1 //===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains functions (and a class) useful for working with scaled
10 // numbers -- in particular, pairs of integers where one represents digits and
11 // another represents a scale. The functions are helpers and live in the
12 // namespace ScaledNumbers. The class ScaledNumber is useful for modelling
13 // certain cost metrics that need simple, integer-like semantics that are easy
16 // These might remind you of soft-floats. If you want one of those, you're in
17 // the wrong place. Look at include/llvm/ADT/APFloat.h instead.
19 //===----------------------------------------------------------------------===//
21 #ifndef LLVM_SUPPORT_SCALEDNUMBER_H
22 #define LLVM_SUPPORT_SCALEDNUMBER_H
24 #include "llvm/Support/MathExtras.h"
33 namespace ScaledNumbers
{
35 /// Maximum scale; same as APFloat for easy debug printing.
36 const int32_t MaxScale
= 16383;
38 /// Maximum scale; same as APFloat for easy debug printing.
39 const int32_t MinScale
= -16382;
41 /// Get the width of a number.
42 template <class DigitsT
> inline int getWidth() { return sizeof(DigitsT
) * 8; }
44 /// Conditionally round up a scaled number.
46 /// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
47 /// Always returns \c Scale unless there's an overflow, in which case it
48 /// returns \c 1+Scale.
50 /// \pre adding 1 to \c Scale will not overflow INT16_MAX.
51 template <class DigitsT
>
52 inline std::pair
<DigitsT
, int16_t> getRounded(DigitsT Digits
, int16_t Scale
,
54 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
59 return std::make_pair(DigitsT(1) << (getWidth
<DigitsT
>() - 1), Scale
+ 1);
60 return std::make_pair(Digits
, Scale
);
63 /// Convenience helper for 32-bit rounding.
64 inline std::pair
<uint32_t, int16_t> getRounded32(uint32_t Digits
, int16_t Scale
,
66 return getRounded(Digits
, Scale
, ShouldRound
);
69 /// Convenience helper for 64-bit rounding.
70 inline std::pair
<uint64_t, int16_t> getRounded64(uint64_t Digits
, int16_t Scale
,
72 return getRounded(Digits
, Scale
, ShouldRound
);
75 /// Adjust a 64-bit scaled number down to the appropriate width.
77 /// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
78 template <class DigitsT
>
79 inline std::pair
<DigitsT
, int16_t> getAdjusted(uint64_t Digits
,
81 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
83 const int Width
= getWidth
<DigitsT
>();
84 if (Width
== 64 || Digits
<= std::numeric_limits
<DigitsT
>::max())
85 return std::make_pair(Digits
, Scale
);
87 // Shift right and round.
88 int Shift
= 64 - Width
- countLeadingZeros(Digits
);
89 return getRounded
<DigitsT
>(Digits
>> Shift
, Scale
+ Shift
,
90 Digits
& (UINT64_C(1) << (Shift
- 1)));
93 /// Convenience helper for adjusting to 32 bits.
94 inline std::pair
<uint32_t, int16_t> getAdjusted32(uint64_t Digits
,
96 return getAdjusted
<uint32_t>(Digits
, Scale
);
99 /// Convenience helper for adjusting to 64 bits.
100 inline std::pair
<uint64_t, int16_t> getAdjusted64(uint64_t Digits
,
102 return getAdjusted
<uint64_t>(Digits
, Scale
);
105 /// Multiply two 64-bit integers to create a 64-bit scaled number.
107 /// Implemented with four 64-bit integer multiplies.
108 std::pair
<uint64_t, int16_t> multiply64(uint64_t LHS
, uint64_t RHS
);
110 /// Multiply two 32-bit integers to create a 32-bit scaled number.
112 /// Implemented with one 64-bit integer multiply.
