1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the target machine instruction set to the code generator.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
14 #define LLVM_TARGET_TARGETINSTRINFO_H
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/CodeGen/LiveRegUnits.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOutliner.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/ErrorHandling.h"
42 class InstrItineraryData
;
45 class MachineMemOperand
;
46 class MachineRegisterInfo
;
52 class ScheduleHazardRecognizer
;
56 class TargetRegisterClass
;
57 class TargetRegisterInfo
;
58 class TargetSchedModel
;
59 class TargetSubtargetInfo
;
61 template <class T
> class SmallVectorImpl
;
63 using ParamLoadedValue
= std::pair
<const MachineOperand
*, DIExpression
*>;
65 //---------------------------------------------------------------------------
67 /// TargetInstrInfo - Interface to description of machine instruction set
69 class TargetInstrInfo
: public MCInstrInfo
{
71 TargetInstrInfo(unsigned CFSetupOpcode
= ~0u, unsigned CFDestroyOpcode
= ~0u,
72 unsigned CatchRetOpcode
= ~0u, unsigned ReturnOpcode
= ~0u)
73 : CallFrameSetupOpcode(CFSetupOpcode
),
74 CallFrameDestroyOpcode(CFDestroyOpcode
), CatchRetOpcode(CatchRetOpcode
),
75 ReturnOpcode(ReturnOpcode
) {}
76 TargetInstrInfo(const TargetInstrInfo
&) = delete;
77 TargetInstrInfo
&operator=(const TargetInstrInfo
&) = delete;
78 virtual ~TargetInstrInfo();
80 static bool isGenericOpcode(unsigned Opc
) {
81 return Opc
<= TargetOpcode::GENERIC_OP_END
;
84 /// Given a machine instruction descriptor, returns the register
85 /// class constraint for OpNum, or NULL.
87 const TargetRegisterClass
*getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
88 const TargetRegisterInfo
*TRI
,
89 const MachineFunction
&MF
) const;
91 /// Return true if the instruction is trivially rematerializable, meaning it
92 /// has no side effects and requires no operands that aren't always available.
93 /// This means the only allowed uses are constants and unallocatable physical
94 /// registers so that the instructions result is independent of the place
96 bool isTriviallyReMaterializable(const MachineInstr
&MI
,
97 AliasAnalysis
*AA
= nullptr) const {
98 return MI
.getOpcode() == TargetOpcode::IMPLICIT_DEF
||
99 (MI
.getDesc().isRematerializable() &&
100 (isReallyTriviallyReMaterializable(MI
, AA
) ||
101 isReallyTriviallyReMaterializableGeneric(MI
, AA
)));
105 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
106 /// set, this hook lets the target specify whether the instruction is actually
107 /// trivially rematerializable, taking into consideration its operands. This
108 /// predicate must return false if the instruction has any side effects other
109 /// than producing a value, or if it requres any address registers that are
110 /// not always available.
111 /// Requirements must be check as stated in isTriviallyReMaterializable() .
112 virtual bool isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
113 AliasAnalysis
*AA
) const {
117 /// This method commutes the operands of the given machine instruction MI.
118 /// The operands to be commuted are specified by their indices OpIdx1 and
121 /// If a target has any instructions that are commutable but require
122 /// converting to different instructions or making non-trivial changes
123 /// to commute them, this method can be overloaded to do that.
124 /// The default implementation simply swaps the commutable operands.
126 /// If NewMI is false, MI is modified in place and returned; otherwise, a
127 /// new machine instruction is created and returned.
129 /// Do not call this method for a non-commutable instruction.
130 /// Even though the instruction is commutable, the method may still
131 /// fail to commute the operands, null pointer is returned in such cases.
132 virtual MachineInstr
*commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
134 unsigned OpIdx2
) const;
136 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
137 /// operand indices to (ResultIdx1, ResultIdx2).
138 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
139 /// predefined to some indices or be undefined (designated by the special
140 /// value 'CommuteAnyOperandIndex').
141 /// The predefined result indices cannot be re-defined.
142 /// The function returns true iff after the result pair redefinition
143 /// the fixed result pair is equal to or equivalent to the source pair of
144 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
145 /// the pairs (x,y) and (y,x) are equivalent.
146 static bool fixCommutedOpIndices(unsigned &ResultIdx1
, unsigned &ResultIdx2
,
147 unsigned CommutableOpIdx1
,
148 unsigned CommutableOpIdx2
);
151 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
152 /// set and the target hook isReallyTriviallyReMaterializable returns false,
153 /// this function does target-independent tests to determine if the
154 /// instruction is really trivially rematerializable.
155 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr
&MI
,
156 AliasAnalysis
*AA
) const;
159 /// These methods return the opcode of the frame setup/destroy instructions
160 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
161 /// order to abstract away the difference between operating with a frame
162 /// pointer and operating without, through the use of these two instructions.
164 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode
; }
165 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode
; }
167 /// Returns true if the argument is a frame pseudo instruction.
168 bool isFrameInstr(const MachineInstr
&I
) const {
169 return I
.getOpcode() == getCallFrameSetupOpcode() ||
170 I
.getOpcode() == getCallFrameDestroyOpcode();
173 /// Returns true if the argument is a frame setup pseudo instruction.
174 bool isFrameSetup(const MachineInstr
&I
) const {
175 return I
.getOpcode() == getCallFrameSetupOpcode();
178 /// Returns size of the frame associated with the given frame instruction.
179 /// For frame setup instruction this is frame that is set up space set up
180 /// after the instruction. For frame destroy instruction this is the frame
181 /// freed by the caller.
182 /// Note, in some cases a call frame (or a part of it) may be prepared prior
183 /// to the frame setup instruction. It occurs in the calls that involve
184 /// inalloca arguments. This function reports only the size of the frame part
185 /// that is set up between the frame setup and destroy pseudo instructions.
186 int64_t getFrameSize(const MachineInstr
&I
) const {
187 assert(isFrameInstr(I
) && "Not a frame instruction");
188 assert(I
.getOperand(0).getImm() >= 0);
189 return I
.getOperand(0).getImm();
192 /// Returns the total frame size, which is made up of the space set up inside
193 /// the pair of frame start-stop instructions and the space that is set up
194 /// prior to the pair.
195 int64_t getFrameTotalSize(const MachineInstr
&I
) const {
196 if (isFrameSetup(I
)) {
197 assert(I
.getOperand(1).getImm() >= 0 &&
198 "Frame size must not be negative");
199 return getFrameSize(I
) + I
.getOperand(1).getImm();
201 return getFrameSize(I
);
204 unsigned getCatchReturnOpcode() const { return CatchRetOpcode
; }
205 unsigned getReturnOpcode() const { return ReturnOpcode
; }
207 /// Returns the actual stack pointer adjustment made by an instruction
208 /// as part of a call sequence. By default, only call frame setup/destroy
209 /// instructions adjust the stack, but targets may want to override this
210 /// to enable more fine-grained adjustment, or adjust by a different value.
211 virtual int getSPAdjust(const MachineInstr
&MI
) const;
213 /// Return true if the instruction is a "coalescable" extension instruction.
214 /// That is, it's like a copy where it's legal for the source to overlap the
215 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
216 /// expected the pre-extension value is available as a subreg of the result
217 /// register. This also returns the sub-register index in SubIdx.
218 virtual bool isCoalescableExtInstr(const MachineInstr
&MI
, unsigned &SrcReg
,
219 unsigned &DstReg
, unsigned &SubIdx
) const {
223 /// If the specified machine instruction is a direct
224 /// load from a stack slot, return the virtual or physical register number of
225 /// the destination along with the FrameIndex of the loaded stack slot. If
226 /// not, return 0. This predicate must return 0 if the instruction has
227 /// any side effects other than loading from the stack slot.
228 virtual unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
229 int &FrameIndex
) const {
233 /// Optional extension of isLoadFromStackSlot that returns the number of
234 /// bytes loaded from the stack. This must be implemented if a backend
235 /// supports partial stack slot spills/loads to further disambiguate
236 /// what the load does.
