1 //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the target-independent interfaces which should be
10 // implemented by each target which is using a TableGen based code generator.
12 //===----------------------------------------------------------------------===//
14 // Include all information about LLVM intrinsics.
15 include "llvm/IR/Intrinsics.td"
17 //===----------------------------------------------------------------------===//
18 // Register file description - These classes are used to fill in the target
19 // description classes.
21 class RegisterClass; // Forward def
23 class HwMode<string FS> {
24 // A string representing subtarget features that turn on this HW mode.
25 // For example, "+feat1,-feat2" will indicate that the mode is active
26 // when "feat1" is enabled and "feat2" is disabled at the same time.
27 // Any other features are not checked.
28 // When multiple modes are used, they should be mutually exclusive,
29 // otherwise the results are unpredictable.
33 // A special mode recognized by tablegen. This mode is considered active
34 // when no other mode is active. For targets that do not use specific hw
35 // modes, this is the only mode.
36 def DefaultMode : HwMode<"">;
38 // A class used to associate objects with HW modes. It is only intended to
39 // be used as a base class, where the derived class should contain a member
40 // "Objects", which is a list of the same length as the list of modes.
41 // The n-th element on the Objects list will be associated with the n-th
42 // element on the Modes list.
43 class HwModeSelect<list<HwMode> Ms> {
44 list<HwMode> Modes = Ms;
47 // A common class that implements a counterpart of ValueType, which is
48 // dependent on a HW mode. This class inherits from ValueType itself,
49 // which makes it possible to use objects of this class where ValueType
50 // objects could be used. This is specifically applicable to selection
52 class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
53 : HwModeSelect<Ms>, ValueType<0, 0> {
54 // The length of this list must be the same as the length of Ms.
55 list<ValueType> Objects = Ts;
58 // A class representing the register size, spill size and spill alignment
59 // in bits of a register.
60 class RegInfo<int RS, int SS, int SA> {
61 int RegSize = RS; // Register size in bits.
62 int SpillSize = SS; // Spill slot size in bits.
63 int SpillAlignment = SA; // Spill slot alignment in bits.
66 // The register size/alignment information, parameterized by a HW mode.
67 class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
69 // The length of this list must be the same as the length of Ms.
70 list<RegInfo> Objects = Ts;
73 // SubRegIndex - Use instances of SubRegIndex to identify subregisters.
74 class SubRegIndex<int size, int offset = 0> {
75 string Namespace = "";
77 // Size - Size (in bits) of the sub-registers represented by this index.
80 // Offset - Offset of the first bit that is part of this sub-register index.
81 // Set it to -1 if the same index is used to represent sub-registers that can
82 // be at different offsets (for example when using an index to access an
83 // element in a register tuple).
86 // ComposedOf - A list of two SubRegIndex instances, [A, B].
87 // This indicates that this SubRegIndex is the result of composing A and B.
88 // See ComposedSubRegIndex.
89 list<SubRegIndex> ComposedOf = [];
91 // CoveringSubRegIndices - A list of two or more sub-register indexes that
92 // cover this sub-register.
94 // This field should normally be left blank as TableGen can infer it.
96 // TableGen automatically detects sub-registers that straddle the registers
97 // in the SubRegs field of a Register definition. For example:
99 // Q0 = dsub_0 -> D0, dsub_1 -> D1
100 // Q1 = dsub_0 -> D2, dsub_1 -> D3
101 // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
102 // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
104 // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
105 // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
106 // CoveringSubRegIndices = [dsub_1, dsub_2].
107 list<SubRegIndex> CoveringSubRegIndices = [];
110 // ComposedSubRegIndex - A sub-register that is the result of composing A and B.
111 // Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
112 class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
113 : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
114 !if(!eq(B.Offset, -1), -1,
115 !add(A.Offset, B.Offset)))> {
117 let ComposedOf = [A, B];
120 // RegAltNameIndex - The alternate name set to use for register operands of
121 // this register class when printing.
122 class RegAltNameIndex {
123 string Namespace = "";
125 // A set to be used if the name for a register is not defined in this set.
126 // This allows creating name sets with only a few alternative names.
127 RegAltNameIndex FallbackRegAltNameIndex = ?;
129 def NoRegAltName : RegAltNameIndex;
131 // Register - You should define one instance of this class for each register
132 // in the target machine. String n will become the "name" of the register.
133 class Register<string n, list<string> altNames = []> {
134 string Namespace = "";
136 list<string> AltNames = altNames;
138 // Aliases - A list of registers that this register overlaps with. A read or
139 // modification of this register can potentially read or modify the aliased
141 list<Register> Aliases = [];
143 // SubRegs - A list of registers that are parts of this register. Note these
144 // are "immediate" sub-registers and the registers within the list do not
145 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
147 list<Register> SubRegs = [];
149 // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
150 // to address it. Sub-sub-register indices are automatically inherited from
152 list<SubRegIndex> SubRegIndices = [];
154 // RegAltNameIndices - The alternate name indices which are valid for this
156 list<RegAltNameIndex> RegAltNameIndices = [];
158 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
159 // These values can be determined by locating the <target>.h file in the
160 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
161 // order of these names correspond to the enumeration used by gcc. A value of
162 // -1 indicates that the gcc number is undefined and -2 that register number
163 // is invalid for this mode/flavour.
164 list<int> DwarfNumbers = [];
166 // CostPerUse - Additional cost of instructions using this register compared
167 // to other registers in its class. The register allocator will try to
168 // minimize the number of instructions using a register with a CostPerUse.
169 // This is used by the x86-64 and ARM Thumb targets where some registers
170 // require larger instruction encodings.
173 // CoveredBySubRegs - When this bit is set, the value of this register is
174 // completely determined by the value of its sub-registers. For example, the
175 // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
176 // covered by its sub-register AX.
177 bit CoveredBySubRegs = 0;
179 // HWEncoding - The target specific hardware encoding for this register.
180 bits<16> HWEncoding = 0;
182 bit isArtificial = 0;
185 // RegisterWithSubRegs - This can be used to define instances of Register which
186 // need to specify sub-registers.
187 // List "subregs" specifies which registers are sub-registers to this one. This
188 // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
189 // This allows the code generator to be careful not to put two values with
190 // overlapping live ranges into registers which alias.
191 class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
192 let SubRegs = subregs;
195 // DAGOperand - An empty base class that unifies RegisterClass's and other forms
196 // of Operand's that are legal as type qualifiers in DAG patterns. This should
197 // only ever be used for defining multiclasses that are polymorphic over both
198 // RegisterClass's and other Operand's.
200 string OperandNamespace = "MCOI";
201 string DecoderMethod = "";
204 // RegisterClass - Now that all of the registers are defined, and aliases
205 // between registers are defined, specify which registers belong to which
206 // register classes. This also defines the default allocation order of
207 // registers by register allocators.
209 class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
210 dag regList, RegAltNameIndex idx = NoRegAltName>
212 string Namespace = namespace;
214 // The register size/alignment information, parameterized by a HW mode.
