1 //===--------------------- Instruction.h ------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file defines abstractions used by the Pipeline to model register reads,
11 /// register writes and instructions.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_MCA_INSTRUCTION_H
16 #define LLVM_MCA_INSTRUCTION_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/MC/MCRegister.h" // definition of MCPhysReg.
22 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
34 constexpr int UNKNOWN_CYCLES
= -512;
36 /// A register write descriptor.
37 struct WriteDescriptor
{
38 // Operand index. The index is negative for implicit writes only.
39 // For implicit writes, the actual operand index is computed performing
40 // a bitwise not of the OpIndex.
42 // Write latency. Number of cycles before write-back stage.
44 // This field is set to a value different than zero only if this
45 // is an implicit definition.
47 // Instruction itineraries would set this field to the SchedClass ID.
48 // Otherwise, it defaults to the WriteResourceID from the MCWriteLatencyEntry
49 // element associated to this write.
50 // When computing read latencies, this value is matched against the
51 // "ReadAdvance" information. The hardware backend may implement
52 // dedicated forwarding paths to quickly propagate write results to dependent
53 // instructions waiting in the reservation station (effectively bypassing the
55 unsigned SClassOrWriteResourceID
;
56 // True only if this is a write obtained from an optional definition.
57 // Optional definitions are allowed to reference regID zero (i.e. "no
61 bool isImplicitWrite() const { return OpIndex
< 0; };
64 /// A register read descriptor.
65 struct ReadDescriptor
{
66 // A MCOperand index. This is used by the Dispatch logic to identify register
67 // reads. Implicit reads have negative indices. The actual operand index of an
68 // implicit read is the bitwise not of field OpIndex.
70 // The actual "UseIdx". This is used to query the ReadAdvance table. Explicit
71 // uses always come first in the sequence of uses.
73 // This field is only set if this is an implicit read.
75 // Scheduling Class Index. It is used to query the scheduling model for the
76 // MCSchedClassDesc object.
77 unsigned SchedClassID
;
79 bool isImplicitRead() const { return OpIndex
< 0; };
84 /// A critical data dependency descriptor.
86 /// Field RegID is set to the invalid register for memory dependencies.
87 struct CriticalDependency
{
93 /// Tracks uses of a register definition (e.g. register write).
95 /// Each implicit/explicit register write is associated with an instance of
96 /// this class. A WriteState object tracks the dependent users of a
97 /// register write. It also tracks how many cycles are left before the write
100 const WriteDescriptor
*WD
;
101 // On instruction issue, this field is set equal to the write latency.
102 // Before instruction issue, this field defaults to -512, a special
103 // value that represents an "unknown" number of cycles.
106 // Actual register defined by this write. This field is only used
107 // to speedup queries on the register file.
108 // For implicit writes, this field always matches the value of
109 // field RegisterID from WD.
110 MCPhysReg RegisterID
;
112 // Physical register file that serves register RegisterID.
115 // True if this write implicitly clears the upper portion of RegisterID's
117 bool ClearsSuperRegs
;
119 // True if this write is from a dependency breaking zero-idiom instruction.
122 // True if this write has been eliminated at register renaming stage.
123 // Example: a register move doesn't consume scheduler/pipleline resources if
124 // it is eliminated at register renaming stage. It still consumes
125 // decode bandwidth, and ROB entries.
128 // This field is set if this is a partial register write, and it has a false
129 // dependency on any previous write of the same register (or a portion of it).
130 // DependentWrite must be able to complete before this write completes, so
131 // that we don't break the WAW, and the two writes can be merged together.
132 const WriteState
*DependentWrite
;
134 // A partial write that is in a false dependency with this write.
135 WriteState
*PartialWrite
;
136 unsigned DependentWriteCyclesLeft
;
138 // Critical register dependency for this write.
139 CriticalDependency CRD
;
141 // A list of dependent reads. Users is a set of dependent
142 // reads. A dependent read is added to the set only if CyclesLeft
143 // is "unknown". As soon as CyclesLeft is 'known', each user in the set
144 // gets notified with the actual CyclesLeft.
146 // The 'second' element of a pair is a "ReadAdvance" number of cycles.