237 virtual unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
239 unsigned &MemBytes
) const {
241 return isLoadFromStackSlot(MI
, FrameIndex
);
244 /// Check for post-frame ptr elimination stack locations as well.
245 /// This uses a heuristic so it isn't reliable for correctness.
246 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
247 int &FrameIndex
) const {
251 /// If the specified machine instruction has a load from a stack slot,
252 /// return true along with the FrameIndices of the loaded stack slot and the
253 /// machine mem operands containing the reference.
254 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
255 /// any instructions that loads from the stack. This is just a hint, as some
256 /// cases may be missed.
257 virtual bool hasLoadFromStackSlot(
258 const MachineInstr
&MI
,
259 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const;
261 /// If the specified machine instruction is a direct
262 /// store to a stack slot, return the virtual or physical register number of
263 /// the source reg along with the FrameIndex of the loaded stack slot. If
264 /// not, return 0. This predicate must return 0 if the instruction has
265 /// any side effects other than storing to the stack slot.
266 virtual unsigned isStoreToStackSlot(const MachineInstr
&MI
,
267 int &FrameIndex
) const {
271 /// Optional extension of isStoreToStackSlot that returns the number of
272 /// bytes stored to the stack. This must be implemented if a backend
273 /// supports partial stack slot spills/loads to further disambiguate
274 /// what the store does.
275 virtual unsigned isStoreToStackSlot(const MachineInstr
&MI
,
277 unsigned &MemBytes
) const {
279 return isStoreToStackSlot(MI
, FrameIndex
);
282 /// Check for post-frame ptr elimination stack locations as well.
283 /// This uses a heuristic, so it isn't reliable for correctness.
284 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr
&MI
,
285 int &FrameIndex
) const {
289 /// If the specified machine instruction has a store to a stack slot,
290 /// return true along with the FrameIndices of the loaded stack slot and the
291 /// machine mem operands containing the reference.
292 /// If not, return false. Unlike isStoreToStackSlot,
293 /// this returns true for any instructions that stores to the
294 /// stack. This is just a hint, as some cases may be missed.
295 virtual bool hasStoreToStackSlot(
296 const MachineInstr
&MI
,
297 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const;
299 /// Return true if the specified machine instruction
300 /// is a copy of one stack slot to another and has no other effect.
301 /// Provide the identity of the two frame indices.
302 virtual bool isStackSlotCopy(const MachineInstr
&MI
, int &DestFrameIndex
,
303 int &SrcFrameIndex
) const {
307 /// Compute the size in bytes and offset within a stack slot of a spilled
308 /// register or subregister.
310 /// \param [out] Size in bytes of the spilled value.
311 /// \param [out] Offset in bytes within the stack slot.
312 /// \returns true if both Size and Offset are successfully computed.
314 /// Not all subregisters have computable spill slots. For example,
315 /// subregisters registers may not be byte-sized, and a pair of discontiguous
316 /// subregisters has no single offset.
318 /// Targets with nontrivial bigendian implementations may need to override
319 /// this, particularly to support spilled vector registers.
320 virtual bool getStackSlotRange(const TargetRegisterClass
*RC
, unsigned SubIdx
,
321 unsigned &Size
, unsigned &Offset
,
322 const MachineFunction
&MF
) const;
324 /// Returns the size in bytes of the specified MachineInstr, or ~0U
325 /// when this function is not implemented by a target.
326 virtual unsigned getInstSizeInBytes(const MachineInstr
&MI
) const {
330 /// Return true if the instruction is as cheap as a move instruction.
332 /// Targets for different archs need to override this, and different
333 /// micro-architectures can also be finely tuned inside.
334 virtual bool isAsCheapAsAMove(const MachineInstr
&MI
) const {
335 return MI
.isAsCheapAsAMove();
338 /// Return true if the instruction should be sunk by MachineSink.
340 /// MachineSink determines on its own whether the instruction is safe to sink;
341 /// this gives the target a hook to override the default behavior with regards
342 /// to which instructions should be sunk.
343 virtual bool shouldSink(const MachineInstr
&MI
) const { return true; }
345 /// Re-issue the specified 'original' instruction at the
346 /// specific location targeting a new destination register.
347 /// The register in Orig->getOperand(0).getReg() will be substituted by
348 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
350 virtual void reMaterialize(MachineBasicBlock
&MBB
,
351 MachineBasicBlock::iterator MI
, unsigned DestReg
,
352 unsigned SubIdx
, const MachineInstr
&Orig
,
353 const TargetRegisterInfo
&TRI
) const;
355 /// Clones instruction or the whole instruction bundle \p Orig and
356 /// insert into \p MBB before \p InsertBefore. The target may update operands
357 /// that are required to be unique.
359 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
360 virtual MachineInstr
&duplicate(MachineBasicBlock
&MBB
,
361 MachineBasicBlock::iterator InsertBefore
,
362 const MachineInstr
&Orig
) const;
364 /// This method must be implemented by targets that
365 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
366 /// may be able to convert a two-address instruction into one or more true
367 /// three-address instructions on demand. This allows the X86 target (for
368 /// example) to convert ADD and SHL instructions into LEA instructions if they
369 /// would require register copies due to two-addressness.
371 /// This method returns a null pointer if the transformation cannot be
372 /// performed, otherwise it returns the last new instruction.
374 virtual MachineInstr
*convertToThreeAddress(MachineFunction::iterator
&MFI
,
376 LiveVariables
*LV
) const {
380 // This constant can be used as an input value of operand index passed to
381 // the method findCommutedOpIndices() to tell the method that the
382 // corresponding operand index is not pre-defined and that the method
383 // can pick any commutable operand.
384 static const unsigned CommuteAnyOperandIndex
= ~0U;
386 /// This method commutes the operands of the given machine instruction MI.
388 /// The operands to be commuted are specified by their indices OpIdx1 and
389 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
390 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
391 /// any arbitrarily chosen commutable operand. If both arguments are set to
392 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
393 /// operands; then commutes them if such operands could be found.
395 /// If NewMI is false, MI is modified in place and returned; otherwise, a
396 /// new machine instruction is created and returned.
398 /// Do not call this method for a non-commutable instruction or
399 /// for non-commuable operands.
400 /// Even though the instruction is commutable, the method may still
401 /// fail to commute the operands, null pointer is returned in such cases.
403 commuteInstruction(MachineInstr
&MI
, bool NewMI
= false,
404 unsigned OpIdx1
= CommuteAnyOperandIndex
,
405 unsigned OpIdx2
= CommuteAnyOperandIndex
) const;
407 /// Returns true iff the routine could find two commutable operands in the
408 /// given machine instruction.
409 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
410 /// If any of the INPUT values is set to the special value
411 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
412 /// operand, then returns its index in the corresponding argument.
413 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
414 /// looks for 2 commutable operands.
415 /// If INPUT values refer to some operands of MI, then the method simply
416 /// returns true if the corresponding operands are commutable and returns
419 /// For example, calling this method this way:
420 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
421 /// findCommutedOpIndices(MI, Op1, Op2);
422 /// can be interpreted as a query asking to find an operand that would be
423 /// commutable with the operand#1.
424 virtual bool findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
425 unsigned &SrcOpIdx2
) const;
427 /// A pair composed of a register and a sub-register index.
428 /// Used to give some type checking when modeling Reg:SubReg.
429 struct RegSubRegPair
{
433 RegSubRegPair(unsigned Reg
= 0, unsigned SubReg
= 0)
434 : Reg(Reg
), SubReg(SubReg
) {}
436 bool operator==(const RegSubRegPair
& P
) const {
437 return Reg
== P
.Reg
&& SubReg
== P
.SubReg
;
439 bool operator!=(const RegSubRegPair
& P
) const {
440 return !(*this == P
);
444 /// A pair composed of a pair of a register and a sub-register index,
445 /// and another sub-register index.