215 RegInfoByHwMode RegInfos;
217 // RegType - Specify the list ValueType of the registers in this register
218 // class. Note that all registers in a register class must have the same
219 // ValueTypes. This is a list because some targets permit storing different
220 // types in same register, for example vector values with 128-bit total size,
221 // but different count/size of items, like SSE on x86.
223 list<ValueType> RegTypes = regTypes;
225 // Size - Specify the spill size in bits of the registers. A default value of
226 // zero lets tablgen pick an appropriate size.
229 // Alignment - Specify the alignment required of the registers when they are
230 // stored or loaded to memory.
232 int Alignment = alignment;
234 // CopyCost - This value is used to specify the cost of copying a value
235 // between two registers in this register class. The default value is one
236 // meaning it takes a single instruction to perform the copying. A negative
237 // value means copying is extremely expensive or impossible.
240 // MemberList - Specify which registers are in this class. If the
241 // allocation_order_* method are not specified, this also defines the order of
242 // allocation used by the register allocator.
244 dag MemberList = regList;
246 // AltNameIndex - The alternate register name to use when printing operands
247 // of this register class. Every register in the register class must have
248 // a valid alternate name for the given index.
249 RegAltNameIndex altNameIndex = idx;
251 // isAllocatable - Specify that the register class can be used for virtual
252 // registers and register allocation. Some register classes are only used to
253 // model instruction operand constraints, and should have isAllocatable = 0.
254 bit isAllocatable = 1;
256 // AltOrders - List of alternative allocation orders. The default order is
257 // MemberList itself, and that is good enough for most targets since the
258 // register allocators automatically remove reserved registers and move
259 // callee-saved registers to the end.
260 list<dag> AltOrders = [];
262 // AltOrderSelect - The body of a function that selects the allocation order
263 // to use in a given machine function. The code will be inserted in a
264 // function like this:
266 // static inline unsigned f(const MachineFunction &MF) { ... }
268 // The function should return 0 to select the default order defined by
269 // MemberList, 1 to select the first AltOrders entry and so on.
270 code AltOrderSelect = [{}];
272 // Specify allocation priority for register allocators using a greedy
273 // heuristic. Classes with higher priority values are assigned first. This is
274 // useful as it is sometimes beneficial to assign registers to highly
275 // constrained classes first. The value has to be in the range [0,63].
276 int AllocationPriority = 0;
278 // The diagnostic type to present when referencing this operand in a match
279 // failure error message. If this is empty, the default Match_InvalidOperand
280 // diagnostic type will be used. If this is "<name>", a Match_<name> enum
281 // value will be generated and used for this operand type. The target
282 // assembly parser is responsible for converting this into a user-facing
283 // diagnostic message.
284 string DiagnosticType = "";
286 // A diagnostic message to emit when an invalid value is provided for this
287 // register class when it is being used an an assembly operand. If this is
288 // non-empty, an anonymous diagnostic type enum value will be generated, and
289 // the assembly matcher will provide a function to map from diagnostic types
290 // to message strings.
291 string DiagnosticString = "";
294 // The memberList in a RegisterClass is a dag of set operations. TableGen
295 // evaluates these set operations and expand them into register lists. These
296 // are the most common operation, see test/TableGen/SetTheory.td for more
297 // examples of what is possible:
299 // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
300 // register class, or a sub-expression. This is also the way to simply list
303 // (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
305 // (and GPR, CSR) - Set intersection. All registers from the first set that are
306 // also in the second set.
308 // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
309 // numbered registers. Takes an optional 4th operand which is a stride to use
310 // when generating the sequence.
312 // (shl GPR, 4) - Remove the first N elements.
314 // (trunc GPR, 4) - Truncate after the first N elements.
316 // (rotl GPR, 1) - Rotate N places to the left.
318 // (rotr GPR, 1) - Rotate N places to the right.
320 // (decimate GPR, 2) - Pick every N'th element, starting with the first.
322 // (interleave A, B, ...) - Interleave the elements from each argument list.
324 // All of these operators work on ordered sets, not lists. That means
325 // duplicates are removed from sub-expressions.
327 // Set operators. The rest is defined in TargetSelectionDAG.td.
332 // RegisterTuples - Automatically generate super-registers by forming tuples of
333 // sub-registers. This is useful for modeling register sequence constraints
334 // with pseudo-registers that are larger than the architectural registers.
336 // The sub-register lists are zipped together:
338 // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
340 // Generates the same registers as:
342 // let SubRegIndices = [sube, subo] in {
343 // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
344 // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
347 // The generated pseudo-registers inherit super-classes and fields from their
348 // first sub-register. Most fields from the Register class are inferred, and
349 // the AsmName and Dwarf numbers are cleared.
351 // RegisterTuples instances can be used in other set operations to form
352 // register classes and so on. This is the only way of using the generated
355 // RegNames may be specified to supply asm names for the generated tuples.
356 // If used must have the same size as the list of produced registers.
357 class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
358 list<string> RegNames = []> {
359 // SubRegs - N lists of registers to be zipped up. Super-registers are
360 // synthesized from the first element of each SubRegs list, the second
361 // element and so on.
362 list<dag> SubRegs = Regs;
364 // SubRegIndices - N SubRegIndex instances. This provides the names of the
365 // sub-registers in the synthesized super-registers.
366 list<SubRegIndex> SubRegIndices = Indices;
368 // List of asm names for the generated tuple registers.
369 list<string> RegAsmNames = RegNames;
373 //===----------------------------------------------------------------------===//
374 // DwarfRegNum - This class provides a mapping of the llvm register enumeration
375 // to the register numbering used by gcc and gdb. These values are used by a
376 // debug information writer to describe where values may be located during
378 class DwarfRegNum<list<int> Numbers> {
379 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
380 // These values can be determined by locating the <target>.h file in the
381 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
382 // order of these names correspond to the enumeration used by gcc. A value of
383 // -1 indicates that the gcc number is undefined and -2 that register number
384 // is invalid for this mode/flavour.
385 list<int> DwarfNumbers = Numbers;
388 // DwarfRegAlias - This class declares that a given register uses the same dwarf
389 // numbers as another one. This is useful for making it clear that the two
390 // registers do have the same number. It also lets us build a mapping
391 // from dwarf register number to llvm register.
392 class DwarfRegAlias<Register reg> {
393 Register DwarfAlias = reg;
396 //===----------------------------------------------------------------------===//
397 // Pull in the common support for MCPredicate (portable scheduling predicates).
399 include "llvm/Target/TargetInstrPredicate.td"
401 //===----------------------------------------------------------------------===//
402 // Pull in the common support for scheduling
404 include "llvm/Target/TargetSchedule.td"
406 class Predicate; // Forward def
408 class InstructionEncoding {
409 // Size of encoded instruction.
412 // The "namespace" in which this instruction exists, on targets like ARM
413 // which multiple ISA namespaces exist.
414 string DecoderNamespace = "";
416 // List of predicates which will be turned into isel matching code.