147 SmallVector
<std::pair
<ReadState
*, int>, 4> Users
;
150 WriteState(const WriteDescriptor
&Desc
, MCPhysReg RegID
,
151 bool clearsSuperRegs
= false, bool writesZero
= false)
152 : WD(&Desc
), CyclesLeft(UNKNOWN_CYCLES
), RegisterID(RegID
), PRFID(0),
153 ClearsSuperRegs(clearsSuperRegs
), WritesZero(writesZero
),
154 IsEliminated(false), DependentWrite(nullptr), PartialWrite(nullptr),
155 DependentWriteCyclesLeft(0), CRD() {}
157 WriteState(const WriteState
&Other
) = default;
158 WriteState
&operator=(const WriteState
&Other
) = default;
160 int getCyclesLeft() const { return CyclesLeft
; }
161 unsigned getWriteResourceID() const { return WD
->SClassOrWriteResourceID
; }
162 MCPhysReg
getRegisterID() const { return RegisterID
; }
163 unsigned getRegisterFileID() const { return PRFID
; }
164 unsigned getLatency() const { return WD
->Latency
; }
165 unsigned getDependentWriteCyclesLeft() const {
166 return DependentWriteCyclesLeft
;
168 const WriteState
*getDependentWrite() const { return DependentWrite
; }
169 const CriticalDependency
&getCriticalRegDep() const { return CRD
; }
171 // This method adds Use to the set of data dependent reads. IID is the
172 // instruction identifier associated with this write. ReadAdvance is the
173 // number of cycles to subtract from the latency of this data dependency.
174 // Use is in a RAW dependency with this write.
175 void addUser(unsigned IID
, ReadState
*Use
, int ReadAdvance
);
177 // Use is a younger register write that is in a false dependency with this
178 // write. IID is the instruction identifier associated with this write.
179 void addUser(unsigned IID
, WriteState
*Use
);
181 unsigned getNumUsers() const {
182 unsigned NumUsers
= Users
.size();
188 bool clearsSuperRegisters() const { return ClearsSuperRegs
; }
189 bool isWriteZero() const { return WritesZero
; }
190 bool isEliminated() const { return IsEliminated
; }
192 bool isReady() const {
195 unsigned CyclesLeft
= getDependentWriteCyclesLeft();
196 return !CyclesLeft
|| CyclesLeft
< getLatency();
199 bool isExecuted() const {
200 return CyclesLeft
!= UNKNOWN_CYCLES
&& CyclesLeft
<= 0;
203 void setDependentWrite(const WriteState
*Other
) { DependentWrite
= Other
; }
204 void writeStartEvent(unsigned IID
, MCPhysReg RegID
, unsigned Cycles
);
205 void setWriteZero() { WritesZero
= true; }
206 void setEliminated() {
207 assert(Users
.empty() && "Write is in an inconsistent state.");
212 void setPRF(unsigned PRF
) { PRFID
= PRF
; }
214 // On every cycle, update CyclesLeft and notify dependent users.
216 void onInstructionIssued(unsigned IID
);
223 /// Tracks register operand latency in cycles.
225 /// A read may be dependent on more than one write. This occurs when some
226 /// writes only partially update the register associated to this read.
228 const ReadDescriptor
*RD
;
229 // Physical register identified associated to this read.
230 MCPhysReg RegisterID
;
231 // Physical register file that serves register RegisterID.
233 // Number of writes that contribute to the definition of RegisterID.
234 // In the absence of partial register updates, the number of DependentWrites
235 // cannot be more than one.
236 unsigned DependentWrites
;
237 // Number of cycles left before RegisterID can be read. This value depends on
238 // the latency of all the dependent writes. It defaults to UNKNOWN_CYCLES.
239 // It gets set to the value of field TotalCycles only when the 'CyclesLeft' of
240 // every dependent write is known.
242 // This field is updated on every writeStartEvent(). When the number of
243 // dependent writes (i.e. field DependentWrite) is zero, this value is
244 // propagated to field CyclesLeft.
245 unsigned TotalCycles
;
246 // Longest register dependency.
247 CriticalDependency CRD
;
248 // This field is set to true only if there are no dependent writes, and
249 // there are no `CyclesLeft' to wait.
251 // True if this is a read from a known zero register.
253 // True if this register read is from a dependency-breaking instruction.
254 bool IndependentFromDef
;
257 ReadState(const ReadDescriptor
&Desc
, MCPhysReg RegID
)
258 : RD(&Desc
), RegisterID(RegID
), PRFID(0), DependentWrites(0),
259 CyclesLeft(UNKNOWN_CYCLES
), TotalCycles(0), CRD(), IsReady(true),
260 IsZero(false), IndependentFromDef(false) {}
262 const ReadDescriptor
&getDescriptor() const { return *RD
; }
263 unsigned getSchedClass() const { return RD
->SchedClassID
; }
264 MCPhysReg
getRegisterID() const { return RegisterID
; }
265 unsigned getRegisterFileID() const { return PRFID
; }
266 const CriticalDependency
&getCriticalRegDep() const { return CRD
; }
268 bool isPending() const { return !IndependentFromDef
&& CyclesLeft
> 0; }
269 bool isReady() const { return IsReady
; }
270 bool isImplicitRead() const { return RD
->isImplicitRead(); }
272 bool isIndependentFromDef() const { return IndependentFromDef
; }
273 void setIndependentFromDef() { IndependentFromDef
= true; }
276 void writeStartEvent(unsigned IID
, MCPhysReg RegID
, unsigned Cycles
);
277 void setDependentWrites(unsigned Writes
) {
278 DependentWrites
= Writes
;
282 bool isReadZero() const { return IsZero
; }
283 void setReadZero() { IsZero
= true; }
284 void setPRF(unsigned ID
) { PRFID
= ID
; }
287 /// A sequence of cycles.