446 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
447 struct RegSubRegPairAndIdx
: RegSubRegPair
{
450 RegSubRegPairAndIdx(unsigned Reg
= 0, unsigned SubReg
= 0,
452 : RegSubRegPair(Reg
, SubReg
), SubIdx(SubIdx
) {}
455 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
457 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
458 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
459 /// flag are not added to this list.
460 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
465 /// \returns true if it is possible to build such an input sequence
466 /// with the pair \p MI, \p DefIdx. False otherwise.
468 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
470 /// \note The generic implementation does not provide any support for
471 /// MI.isRegSequenceLike(). In other words, one has to override
472 /// getRegSequenceLikeInputs for target specific instructions.
474 getRegSequenceInputs(const MachineInstr
&MI
, unsigned DefIdx
,
475 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const;
477 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
479 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
480 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
483 /// \returns true if it is possible to build such an input sequence
484 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
487 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
489 /// \note The generic implementation does not provide any support for
490 /// MI.isExtractSubregLike(). In other words, one has to override
491 /// getExtractSubregLikeInputs for target specific instructions.
492 bool getExtractSubregInputs(const MachineInstr
&MI
, unsigned DefIdx
,
493 RegSubRegPairAndIdx
&InputReg
) const;
495 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
497 /// \p [out] BaseReg and \p [out] InsertedReg contain
498 /// the equivalent inputs of INSERT_SUBREG.
499 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
500 /// - BaseReg: %0:sub0
501 /// - InsertedReg: %1:sub1, sub3
503 /// \returns true if it is possible to build such an input sequence
504 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
507 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
509 /// \note The generic implementation does not provide any support for
510 /// MI.isInsertSubregLike(). In other words, one has to override
511 /// getInsertSubregLikeInputs for target specific instructions.
512 bool getInsertSubregInputs(const MachineInstr
&MI
, unsigned DefIdx
,
513 RegSubRegPair
&BaseReg
,
514 RegSubRegPairAndIdx
&InsertedReg
) const;
516 /// Return true if two machine instructions would produce identical values.
517 /// By default, this is only true when the two instructions
518 /// are deemed identical except for defs. If this function is called when the
519 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
520 /// aggressive checks.
521 virtual bool produceSameValue(const MachineInstr
&MI0
,
522 const MachineInstr
&MI1
,
523 const MachineRegisterInfo
*MRI
= nullptr) const;
525 /// \returns true if a branch from an instruction with opcode \p BranchOpc
526 /// bytes is capable of jumping to a position \p BrOffset bytes away.
527 virtual bool isBranchOffsetInRange(unsigned BranchOpc
,
528 int64_t BrOffset
) const {
529 llvm_unreachable("target did not implement");
532 /// \returns The block that branch instruction \p MI jumps to.
533 virtual MachineBasicBlock
*getBranchDestBlock(const MachineInstr
&MI
) const {
534 llvm_unreachable("target did not implement");
537 /// Insert an unconditional indirect branch at the end of \p MBB to \p
538 /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to
539 /// the offset of the position to insert the new branch.
541 /// \returns The number of bytes added to the block.
542 virtual unsigned insertIndirectBranch(MachineBasicBlock
&MBB
,
543 MachineBasicBlock
&NewDestBB
,
545 int64_t BrOffset
= 0,
546 RegScavenger
*RS
= nullptr) const {
547 llvm_unreachable("target did not implement");
550 /// Analyze the branching code at the end of MBB, returning
551 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
552 /// implemented for a target). Upon success, this returns false and returns
553 /// with the following information in various cases:
555 /// 1. If this block ends with no branches (it just falls through to its succ)
556 /// just return false, leaving TBB/FBB null.
557 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
558 /// the destination block.
559 /// 3. If this block ends with a conditional branch and it falls through to a
560 /// successor block, it sets TBB to be the branch destination block and a
561 /// list of operands that evaluate the condition. These operands can be
562 /// passed to other TargetInstrInfo methods to create new branches.
563 /// 4. If this block ends with a conditional branch followed by an
564 /// unconditional branch, it returns the 'true' destination in TBB, the
565 /// 'false' destination in FBB, and a list of operands that evaluate the
566 /// condition. These operands can be passed to other TargetInstrInfo
567 /// methods to create new branches.
569 /// Note that removeBranch and insertBranch must be implemented to support
570 /// cases where this method returns success.
572 /// If AllowModify is true, then this routine is allowed to modify the basic
573 /// block (e.g. delete instructions after the unconditional branch).
575 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
576 /// before calling this function.
577 virtual bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
578 MachineBasicBlock
*&FBB
,
579 SmallVectorImpl
<MachineOperand
> &Cond
,
580 bool AllowModify
= false) const {
584 /// Represents a predicate at the MachineFunction level. The control flow a
585 /// MachineBranchPredicate represents is:
587 /// Reg = LHS `Predicate` RHS == ConditionDef
588 /// if Reg then goto TrueDest else goto FalseDest
590 struct MachineBranchPredicate
{
591 enum ComparePredicate
{
592 PRED_EQ
, // True if two values are equal
593 PRED_NE
, // True if two values are not equal
594 PRED_INVALID
// Sentinel value
597 ComparePredicate Predicate
= PRED_INVALID
;
598 MachineOperand LHS
= MachineOperand::CreateImm(0);
599 MachineOperand RHS
= MachineOperand::CreateImm(0);
600 MachineBasicBlock
*TrueDest
= nullptr;
601 MachineBasicBlock
*FalseDest
= nullptr;
602 MachineInstr
*ConditionDef
= nullptr;
604 /// SingleUseCondition is true if ConditionDef is dead except for the
605 /// branch(es) at the end of the basic block.
607 bool SingleUseCondition
= false;
609 explicit MachineBranchPredicate() = default;
612 /// Analyze the branching code at the end of MBB and parse it into the
613 /// MachineBranchPredicate structure if possible. Returns false on success
614 /// and true on failure.
616 /// If AllowModify is true, then this routine is allowed to modify the basic
617 /// block (e.g. delete instructions after the unconditional branch).
619 virtual bool analyzeBranchPredicate(MachineBasicBlock
&MBB
,
620 MachineBranchPredicate
&MBP
,
621 bool AllowModify
= false) const {
625 /// Remove the branching code at the end of the specific MBB.
626 /// This is only invoked in cases where AnalyzeBranch returns success. It
627 /// returns the number of instructions that were removed.
628 /// If \p BytesRemoved is non-null, report the change in code size from the
629 /// removed instructions.
630 virtual unsigned removeBranch(MachineBasicBlock
&MBB
,
631 int *BytesRemoved
= nullptr) const {
632 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
635 /// Insert branch code into the end of the specified MachineBasicBlock. The
636 /// operands to this method are the same as those returned by AnalyzeBranch.
637 /// This is only invoked in cases where AnalyzeBranch returns success. It
638 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
639 /// report the change in code size from the added instructions.
641 /// It is also invoked by tail merging to add unconditional branches in
642 /// cases where AnalyzeBranch doesn't apply because there was no original
643 /// branch to analyze. At least this much must be implemented, else tail
644 /// merging needs to be disabled.
646 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
647 /// before calling this function.
648 virtual unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
649 MachineBasicBlock
*FBB
,
650 ArrayRef
<MachineOperand
> Cond
,
652 int *BytesAdded
= nullptr) const {
653 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
656 unsigned insertUnconditionalBranch(MachineBasicBlock
&MBB
,
657 MachineBasicBlock
*DestBB
,
659 int *BytesAdded
= nullptr) const {
660 return insertBranch(MBB
, DestBB
, nullptr, ArrayRef
<MachineOperand
>(), DL
,
664 /// Analyze the loop code, return true if it cannot be understoo. Upon
665 /// success, this function returns false and returns information about the
666 /// induction variable and compare instruction used at the end.
667 virtual bool analyzeLoop(MachineLoop
&L
, MachineInstr
*&IndVarInst
,
668 MachineInstr
*&CmpInst
) const {
672 /// Generate code to reduce the loop iteration by one and check if the loop
673 /// is finished. Return the value/register of the new loop count. We need
674 /// this function when peeling off one or more iterations of a loop. This
675 /// function assumes the nth iteration is peeled first.