417 list<Predicate> Predicates = [];
419 string DecoderMethod = "";
421 // Is the instruction decoder method able to completely determine if the
422 // given instruction is valid or not. If the TableGen definition of the
423 // instruction specifies bitpattern A??B where A and B are static bits, the
424 // hasCompleteDecoder flag says whether the decoder method fully handles the
425 // ?? space, i.e. if it is a final arbiter for the instruction validity.
426 // If not then the decoder attempts to continue decoding when the decoder
429 // This allows to handle situations where the encoding is not fully
430 // orthogonal. Example:
431 // * InstA with bitpattern 0b0000????,
432 // * InstB with bitpattern 0b000000?? but the associated decoder method
433 // DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
435 // The decoder tries to decode a bitpattern that matches both InstA and
436 // InstB bitpatterns first as InstB (because it is the most specific
437 // encoding). In the default case (hasCompleteDecoder = 1), when
438 // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
439 // hasCompleteDecoder = 0 in InstB, the decoder is informed that
440 // DecodeInstB() is not able to determine if all possible values of ?? are
441 // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
442 // decode the bitpattern as InstA too.
443 bit hasCompleteDecoder = 1;
446 //===----------------------------------------------------------------------===//
447 // Instruction set description - These classes correspond to the C++ classes in
448 // the Target/TargetInstrInfo.h file.
450 class Instruction : InstructionEncoding {
451 string Namespace = "";
453 dag OutOperandList; // An dag containing the MI def operand list.
454 dag InOperandList; // An dag containing the MI use operand list.
455 string AsmString = ""; // The .s format to print the instruction with.
457 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
458 // otherwise, uninitialized.
461 // The follow state will eventually be inferred automatically from the
462 // instruction pattern.
464 list<Register> Uses = []; // Default to using no non-operand registers
465 list<Register> Defs = []; // Default to modifying no non-operand registers
467 // Predicates - List of predicates which will be turned into isel matching
469 list<Predicate> Predicates = [];
471 // Size - Size of encoded instruction, or zero if the size cannot be determined
475 // Code size, for instruction selection.
476 // FIXME: What does this actually mean?
479 // Added complexity passed onto matching pattern.
480 int AddedComplexity = 0;
482 // These bits capture information about the high-level semantics of the
484 bit isReturn = 0; // Is this instruction a return instruction?
485 bit isBranch = 0; // Is this instruction a branch instruction?
486 bit isEHScopeReturn = 0; // Does this instruction end an EH scope?
487 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
488 bit isCompare = 0; // Is this instruction a comparison instruction?
489 bit isMoveImm = 0; // Is this instruction a move immediate instruction?
490 bit isMoveReg = 0; // Is this instruction a move register instruction?
491 bit isBitcast = 0; // Is this instruction a bitcast instruction?
492 bit isSelect = 0; // Is this instruction a select instruction?
493 bit isBarrier = 0; // Can control flow fall through this instruction?
494 bit isCall = 0; // Is this instruction a call instruction?
495 bit isAdd = 0; // Is this instruction an add instruction?
496 bit isTrap = 0; // Is this instruction a trap instruction?
497 bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
498 bit mayLoad = ?; // Is it possible for this inst to read memory?
499 bit mayStore = ?; // Is it possible for this inst to write memory?
500 bit mayRaiseFPException = 0; // Can this raise a floating-point exception?
501 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
502 bit isCommutable = 0; // Is this 3 operand instruction commutable?
503 bit isTerminator = 0; // Is this part of the terminator for a basic block?
504 bit isReMaterializable = 0; // Is this instruction re-materializable?
505 bit isPredicable = 0; // 1 means this instruction is predicable
506 // even if it does not have any operand
507 // tablegen can identify as a predicate
508 bit isUnpredicable = 0; // 1 means this instruction is not predicable
509 // even if it _does_ have a predicate operand
510 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
511 bit usesCustomInserter = 0; // Pseudo instr needing special help.
512 bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
513 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
514 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
515 bit isConvergent = 0; // Is this instruction convergent?
516 bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
517 bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
518 bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
519 bit isRegSequence = 0; // Is this instruction a kind of reg sequence?
520 // If so, make sure to override
521 // TargetInstrInfo::getRegSequenceLikeInputs.
522 bit isPseudo = 0; // Is this instruction a pseudo-instruction?
523 // If so, won't have encoding information for
524 // the [MC]CodeEmitter stuff.
525 bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg?
526 // If so, make sure to override
527 // TargetInstrInfo::getExtractSubregLikeInputs.
528 bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg?
529 // If so, make sure to override
530 // TargetInstrInfo::getInsertSubregLikeInputs.
531 bit variadicOpsAreDefs = 0; // Are variadic operands definitions?
533 // Does the instruction have side effects that are not captured by any
534 // operands of the instruction or other flags?
535 bit hasSideEffects = ?;
537 // Is this instruction a "real" instruction (with a distinct machine
538 // encoding), or is it a pseudo instruction used for codegen modeling
540 // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
541 // instructions can (and often do) still have encoding information
542 // associated with them. Once we've migrated all of them over to true
543 // pseudo-instructions that are lowered to real instructions prior to
544 // the printer/emitter, we can remove this attribute and just use isPseudo.
546 // The intended use is:
547 // isPseudo: Does not have encoding information and should be expanded,
548 // at the latest, during lowering to MCInst.
550 // isCodeGenOnly: Does have encoding information and can go through to the
551 // CodeEmitter unchanged, but duplicates a canonical instruction
552 // definition's encoding and should be ignored when constructing the
553 // assembler match tables.
554 bit isCodeGenOnly = 0;
556 // Is this instruction a pseudo instruction for use by the assembler parser.
557 bit isAsmParserOnly = 0;
559 // This instruction is not expected to be queried for scheduling latencies
560 // and therefore needs no scheduling information even for a complete
562 bit hasNoSchedulingInfo = 0;
564 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
566 // Scheduling information from TargetSchedule.td.
567 list<SchedReadWrite> SchedRW;
569 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
571 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
572 /// be encoded into the output machineinstr.
573 string DisableEncoding = "";
575 string PostEncoderMethod = "";
577 /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
578 bits<64> TSFlags = 0;
580 ///@name Assembler Parser Support
583 string AsmMatchConverter = "";
585 /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
586 /// two-operand matcher inst-alias for a three operand instruction.
587 /// For example, the arm instruction "add r3, r3, r5" can be written
588 /// as "add r3, r5". The constraint is of the same form as a tied-operand
589 /// constraint. For example, "$Rn = $Rd".
590 string TwoOperandAliasConstraint = "";
592 /// Assembler variant name to use for this instruction. If specified then
593 /// instruction will be presented only in MatchTable for this variant. If
594 /// not specified then assembler variants will be determined based on
596 string AsmVariantName = "";
600 /// UseNamedOperandTable - If set, the operand indices of this instruction
601 /// can be queried via the getNamedOperandIdx() function which is generated
603 bit UseNamedOperandTable = 0;
605 /// Should FastISel ignore this instruction. For certain ISAs, they have
606 /// instructions which map to the same ISD Opcode, value type operands and
607 /// instruction selection predicates. FastISel cannot handle such cases, but
608 /// SelectionDAG can.