289 /// This class can be used as a building block to construct ranges of cycles.
291 unsigned Begin
; // Inclusive.
292 unsigned End
; // Exclusive.
293 bool Reserved
; // Resources associated to this segment must be reserved.
296 CycleSegment(unsigned StartCycle
, unsigned EndCycle
, bool IsReserved
= false)
297 : Begin(StartCycle
), End(EndCycle
), Reserved(IsReserved
) {}
299 bool contains(unsigned Cycle
) const { return Cycle
>= Begin
&& Cycle
< End
; }
300 bool startsAfter(const CycleSegment
&CS
) const { return End
<= CS
.Begin
; }
301 bool endsBefore(const CycleSegment
&CS
) const { return Begin
>= CS
.End
; }
302 bool overlaps(const CycleSegment
&CS
) const {
303 return !startsAfter(CS
) && !endsBefore(CS
);
305 bool isExecuting() const { return Begin
== 0 && End
!= 0; }
306 bool isExecuted() const { return End
== 0; }
307 bool operator<(const CycleSegment
&Other
) const {
308 return Begin
< Other
.Begin
;
310 CycleSegment
&operator--(void) {
318 bool isValid() const { return Begin
<= End
; }
319 unsigned size() const { return End
- Begin
; };
320 void subtract(unsigned Cycles
) {
321 assert(End
>= Cycles
);
325 unsigned begin() const { return Begin
; }
326 unsigned end() const { return End
; }
327 void setEnd(unsigned NewEnd
) { End
= NewEnd
; }
328 bool isReserved() const { return Reserved
; }
329 void setReserved() { Reserved
= true; }
332 /// Helper used by class InstrDesc to describe how hardware resources
335 /// This class describes how many resource units of a specific resource kind
336 /// (and how many cycles) are "used" by an instruction.
337 struct ResourceUsage
{
340 ResourceUsage(CycleSegment Cycles
, unsigned Units
= 1)
341 : CS(Cycles
), NumUnits(Units
) {}
342 unsigned size() const { return CS
.size(); }
343 bool isReserved() const { return CS
.isReserved(); }
344 void setReserved() { CS
.setReserved(); }
347 /// An instruction descriptor
349 SmallVector
<WriteDescriptor
, 4> Writes
; // Implicit writes are at the end.
350 SmallVector
<ReadDescriptor
, 4> Reads
; // Implicit reads are at the end.
352 // For every resource used by an instruction of this kind, this vector
353 // reports the number of "consumed cycles".
354 SmallVector
<std::pair
<uint64_t, ResourceUsage
>, 4> Resources
;
356 // A bitmask of used hardware buffers.
357 uint64_t UsedBuffers
;
359 // A bitmask of used processor resource units.
360 uint64_t UsedProcResUnits
;
362 // A bitmask of used processor resource groups.
363 uint64_t UsedProcResGroups
;
366 // Number of MicroOps for this instruction.
367 unsigned NumMicroOps
;
368 // SchedClassID used to construct this InstrDesc.
369 // This information is currently used by views to do fast queries on the
370 // subtarget when computing the reciprocal throughput.
371 unsigned SchedClassID
;
379 // True if all buffered resources are in-order, and there is at least one
380 // buffer which is a dispatch hazard (BufferSize = 0).
381 bool MustIssueImmediately
;
383 // A zero latency instruction doesn't consume any scheduler resources.
384 bool isZeroLatency() const { return !MaxLatency
&& Resources
.empty(); }
386 InstrDesc() = default;
387 InstrDesc(const InstrDesc
&Other
) = delete;
388 InstrDesc
&operator=(const InstrDesc
&Other
) = delete;
391 /// Base class for instructions consumed by the simulation pipeline.
393 /// This class tracks data dependencies as well as generic properties
394 /// of the instruction.