676 virtual unsigned reduceLoopCount(MachineBasicBlock
&MBB
,
677 MachineBasicBlock
&PreHeader
,
678 MachineInstr
*IndVar
, MachineInstr
&Cmp
,
679 SmallVectorImpl
<MachineOperand
> &Cond
,
680 SmallVectorImpl
<MachineInstr
*> &PrevInsts
,
681 unsigned Iter
, unsigned MaxIter
) const {
682 llvm_unreachable("Target didn't implement ReduceLoopCount");
685 /// Delete the instruction OldInst and everything after it, replacing it with
686 /// an unconditional branch to NewDest. This is used by the tail merging pass.
687 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail
,
688 MachineBasicBlock
*NewDest
) const;
690 /// Return true if it's legal to split the given basic
691 /// block at the specified instruction (i.e. instruction would be the start
692 /// of a new basic block).
693 virtual bool isLegalToSplitMBBAt(MachineBasicBlock
&MBB
,
694 MachineBasicBlock::iterator MBBI
) const {
698 /// Return true if it's profitable to predicate
699 /// instructions with accumulated instruction latency of "NumCycles"
700 /// of the specified basic block, where the probability of the instructions
701 /// being executed is given by Probability, and Confidence is a measure
702 /// of our confidence that it will be properly predicted.
703 virtual bool isProfitableToIfCvt(MachineBasicBlock
&MBB
, unsigned NumCycles
,
704 unsigned ExtraPredCycles
,
705 BranchProbability Probability
) const {
709 /// Second variant of isProfitableToIfCvt. This one
710 /// checks for the case where two basic blocks from true and false path
711 /// of a if-then-else (diamond) are predicated on mutally exclusive
712 /// predicates, where the probability of the true path being taken is given
713 /// by Probability, and Confidence is a measure of our confidence that it
714 /// will be properly predicted.
715 virtual bool isProfitableToIfCvt(MachineBasicBlock
&TMBB
, unsigned NumTCycles
,
716 unsigned ExtraTCycles
,
717 MachineBasicBlock
&FMBB
, unsigned NumFCycles
,
718 unsigned ExtraFCycles
,
719 BranchProbability Probability
) const {
723 /// Return true if it's profitable for if-converter to duplicate instructions
724 /// of specified accumulated instruction latencies in the specified MBB to
725 /// enable if-conversion.
726 /// The probability of the instructions being executed is given by
727 /// Probability, and Confidence is a measure of our confidence that it
728 /// will be properly predicted.
729 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
,
731 BranchProbability Probability
) const {
735 /// Return true if it's profitable to unpredicate
736 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
737 /// exclusive predicates.
745 /// This may be profitable is conditional instructions are always executed.
746 virtual bool isProfitableToUnpredicate(MachineBasicBlock
&TMBB
,
747 MachineBasicBlock
&FMBB
) const {
751 /// Return true if it is possible to insert a select
752 /// instruction that chooses between TrueReg and FalseReg based on the
753 /// condition code in Cond.
755 /// When successful, also return the latency in cycles from TrueReg,
756 /// FalseReg, and Cond to the destination register. In most cases, a select
757 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
759 /// Some x86 implementations have 2-cycle cmov instructions.
761 /// @param MBB Block where select instruction would be inserted.
762 /// @param Cond Condition returned by AnalyzeBranch.
763 /// @param TrueReg Virtual register to select when Cond is true.
764 /// @param FalseReg Virtual register to select when Cond is false.
765 /// @param CondCycles Latency from Cond+Branch to select output.
766 /// @param TrueCycles Latency from TrueReg to select output.
767 /// @param FalseCycles Latency from FalseReg to select output.
768 virtual bool canInsertSelect(const MachineBasicBlock
&MBB
,
769 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
770 unsigned FalseReg
, int &CondCycles
,
771 int &TrueCycles
, int &FalseCycles
) const {
775 /// Insert a select instruction into MBB before I that will copy TrueReg to
776 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
778 /// This function can only be called after canInsertSelect() returned true.
779 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
780 /// that the same flags or registers required by Cond are available at the
783 /// @param MBB Block where select instruction should be inserted.
784 /// @param I Insertion point.
785 /// @param DL Source location for debugging.
786 /// @param DstReg Virtual register to be defined by select instruction.
787 /// @param Cond Condition as computed by AnalyzeBranch.
788 /// @param TrueReg Virtual register to copy when Cond is true.
789 /// @param FalseReg Virtual register to copy when Cons is false.
790 virtual void insertSelect(MachineBasicBlock
&MBB
,
791 MachineBasicBlock::iterator I
, const DebugLoc
&DL
,
792 unsigned DstReg
, ArrayRef
<MachineOperand
> Cond
,
793 unsigned TrueReg
, unsigned FalseReg
) const {
794 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
797 /// Analyze the given select instruction, returning true if
798 /// it cannot be understood. It is assumed that MI->isSelect() is true.
800 /// When successful, return the controlling condition and the operands that
801 /// determine the true and false result values.
803 /// Result = SELECT Cond, TrueOp, FalseOp
805 /// Some targets can optimize select instructions, for example by predicating
806 /// the instruction defining one of the operands. Such targets should set
809 /// @param MI Select instruction to analyze.
810 /// @param Cond Condition controlling the select.
811 /// @param TrueOp Operand number of the value selected when Cond is true.
812 /// @param FalseOp Operand number of the value selected when Cond is false.
813 /// @param Optimizable Returned as true if MI is optimizable.
814 /// @returns False on success.
815 virtual bool analyzeSelect(const MachineInstr
&MI
,
816 SmallVectorImpl
<MachineOperand
> &Cond
,
817 unsigned &TrueOp
, unsigned &FalseOp
,
818 bool &Optimizable
) const {
819 assert(MI
.getDesc().isSelect() && "MI must be a select instruction");
823 /// Given a select instruction that was understood by
824 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
825 /// merging it with one of its operands. Returns NULL on failure.
827 /// When successful, returns the new select instruction. The client is
828 /// responsible for deleting MI.
830 /// If both sides of the select can be optimized, PreferFalse is used to pick
833 /// @param MI Optimizable select instruction.
834 /// @param NewMIs Set that record all MIs in the basic block up to \p
835 /// MI. Has to be updated with any newly created MI or deleted ones.
836 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
837 /// @returns Optimized instruction or NULL.
838 virtual MachineInstr
*optimizeSelect(MachineInstr
&MI
,
839 SmallPtrSetImpl
<MachineInstr
*> &NewMIs
,
840 bool PreferFalse
= false) const {
841 // This function must be implemented if Optimizable is ever set.
842 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
845 /// Emit instructions to copy a pair of physical registers.
847 /// This function should support copies within any legal register class as
848 /// well as any cross-class copies created during instruction selection.
850 /// The source and destination registers may overlap, which may require a
851 /// careful implementation when multiple copy instructions are required for
852 /// large registers. See for example the ARM target.
853 virtual void copyPhysReg(MachineBasicBlock
&MBB
,
854 MachineBasicBlock::iterator MI
, const DebugLoc
&DL
,
855 unsigned DestReg
, unsigned SrcReg
,
856 bool KillSrc
) const {
857 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
861 /// Target-dependent implemenation for IsCopyInstr.
862 /// If the specific machine instruction is a instruction that moves/copies
863 /// value from one register to another register return true along with
864 /// @Source machine operand and @Destination machine operand.
865 virtual bool isCopyInstrImpl(const MachineInstr
&MI
,
866 const MachineOperand
*&Source
,
867 const MachineOperand
*&Destination
) const {
872 /// If the specific machine instruction is a instruction that moves/copies
873 /// value from one register to another register return true along with
874 /// @Source machine operand and @Destination machine operand.
875 /// For COPY-instruction the method naturally returns true, for all other
876 /// instructions the method calls target-dependent implementation.