609 bit FastISelShouldIgnore = 0;
612 /// Defines an additional encoding that disassembles to the given instruction
613 /// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
614 // to specify their size.
615 class AdditionalEncoding<Instruction I> : InstructionEncoding {
616 Instruction AliasOf = I;
619 /// PseudoInstExpansion - Expansion information for a pseudo-instruction.
620 /// Which instruction it expands to and how the operands map from the
622 class PseudoInstExpansion<dag Result> {
623 dag ResultInst = Result; // The instruction to generate.
627 /// Predicates - These are extra conditionals which are turned into instruction
628 /// selector matching code. Currently each predicate is just a string.
629 class Predicate<string cond> {
630 string CondString = cond;
632 /// AssemblerMatcherPredicate - If this feature can be used by the assembler
633 /// matcher, this is true. Targets should set this by inheriting their
634 /// feature from the AssemblerPredicate class in addition to Predicate.
635 bit AssemblerMatcherPredicate = 0;
637 /// AssemblerCondString - Name of the subtarget feature being tested used
638 /// as alternative condition string used for assembler matcher.
639 /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
640 /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
641 /// It can also list multiple features separated by ",".
642 /// e.g. "ModeThumb,FeatureThumb2" is translated to
643 /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
644 string AssemblerCondString = "";
646 /// PredicateName - User-level name to use for the predicate. Mainly for use
647 /// in diagnostics such as missing feature errors in the asm matcher.
648 string PredicateName = "";
650 /// Setting this to '1' indicates that the predicate must be recomputed on
651 /// every function change. Most predicates can leave this at '0'.
653 /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
654 bit RecomputePerFunction = 0;
657 /// NoHonorSignDependentRounding - This predicate is true if support for
658 /// sign-dependent-rounding is not enabled.
659 def NoHonorSignDependentRounding
660 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
662 class Requires<list<Predicate> preds> {
663 list<Predicate> Predicates = preds;
666 /// ops definition - This is just a simple marker used to identify the operand
667 /// list for an instruction. outs and ins are identical both syntactically and
668 /// semantically; they are used to define def operands and use operands to
669 /// improve readibility. This should be used like this:
670 /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
675 /// variable_ops definition - Mark this instruction as taking a variable number
680 /// PointerLikeRegClass - Values that are designed to have pointer width are
681 /// derived from this. TableGen treats the register class as having a symbolic
682 /// type that it doesn't know, and resolves the actual regclass to use by using
683 /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
684 class PointerLikeRegClass<int Kind> {
685 int RegClassKind = Kind;
689 /// ptr_rc definition - Mark this operand as being a pointer value whose
690 /// register class is resolved dynamically via a callback to TargetInstrInfo.
691 /// FIXME: We should probably change this to a class which contain a list of
692 /// flags. But currently we have but one flag.
693 def ptr_rc : PointerLikeRegClass<0>;
695 /// unknown definition - Mark this operand as being of unknown type, causing
696 /// it to be resolved by inference in the context it is used.
698 def unknown : unknown_class;
700 /// AsmOperandClass - Representation for the kinds of operands which the target
701 /// specific parser can create and the assembly matcher may need to distinguish.
703 /// Operand classes are used to define the order in which instructions are
704 /// matched, to ensure that the instruction which gets matched for any
705 /// particular list of operands is deterministic.
707 /// The target specific parser must be able to classify a parsed operand into a
708 /// unique class which does not partially overlap with any other classes. It can
709 /// match a subset of some other class, in which case the super class field
710 /// should be defined.
711 class AsmOperandClass {
712 /// The name to use for this class, which should be usable as an enum value.
715 /// The super classes of this operand.
716 list<AsmOperandClass> SuperClasses = [];
718 /// The name of the method on the target specific operand to call to test
719 /// whether the operand is an instance of this class. If not set, this will
720 /// default to "isFoo", where Foo is the AsmOperandClass name. The method
721 /// signature should be:
722 /// bool isFoo() const;
723 string PredicateMethod = ?;
725 /// The name of the method on the target specific operand to call to add the
726 /// target specific operand to an MCInst. If not set, this will default to
727 /// "addFooOperands", where Foo is the AsmOperandClass name. The method
728 /// signature should be:
729 /// void addFooOperands(MCInst &Inst, unsigned N) const;
730 string RenderMethod = ?;
732 /// The name of the method on the target specific operand to call to custom
733 /// handle the operand parsing. This is useful when the operands do not relate
734 /// to immediates or registers and are very instruction specific (as flags to
735 /// set in a processor register, coprocessor number, ...).
736 string ParserMethod = ?;
738 // The diagnostic type to present when referencing this operand in a
739 // match failure error message. By default, use a generic "invalid operand"
740 // diagnostic. The target AsmParser maps these codes to text.
741 string DiagnosticType = "";
743 /// A diagnostic message to emit when an invalid value is provided for this
745 string DiagnosticString = "";
747 /// Set to 1 if this operand is optional and not always required. Typically,
748 /// the AsmParser will emit an error when it finishes parsing an
749 /// instruction if it hasn't matched all the operands yet. However, this
750 /// error will be suppressed if all of the remaining unmatched operands are
751 /// marked as IsOptional.
753 /// Optional arguments must be at the end of the operand list.
756 /// The name of the method on the target specific asm parser that returns the
757 /// default operand for this optional operand. This method is only used if
758 /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
759 /// where Foo is the AsmOperandClass name. The method signature should be:
760 /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
761 string DefaultMethod = ?;
764 def ImmAsmOperand : AsmOperandClass {
768 /// Operand Types - These provide the built-in operand types that may be used
769 /// by a target. Targets can optionally provide their own operand types as
770 /// needed, though this should not be needed for RISC targets.
771 class Operand<ValueType ty> : DAGOperand {
773 string PrintMethod = "printOperand";
774 string EncoderMethod = "";
775 bit hasCompleteDecoder = 1;
776 string OperandType = "OPERAND_UNKNOWN";
777 dag MIOperandInfo = (ops);
779 // MCOperandPredicate - Optionally, a code fragment operating on
780 // const MCOperand &MCOp, and returning a bool, to indicate if
781 // the value of MCOp is valid for the specific subclass of Operand
782 code MCOperandPredicate;
784 // ParserMatchClass - The "match class" that operands of this type fit
785 // in. Match classes are used to define the order in which instructions are
786 // match, to ensure that which instructions gets matched is deterministic.
788 // The target specific parser must be able to classify an parsed operand into
789 // a unique class, which does not partially overlap with any other classes. It
790 // can match a subset of some other class, in which case the AsmOperandClass
791 // should declare the other operand as one of its super classes.