113 template <class DigitsT
>
114 inline std::pair
<DigitsT
, int16_t> getProduct(DigitsT LHS
, DigitsT RHS
) {
115 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
117 if (getWidth
<DigitsT
>() <= 32 || (LHS
<= UINT32_MAX
&& RHS
<= UINT32_MAX
))
118 return getAdjusted
<DigitsT
>(uint64_t(LHS
) * RHS
);
120 return multiply64(LHS
, RHS
);
123 /// Convenience helper for 32-bit product.
124 inline std::pair
<uint32_t, int16_t> getProduct32(uint32_t LHS
, uint32_t RHS
) {
125 return getProduct(LHS
, RHS
);
128 /// Convenience helper for 64-bit product.
129 inline std::pair
<uint64_t, int16_t> getProduct64(uint64_t LHS
, uint64_t RHS
) {
130 return getProduct(LHS
, RHS
);
133 /// Divide two 64-bit integers to create a 64-bit scaled number.
135 /// Implemented with long division.
137 /// \pre \c Dividend and \c Divisor are non-zero.
138 std::pair
<uint64_t, int16_t> divide64(uint64_t Dividend
, uint64_t Divisor
);
140 /// Divide two 32-bit integers to create a 32-bit scaled number.
142 /// Implemented with one 64-bit integer divide/remainder pair.
144 /// \pre \c Dividend and \c Divisor are non-zero.
145 std::pair
<uint32_t, int16_t> divide32(uint32_t Dividend
, uint32_t Divisor
);
147 /// Divide two 32-bit numbers to create a 32-bit scaled number.
149 /// Implemented with one 64-bit integer divide/remainder pair.
151 /// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
152 template <class DigitsT
>
153 std::pair
<DigitsT
, int16_t> getQuotient(DigitsT Dividend
, DigitsT Divisor
) {
154 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
155 static_assert(sizeof(DigitsT
) == 4 || sizeof(DigitsT
) == 8,
156 "expected 32-bit or 64-bit digits");
160 return std::make_pair(0, 0);
162 return std::make_pair(std::numeric_limits
<DigitsT
>::max(), MaxScale
);
164 if (getWidth
<DigitsT
>() == 64)
165 return divide64(Dividend
, Divisor
);
166 return divide32(Dividend
, Divisor
);
169 /// Convenience helper for 32-bit quotient.
170 inline std::pair
<uint32_t, int16_t> getQuotient32(uint32_t Dividend
,
172 return getQuotient(Dividend
, Divisor
);
175 /// Convenience helper for 64-bit quotient.
176 inline std::pair
<uint64_t, int16_t> getQuotient64(uint64_t Dividend
,
178 return getQuotient(Dividend
, Divisor
);
181 /// Implementation of getLg() and friends.
183 /// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
184 /// this was rounded up (1), down (-1), or exact (0).
186 /// Returns \c INT32_MIN when \c Digits is zero.
187 template <class DigitsT
>
188 inline std::pair
<int32_t, int> getLgImpl(DigitsT Digits
, int16_t Scale
) {
189 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
192 return std::make_pair(INT32_MIN
, 0);
194 // Get the floor of the lg of Digits.
195 int32_t LocalFloor
= sizeof(Digits
) * 8 - countLeadingZeros(Digits
) - 1;
197 // Get the actual floor.
198 int32_t Floor
= Scale
+ LocalFloor
;
199 if (Digits
== UINT64_C(1) << LocalFloor
)
200 return std::make_pair(Floor
, 0);
202 // Round based on the next digit.
203 assert(LocalFloor
>= 1);
204 bool Round
= Digits
& UINT64_C(1) << (LocalFloor
- 1);
205 return std::make_pair(Floor
+ Round
, Round
? 1 : -1);
208 /// Get the lg (rounded) of a scaled number.
210 /// Get the lg of \c Digits*2^Scale.
212 /// Returns \c INT32_MIN when \c Digits is zero.
213 template <class DigitsT
> int32_t getLg(DigitsT Digits
, int16_t Scale
) {
214 return getLgImpl(Digits
, Scale
).first
;
217 /// Get the lg floor of a scaled number.
219 /// Get the floor of the lg of \c Digits*2^Scale.