877 bool isCopyInstr(const MachineInstr
&MI
, const MachineOperand
*&Source
,
878 const MachineOperand
*&Destination
) const {
880 Destination
= &MI
.getOperand(0);
881 Source
= &MI
.getOperand(1);
884 return isCopyInstrImpl(MI
, Source
, Destination
);
887 /// Store the specified register of the given register class to the specified
888 /// stack frame index. The store instruction is to be added to the given
889 /// machine basic block before the specified machine instruction. If isKill
890 /// is true, the register operand is the last use and must be marked kill.
891 virtual void storeRegToStackSlot(MachineBasicBlock
&MBB
,
892 MachineBasicBlock::iterator MI
,
893 unsigned SrcReg
, bool isKill
, int FrameIndex
,
894 const TargetRegisterClass
*RC
,
895 const TargetRegisterInfo
*TRI
) const {
896 llvm_unreachable("Target didn't implement "
897 "TargetInstrInfo::storeRegToStackSlot!");
900 /// Load the specified register of the given register class from the specified
901 /// stack frame index. The load instruction is to be added to the given
902 /// machine basic block before the specified machine instruction.
903 virtual void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
904 MachineBasicBlock::iterator MI
,
905 unsigned DestReg
, int FrameIndex
,
906 const TargetRegisterClass
*RC
,
907 const TargetRegisterInfo
*TRI
) const {
908 llvm_unreachable("Target didn't implement "
909 "TargetInstrInfo::loadRegFromStackSlot!");
912 /// This function is called for all pseudo instructions
913 /// that remain after register allocation. Many pseudo instructions are
914 /// created to help register allocation. This is the place to convert them
915 /// into real instructions. The target can edit MI in place, or it can insert
916 /// new instructions and erase MI. The function should return true if
917 /// anything was changed.
918 virtual bool expandPostRAPseudo(MachineInstr
&MI
) const { return false; }
920 /// Check whether the target can fold a load that feeds a subreg operand
921 /// (or a subreg operand that feeds a store).
922 /// For example, X86 may want to return true if it can fold
923 /// movl (%esp), %eax
928 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
929 /// reject subregs - but since this behavior used to be enforced in the
930 /// target-independent code, moving this responsibility to the targets
931 /// has the potential of causing nasty silent breakage in out-of-tree targets.
932 virtual bool isSubregFoldable() const { return false; }
934 /// Attempt to fold a load or store of the specified stack
935 /// slot into the specified machine instruction for the specified operand(s).
936 /// If this is possible, a new instruction is returned with the specified
937 /// operand folded, otherwise NULL is returned.
938 /// The new instruction is inserted before MI, and the client is responsible
939 /// for removing the old instruction.
940 /// If VRM is passed, the assigned physregs can be inspected by target to
941 /// decide on using an opcode (note that those assignments can still change).
942 MachineInstr
*foldMemoryOperand(MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
944 LiveIntervals
*LIS
= nullptr,
945 VirtRegMap
*VRM
= nullptr) const;
947 /// Same as the previous version except it allows folding of any load and
948 /// store from / to any address, not just from a specific stack slot.
949 MachineInstr
*foldMemoryOperand(MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
950 MachineInstr
&LoadMI
,
951 LiveIntervals
*LIS
= nullptr) const;
953 /// Return true when there is potentially a faster code sequence
954 /// for an instruction chain ending in \p Root. All potential patterns are
955 /// returned in the \p Pattern vector. Pattern should be sorted in priority
956 /// order since the pattern evaluator stops checking as soon as it finds a
958 /// \param Root - Instruction that could be combined with one of its operands
959 /// \param Patterns - Vector of possible combination patterns
960 virtual bool getMachineCombinerPatterns(
962 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const;
964 /// Return true when a code sequence can improve throughput. It
965 /// should be called only for instructions in loops.
966 /// \param Pattern - combiner pattern
967 virtual bool isThroughputPattern(MachineCombinerPattern Pattern
) const;
969 /// Return true if the input \P Inst is part of a chain of dependent ops
970 /// that are suitable for reassociation, otherwise return false.
971 /// If the instruction's operands must be commuted to have a previous
972 /// instruction of the same type define the first source operand, \P Commuted
973 /// will be set to true.
974 bool isReassociationCandidate(const MachineInstr
&Inst
, bool &Commuted
) const;
976 /// Return true when \P Inst is both associative and commutative.
977 virtual bool isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
981 /// Return true when \P Inst has reassociable operands in the same \P MBB.
982 virtual bool hasReassociableOperands(const MachineInstr
&Inst
,
983 const MachineBasicBlock
*MBB
) const;
985 /// Return true when \P Inst has reassociable sibling.
986 bool hasReassociableSibling(const MachineInstr
&Inst
, bool &Commuted
) const;
988 /// When getMachineCombinerPatterns() finds patterns, this function generates
989 /// the instructions that could replace the original code sequence. The client
990 /// has to decide whether the actual replacement is beneficial or not.
991 /// \param Root - Instruction that could be combined with one of its operands
992 /// \param Pattern - Combination pattern for Root
993 /// \param InsInstrs - Vector of new instructions that implement P
994 /// \param DelInstrs - Old instructions, including Root, that could be
995 /// replaced by InsInstr
996 /// \param InstIdxForVirtReg - map of virtual register to instruction in
997 /// InsInstr that defines it
998 virtual void genAlternativeCodeSequence(
999 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
1000 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
1001 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
1002 DenseMap
<unsigned, unsigned> &InstIdxForVirtReg
) const;
1004 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1005 /// reduce critical path length.
1006 void reassociateOps(MachineInstr
&Root
, MachineInstr
&Prev
,
1007 MachineCombinerPattern Pattern
,
1008 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
1009 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
1010 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const;
1012 /// This is an architecture-specific helper function of reassociateOps.
1013 /// Set special operand attributes for new instructions after reassociation.
1014 virtual void setSpecialOperandAttr(MachineInstr
&OldMI1
, MachineInstr
&OldMI2
,
1015 MachineInstr
&NewMI1
,
1016 MachineInstr
&NewMI2
) const {}
1018 /// Return true when a target supports MachineCombiner.
1019 virtual bool useMachineCombiner() const { return false; }
1021 /// Return true if the given SDNode can be copied during scheduling
1022 /// even if it has glue.
1023 virtual bool canCopyGluedNodeDuringSchedule(SDNode
*N
) const { return false; }
1026 /// Target-dependent implementation for foldMemoryOperand.
1027 /// Target-independent code in foldMemoryOperand will
1028 /// take care of adding a MachineMemOperand to the newly created instruction.
1029 /// The instruction and any auxiliary instructions necessary will be inserted
1031 virtual MachineInstr
*
1032 foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
1033 ArrayRef
<unsigned> Ops
,
1034 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
1035 LiveIntervals
*LIS
= nullptr,
1036 VirtRegMap
*VRM
= nullptr) const {
1040 /// Target-dependent implementation for foldMemoryOperand.
1041 /// Target-independent code in foldMemoryOperand will
1042 /// take care of adding a MachineMemOperand to the newly created instruction.
1043 /// The instruction and any auxiliary instructions necessary will be inserted
1045 virtual MachineInstr
*foldMemoryOperandImpl(
1046 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
1047 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
1048 LiveIntervals
*LIS
= nullptr) const {
1052 /// Target-dependent implementation of getRegSequenceInputs.
1054 /// \returns true if it is possible to build the equivalent
1055 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1057 /// \pre MI.isRegSequenceLike().
1059 /// \see TargetInstrInfo::getRegSequenceInputs.
1060 virtual bool getRegSequenceLikeInputs(
1061 const MachineInstr
&MI
, unsigned DefIdx
,
1062 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
1066 /// Target-dependent implementation of getExtractSubregInputs.
1068 /// \returns true if it is possible to build the equivalent
1069 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1071 /// \pre MI.isExtractSubregLike().
1073 /// \see TargetInstrInfo::getExtractSubregInputs.