792 AsmOperandClass ParserMatchClass = ImmAsmOperand;
795 class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
797 // RegClass - The register class of the operand.
798 RegisterClass RegClass = regclass;
799 // PrintMethod - The target method to call to print register operands of
800 // this type. The method normally will just use an alt-name index to look
801 // up the name to print. Default to the generic printOperand().
802 string PrintMethod = pm;
804 // EncoderMethod - The target method name to call to encode this register
806 string EncoderMethod = "";
808 // ParserMatchClass - The "match class" that operands of this type fit
809 // in. Match classes are used to define the order in which instructions are
810 // match, to ensure that which instructions gets matched is deterministic.
812 // The target specific parser must be able to classify an parsed operand into
813 // a unique class, which does not partially overlap with any other classes. It
814 // can match a subset of some other class, in which case the AsmOperandClass
815 // should declare the other operand as one of its super classes.
816 AsmOperandClass ParserMatchClass;
818 string OperandType = "OPERAND_REGISTER";
820 // When referenced in the result of a CodeGen pattern, GlobalISel will
821 // normally copy the matched operand to the result. When this is set, it will
822 // emit a special copy that will replace zero-immediates with the specified
824 Register GIZeroRegister = ?;
827 let OperandType = "OPERAND_IMMEDIATE" in {
828 def i1imm : Operand<i1>;
829 def i8imm : Operand<i8>;
830 def i16imm : Operand<i16>;
831 def i32imm : Operand<i32>;
832 def i64imm : Operand<i64>;
834 def f32imm : Operand<f32>;
835 def f64imm : Operand<f64>;
838 // Register operands for generic instructions don't have an MVT, but do have
839 // constraints linking the operands (e.g. all operands of a G_ADD must
840 // have the same LLT).
841 class TypedOperand<string Ty> : Operand<untyped> {
842 let OperandType = Ty;
847 def type0 : TypedOperand<"OPERAND_GENERIC_0">;
848 def type1 : TypedOperand<"OPERAND_GENERIC_1">;
849 def type2 : TypedOperand<"OPERAND_GENERIC_2">;
850 def type3 : TypedOperand<"OPERAND_GENERIC_3">;
851 def type4 : TypedOperand<"OPERAND_GENERIC_4">;
852 def type5 : TypedOperand<"OPERAND_GENERIC_5">;
854 let IsPointer = 1 in {
855 def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
856 def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
857 def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
858 def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
859 def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
860 def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
863 // untyped_imm is for operands where isImm() will be true. It currently has no
864 // special behaviour and is only used for clarity.
865 def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
869 /// zero_reg definition - Special node to stand for the zero register.
873 /// All operands which the MC layer classifies as predicates should inherit from
874 /// this class in some manner. This is already handled for the most commonly
875 /// used PredicateOperand, but may be useful in other circumstances.
878 /// OperandWithDefaultOps - This Operand class can be used as the parent class
879 /// for an Operand that needs to be initialized with a default value if
880 /// no value is supplied in a pattern. This class can be used to simplify the
881 /// pattern definitions for instructions that have target specific flags
882 /// encoded as immediate operands.
883 class OperandWithDefaultOps<ValueType ty, dag defaultops>
885 dag DefaultOps = defaultops;
888 /// PredicateOperand - This can be used to define a predicate operand for an
889 /// instruction. OpTypes specifies the MIOperandInfo for the operand, and
890 /// AlwaysVal specifies the value of this predicate when set to "always
892 class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
893 : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
894 let MIOperandInfo = OpTypes;
897 /// OptionalDefOperand - This is used to define a optional definition operand
898 /// for an instruction. DefaultOps is the register the operand represents if
899 /// none is supplied, e.g. zero_reg.
900 class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
901 : OperandWithDefaultOps<ty, defaultops> {
902 let MIOperandInfo = OpTypes;
906 // InstrInfo - This class should only be instantiated once to provide parameters
907 // which are global to the target machine.
910 // Target can specify its instructions in either big or little-endian formats.
911 // For instance, while both Sparc and PowerPC are big-endian platforms, the
912 // Sparc manual specifies its instructions in the format [31..0] (big), while
913 // PowerPC specifies them using the format [0..31] (little).
914 bit isLittleEndianEncoding = 0;
916 // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
917 // by default, and TableGen will infer their value from the instruction
918 // pattern when possible.
920 // Normally, TableGen will issue an error it it can't infer the value of a
921 // property that hasn't been set explicitly. When guessInstructionProperties
922 // is set, it will guess a safe value instead.
924 // This option is a temporary migration help. It will go away.
925 bit guessInstructionProperties = 1;
927 // TableGen's instruction encoder generator has support for matching operands
928 // to bit-field variables both by name and by position. While matching by
929 // name is preferred, this is currently not possible for complex operands,
930 // and some targets still reply on the positional encoding rules. When
931 // generating a decoder for such targets, the positional encoding rules must
932 // be used by the decoder generator as well.
934 // This option is temporary; it will go away once the TableGen decoder
935 // generator has better support for complex operands and targets have
936 // migrated away from using positionally encoded operands.
937 bit decodePositionallyEncodedOperands = 0;
939 // When set, this indicates that there will be no overlap between those
940 // operands that are matched by ordering (positional operands) and those
943 // This option is temporary; it will go away once the TableGen decoder
944 // generator has better support for complex operands and targets have
945 // migrated away from using positionally encoded operands.
946 bit noNamedPositionallyEncodedOperands = 0;
949 // Standard Pseudo Instructions.
950 // This list must match TargetOpcodes.def.
951 // Only these instructions are allowed in the TargetOpcode namespace.
952 // Ensure mayLoad and mayStore have a default value, so as not to break
953 // targets that set guessInstructionProperties=0. Any local definition of
954 // mayLoad/mayStore takes precedence over these default values.
955 class StandardPseudoInstruction : Instruction {
958 let isCodeGenOnly = 1;
960 let hasNoSchedulingInfo = 1;
961 let Namespace = "TargetOpcode";
963 def PHI : StandardPseudoInstruction {
964 let OutOperandList = (outs unknown:$dst);
965 let InOperandList = (ins variable_ops);
966 let AsmString = "PHINODE";
967 let hasSideEffects = 0;
969 def INLINEASM : StandardPseudoInstruction {
970 let OutOperandList = (outs);
971 let InOperandList = (ins variable_ops);
973 let hasSideEffects = 0; // Note side effect is encoded in an operand.
975 def INLINEASM_BR : StandardPseudoInstruction {
976 let OutOperandList = (outs);
977 let InOperandList = (ins variable_ops);
979 let hasSideEffects = 0; // Note side effect is encoded in an operand.