221 /// Returns \c INT32_MIN when \c Digits is zero.
222 template <class DigitsT
> int32_t getLgFloor(DigitsT Digits
, int16_t Scale
) {
223 auto Lg
= getLgImpl(Digits
, Scale
);
224 return Lg
.first
- (Lg
.second
> 0);
227 /// Get the lg ceiling of a scaled number.
229 /// Get the ceiling of the lg of \c Digits*2^Scale.
231 /// Returns \c INT32_MIN when \c Digits is zero.
232 template <class DigitsT
> int32_t getLgCeiling(DigitsT Digits
, int16_t Scale
) {
233 auto Lg
= getLgImpl(Digits
, Scale
);
234 return Lg
.first
+ (Lg
.second
< 0);
237 /// Implementation for comparing scaled numbers.
239 /// Compare two 64-bit numbers with different scales. Given that the scale of
240 /// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
241 /// 1, and 0 for less than, greater than, and equal, respectively.
243 /// \pre 0 <= ScaleDiff < 64.
244 int compareImpl(uint64_t L
, uint64_t R
, int ScaleDiff
);
246 /// Compare two scaled numbers.
248 /// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
249 /// for greater than.
250 template <class DigitsT
>
251 int compare(DigitsT LDigits
, int16_t LScale
, DigitsT RDigits
, int16_t RScale
) {
252 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
256 return RDigits
? -1 : 0;
260 // Check for the scale. Use getLgFloor to be sure that the scale difference
261 // is always lower than 64.
262 int32_t lgL
= getLgFloor(LDigits
, LScale
), lgR
= getLgFloor(RDigits
, RScale
);
264 return lgL
< lgR
? -1 : 1;
268 return compareImpl(LDigits
, RDigits
, RScale
- LScale
);
270 return -compareImpl(RDigits
, LDigits
, LScale
- RScale
);
273 /// Match scales of two numbers.
275 /// Given two scaled numbers, match up their scales. Change the digits and
276 /// scales in place. Shift the digits as necessary to form equivalent numbers,
277 /// losing precision only when necessary.
279 /// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
280 /// \c LScale (\c RScale) is unspecified.
282 /// As a convenience, returns the matching scale. If the output value of one
283 /// number is zero, returns the scale of the other. If both are zero, which
284 /// scale is returned is unspecified.
285 template <class DigitsT
>
286 int16_t matchScales(DigitsT
&LDigits
, int16_t &LScale
, DigitsT
&RDigits
,
288 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
292 return matchScales(RDigits
, RScale
, LDigits
, LScale
);
295 if (!RDigits
|| LScale
== RScale
)
298 // Now LScale > RScale. Get the difference.
299 int32_t ScaleDiff
= int32_t(LScale
) - RScale
;
300 if (ScaleDiff
>= 2 * getWidth
<DigitsT
>()) {
301 // Don't bother shifting. RDigits will get zero-ed out anyway.
306 // Shift LDigits left as much as possible, then shift RDigits right.
307 int32_t ShiftL
= std::min
<int32_t>(countLeadingZeros(LDigits
), ScaleDiff
);
308 assert(ShiftL
< getWidth
<DigitsT
>() && "can't shift more than width");
310 int32_t ShiftR
= ScaleDiff
- ShiftL
;
311 if (ShiftR
>= getWidth
<DigitsT
>()) {
312 // Don't bother shifting. RDigits will get zero-ed out anyway.
322 assert(LScale
== RScale
&& "scales should match");
326 /// Get the sum of two scaled numbers.
328 /// Get the sum of two scaled numbers with as much precision as possible.
330 /// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
331 template <class DigitsT
>
332 std::pair
<DigitsT
, int16_t> getSum(DigitsT LDigits
, int16_t LScale
,
333 DigitsT RDigits
, int16_t RScale
) {
334 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
336 // Check inputs up front. This is only relevant if addition overflows, but
337 // testing here should catch more bugs.
