[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / MC / MCParser / MCTargetAsmParser.h
blob849dbd57f1aa2b8e8699ac48d8d94549342d70fc
1 //===- llvm/MC/MCTargetAsmParser.h - Target Assembly Parser -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
10 #define LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/MC/MCExpr.h"
14 #include "llvm/MC/MCInstrInfo.h"
15 #include "llvm/MC/MCParser/MCAsmLexer.h"
16 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
17 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
18 #include "llvm/MC/MCTargetOptions.h"
19 #include "llvm/MC/SubtargetFeature.h"
20 #include "llvm/Support/SMLoc.h"
21 #include <cstdint>
22 #include <memory>
24 namespace llvm {
26 class MCInst;
27 class MCParsedAsmOperand;
28 class MCStreamer;
29 class MCSubtargetInfo;
30 template <typename T> class SmallVectorImpl;
32 using OperandVector = SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>>;
34 enum AsmRewriteKind {
35 AOK_Align, // Rewrite align as .align.
36 AOK_EVEN, // Rewrite even as .even.
37 AOK_Emit, // Rewrite _emit as .byte.
38 AOK_Input, // Rewrite in terms of $N.
39 AOK_Output, // Rewrite in terms of $N.
40 AOK_SizeDirective, // Add a sizing directive (e.g., dword ptr).
41 AOK_Label, // Rewrite local labels.
42 AOK_EndOfStatement, // Add EndOfStatement (e.g., "\n\t").
43 AOK_Skip, // Skip emission (e.g., offset/type operators).
44 AOK_IntelExpr // SizeDirective SymDisp [BaseReg + IndexReg * Scale + ImmDisp]
47 const char AsmRewritePrecedence [] = {
48 2, // AOK_Align
49 2, // AOK_EVEN
50 2, // AOK_Emit
51 3, // AOK_Input
52 3, // AOK_Output
53 5, // AOK_SizeDirective
54 1, // AOK_Label
55 5, // AOK_EndOfStatement
56 2, // AOK_Skip
57 2 // AOK_IntelExpr
60 // Represnt the various parts which makes up an intel expression,
61 // used for emitting compound intel expressions
62 struct IntelExpr {
63 bool NeedBracs;
64 int64_t Imm;
65 StringRef BaseReg;
66 StringRef IndexReg;
67 unsigned Scale;
69 IntelExpr(bool needBracs = false) : NeedBracs(needBracs), Imm(0),
70 BaseReg(StringRef()), IndexReg(StringRef()),
71 Scale(1) {}
72 // Compund immediate expression
73 IntelExpr(int64_t imm, bool needBracs) : IntelExpr(needBracs) {
74 Imm = imm;
76 // [Reg + ImmediateExpression]
77 // We don't bother to emit an immediate expression evaluated to zero
78 IntelExpr(StringRef reg, int64_t imm = 0, unsigned scale = 0,
79 bool needBracs = true) :
80 IntelExpr(imm, needBracs) {
81 IndexReg = reg;
82 if (scale)
83 Scale = scale;
85 // [BaseReg + IndexReg * ScaleExpression + ImmediateExpression]
86 IntelExpr(StringRef baseReg, StringRef indexReg, unsigned scale = 0,
87 int64_t imm = 0, bool needBracs = true) :
88 IntelExpr(indexReg, imm, scale, needBracs) {
89 BaseReg = baseReg;
91 bool hasBaseReg() const {
92 return BaseReg.size();
94 bool hasIndexReg() const {
95 return IndexReg.size();
97 bool hasRegs() const {
98 return hasBaseReg() || hasIndexReg();
100 bool isValid() const {
101 return (Scale == 1) ||
102 (hasIndexReg() && (Scale == 2 || Scale == 4 || Scale == 8));
106 struct AsmRewrite {
107 AsmRewriteKind Kind;
108 SMLoc Loc;
109 unsigned Len;
110 int64_t Val;
111 StringRef Label;
112 IntelExpr IntelExp;
114 public:
115 AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len = 0, int64_t val = 0)
116 : Kind(kind), Loc(loc), Len(len), Val(val) {}
117 AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len, StringRef label)
118 : AsmRewrite(kind, loc, len) { Label = label; }
119 AsmRewrite(SMLoc loc, unsigned len, IntelExpr exp)
120 : AsmRewrite(AOK_IntelExpr, loc, len) { IntelExp = exp; }
123 struct ParseInstructionInfo {
124 SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
126 ParseInstructionInfo() = default;
127 ParseInstructionInfo(SmallVectorImpl<AsmRewrite> *rewrites)
128 : AsmRewrites(rewrites) {}
131 enum OperandMatchResultTy {
132 MatchOperand_Success, // operand matched successfully
133 MatchOperand_NoMatch, // operand did not match
134 MatchOperand_ParseFail // operand matched but had errors
137 enum class DiagnosticPredicateTy {
138 Match,
139 NearMatch,
140 NoMatch,
143 // When an operand is parsed, the assembler will try to iterate through a set of
144 // possible operand classes that the operand might match and call the
145 // corresponding PredicateMethod to determine that.