980 let isTerminator = 1;
982 let isIndirectBranch = 1;
984 def CFI_INSTRUCTION : StandardPseudoInstruction {
985 let OutOperandList = (outs);
986 let InOperandList = (ins i32imm:$id);
989 let hasSideEffects = 0;
990 let isNotDuplicable = 1;
992 def EH_LABEL : StandardPseudoInstruction {
993 let OutOperandList = (outs);
994 let InOperandList = (ins i32imm:$id);
997 let hasSideEffects = 0;
998 let isNotDuplicable = 1;
1000 def GC_LABEL : StandardPseudoInstruction {
1001 let OutOperandList = (outs);
1002 let InOperandList = (ins i32imm:$id);
1005 let hasSideEffects = 0;
1006 let isNotDuplicable = 1;
1008 def ANNOTATION_LABEL : StandardPseudoInstruction {
1009 let OutOperandList = (outs);
1010 let InOperandList = (ins i32imm:$id);
1013 let hasSideEffects = 0;
1014 let isNotDuplicable = 1;
1016 def KILL : StandardPseudoInstruction {
1017 let OutOperandList = (outs);
1018 let InOperandList = (ins variable_ops);
1020 let hasSideEffects = 0;
1022 def EXTRACT_SUBREG : StandardPseudoInstruction {
1023 let OutOperandList = (outs unknown:$dst);
1024 let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1026 let hasSideEffects = 0;
1028 def INSERT_SUBREG : StandardPseudoInstruction {
1029 let OutOperandList = (outs unknown:$dst);
1030 let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1032 let hasSideEffects = 0;
1033 let Constraints = "$supersrc = $dst";
1035 def IMPLICIT_DEF : StandardPseudoInstruction {
1036 let OutOperandList = (outs unknown:$dst);
1037 let InOperandList = (ins);
1039 let hasSideEffects = 0;
1040 let isReMaterializable = 1;
1041 let isAsCheapAsAMove = 1;
1043 def SUBREG_TO_REG : StandardPseudoInstruction {
1044 let OutOperandList = (outs unknown:$dst);
1045 let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1047 let hasSideEffects = 0;
1049 def COPY_TO_REGCLASS : StandardPseudoInstruction {
1050 let OutOperandList = (outs unknown:$dst);
1051 let InOperandList = (ins unknown:$src, i32imm:$regclass);
1053 let hasSideEffects = 0;
1054 let isAsCheapAsAMove = 1;
1056 def DBG_VALUE : StandardPseudoInstruction {
1057 let OutOperandList = (outs);
1058 let InOperandList = (ins variable_ops);
1059 let AsmString = "DBG_VALUE";
1060 let hasSideEffects = 0;
1062 def DBG_LABEL : StandardPseudoInstruction {
1063 let OutOperandList = (outs);
1064 let InOperandList = (ins unknown:$label);
1065 let AsmString = "DBG_LABEL";
1066 let hasSideEffects = 0;
1068 def REG_SEQUENCE : StandardPseudoInstruction {
1069 let OutOperandList = (outs unknown:$dst);
1070 let InOperandList = (ins unknown:$supersrc, variable_ops);
1072 let hasSideEffects = 0;
1073 let isAsCheapAsAMove = 1;
1075 def COPY : StandardPseudoInstruction {
1076 let OutOperandList = (outs unknown:$dst);
1077 let InOperandList = (ins unknown:$src);
1079 let hasSideEffects = 0;
1080 let isAsCheapAsAMove = 1;
1081 let hasNoSchedulingInfo = 0;
1083 def BUNDLE : StandardPseudoInstruction {
1084 let OutOperandList = (outs);
1085 let InOperandList = (ins variable_ops);
1086 let AsmString = "BUNDLE";
1087 let hasSideEffects = 0;
1089 def LIFETIME_START : StandardPseudoInstruction {
1090 let OutOperandList = (outs);
1091 let InOperandList = (ins i32imm:$id);
1092 let AsmString = "LIFETIME_START";
1093 let hasSideEffects = 0;
1095 def LIFETIME_END : StandardPseudoInstruction {
1096 let OutOperandList = (outs);
1097 let InOperandList = (ins i32imm:$id);
1098 let AsmString = "LIFETIME_END";
1099 let hasSideEffects = 0;
1101 def STACKMAP : StandardPseudoInstruction {
1102 let OutOperandList = (outs);
1103 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1104 let hasSideEffects = 1;
1107 let usesCustomInserter = 1;
1109 def PATCHPOINT : StandardPseudoInstruction {
1110 let OutOperandList = (outs unknown:$dst);
1111 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1112 i32imm:$nargs, i32imm:$cc, variable_ops);
1113 let hasSideEffects = 1;
1116 let usesCustomInserter = 1;
1118 def STATEPOINT : StandardPseudoInstruction {
1119 let OutOperandList = (outs);
1120 let InOperandList = (ins variable_ops);
1121 let usesCustomInserter = 1;
1124 let hasSideEffects = 1;
1127 def LOAD_STACK_GUARD : StandardPseudoInstruction {
1128 let OutOperandList = (outs ptr_rc:$dst);
1129 let InOperandList = (ins);
1131 bit isReMaterializable = 1;
1132 let hasSideEffects = 0;
1135 def LOCAL_ESCAPE : StandardPseudoInstruction {
1136 // This instruction is really just a label. It has to be part of the chain so
1137 // that it doesn't get dropped from the DAG, but it produces nothing and has
1139 let OutOperandList = (outs);
1140 let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1141 let hasSideEffects = 0;
1144 def FAULTING_OP : StandardPseudoInstruction {
1145 let OutOperandList = (outs unknown:$dst);
1146 let InOperandList = (ins variable_ops);
1147 let usesCustomInserter = 1;
1148 let hasSideEffects = 1;
1151 let isTerminator = 1;
1154 def PATCHABLE_OP : StandardPseudoInstruction {
1155 let OutOperandList = (outs);
1156 let InOperandList = (ins variable_ops);
1157 let usesCustomInserter = 1;
1160 let hasSideEffects = 1;
1162 def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1163 let OutOperandList = (outs);
1164 let InOperandList = (ins);
1165 let AsmString = "# XRay Function Enter.";
1166 let usesCustomInserter = 1;
1167 let hasSideEffects = 0;
1169 def PATCHABLE_RET : StandardPseudoInstruction {
1170 let OutOperandList = (outs);
1171 let InOperandList = (ins variable_ops);
1172 let AsmString = "# XRay Function Patchable RET.";
1173 let usesCustomInserter = 1;
1174 let hasSideEffects = 1;
1175 let isTerminator = 1;
1178 def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1179 let OutOperandList = (outs);
1180 let InOperandList = (ins);
1181 let AsmString = "# XRay Function Exit.";
1182 let usesCustomInserter = 1;
1183 let hasSideEffects = 0; // FIXME: is this correct?