338 assert(LScale
< INT16_MAX
&& "scale too large");
339 assert(RScale
< INT16_MAX
&& "scale too large");
341 // Normalize digits to match scales.
342 int16_t Scale
= matchScales(LDigits
, LScale
, RDigits
, RScale
);
345 DigitsT Sum
= LDigits
+ RDigits
;
347 return std::make_pair(Sum
, Scale
);
349 // Adjust sum after arithmetic overflow.
350 DigitsT HighBit
= DigitsT(1) << (getWidth
<DigitsT
>() - 1);
351 return std::make_pair(HighBit
| Sum
>> 1, Scale
+ 1);
354 /// Convenience helper for 32-bit sum.
355 inline std::pair
<uint32_t, int16_t> getSum32(uint32_t LDigits
, int16_t LScale
,
356 uint32_t RDigits
, int16_t RScale
) {
357 return getSum(LDigits
, LScale
, RDigits
, RScale
);
360 /// Convenience helper for 64-bit sum.
361 inline std::pair
<uint64_t, int16_t> getSum64(uint64_t LDigits
, int16_t LScale
,
362 uint64_t RDigits
, int16_t RScale
) {
363 return getSum(LDigits
, LScale
, RDigits
, RScale
);
366 /// Get the difference of two scaled numbers.
368 /// Get LHS minus RHS with as much precision as possible.
370 /// Returns \c (0, 0) if the RHS is larger than the LHS.
371 template <class DigitsT
>
372 std::pair
<DigitsT
, int16_t> getDifference(DigitsT LDigits
, int16_t LScale
,
373 DigitsT RDigits
, int16_t RScale
) {
374 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
, "expected unsigned");
376 // Normalize digits to match scales.
377 const DigitsT SavedRDigits
= RDigits
;
378 const int16_t SavedRScale
= RScale
;
379 matchScales(LDigits
, LScale
, RDigits
, RScale
);
381 // Compute difference.
382 if (LDigits
<= RDigits
)
383 return std::make_pair(0, 0);
384 if (RDigits
|| !SavedRDigits
)
385 return std::make_pair(LDigits
- RDigits
, LScale
);
387 // Check if RDigits just barely lost its last bit. E.g., for 32-bit:
389 // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
390 const auto RLgFloor
= getLgFloor(SavedRDigits
, SavedRScale
);
391 if (!compare(LDigits
, LScale
, DigitsT(1), RLgFloor
+ getWidth
<DigitsT
>()))
392 return std::make_pair(std::numeric_limits
<DigitsT
>::max(), RLgFloor
);
394 return std::make_pair(LDigits
, LScale
);
397 /// Convenience helper for 32-bit difference.
398 inline std::pair
<uint32_t, int16_t> getDifference32(uint32_t LDigits
,
402 return getDifference(LDigits
, LScale
, RDigits
, RScale
);
405 /// Convenience helper for 64-bit difference.
406 inline std::pair
<uint64_t, int16_t> getDifference64(uint64_t LDigits
,
410 return getDifference(LDigits
, LScale
, RDigits
, RScale
);
413 } // end namespace ScaledNumbers
414 } // end namespace llvm
419 class ScaledNumberBase
{
421 static const int DefaultPrecision
= 10;
423 static void dump(uint64_t D
, int16_t E
, int Width
);
424 static raw_ostream
&print(raw_ostream
&OS
, uint64_t D
, int16_t E
, int Width
,
426 static std::string
toString(uint64_t D
, int16_t E
, int Width
,
428 static int countLeadingZeros32(uint32_t N
) { return countLeadingZeros(N
); }
429 static int countLeadingZeros64(uint64_t N
) { return countLeadingZeros(N
); }
430 static uint64_t getHalf(uint64_t N
) { return (N
>> 1) + (N
& 1); }
432 static std::pair
<uint64_t, bool> splitSigned(int64_t N
) {
434 return std::make_pair(N
, false);
435 uint64_t Unsigned
= N
== INT64_MIN
? UINT64_C(1) << 63 : uint64_t(-N
);
436 return std::make_pair(Unsigned
, true);
438 static int64_t joinSigned(uint64_t U
, bool IsNeg
) {
439 if (U
> uint64_t(INT64_MAX
))
440 return IsNeg
? INT64_MIN
: INT64_MAX
;
441 return IsNeg
? -int64_t(U
) : int64_t(U
);
445 /// Simple representation of a scaled number.