1074 virtual bool getExtractSubregLikeInputs(const MachineInstr
&MI
,
1076 RegSubRegPairAndIdx
&InputReg
) const {
1080 /// Target-dependent implementation of getInsertSubregInputs.
1082 /// \returns true if it is possible to build the equivalent
1083 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1085 /// \pre MI.isInsertSubregLike().
1087 /// \see TargetInstrInfo::getInsertSubregInputs.
1089 getInsertSubregLikeInputs(const MachineInstr
&MI
, unsigned DefIdx
,
1090 RegSubRegPair
&BaseReg
,
1091 RegSubRegPairAndIdx
&InsertedReg
) const {
1096 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1097 /// (e.g. stack) the target returns the corresponding address space.
1099 getAddressSpaceForPseudoSourceKind(unsigned Kind
) const {
1103 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1104 /// a store or a load and a store into two or more instruction. If this is
1105 /// possible, returns true as well as the new instructions by reference.
1107 unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
,
1108 bool UnfoldLoad
, bool UnfoldStore
,
1109 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1113 virtual bool unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
1114 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
1118 /// Returns the opcode of the would be new
1119 /// instruction after load / store are unfolded from an instruction of the
1120 /// specified opcode. It returns zero if the specified unfolding is not
1121 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1122 /// index of the operand which will hold the register holding the loaded
1125 getOpcodeAfterMemoryUnfold(unsigned Opc
, bool UnfoldLoad
, bool UnfoldStore
,
1126 unsigned *LoadRegIndex
= nullptr) const {
1130 /// This is used by the pre-regalloc scheduler to determine if two loads are
1131 /// loading from the same base address. It should only return true if the base
1132 /// pointers are the same and the only differences between the two addresses
1133 /// are the offset. It also returns the offsets by reference.
1134 virtual bool areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
1136 int64_t &Offset2
) const {
1140 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1141 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1142 /// On some targets if two loads are loading from
1143 /// addresses in the same cache line, it's better if they are scheduled
1144 /// together. This function takes two integers that represent the load offsets
1145 /// from the common base address. It returns true if it decides it's desirable
1146 /// to schedule the two loads together. "NumLoads" is the number of loads that
1147 /// have already been scheduled after Load1.
1148 virtual bool shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
1149 int64_t Offset1
, int64_t Offset2
,
1150 unsigned NumLoads
) const {
1154 /// Get the base operand and byte offset of an instruction that reads/writes
1156 virtual bool getMemOperandWithOffset(const MachineInstr
&MI
,
1157 const MachineOperand
*&BaseOp
,
1159 const TargetRegisterInfo
*TRI
) const {
1163 /// Return true if the instruction contains a base register and offset. If
1164 /// true, the function also sets the operand position in the instruction
1165 /// for the base register and offset.
1166 virtual bool getBaseAndOffsetPosition(const MachineInstr
&MI
,
1168 unsigned &OffsetPos
) const {
1172 /// If the instruction is an increment of a constant value, return the amount.
1173 virtual bool getIncrementValue(const MachineInstr
&MI
, int &Value
) const {
1177 /// Returns true if the two given memory operations should be scheduled
1178 /// adjacent. Note that you have to add:
1179 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1181 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1182 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1183 virtual bool shouldClusterMemOps(const MachineOperand
&BaseOp1
,
1184 const MachineOperand
&BaseOp2
,
1185 unsigned NumLoads
) const {
1186 llvm_unreachable("target did not implement shouldClusterMemOps()");
1189 /// Reverses the branch condition of the specified condition list,
1190 /// returning false on success and true if it cannot be reversed.
1192 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
1196 /// Insert a noop into the instruction stream at the specified point.
1197 virtual void insertNoop(MachineBasicBlock
&MBB
,
1198 MachineBasicBlock::iterator MI
) const;
1200 /// Return the noop instruction to use for a noop.
1201 virtual void getNoop(MCInst
&NopInst
) const;
1203 /// Return true for post-incremented instructions.
1204 virtual bool isPostIncrement(const MachineInstr
&MI
) const { return false; }
1206 /// Returns true if the instruction is already predicated.
1207 virtual bool isPredicated(const MachineInstr
&MI
) const { return false; }
1209 /// Returns true if the instruction is a
1210 /// terminator instruction that has not been predicated.
1211 virtual bool isUnpredicatedTerminator(const MachineInstr
&MI
) const;
1213 /// Returns true if MI is an unconditional tail call.
1214 virtual bool isUnconditionalTailCall(const MachineInstr
&MI
) const {
1218 /// Returns true if the tail call can be made conditional on BranchCond.
1219 virtual bool canMakeTailCallConditional(SmallVectorImpl
<MachineOperand
> &Cond
,
1220 const MachineInstr
&TailCall
) const {
1224 /// Replace the conditional branch in MBB with a conditional tail call.
1225 virtual void replaceBranchWithTailCall(MachineBasicBlock
&MBB
,
1226 SmallVectorImpl
<MachineOperand
> &Cond
,
1227 const MachineInstr
&TailCall
) const {
1228 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1231 /// Convert the instruction into a predicated instruction.
1232 /// It returns true if the operation was successful.
1233 virtual bool PredicateInstruction(MachineInstr
&MI
,
1234 ArrayRef
<MachineOperand
> Pred
) const;
1236 /// Returns true if the first specified predicate
1237 /// subsumes the second, e.g. GE subsumes GT.
1238 virtual bool SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1239 ArrayRef
<MachineOperand
> Pred2
) const {
1243 /// If the specified instruction defines any predicate
1244 /// or condition code register(s) used for predication, returns true as well
1245 /// as the definition predicate(s) by reference.
1246 virtual bool DefinesPredicate(MachineInstr
&MI
,
1247 std::vector
<MachineOperand
> &Pred
) const {
1251 /// Return true if the specified instruction can be predicated.
1252 /// By default, this returns true for every instruction with a
1253 /// PredicateOperand.
1254 virtual bool isPredicable(const MachineInstr
&MI
) const {
1255 return MI
.getDesc().isPredicable();
1258 /// Return true if it's safe to move a machine
1259 /// instruction that defines the specified register class.
1260 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
1264 /// Test if the given instruction should be considered a scheduling boundary.
1265 /// This primarily includes labels and terminators.
1266 virtual bool isSchedulingBoundary(const MachineInstr
&MI
,
1267 const MachineBasicBlock
*MBB
,
1268 const MachineFunction
&MF
) const;
1270 /// Measure the specified inline asm to determine an approximation of its
1272 virtual unsigned getInlineAsmLength(
1273 const char *Str
, const MCAsmInfo
&MAI
,
1274 const TargetSubtargetInfo
*STI
= nullptr) const;
1276 /// Allocate and return a hazard recognizer to use for this target when
1277 /// scheduling the machine instructions before register allocation.
1278 virtual ScheduleHazardRecognizer
*
1279 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
1280 const ScheduleDAG
*DAG
) const;
1282 /// Allocate and return a hazard recognizer to use for this target when
1283 /// scheduling the machine instructions before register allocation.
1284 virtual ScheduleHazardRecognizer
*
1285 CreateTargetMIHazardRecognizer(const InstrItineraryData
*,
1286 const ScheduleDAG
*DAG
) const;
1288 /// Allocate and return a hazard recognizer to use for this target when
1289 /// scheduling the machine instructions after register allocation.
1290 virtual ScheduleHazardRecognizer
*
1291 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*,
1292 const ScheduleDAG
*DAG
) const;
1294 /// Allocate and return a hazard recognizer to use for by non-scheduling
1296 virtual ScheduleHazardRecognizer
*
1297 CreateTargetPostRAHazardRecognizer(const MachineFunction
&MF
) const {
1301 /// Provide a global flag for disabling the PreRA hazard recognizer that
1302 /// targets may choose to honor.
1303 bool usePreRAHazardRecognizer() const;
1305 /// For a comparison instruction, return the source registers
1306 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1307 /// compares against in CmpValue. Return true if the comparison instruction
1308 /// can be analyzed.