1184 let isReturn = 0; // Original return instruction will follow
1186 def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1187 let OutOperandList = (outs);
1188 let InOperandList = (ins variable_ops);
1189 let AsmString = "# XRay Tail Call Exit.";
1190 let usesCustomInserter = 1;
1191 let hasSideEffects = 1;
1194 def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1195 let OutOperandList = (outs);
1196 let InOperandList = (ins ptr_rc:$event, i8imm:$size);
1197 let AsmString = "# XRay Custom Event Log.";
1198 let usesCustomInserter = 1;
1202 let hasSideEffects = 1;
1204 def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1205 let OutOperandList = (outs);
1206 let InOperandList = (ins i16imm:$type, ptr_rc:$event, i32imm:$size);
1207 let AsmString = "# XRay Typed Event Log.";
1208 let usesCustomInserter = 1;
1212 let hasSideEffects = 1;
1214 def FENTRY_CALL : StandardPseudoInstruction {
1215 let OutOperandList = (outs);
1216 let InOperandList = (ins);
1217 let AsmString = "# FEntry call";
1218 let usesCustomInserter = 1;
1221 let hasSideEffects = 1;
1223 def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1224 let OutOperandList = (outs);
1225 let InOperandList = (ins variable_ops);
1227 let hasSideEffects = 1;
1230 // Generic opcodes used in GlobalISel.
1231 include "llvm/Target/GenericOpcodes.td"
1233 //===----------------------------------------------------------------------===//
1234 // AsmParser - This class can be implemented by targets that wish to implement
1237 // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1238 // syntax on X86 for example).
1241 // AsmParserClassName - This specifies the suffix to use for the asmparser
1242 // class. Generated AsmParser classes are always prefixed with the target
1244 string AsmParserClassName = "AsmParser";
1246 // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1247 // function of the AsmParser class to call on every matched instruction.
1248 // This can be used to perform target specific instruction post-processing.
1249 string AsmParserInstCleanup = "";
1251 // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1252 // written register name matcher
1253 bit ShouldEmitMatchRegisterName = 1;
1255 // Set to true if the target needs a generated 'alternative register name'
1258 // This generates a function which can be used to lookup registers from
1259 // their aliases. This function will fail when called on targets where
1260 // several registers share the same alias (i.e. not a 1:1 mapping).
1261 bit ShouldEmitMatchRegisterAltName = 0;
1263 // Set to true if MatchRegisterName and MatchRegisterAltName functions
1264 // should be generated even if there are duplicate register names. The
1265 // target is responsible for coercing aliased registers as necessary
1266 // (e.g. in validateTargetOperandClass), and there are no guarantees about
1267 // which numeric register identifier will be returned in the case of
1268 // multiple matches.
1269 bit AllowDuplicateRegisterNames = 0;
1271 // HasMnemonicFirst - Set to false if target instructions don't always
1272 // start with a mnemonic as the first token.
1273 bit HasMnemonicFirst = 1;
1275 // ReportMultipleNearMisses -
1276 // When 0, the assembly matcher reports an error for one encoding or operand
1277 // that did not match the parsed instruction.
1278 // When 1, the assmebly matcher returns a list of encodings that were close
1279 // to matching the parsed instruction, so to allow more detailed error
1281 bit ReportMultipleNearMisses = 0;
1283 def DefaultAsmParser : AsmParser;
1285 //===----------------------------------------------------------------------===//
1286 // AsmParserVariant - Subtargets can have multiple different assembly parsers
1287 // (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1288 // implemented by targets to describe such variants.
1290 class AsmParserVariant {
1291 // Variant - AsmParsers can be of multiple different variants. Variants are
1292 // used to support targets that need to parser multiple formats for the
1293 // assembly language.
1296 // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1299 // CommentDelimiter - If given, the delimiter string used to recognize
1300 // comments which are hard coded in the .td assembler strings for individual
1302 string CommentDelimiter = "";
1304 // RegisterPrefix - If given, the token prefix which indicates a register
1305 // token. This is used by the matcher to automatically recognize hard coded
1306 // register tokens as constrained registers, instead of tokens, for the
1307 // purposes of matching.
1308 string RegisterPrefix = "";
1310 // TokenizingCharacters - Characters that are standalone tokens
1311 string TokenizingCharacters = "[]*!";
1313 // SeparatorCharacters - Characters that are not tokens
1314 string SeparatorCharacters = " \t,";
1316 // BreakCharacters - Characters that start new identifiers
1317 string BreakCharacters = "";
1319 def DefaultAsmParserVariant : AsmParserVariant;
1321 /// AssemblerPredicate - This is a Predicate that can be used when the assembler
1322 /// matches instructions and aliases.
1323 class AssemblerPredicate<string cond, string name = ""> {
1324 bit AssemblerMatcherPredicate = 1;
1325 string AssemblerCondString = cond;
1326 string PredicateName = name;
1329 /// TokenAlias - This class allows targets to define assembler token
1330 /// operand aliases. That is, a token literal operand which is equivalent
1331 /// to another, canonical, token literal. For example, ARM allows:
1332 /// vmov.u32 s4, #0 -> vmov.i32, #0
1333 /// 'u32' is a more specific designator for the 32-bit integer type specifier
1334 /// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1335 /// def : TokenAlias<".u32", ".i32">;
1337 /// This works by marking the match class of 'From' as a subclass of the
1338 /// match class of 'To'.
1339 class TokenAlias<string From, string To> {
1340 string FromToken = From;
1341 string ToToken = To;
1344 /// MnemonicAlias - This class allows targets to define assembler mnemonic
1345 /// aliases. This should be used when all forms of one mnemonic are accepted
1346 /// with a different mnemonic. For example, X86 allows:
1347 /// sal %al, 1 -> shl %al, 1
1348 /// sal %ax, %cl -> shl %ax, %cl
1349 /// sal %eax, %cl -> shl %eax, %cl
1350 /// etc. Though "sal" is accepted with many forms, all of them are directly
1351 /// translated to a shl, so it can be handled with (in the case of X86, it
1352 /// actually has one for each suffix as well):
1353 /// def : MnemonicAlias<"sal", "shl">;
1355 /// Mnemonic aliases are mapped before any other translation in the match phase,
1356 /// and do allow Requires predicates, e.g.:
1358 /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1359 /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1361 /// Mnemonic aliases can also be constrained to specific variants, e.g.:
1363 /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1365 /// If no variant (e.g., "att" or "intel") is specified then the alias is
1366 /// applied unconditionally.
1367 class MnemonicAlias<string From, string To, string VariantName = ""> {
1368 string FromMnemonic = From;
1369 string ToMnemonic = To;
1370 string AsmVariantName = VariantName;
1372 // Predicates - Predicates that must be true for this remapping to happen.
1373 list<Predicate> Predicates = [];
1376 /// InstAlias - This defines an alternate assembly syntax that is allowed to
1377 /// match an instruction that has a different (more canonical) assembly
1379 class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1380 string AsmString = Asm; // The .s format to match the instruction with.
1381 dag ResultInst = Result; // The MCInst to generate.
1383 // This determines which order the InstPrinter detects aliases for
1384 // printing. A larger value makes the alias more likely to be
1385 // emitted. The Instruction's own definition is notionally 0.5, so 0
1386 // disables printing and 1 enables it if there are no conflicting aliases.
1387 int EmitPriority = Emit;
1389 // Predicates - Predicates that must be true for this to match.