447 /// ScaledNumber is a number represented by digits and a scale. It uses simple
448 /// saturation arithmetic and every operation is well-defined for every value.
449 /// It's somewhat similar in behaviour to a soft-float, but is *not* a
450 /// replacement for one. If you're doing numerics, look at \a APFloat instead.
451 /// Nevertheless, we've found these semantics useful for modelling certain cost
454 /// The number is split into a signed scale and unsigned digits. The number
455 /// represented is \c getDigits()*2^getScale(). In this way, the digits are
456 /// much like the mantissa in the x87 long double, but there is no canonical
457 /// form so the same number can be represented by many bit representations.
459 /// ScaledNumber is templated on the underlying integer type for digits, which
460 /// is expected to be unsigned.
462 /// Unlike APFloat, ScaledNumber does not model architecture floating point
463 /// behaviour -- while this might make it a little faster and easier to reason
464 /// about, it certainly makes it more dangerous for general numerics.
466 /// ScaledNumber is totally ordered. However, there is no canonical form, so
467 /// there are multiple representations of most scalars. E.g.:
469 /// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
470 /// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
471 /// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
473 /// ScaledNumber implements most arithmetic operations. Precision is kept
474 /// where possible. Uses simple saturation arithmetic, so that operations
475 /// saturate to 0.0 or getLargest() rather than under or overflowing. It has
476 /// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
477 /// Any other division by 0.0 is defined to be getLargest().
479 /// As a convenience for modifying the exponent, left and right shifting are
480 /// both implemented, and both interpret negative shifts as positive shifts in
481 /// the opposite direction.
483 /// Scales are limited to the range accepted by x87 long double. This makes
484 /// it trivial to add functionality to convert to APFloat (this is already
485 /// relied on for the implementation of printing).
487 /// Possible (and conflicting) future directions:
489 /// 1. Turn this into a wrapper around \a APFloat.
490 /// 2. Share the algorithm implementations with \a APFloat.
491 /// 3. Allow \a ScaledNumber to represent a signed number.
492 template <class DigitsT
> class ScaledNumber
: ScaledNumberBase
{
494 static_assert(!std::numeric_limits
<DigitsT
>::is_signed
,
495 "only unsigned floats supported");
497 typedef DigitsT DigitsType
;
500 typedef std::numeric_limits
<DigitsType
> DigitsLimits
;
502 static const int Width
= sizeof(DigitsType
) * 8;
503 static_assert(Width
<= 64, "invalid integer width for digits");
506 DigitsType Digits
= 0;
510 ScaledNumber() = default;
512 constexpr ScaledNumber(DigitsType Digits
, int16_t Scale
)
513 : Digits(Digits
), Scale(Scale
) {}
516 ScaledNumber(const std::pair
<DigitsT
, int16_t> &X
)
517 : Digits(X
.first
), Scale(X
.second
) {}
520 static ScaledNumber
getZero() { return ScaledNumber(0, 0); }
521 static ScaledNumber
getOne() { return ScaledNumber(1, 0); }
522 static ScaledNumber
getLargest() {
523 return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale
);
525 static ScaledNumber
get(uint64_t N
) { return adjustToWidth(N
, 0); }
526 static ScaledNumber
getInverse(uint64_t N
) {
527 return get(N
).invert();
529 static ScaledNumber
getFraction(DigitsType N
, DigitsType D
) {
530 return getQuotient(N
, D
);
533 int16_t getScale() const { return Scale
; }
534 DigitsType
getDigits() const { return Digits
; }
536 /// Convert to the given integer type.