147 // If there are two AsmOperands that would give a specific diagnostic if there
148 // is no match, there is currently no mechanism to distinguish which operand is
149 // a closer match. The DiagnosticPredicate distinguishes between 'completely
150 // no match' and 'near match', so the assembler can decide whether to give a
151 // specific diagnostic, or use 'InvalidOperand' and continue to find a
152 // 'better matching' diagnostic.
154 // For example:
155 // opcode opnd0, onpd1, opnd2
157 // where:
158 // opnd2 could be an 'immediate of range [-8, 7]'
159 // opnd2 could be a 'register + shift/extend'.
161 // If opnd2 is a valid register, but with a wrong shift/extend suffix, it makes
162 // little sense to give a diagnostic that the operand should be an immediate
163 // in range [-8, 7].
165 // This is a light-weight alternative to the 'NearMissInfo' approach
166 // below which collects *all* possible diagnostics. This alternative
167 // is optional and fully backward compatible with existing
168 // PredicateMethods that return a 'bool' (match or no match).
169 struct DiagnosticPredicate {
170 DiagnosticPredicateTy Type;
172 explicit DiagnosticPredicate(bool Match)
173 : Type(Match ? DiagnosticPredicateTy::Match
174 : DiagnosticPredicateTy::NearMatch) {}
175 DiagnosticPredicate(DiagnosticPredicateTy T) : Type(T) {}
176 DiagnosticPredicate(const DiagnosticPredicate &) = default;
178 operator bool() const { return Type == DiagnosticPredicateTy::Match; }
179 bool isMatch() const { return Type == DiagnosticPredicateTy::Match; }
180 bool isNearMatch() const { return Type == DiagnosticPredicateTy::NearMatch; }
181 bool isNoMatch() const { return Type == DiagnosticPredicateTy::NoMatch; }
184 // When matching of an assembly instruction fails, there may be multiple
185 // encodings that are close to being a match. It's often ambiguous which one
186 // the programmer intended to use, so we want to report an error which mentions
187 // each of these "near-miss" encodings. This struct contains information about
188 // one such encoding, and why it did not match the parsed instruction.
189 class NearMissInfo {
190 public:
191 enum NearMissKind {
192 NoNearMiss,
193 NearMissOperand,
194 NearMissFeature,
195 NearMissPredicate,
196 NearMissTooFewOperands,
199 // The encoding is valid for the parsed assembly string. This is only used
200 // internally to the table-generated assembly matcher.
201 static NearMissInfo getSuccess() { return NearMissInfo(); }
203 // The instruction encoding is not valid because it requires some target
204 // features that are not currently enabled. MissingFeatures has a bit set for
205 // each feature that the encoding needs but which is not enabled.
206 static NearMissInfo getMissedFeature(const FeatureBitset &MissingFeatures) {
207 NearMissInfo Result;
208 Result.Kind = NearMissFeature;
209 Result.Features = MissingFeatures;
210 return Result;
213 // The instruction encoding is not valid because the target-specific
214 // predicate function returned an error code. FailureCode is the
215 // target-specific error code returned by the predicate.
216 static NearMissInfo getMissedPredicate(unsigned FailureCode) {
217 NearMissInfo Result;
218 Result.Kind = NearMissPredicate;
219 Result.PredicateError = FailureCode;
220 return Result;
223 // The instruction encoding is not valid because one (and only one) parsed
224 // operand is not of the correct type. OperandError is the error code
225 // relating to the operand class expected by the encoding. OperandClass is
226 // the type of the expected operand. Opcode is the opcode of the encoding.
227 // OperandIndex is the index into the parsed operand list.
228 static NearMissInfo getMissedOperand(unsigned OperandError,
229 unsigned OperandClass, unsigned Opcode,
230 unsigned OperandIndex) {
231 NearMissInfo Result;
232 Result.Kind = NearMissOperand;
233 Result.MissedOperand.Error = OperandError;
234 Result.MissedOperand.Class = OperandClass;
235 Result.MissedOperand.Opcode = Opcode;
236 Result.MissedOperand.Index = OperandIndex;
237 return Result;
240 // The instruction encoding is not valid because it expects more operands
241 // than were parsed. OperandClass is the class of the expected operand that
242 // was not provided. Opcode is the instruction encoding.