1390 list<Predicate> Predicates = [];
1392 // If the instruction specified in Result has defined an AsmMatchConverter
1393 // then setting this to 1 will cause the alias to use the AsmMatchConverter
1394 // function when converting the OperandVector into an MCInst instead of the
1395 // function that is generated by the dag Result.
1396 // Setting this to 0 will cause the alias to ignore the Result instruction's
1397 // defined AsmMatchConverter and instead use the function generated by the
1399 bit UseInstAsmMatchConverter = 1;
1401 // Assembler variant name to use for this alias. If not specified then
1402 // assembler variants will be determined based on AsmString
1403 string AsmVariantName = VariantName;
1406 //===----------------------------------------------------------------------===//
1407 // AsmWriter - This class can be implemented by targets that need to customize
1408 // the format of the .s file writer.
1410 // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1411 // on X86 for example).
1414 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1415 // class. Generated AsmWriter classes are always prefixed with the target
1417 string AsmWriterClassName = "InstPrinter";
1419 // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1420 // the various print methods.
1421 // FIXME: Remove after all ports are updated.
1422 int PassSubtarget = 0;
1424 // Variant - AsmWriters can be of multiple different variants. Variants are
1425 // used to support targets that need to emit assembly code in ways that are
1426 // mostly the same for different targets, but have minor differences in
1427 // syntax. If the asmstring contains {|} characters in them, this integer
1428 // will specify which alternative to use. For example "{x|y|z}" with Variant
1429 // == 1, will expand to "y".
1432 def DefaultAsmWriter : AsmWriter;
1435 //===----------------------------------------------------------------------===//
1436 // Target - This class contains the "global" target information
1439 // InstructionSet - Instruction set description for this target.
1440 InstrInfo InstructionSet;
1442 // AssemblyParsers - The AsmParser instances available for this target.
1443 list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1445 /// AssemblyParserVariants - The AsmParserVariant instances available for
1447 list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1449 // AssemblyWriters - The AsmWriter instances available for this target.
1450 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1452 // AllowRegisterRenaming - Controls whether this target allows
1453 // post-register-allocation renaming of registers. This is done by
1454 // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1455 // for all opcodes if this flag is set to 0.
1456 int AllowRegisterRenaming = 0;
1459 //===----------------------------------------------------------------------===//
1460 // SubtargetFeature - A characteristic of the chip set.
1462 class SubtargetFeature<string n, string a, string v, string d,
1463 list<SubtargetFeature> i = []> {
1464 // Name - Feature name. Used by command line (-mattr=) to determine the
1465 // appropriate target chip.
1469 // Attribute - Attribute to be set by feature.
1471 string Attribute = a;
1473 // Value - Value the attribute to be set to by feature.
1477 // Desc - Feature description. Used by command line (-mattr=) to display help
1482 // Implies - Features that this feature implies are present. If one of those
1483 // features isn't set, then this one shouldn't be set either.
1485 list<SubtargetFeature> Implies = i;
1488 /// Specifies a Subtarget feature that this instruction is deprecated on.
1489 class Deprecated<SubtargetFeature dep> {
1490 SubtargetFeature DeprecatedFeatureMask = dep;
1493 /// A custom predicate used to determine if an instruction is
1494 /// deprecated or not.
1495 class ComplexDeprecationPredicate<string dep> {
1496 string ComplexDeprecationPredicate = dep;
1499 //===----------------------------------------------------------------------===//
1500 // Processor chip sets - These values represent each of the chip sets supported
1501 // by the scheduler. Each Processor definition requires corresponding
1502 // instruction itineraries.
1504 class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1505 // Name - Chip set name. Used by command line (-mcpu=) to determine the
1506 // appropriate target chip.
1510 // SchedModel - The machine model for scheduling and instruction cost.
1512 SchedMachineModel SchedModel = NoSchedModel;
1514 // ProcItin - The scheduling information for the target processor.
1516 ProcessorItineraries ProcItin = pi;
1518 // Features - list of
1519 list<SubtargetFeature> Features = f;
1522 // ProcessorModel allows subtargets to specify the more general
1523 // SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1524 // gradually move to this newer form.
1526 // Although this class always passes NoItineraries to the Processor
1527 // class, the SchedMachineModel may still define valid Itineraries.
1528 class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1529 : Processor<n, NoItineraries, f> {
1533 //===----------------------------------------------------------------------===//
1534 // InstrMapping - This class is used to create mapping tables to relate
1535 // instructions with each other based on the values specified in RowFields,
1536 // ColFields, KeyCol and ValueCols.
1538 class InstrMapping {
1539 // FilterClass - Used to limit search space only to the instructions that
1540 // define the relationship modeled by this InstrMapping record.
1543 // RowFields - List of fields/attributes that should be same for all the
1544 // instructions in a row of the relation table. Think of this as a set of
1545 // properties shared by all the instructions related by this relationship
1546 // model and is used to categorize instructions into subgroups. For instance,
1547 // if we want to define a relation that maps 'Add' instruction to its
1548 // predicated forms, we can define RowFields like this:
1550 // let RowFields = BaseOp
1551 // All add instruction predicated/non-predicated will have to set their BaseOp
1552 // to the same value.
1554 // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1555 // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1556 // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
1557 list<string> RowFields = [];
1559 // List of fields/attributes that are same for all the instructions
1560 // in a column of the relation table.
1561 // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1562 // based on the 'predSense' values. All the instruction in a specific
1563 // column have the same value and it is fixed for the column according
1564 // to the values set in 'ValueCols'.
1565 list<string> ColFields = [];
1567 // Values for the fields/attributes listed in 'ColFields'.
1568 // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1569 // that models this relation) should be non-predicated.
1570 // In the example above, 'Add' is the key instruction.
1571 list<string> KeyCol = [];
1573 // List of values for the fields/attributes listed in 'ColFields', one for
1574 // each column in the relation table.
1576 // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1577 // table. First column requires all the instructions to have predSense
1578 // set to 'true' and second column requires it to be 'false'.
1579 list<list<string> > ValueCols = [];
1582 //===----------------------------------------------------------------------===//
1583 // Pull in the common support for calling conventions.
1585 include "llvm/Target/TargetCallingConv.td"
1587 //===----------------------------------------------------------------------===//
1588 // Pull in the common support for DAG isel generation.
1590 include "llvm/Target/TargetSelectionDAG.td"
1592 //===----------------------------------------------------------------------===//
1593 // Pull in the common support for Global ISel register bank info generation.
1595 include "llvm/Target/GlobalISel/RegisterBank.td"
1597 //===----------------------------------------------------------------------===//
1598 // Pull in the common support for DAG isel generation.
1600 include "llvm/Target/GlobalISel/Target.td"
1602 //===----------------------------------------------------------------------===//
1603 // Pull in the common support for the Global ISel DAG-based selector generation.
1605 include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1607 //===----------------------------------------------------------------------===//
1608 // Pull in the common support for Pfm Counters generation.
1610 include "llvm/Target/TargetPfmCounters.td"