538 /// Convert to \c IntT using simple saturating arithmetic, truncating if
540 template <class IntT
> IntT
toInt() const;
542 bool isZero() const { return !Digits
; }
543 bool isLargest() const { return *this == getLargest(); }
545 if (Scale
> 0 || Scale
<= -Width
)
547 return Digits
== DigitsType(1) << -Scale
;
550 /// The log base 2, rounded.
552 /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
553 int32_t lg() const { return ScaledNumbers::getLg(Digits
, Scale
); }
555 /// The log base 2, rounded towards INT32_MIN.
557 /// Get the lg floor. lg 0 is defined to be INT32_MIN.
558 int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits
, Scale
); }
560 /// The log base 2, rounded towards INT32_MAX.
562 /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
563 int32_t lgCeiling() const {
564 return ScaledNumbers::getLgCeiling(Digits
, Scale
);
567 bool operator==(const ScaledNumber
&X
) const { return compare(X
) == 0; }
568 bool operator<(const ScaledNumber
&X
) const { return compare(X
) < 0; }
569 bool operator!=(const ScaledNumber
&X
) const { return compare(X
) != 0; }
570 bool operator>(const ScaledNumber
&X
) const { return compare(X
) > 0; }
571 bool operator<=(const ScaledNumber
&X
) const { return compare(X
) <= 0; }
572 bool operator>=(const ScaledNumber
&X
) const { return compare(X
) >= 0; }
574 bool operator!() const { return isZero(); }
576 /// Convert to a decimal representation in a string.
578 /// Convert to a string. Uses scientific notation for very large/small
579 /// numbers. Scientific notation is used roughly for numbers outside of the
580 /// range 2^-64 through 2^64.
582 /// \c Precision indicates the number of decimal digits of precision to use;
583 /// 0 requests the maximum available.
585 /// As a special case to make debugging easier, if the number is small enough
586 /// to convert without scientific notation and has more than \c Precision
587 /// digits before the decimal place, it's printed accurately to the first
588 /// digit past zero. E.g., assuming 10 digits of precision:
590 /// 98765432198.7654... => 98765432198.8
591 /// 8765432198.7654... => 8765432198.8
592 /// 765432198.7654... => 765432198.8
593 /// 65432198.7654... => 65432198.77
594 /// 5432198.7654... => 5432198.765
595 std::string
toString(unsigned Precision
= DefaultPrecision
) {
596 return ScaledNumberBase::toString(Digits
, Scale
, Width
, Precision
);
599 /// Print a decimal representation.
601 /// Print a string. See toString for documentation.
602 raw_ostream
&print(raw_ostream
&OS
,
603 unsigned Precision
= DefaultPrecision
) const {
604 return ScaledNumberBase::print(OS
, Digits
, Scale
, Width
, Precision
);
606 void dump() const { return ScaledNumberBase::dump(Digits
, Scale
, Width
); }
608 ScaledNumber
&operator+=(const ScaledNumber
&X
) {
609 std::tie(Digits
, Scale
) =
610 ScaledNumbers::getSum(Digits
, Scale
, X
.Digits
, X
.Scale
);
611 // Check for exponent past MaxScale.
612 if (Scale
> ScaledNumbers::MaxScale
)
613 *this = getLargest();
616 ScaledNumber
&operator-=(const ScaledNumber
&X
) {
617 std::tie(Digits
, Scale
) =
618 ScaledNumbers::getDifference(Digits
, Scale
, X
.Digits
, X
.Scale
);
621 ScaledNumber
&operator*=(const ScaledNumber
&X
);
622 ScaledNumber
&operator/=(const ScaledNumber
&X
);
623 ScaledNumber
&operator<<=(int16_t Shift
) {
627 ScaledNumber
&operator>>=(int16_t Shift
) {
633 void shiftLeft(int32_t Shift
);
634 void shiftRight(int32_t Shift
);
636 /// Adjust two floats to have matching exponents.
638 /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
639 /// by value. Does nothing if \a isZero() for either.