243 static NearMissInfo getTooFewOperands(unsigned OperandClass,
244 unsigned Opcode) {
245 NearMissInfo Result;
246 Result.Kind = NearMissTooFewOperands;
247 Result.TooFewOperands.Class = OperandClass;
248 Result.TooFewOperands.Opcode = Opcode;
249 return Result;
252 operator bool() const { return Kind != NoNearMiss; }
254 NearMissKind getKind() const { return Kind; }
256 // Feature flags required by the instruction, that the current target does
257 // not have.
258 const FeatureBitset& getFeatures() const {
259 assert(Kind == NearMissFeature);
260 return Features;
262 // Error code returned by the target predicate when validating this
263 // instruction encoding.
264 unsigned getPredicateError() const {
265 assert(Kind == NearMissPredicate);
266 return PredicateError;
268 // MatchClassKind of the operand that we expected to see.
269 unsigned getOperandClass() const {
270 assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
271 return MissedOperand.Class;
273 // Opcode of the encoding we were trying to match.
274 unsigned getOpcode() const {
275 assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
276 return MissedOperand.Opcode;
278 // Error code returned when validating the operand.
279 unsigned getOperandError() const {
280 assert(Kind == NearMissOperand);
281 return MissedOperand.Error;
283 // Index of the actual operand we were trying to match in the list of parsed
284 // operands.
285 unsigned getOperandIndex() const {
286 assert(Kind == NearMissOperand);
287 return MissedOperand.Index;
290 private:
291 NearMissKind Kind;
293 // These two structs share a common prefix, so we can safely rely on the fact
294 // that they overlap in the union.
295 struct MissedOpInfo {
296 unsigned Class;
297 unsigned Opcode;
298 unsigned Error;
299 unsigned Index;
302 struct TooFewOperandsInfo {
303 unsigned Class;
304 unsigned Opcode;
307 union {
308 FeatureBitset Features;
309 unsigned PredicateError;
310 MissedOpInfo MissedOperand;
311 TooFewOperandsInfo TooFewOperands;
314 NearMissInfo() : Kind(NoNearMiss) {}
317 /// MCTargetAsmParser - Generic interface to target specific assembly parsers.
318 class MCTargetAsmParser : public MCAsmParserExtension {
319 public:
320 enum MatchResultTy {
321 Match_InvalidOperand,
322 Match_InvalidTiedOperand,
323 Match_MissingFeature,
324 Match_MnemonicFail,
325 Match_Success,
326 Match_NearMisses,
327 FIRST_TARGET_MATCH_RESULT_TY
330 protected: // Can only create subclasses.
331 MCTargetAsmParser(MCTargetOptions const &, const MCSubtargetInfo &STI,
332 const MCInstrInfo &MII);
334 /// Create a copy of STI and return a non-const reference to it.
335 MCSubtargetInfo &copySTI();
337 /// AvailableFeatures - The current set of available features.
338 FeatureBitset AvailableFeatures;
340 /// ParsingInlineAsm - Are we parsing ms-style inline assembly?
341 bool ParsingInlineAsm = false;
343 /// SemaCallback - The Sema callback implementation. Must be set when parsing
344 /// ms-style inline assembly.
345 MCAsmParserSemaCallback *SemaCallback;
347 /// Set of options which affects instrumentation of inline assembly.
348 MCTargetOptions MCOptions;
350 /// Current STI.
351 const MCSubtargetInfo *STI;
353 const MCInstrInfo &MII;
355 public:
356 MCTargetAsmParser(const MCTargetAsmParser &) = delete;
357 MCTargetAsmParser &operator=(const MCTargetAsmParser &) = delete;
359 ~MCTargetAsmParser() override;
361 const MCSubtargetInfo &getSTI() const;
363 const FeatureBitset& getAvailableFeatures() const {
364 return AvailableFeatures;
366 void setAvailableFeatures(const FeatureBitset& Value) {
367 AvailableFeatures = Value;
370 bool isParsingInlineAsm () { return ParsingInlineAsm; }
371 void setParsingInlineAsm (bool Value) { ParsingInlineAsm = Value; }
373 MCTargetOptions getTargetOptions() const { return MCOptions; }
375 void setSemaCallback(MCAsmParserSemaCallback *Callback) {
376 SemaCallback = Callback;
379 // Target-specific parsing of expression.
380 virtual bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
381 return getParser().parsePrimaryExpr(Res, EndLoc);
384 virtual bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
385 SMLoc &EndLoc) = 0;
387 /// ParseInstruction - Parse one assembly instruction.