1309 virtual bool analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1310 unsigned &SrcReg2
, int &Mask
, int &Value
) const {
1314 /// See if the comparison instruction can be converted
1315 /// into something more efficient. E.g., on ARM most instructions can set the
1316 /// flags register, obviating the need for a separate CMP.
1317 virtual bool optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
1318 unsigned SrcReg2
, int Mask
, int Value
,
1319 const MachineRegisterInfo
*MRI
) const {
1322 virtual bool optimizeCondBranch(MachineInstr
&MI
) const { return false; }
1324 /// Try to remove the load by folding it to a register operand at the use.
1325 /// We fold the load instructions if and only if the
1326 /// def and use are in the same BB. We only look at one load and see
1327 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1328 /// defined by the load we are trying to fold. DefMI returns the machine
1329 /// instruction that defines FoldAsLoadDefReg, and the function returns
1330 /// the machine instruction generated due to folding.
1331 virtual MachineInstr
*optimizeLoadInstr(MachineInstr
&MI
,
1332 const MachineRegisterInfo
*MRI
,
1333 unsigned &FoldAsLoadDefReg
,
1334 MachineInstr
*&DefMI
) const {
1338 /// 'Reg' is known to be defined by a move immediate instruction,
1339 /// try to fold the immediate into the use instruction.
1340 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1341 /// then the caller may assume that DefMI has been erased from its parent
1342 /// block. The caller may assume that it will not be erased by this
1343 /// function otherwise.
1344 virtual bool FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
1345 unsigned Reg
, MachineRegisterInfo
*MRI
) const {
1349 /// Return the number of u-operations the given machine
1350 /// instruction will be decoded to on the target cpu. The itinerary's
1351 /// IssueWidth is the number of microops that can be dispatched each
1352 /// cycle. An instruction with zero microops takes no dispatch resources.
1353 virtual unsigned getNumMicroOps(const InstrItineraryData
*ItinData
,
1354 const MachineInstr
&MI
) const;
1356 /// Return true for pseudo instructions that don't consume any
1357 /// machine resources in their current form. These are common cases that the
1358 /// scheduler should consider free, rather than conservatively handling them
1359 /// as instructions with no itinerary.
1360 bool isZeroCost(unsigned Opcode
) const {
1361 return Opcode
<= TargetOpcode::COPY
;
1364 virtual int getOperandLatency(const InstrItineraryData
*ItinData
,
1365 SDNode
*DefNode
, unsigned DefIdx
,
1366 SDNode
*UseNode
, unsigned UseIdx
) const;
1368 /// Compute and return the use operand latency of a given pair of def and use.
1369 /// In most cases, the static scheduling itinerary was enough to determine the
1370 /// operand latency. But it may not be possible for instructions with variable
1371 /// number of defs / uses.
1373 /// This is a raw interface to the itinerary that may be directly overridden
1374 /// by a target. Use computeOperandLatency to get the best estimate of
1376 virtual int getOperandLatency(const InstrItineraryData
*ItinData
,
1377 const MachineInstr
&DefMI
, unsigned DefIdx
,
1378 const MachineInstr
&UseMI
,
1379 unsigned UseIdx
) const;
1381 /// Compute the instruction latency of a given instruction.
1382 /// If the instruction has higher cost when predicated, it's returned via
1384 virtual unsigned getInstrLatency(const InstrItineraryData
*ItinData
,
1385 const MachineInstr
&MI
,
1386 unsigned *PredCost
= nullptr) const;
1388 virtual unsigned getPredicationCost(const MachineInstr
&MI
) const;
1390 virtual int getInstrLatency(const InstrItineraryData
*ItinData
,
1391 SDNode
*Node
) const;
1393 /// Return the default expected latency for a def based on its opcode.
1394 unsigned defaultDefLatency(const MCSchedModel
&SchedModel
,
1395 const MachineInstr
&DefMI
) const;
1397 int computeDefOperandLatency(const InstrItineraryData
*ItinData
,
1398 const MachineInstr
&DefMI
) const;
1400 /// Return true if this opcode has high latency to its result.
1401 virtual bool isHighLatencyDef(int opc
) const { return false; }
1403 /// Compute operand latency between a def of 'Reg'
1404 /// and a use in the current loop. Return true if the target considered
1405 /// it 'high'. This is used by optimization passes such as machine LICM to
1406 /// determine whether it makes sense to hoist an instruction out even in a
1407 /// high register pressure situation.
1408 virtual bool hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
1409 const MachineRegisterInfo
*MRI
,
1410 const MachineInstr
&DefMI
, unsigned DefIdx
,
1411 const MachineInstr
&UseMI
,
1412 unsigned UseIdx
) const {
1416 /// Compute operand latency of a def of 'Reg'. Return true
1417 /// if the target considered it 'low'.
1418 virtual bool hasLowDefLatency(const TargetSchedModel
&SchedModel
,
1419 const MachineInstr
&DefMI
,
1420 unsigned DefIdx
) const;
1422 /// Perform target-specific instruction verification.
1423 virtual bool verifyInstruction(const MachineInstr
&MI
,
1424 StringRef
&ErrInfo
) const {
1428 /// Return the current execution domain and bit mask of
1429 /// possible domains for instruction.
1431 /// Some micro-architectures have multiple execution domains, and multiple
1432 /// opcodes that perform the same operation in different domains. For
1433 /// example, the x86 architecture provides the por, orps, and orpd
1434 /// instructions that all do the same thing. There is a latency penalty if a
1435 /// register is written in one domain and read in another.
1437 /// This function returns a pair (domain, mask) containing the execution
1438 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1439 /// function can be used to change the opcode to one of the domains in the
1440 /// bit mask. Instructions whose execution domain can't be changed should
1441 /// return a 0 mask.
1443 /// The execution domain numbers don't have any special meaning except domain
1444 /// 0 is used for instructions that are not associated with any interesting
1445 /// execution domain.
1447 virtual std::pair
<uint16_t, uint16_t>
1448 getExecutionDomain(const MachineInstr
&MI
) const {
1449 return std::make_pair(0, 0);
1452 /// Change the opcode of MI to execute in Domain.
1454 /// The bit (1 << Domain) must be set in the mask returned from
1455 /// getExecutionDomain(MI).
1456 virtual void setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {}
1458 /// Returns the preferred minimum clearance
1459 /// before an instruction with an unwanted partial register update.
1461 /// Some instructions only write part of a register, and implicitly need to
1462 /// read the other parts of the register. This may cause unwanted stalls
1463 /// preventing otherwise unrelated instructions from executing in parallel in
1464 /// an out-of-order CPU.
1466 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1467 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1468 /// the instruction needs to wait for the old value of the register to become
1471 /// addps %xmm1, %xmm0
1472 /// movaps %xmm0, (%rax)
1473 /// cvtsi2ss %rbx, %xmm0
1475 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1476 /// instruction before it can issue, even though the high bits of %xmm0
1477 /// probably aren't needed.
1479 /// This hook returns the preferred clearance before MI, measured in
1480 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1481 /// instructions before MI. It should only return a positive value for
1482 /// unwanted dependencies. If the old bits of the defined register have
1483 /// useful values, or if MI is determined to otherwise read the dependency,
1484 /// the hook should return 0.
1486 /// The unwanted dependency may be handled by:
1488 /// 1. Allocating the same register for an MI def and use. That makes the
1489 /// unwanted dependency identical to a required dependency.
1491 /// 2. Allocating a register for the def that has no defs in the previous N
1494 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1495 /// allows the target to insert a dependency breaking instruction.
1498 getPartialRegUpdateClearance(const MachineInstr
&MI
, unsigned OpNum
,
1499 const TargetRegisterInfo
*TRI
) const {
1500 // The default implementation returns 0 for no partial register dependency.
1504 /// Return the minimum clearance before an instruction that reads an
1505 /// unused register.
1507 /// For example, AVX instructions may copy part of a register operand into
1508 /// the unused high bits of the destination register.