395 class InstructionBase
{
396 const InstrDesc
&Desc
;
398 // This field is set for instructions that are candidates for move
399 // elimination. For more information about move elimination, see the
400 // definition of RegisterMappingTracker in RegisterFile.h
401 bool IsOptimizableMove
;
403 // Output dependencies.
404 // One entry per each implicit and explicit register definition.
405 SmallVector
<WriteState
, 4> Defs
;
407 // Input dependencies.
408 // One entry per each implicit and explicit register use.
409 SmallVector
<ReadState
, 4> Uses
;
412 InstructionBase(const InstrDesc
&D
) : Desc(D
), IsOptimizableMove(false) {}
414 SmallVectorImpl
<WriteState
> &getDefs() { return Defs
; }
415 const ArrayRef
<WriteState
> getDefs() const { return Defs
; }
416 SmallVectorImpl
<ReadState
> &getUses() { return Uses
; }
417 const ArrayRef
<ReadState
> getUses() const { return Uses
; }
418 const InstrDesc
&getDesc() const { return Desc
; }
420 unsigned getLatency() const { return Desc
.MaxLatency
; }
421 unsigned getNumMicroOps() const { return Desc
.NumMicroOps
; }
423 bool hasDependentUsers() const {
425 [](const WriteState
&Def
) { return Def
.getNumUsers() > 0; });
428 unsigned getNumUsers() const {
429 unsigned NumUsers
= 0;
430 for (const WriteState
&Def
: Defs
)
431 NumUsers
+= Def
.getNumUsers();
435 // Returns true if this instruction is a candidate for move elimination.
436 bool isOptimizableMove() const { return IsOptimizableMove
; }
437 void setOptimizableMove() { IsOptimizableMove
= true; }
438 bool isMemOp() const { return Desc
.MayLoad
|| Desc
.MayStore
; }
441 /// An instruction propagated through the simulated instruction pipeline.
443 /// This class is used to monitor changes to the internal state of instructions
444 /// that are sent to the various components of the simulated hardware pipeline.
445 class Instruction
: public InstructionBase
{
447 IS_INVALID
, // Instruction in an invalid state.
448 IS_DISPATCHED
, // Instruction dispatched but operands are not ready.
449 IS_PENDING
, // Instruction is not ready, but operand latency is known.
450 IS_READY
, // Instruction dispatched and operands ready.
451 IS_EXECUTING
, // Instruction issued.
452 IS_EXECUTED
, // Instruction executed. Values are written back.
453 IS_RETIRED
// Instruction retired.
456 // The current instruction stage.
457 enum InstrStage Stage
;
459 // This value defaults to the instruction latency. This instruction is
460 // considered executed when field CyclesLeft goes to zero.
463 // Retire Unit token ID for this instruction.
466 // LS token ID for this instruction.
467 // This field is set to the invalid null token if this is not a memory
471 // A resource mask which identifies buffered resources consumed by this
472 // instruction at dispatch stage. In the absence of macro-fusion, this value
473 // should always match the value of field `UsedBuffers` from the instruction
474 // descriptor (see field InstrBase::Desc).
475 uint64_t UsedBuffers
;
477 // Critical register dependency.
478 CriticalDependency CriticalRegDep
;
480 // Critical memory dependency.
481 CriticalDependency CriticalMemDep
;
483 // A bitmask of busy processor resource units.
484 // This field is set to zero only if execution is not delayed during this
485 // cycle because of unavailable pipeline resources.
486 uint64_t CriticalResourceMask
;
488 // True if this instruction has been optimized at register renaming stage.
492 Instruction(const InstrDesc
&D
)
493 : InstructionBase(D
), Stage(IS_INVALID
), CyclesLeft(UNKNOWN_CYCLES
),
494 RCUTokenID(0), LSUTokenID(0), UsedBuffers(D
.UsedBuffers
),
495 CriticalRegDep(), CriticalMemDep(), CriticalResourceMask(0),
496 IsEliminated(false) {}
498 unsigned getRCUTokenID() const { return RCUTokenID
; }
499 unsigned getLSUTokenID() const { return LSUTokenID
; }
500 void setLSUTokenID(unsigned LSUTok
) { LSUTokenID
= LSUTok
; }
502 uint64_t getUsedBuffers() const { return UsedBuffers
; }
503 void setUsedBuffers(uint64_t Mask
) { UsedBuffers
= Mask
; }
504 void clearUsedBuffers() { UsedBuffers
= 0ULL; }
506 int getCyclesLeft() const { return CyclesLeft
; }
508 // Transition to the dispatch stage, and assign a RCUToken to this
509 // instruction. The RCUToken is used to track the completion of every
510 // register write performed by this instruction.