389 /// The parser is positioned following the instruction name. The target
390 /// specific instruction parser should parse the entire instruction and
391 /// construct the appropriate MCInst, or emit an error. On success, the entire
392 /// line should be parsed up to and including the end-of-statement token. On
393 /// failure, the parser is not required to read to the end of the line.
395 /// \param Name - The instruction name.
396 /// \param NameLoc - The source location of the name.
397 /// \param Operands [out] - The list of parsed operands, this returns
398 /// ownership of them to the caller.
399 /// \return True on failure.
400 virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
401 SMLoc NameLoc, OperandVector &Operands) = 0;
402 virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
403 AsmToken Token, OperandVector &Operands) {
404 return ParseInstruction(Info, Name, Token.getLoc(), Operands);
407 /// ParseDirective - Parse a target specific assembler directive
409 /// The parser is positioned following the directive name. The target
410 /// specific directive parser should parse the entire directive doing or
411 /// recording any target specific work, or return true and do nothing if the
412 /// directive is not target specific. If the directive is specific for
413 /// the target, the entire line is parsed up to and including the
414 /// end-of-statement token and false is returned.
416 /// \param DirectiveID - the identifier token of the directive.
417 virtual bool ParseDirective(AsmToken DirectiveID) = 0;
419 /// MatchAndEmitInstruction - Recognize a series of operands of a parsed
420 /// instruction as an actual MCInst and emit it to the specified MCStreamer.
421 /// This returns false on success and returns true on failure to match.
423 /// On failure, the target parser is responsible for emitting a diagnostic
424 /// explaining the match failure.
425 virtual bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
426 OperandVector &Operands, MCStreamer &Out,
427 uint64_t &ErrorInfo,
428 bool MatchingInlineAsm) = 0;
430 /// Allows targets to let registers opt out of clobber lists.
431 virtual bool OmitRegisterFromClobberLists(unsigned RegNo) { return false; }
433 /// Allow a target to add special case operand matching for things that
434 /// tblgen doesn't/can't handle effectively. For example, literal
435 /// immediates on ARM. TableGen expects a token operand, but the parser
436 /// will recognize them as immediates.
437 virtual unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
438 unsigned Kind) {
439 return Match_InvalidOperand;
442 /// Validate the instruction match against any complex target predicates
443 /// before rendering any operands to it.
444 virtual unsigned
445 checkEarlyTargetMatchPredicate(MCInst &Inst, const OperandVector &Operands) {
446 return Match_Success;
449 /// checkTargetMatchPredicate - Validate the instruction match against
450 /// any complex target predicates not expressible via match classes.
451 virtual unsigned checkTargetMatchPredicate(MCInst &Inst) {
452 return Match_Success;
455 virtual void convertToMapAndConstraints(unsigned Kind,
456 const OperandVector &Operands) = 0;
458 /// Returns whether two registers are equal and is used by the tied-operands
459 /// checks in the AsmMatcher. This method can be overridden allow e.g. a
460 /// sub- or super-register as the tied operand.
461 virtual bool regsEqual(const MCParsedAsmOperand &Op1,
462 const MCParsedAsmOperand &Op2) const {
463 assert(Op1.isReg() && Op2.isReg() && "Operands not all regs");
464 return Op1.getReg() == Op2.getReg();
467 // Return whether this parser uses assignment statements with equals tokens
468 virtual bool equalIsAsmAssignment() { return true; };
469 // Return whether this start of statement identifier is a label
470 virtual bool isLabel(AsmToken &Token) { return true; };
471 // Return whether this parser accept star as start of statement
472 virtual bool starIsStartOfStatement() { return false; };
474 virtual const MCExpr *applyModifierToExpr(const MCExpr *E,
475 MCSymbolRefExpr::VariantKind,
476 MCContext &Ctx) {
477 return nullptr;
480 // For actions that have to be performed before a label is emitted
481 virtual void doBeforeLabelEmit(MCSymbol *Symbol) {}
483 virtual void onLabelParsed(MCSymbol *Symbol) {}
485 /// Ensure that all previously parsed instructions have been emitted to the
486 /// output streamer, if the target does not emit them immediately.
487 virtual void flushPendingInstructions(MCStreamer &Out) {}
489 virtual const MCExpr *createTargetUnaryExpr(const MCExpr *E,
490 AsmToken::TokenKind OperatorToken,
491 MCContext &Ctx) {
492 return nullptr;
495 // For any checks or cleanups at the end of parsing.
496 virtual void onEndOfFile() {}
499 } // end namespace llvm
501 #endif // LLVM_MC_MCPARSER_MCTARGETASMPARSER_H