1510 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1512 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1513 /// false dependence on any previous write to %xmm0.
1515 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1516 /// does not take an operand index. Instead sets \p OpNum to the index of the
1517 /// unused register.
1518 virtual unsigned getUndefRegClearance(const MachineInstr
&MI
, unsigned &OpNum
,
1519 const TargetRegisterInfo
*TRI
) const {
1520 // The default implementation returns 0 for no undef register dependency.
1524 /// Insert a dependency-breaking instruction
1525 /// before MI to eliminate an unwanted dependency on OpNum.
1527 /// If it wasn't possible to avoid a def in the last N instructions before MI
1528 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1529 /// unwanted dependency.
1531 /// On x86, an xorps instruction can be used as a dependency breaker:
1533 /// addps %xmm1, %xmm0
1534 /// movaps %xmm0, (%rax)
1535 /// xorps %xmm0, %xmm0
1536 /// cvtsi2ss %rbx, %xmm0
1538 /// An <imp-kill> operand should be added to MI if an instruction was
1539 /// inserted. This ties the instructions together in the post-ra scheduler.
1541 virtual void breakPartialRegDependency(MachineInstr
&MI
, unsigned OpNum
,
1542 const TargetRegisterInfo
*TRI
) const {}
1544 /// Create machine specific model for scheduling.
1545 virtual DFAPacketizer
*
1546 CreateTargetScheduleState(const TargetSubtargetInfo
&) const {
1550 /// Sometimes, it is possible for the target
1551 /// to tell, even without aliasing information, that two MIs access different
1552 /// memory addresses. This function returns true if two MIs access different
1553 /// memory addresses and false otherwise.
1555 /// Assumes any physical registers used to compute addresses have the same
1556 /// value for both instructions. (This is the most useful assumption for
1557 /// post-RA scheduling.)
1559 /// See also MachineInstr::mayAlias, which is implemented on top of this
1562 areMemAccessesTriviallyDisjoint(const MachineInstr
&MIa
,
1563 const MachineInstr
&MIb
,
1564 AliasAnalysis
*AA
= nullptr) const {
1565 assert((MIa
.mayLoad() || MIa
.mayStore()) &&
1566 "MIa must load from or modify a memory location");
1567 assert((MIb
.mayLoad() || MIb
.mayStore()) &&
1568 "MIb must load from or modify a memory location");
1572 /// Return the value to use for the MachineCSE's LookAheadLimit,
1573 /// which is a heuristic used for CSE'ing phys reg defs.
1574 virtual unsigned getMachineCSELookAheadLimit() const {
1575 // The default lookahead is small to prevent unprofitable quadratic
1580 /// Return an array that contains the ids of the target indices (used for the
1581 /// TargetIndex machine operand) and their names.
1583 /// MIR Serialization is able to serialize only the target indices that are
1584 /// defined by this method.
1585 virtual ArrayRef
<std::pair
<int, const char *>>
1586 getSerializableTargetIndices() const {
1590 /// Decompose the machine operand's target flags into two values - the direct
1591 /// target flag value and any of bit flags that are applied.
1592 virtual std::pair
<unsigned, unsigned>
1593 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1594 return std::make_pair(0u, 0u);
1597 /// Return an array that contains the direct target flag values and their
1600 /// MIR Serialization is able to serialize only the target flags that are
1601 /// defined by this method.
1602 virtual ArrayRef
<std::pair
<unsigned, const char *>>
1603 getSerializableDirectMachineOperandTargetFlags() const {
1607 /// Return an array that contains the bitmask target flag values and their
1610 /// MIR Serialization is able to serialize only the target flags that are
1611 /// defined by this method.
1612 virtual ArrayRef
<std::pair
<unsigned, const char *>>
1613 getSerializableBitmaskMachineOperandTargetFlags() const {
1617 /// Return an array that contains the MMO target flag values and their
1620 /// MIR Serialization is able to serialize only the MMO target flags that are
1621 /// defined by this method.
1622 virtual ArrayRef
<std::pair
<MachineMemOperand::Flags
, const char *>>
1623 getSerializableMachineMemOperandTargetFlags() const {
1627 /// Determines whether \p Inst is a tail call instruction. Override this
1628 /// method on targets that do not properly set MCID::Return and MCID::Call on
1629 /// tail call instructions."
1630 virtual bool isTailCall(const MachineInstr
&Inst
) const {
1631 return Inst
.isReturn() && Inst
.isCall();
1634 /// True if the instruction is bound to the top of its basic block and no
1635 /// other instructions shall be inserted before it. This can be implemented
1636 /// to prevent register allocator to insert spills before such instructions.
1637 virtual bool isBasicBlockPrologue(const MachineInstr
&MI
) const {
1641 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1642 /// information for a set of outlining candidates.
1643 virtual outliner::OutlinedFunction
getOutliningCandidateInfo(
1644 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
1646 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1649 /// Returns how or if \p MI should be outlined.
1650 virtual outliner::InstrType
1651 getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const {
1653 "Target didn't implement TargetInstrInfo::getOutliningType!");
1656 /// Optional target hook that returns true if \p MBB is safe to outline from,
1657 /// and returns any target-specific information in \p Flags.
1658 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock
&MBB
,
1659 unsigned &Flags
) const {
1663 /// Insert a custom frame for outlined functions.
1664 virtual void buildOutlinedFrame(MachineBasicBlock
&MBB
, MachineFunction
&MF
,
1665 const outliner::OutlinedFunction
&OF
) const {
1667 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1670 /// Insert a call to an outlined function into the program.
1671 /// Returns an iterator to the spot where we inserted the call. This must be
1672 /// implemented by the target.
1673 virtual MachineBasicBlock::iterator
1674 insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
1675 MachineBasicBlock::iterator
&It
, MachineFunction
&MF
,
1676 const outliner::Candidate
&C
) const {
1678 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1681 /// Return true if the function can safely be outlined from.
1682 /// A function \p MF is considered safe for outlining if an outlined function
1683 /// produced from instructions in F will produce a program which produces the
1684 /// same output for any set of given inputs.
1685 virtual bool isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
1686 bool OutlineFromLinkOnceODRs
) const {
1687 llvm_unreachable("Target didn't implement "
1688 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1691 /// Return true if the function should be outlined from by default.
1692 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction
&MF
) const {
1696 /// Produce the expression describing the \p MI loading a value into
1697 /// the parameter's forwarding register.
1698 virtual Optional
<ParamLoadedValue
>
1699 describeLoadedValue(const MachineInstr
&MI
) const;
1702 unsigned CallFrameSetupOpcode
, CallFrameDestroyOpcode
;
1703 unsigned CatchRetOpcode
;
1704 unsigned ReturnOpcode
;
1707 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1708 template <> struct DenseMapInfo
<TargetInstrInfo::RegSubRegPair
> {
1709 using RegInfo
= DenseMapInfo
<unsigned>;
1711 static inline TargetInstrInfo::RegSubRegPair
getEmptyKey() {
1712 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1713 RegInfo::getEmptyKey());
1716 static inline TargetInstrInfo::RegSubRegPair
getTombstoneKey() {
1717 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1718 RegInfo::getTombstoneKey());
1721 /// Reuse getHashValue implementation from
1722 /// std::pair<unsigned, unsigned>.
1723 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair
&Val
) {
1724 std::pair
<unsigned, unsigned> PairVal
= std::make_pair(Val
.Reg
, Val
.SubReg
);
1725 return DenseMapInfo
<std::pair
<unsigned, unsigned>>::getHashValue(PairVal
);
1728 static bool isEqual(const TargetInstrInfo::RegSubRegPair
&LHS
,
1729 const TargetInstrInfo::RegSubRegPair
&RHS
) {
1730 return RegInfo::isEqual(LHS
.Reg
, RHS
.Reg
) &&
1731 RegInfo::isEqual(LHS
.SubReg
, RHS
.SubReg
);
1735 } // end namespace llvm
1737 #endif // LLVM_TARGET_TARGETINSTRINFO_H