641 /// The value that compares smaller will lose precision, and possibly become
643 ScaledNumber
matchScales(ScaledNumber X
) {
644 ScaledNumbers::matchScales(Digits
, Scale
, X
.Digits
, X
.Scale
);
649 /// Scale a large number accurately.
651 /// Scale N (multiply it by this). Uses full precision multiplication, even
652 /// if Width is smaller than 64, so information is not lost.
653 uint64_t scale(uint64_t N
) const;
654 uint64_t scaleByInverse(uint64_t N
) const {
655 // TODO: implement directly, rather than relying on inverse. Inverse is
657 return inverse().scale(N
);
659 int64_t scale(int64_t N
) const {
660 std::pair
<uint64_t, bool> Unsigned
= splitSigned(N
);
661 return joinSigned(scale(Unsigned
.first
), Unsigned
.second
);
663 int64_t scaleByInverse(int64_t N
) const {
664 std::pair
<uint64_t, bool> Unsigned
= splitSigned(N
);
665 return joinSigned(scaleByInverse(Unsigned
.first
), Unsigned
.second
);
668 int compare(const ScaledNumber
&X
) const {
669 return ScaledNumbers::compare(Digits
, Scale
, X
.Digits
, X
.Scale
);
671 int compareTo(uint64_t N
) const {
672 return ScaledNumbers::compare
<uint64_t>(Digits
, Scale
, N
, 0);
674 int compareTo(int64_t N
) const { return N
< 0 ? 1 : compareTo(uint64_t(N
)); }
676 ScaledNumber
&invert() { return *this = ScaledNumber::get(1) / *this; }
677 ScaledNumber
inverse() const { return ScaledNumber(*this).invert(); }
680 static ScaledNumber
getProduct(DigitsType LHS
, DigitsType RHS
) {
681 return ScaledNumbers::getProduct(LHS
, RHS
);
683 static ScaledNumber
getQuotient(DigitsType Dividend
, DigitsType Divisor
) {
684 return ScaledNumbers::getQuotient(Dividend
, Divisor
);
687 static int countLeadingZerosWidth(DigitsType Digits
) {
689 return countLeadingZeros64(Digits
);
691 return countLeadingZeros32(Digits
);
692 return countLeadingZeros32(Digits
) + Width
- 32;
695 /// Adjust a number to width, rounding up if necessary.
697 /// Should only be called for \c Shift close to zero.
699 /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
700 static ScaledNumber
adjustToWidth(uint64_t N
, int32_t Shift
) {
701 assert(Shift
>= ScaledNumbers::MinScale
&& "Shift should be close to 0");
702 assert(Shift
<= ScaledNumbers::MaxScale
- 64 &&
703 "Shift should be close to 0");
704 auto Adjusted
= ScaledNumbers::getAdjusted
<DigitsT
>(N
, Shift
);
708 static ScaledNumber
getRounded(ScaledNumber P
, bool Round
) {
713 return ScaledNumbers::getRounded(P
.Digits
, P
.Scale
, Round
);
717 #define SCALED_NUMBER_BOP(op, base) \
718 template <class DigitsT> \
719 ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
720 const ScaledNumber<DigitsT> &R) { \
721 return ScaledNumber<DigitsT>(L) base R; \
723 SCALED_NUMBER_BOP(+, += )
724 SCALED_NUMBER_BOP(-, -= )
725 SCALED_NUMBER_BOP(*, *= )
726 SCALED_NUMBER_BOP(/, /= )
727 #undef SCALED_NUMBER_BOP
729 template <class DigitsT
>
730 ScaledNumber
<DigitsT
> operator<<(const ScaledNumber
<DigitsT
> &L
,
732 return ScaledNumber
<DigitsT
>(L
) <<= Shift
;
735 template <class DigitsT
>
736 ScaledNumber
<DigitsT
> operator>>(const ScaledNumber
<DigitsT
> &L
,
738 return ScaledNumber
<DigitsT
>(L
) >>= Shift
;
741 template <class DigitsT
>
742 raw_ostream