511 void dispatch(unsigned RCUTokenID
);
513 // Instruction issued. Transition to the IS_EXECUTING state, and update
514 // all the register definitions.
515 void execute(unsigned IID
);
517 // Force a transition from the IS_DISPATCHED state to the IS_READY or
518 // IS_PENDING state. State transitions normally occur either at the beginning
519 // of a new cycle (see method cycleEvent()), or as a result of another issue
520 // event. This method is called every time the instruction might have changed
521 // in state. It internally delegates to method updateDispatched() and
524 bool updateDispatched();
525 bool updatePending();
527 bool isDispatched() const { return Stage
== IS_DISPATCHED
; }
528 bool isPending() const { return Stage
== IS_PENDING
; }
529 bool isReady() const { return Stage
== IS_READY
; }
530 bool isExecuting() const { return Stage
== IS_EXECUTING
; }
531 bool isExecuted() const { return Stage
== IS_EXECUTED
; }
532 bool isRetired() const { return Stage
== IS_RETIRED
; }
533 bool isEliminated() const { return IsEliminated
; }
535 // Forces a transition from state IS_DISPATCHED to state IS_EXECUTED.
536 void forceExecuted();
537 void setEliminated() { IsEliminated
= true; }
540 assert(isExecuted() && "Instruction is in an invalid state!");
544 const CriticalDependency
&getCriticalRegDep() const { return CriticalRegDep
; }
545 const CriticalDependency
&getCriticalMemDep() const { return CriticalMemDep
; }
546 const CriticalDependency
&computeCriticalRegDep();
547 void setCriticalMemDep(const CriticalDependency
&MemDep
) {
548 CriticalMemDep
= MemDep
;
551 uint64_t getCriticalResourceMask() const { return CriticalResourceMask
; }
552 void setCriticalResourceMask(uint64_t ResourceMask
) {
553 CriticalResourceMask
= ResourceMask
;
559 /// An InstRef contains both a SourceMgr index and Instruction pair. The index
560 /// is used as a unique identifier for the instruction. MCA will make use of
561 /// this index as a key throughout MCA.
563 std::pair
<unsigned, Instruction
*> Data
;
566 InstRef() : Data(std::make_pair(0, nullptr)) {}
567 InstRef(unsigned Index
, Instruction
*I
) : Data(std::make_pair(Index
, I
)) {}
569 bool operator==(const InstRef
&Other
) const { return Data
== Other
.Data
; }
570 bool operator!=(const InstRef
&Other
) const { return Data
!= Other
.Data
; }
571 bool operator<(const InstRef
&Other
) const {
572 return Data
.first
< Other
.Data
.first
;
575 unsigned getSourceIndex() const { return Data
.first
; }
576 Instruction
*getInstruction() { return Data
.second
; }
577 const Instruction
*getInstruction() const { return Data
.second
; }
579 /// Returns true if this references a valid instruction.
580 explicit operator bool() const { return Data
.second
!= nullptr; }
582 /// Invalidate this reference.
583 void invalidate() { Data
.second
= nullptr; }
586 void print(raw_ostream
&OS
) const { OS
<< getSourceIndex(); }
591 inline raw_ostream
&operator<<(raw_ostream
&OS
, const InstRef
&IR
) {
597 /// A reference to a register write.
599 /// This class is mainly used by the register file to describe register
600 /// mappings. It correlates a register write to the source index of the
601 /// defining instruction.
603 std::pair
<unsigned, WriteState
*> Data
;
604 static const unsigned INVALID_IID
;
607 WriteRef() : Data(INVALID_IID
, nullptr) {}
608 WriteRef(unsigned SourceIndex
, WriteState
*WS
) : Data(SourceIndex
, WS
) {}
610 unsigned getSourceIndex() const { return Data
.first
; }
611 const WriteState
*getWriteState() const { return Data
.second
; }
612 WriteState
*getWriteState() { return Data
.second
; }
613 void invalidate() { Data
.second
= nullptr; }
614 bool isWriteZero() const {
615 assert(isValid() && "Invalid null WriteState found!");
616 return getWriteState()->isWriteZero();
619 /// Returns true if this register write has been executed, and the new
620 /// register value is therefore available to users.
621 bool isAvailable() const {
622 if (getSourceIndex() == INVALID_IID
)
624 const WriteState
*WS
= getWriteState();
625 return !WS
|| WS
->isExecuted();
628 bool isValid() const { return Data
.second
&& Data
.first
!= INVALID_IID
; }
629 bool operator==(const WriteRef
&Other
) const { return Data
== Other
.Data
; }
639 #endif // LLVM_MCA_INSTRUCTION_H