1624 unsigned InferPtrAlignment(SDValue Ptr
) const;
1626 /// Compute the VTs needed for the low/hi parts of a type
1627 /// which is split (or expanded) into two not necessarily identical pieces.
1628 std::pair
<EVT
, EVT
> GetSplitDestVTs(const EVT
&VT
) const;
1630 /// Split the vector with EXTRACT_SUBVECTOR using the provides
1631 /// VTs and return the low/high part.
1632 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
,
1633 const EVT
&LoVT
, const EVT
&HiVT
);
1635 /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
1636 std::pair
<SDValue
, SDValue
> SplitVector(const SDValue
&N
, const SDLoc
&DL
) {
1638 std::tie(LoVT
, HiVT
) = GetSplitDestVTs(N
.getValueType());
1639 return SplitVector(N
, DL
, LoVT
, HiVT
);
1642 /// Split the node's operand with EXTRACT_SUBVECTOR and
1643 /// return the low/high part.
1644 std::pair
<SDValue
, SDValue
> SplitVectorOperand(const SDNode
*N
, unsigned OpNo
)
1646 return SplitVector(N
->getOperand(OpNo
), SDLoc(N
));
1649 /// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
1650 SDValue
WidenVector(const SDValue
&N
, const SDLoc
&DL
);
1652 /// Append the extracted elements from Start to Count out of the vector Op
1653 /// in Args. If Count is 0, all of the elements will be extracted.
1654 void ExtractVectorElements(SDValue Op
, SmallVectorImpl
<SDValue
> &Args
,
1655 unsigned Start
= 0, unsigned Count
= 0);
1657 /// Compute the default alignment value for the given type.
1658 unsigned getEVTAlignment(EVT MemoryVT
) const;
1660 /// Test whether the given value is a constant int or similar node.
1661 SDNode
*isConstantIntBuildVectorOrConstantInt(SDValue N
);
1663 /// Test whether the given value is a constant FP or similar node.
1664 SDNode
*isConstantFPBuildVectorOrConstantFP(SDValue N
);
1666 /// \returns true if \p N is any kind of constant or build_vector of
1667 /// constants, int or float. If a vector, it may not necessarily be a splat.
1668 inline bool isConstantValueOfAnyType(SDValue N
) {
1669 return isConstantIntBuildVectorOrConstantInt(N
) ||
1670 isConstantFPBuildVectorOrConstantFP(N
);
1673 void addCallSiteInfo(const SDNode
*CallNode
, CallSiteInfoImpl
&&CallInfo
) {
1674 SDCallSiteDbgInfo
[CallNode
].CSInfo
= std::move(CallInfo
);
1677 CallSiteInfo
getSDCallSiteInfo(const SDNode
*CallNode
) {
1678 auto I
= SDCallSiteDbgInfo
.find(CallNode
);
1679 if (I
!= SDCallSiteDbgInfo
.end())
1680 return std::move(I
->second
).CSInfo
;
1681 return CallSiteInfo();
1684 void addHeapAllocSite(const SDNode
*Node
, MDNode
*MD
) {
1685 SDCallSiteDbgInfo
[Node
].HeapAllocSite
= MD
;
1688 /// Return the HeapAllocSite type associated with the SDNode, if it exists.
1689 MDNode
*getHeapAllocSite(const SDNode
*Node
) {
1690 auto It
= SDCallSiteDbgInfo
.find(Node
);
1691 if (It
== SDCallSiteDbgInfo
.end())
1693 return It
->second
.HeapAllocSite
;
1697 void InsertNode(SDNode
*N
);
1698 bool RemoveNodeFromCSEMaps(SDNode
*N
);
1699 void AddModifiedNodeToCSEMaps(SDNode
*N
);
1700 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op
, void *&InsertPos
);
1701 SDNode
*FindModifiedNodeSlot(SDNode
*N
, SDValue Op1
, SDValue Op2
,
1703 SDNode
*FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
1705 SDNode
*UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&loc
);
1707 void DeleteNodeNotInCSEMaps(SDNode
*N
);
1708 void DeallocateNode(SDNode
*N
);
1710 void allnodes_clear();
1712 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1713 /// not, return the insertion token that will make insertion faster. This
1714 /// overload is for nodes other than Constant or ConstantFP, use the other one
1716 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, void *&InsertPos
);
1718 /// Look up the node specified by ID in CSEMap. If it exists, return it. If
1719 /// not, return the insertion token that will make insertion faster. Performs
1720 /// additional processing for constant nodes.
1721 SDNode
*FindNodeOrInsertPos(const FoldingSetNodeID
&ID
, const SDLoc
&DL
,
1724 /// List of non-single value types.
1725 FoldingSet
<SDVTListNode
> VTListMap
;
1727 /// Maps to auto-CSE operations.
1728 std::vector
<CondCodeSDNode
*> CondCodeNodes
;
1730 std::vector
<SDNode
*> ValueTypeNodes
;
1731 std::map
<EVT
, SDNode
*, EVT::compareRawBits
> ExtendedValueTypeNodes
;
1732 StringMap
<SDNode
*> ExternalSymbols
;
1734 std::map
<std::pair
<std::string
, unsigned>, SDNode
*> TargetExternalSymbols
;
1735 DenseMap
<MCSymbol
*, SDNode
*> MCSymbols
;
1738 template <> struct GraphTraits
<SelectionDAG
*> : public GraphTraits
<SDNode
*> {
1739 using nodes_iterator
= pointer_iterator
<SelectionDAG::allnodes_iterator
>;
1741 static nodes_iterator
nodes_begin(SelectionDAG
*G
) {
1742 return nodes_iterator(G
->allnodes_begin());
1745 static nodes_iterator
nodes_end(SelectionDAG
*G
) {
1746 return nodes_iterator(G
->allnodes_end());
1750 template <class TargetMemSDNode
>
1751 SDValue
SelectionDAG::getTargetMemSDNode(SDVTList VTs
,
1752 ArrayRef
<SDValue
> Ops
,
1753 const SDLoc
&dl
, EVT MemVT
,
1754 MachineMemOperand
*MMO
) {
1755 /// Compose node ID and try to find an existing node.
1756 FoldingSetNodeID ID
;
1758 TargetMemSDNode(dl
.getIROrder(), DebugLoc(), VTs
, MemVT
, MMO
).getOpcode();
1759 ID
.AddInteger(Opcode
);
1760 ID
.AddPointer(VTs
.VTs
);
1761 for (auto& Op
: Ops
) {
1762 ID
.AddPointer(Op
.getNode());
1763 ID
.AddInteger(Op
.getResNo());
1765 ID
.AddInteger(MemVT
.getRawBits());
1766 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
1767 ID
.AddInteger(getSyntheticNodeSubclassData
<TargetMemSDNode
>(
1768 dl
.getIROrder(), VTs
, MemVT
, MMO
));
1771 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
1772 cast
<TargetMemSDNode
>(E
)->refineAlignment(MMO
);
1773 return SDValue(E
, 0);
1776 /// Existing node was not found. Create a new one.
1777 auto *N
= newSDNode
<TargetMemSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
1779 createOperands(N
, Ops
);
1780 CSEMap
.InsertNode(N
, IP
);
1782 return SDValue(N
, 0);
1785 } // end namespace llvm
1787 #endif // LLVM_CODEGEN_SELECTIONDAG_H