&operator<<(raw_ostream
&OS
, const ScaledNumber
<DigitsT
> &X
) {
743 return X
.print(OS
, 10);
746 #define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
747 template <class DigitsT> \
748 bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
749 return L.compareTo(T2(R)) op 0; \
751 template <class DigitsT> \
752 bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
753 return 0 op R.compareTo(T2(L)); \
755 #define SCALED_NUMBER_COMPARE_TO(op) \
756 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
757 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
758 SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
759 SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
760 SCALED_NUMBER_COMPARE_TO(< )
761 SCALED_NUMBER_COMPARE_TO(> )
762 SCALED_NUMBER_COMPARE_TO(== )
763 SCALED_NUMBER_COMPARE_TO(!= )
764 SCALED_NUMBER_COMPARE_TO(<= )
765 SCALED_NUMBER_COMPARE_TO(>= )
766 #undef SCALED_NUMBER_COMPARE_TO
767 #undef SCALED_NUMBER_COMPARE_TO_TYPE
769 template <class DigitsT
>
770 uint64_t ScaledNumber
<DigitsT
>::scale(uint64_t N
) const {
771 if (Width
== 64 || N
<= DigitsLimits::max())
772 return (get(N
) * *this).template toInt
<uint64_t>();
774 // Defer to the 64-bit version.
775 return ScaledNumber
<uint64_t>(Digits
, Scale
).scale(N
);
778 template <class DigitsT
>
779 template <class IntT
>
780 IntT ScaledNumber
<DigitsT
>::toInt() const {
781 typedef std::numeric_limits
<IntT
> Limits
;
784 if (*this >= Limits::max())
785 return Limits::max();
789 assert(size_t(Scale
) < sizeof(IntT
) * 8);
793 assert(size_t(-Scale
) < sizeof(IntT
) * 8);
799 template <class DigitsT
>
800 ScaledNumber
<DigitsT
> &ScaledNumber
<DigitsT
>::
801 operator*=(const ScaledNumber
&X
) {
807 // Save the exponents.
808 int32_t Scales
= int32_t(Scale
) + int32_t(X
.Scale
);
810 // Get the raw product.
811 *this = getProduct(Digits
, X
.Digits
);
813 // Combine with exponents.
814 return *this <<= Scales
;
816 template <class DigitsT
>
817 ScaledNumber
<DigitsT
> &ScaledNumber
<DigitsT
>::
818 operator/=(const ScaledNumber
&X
) {
822 return *this = getLargest();
824 // Save the exponents.
825 int32_t Scales
= int32_t(Scale
) - int32_t(X
.Scale
);
827 // Get the raw quotient.
828 *this = getQuotient(Digits
, X
.Digits
);
830 // Combine with exponents.
831 return *this <<= Scales
;
833 template <class DigitsT
> void ScaledNumber
<DigitsT
>::shiftLeft(int32_t Shift
) {
834 if (!Shift
|| isZero())
836 assert(Shift
!= INT32_MIN
);
842 // Shift as much as we can in the exponent.
843 int32_t ScaleShift
= std::min(Shift
, ScaledNumbers::MaxScale
- Scale
);
845 if (ScaleShift
== Shift
)
848 // Check this late, since it's rare.
852 // Shift the digits themselves.
854 if (Shift
> countLeadingZerosWidth(Digits
)) {
856 *this = getLargest();
863 template <class DigitsT
> void ScaledNumber
<DigitsT
>::shiftRight(int32_t Shift
) {
864 if (!Shift
|| isZero())
866 assert(Shift
!= INT32_MIN
);
872 // Shift as much as we can in the exponent.
873 int32_t ScaleShift
= std::min(Shift
, Scale
- ScaledNumbers::MinScale
);
875 if (ScaleShift
== Shift
)
878 // Shift the digits themselves.
880 if (Shift
>= Width
) {
890 } // end namespace llvm
892 #endif // LLVM_SUPPORT_SCALEDNUMBER_H