[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / Target / TargetMachine.h
blobcdf9f8bfd5eaae6fb874473276c9c3d39863f6a8
1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/Pass.h"
20 #include "llvm/Support/CodeGen.h"
21 #include "llvm/Target/TargetOptions.h"
22 #include <string>
24 namespace llvm {
26 class Function;
27 class GlobalValue;
28 class MachineModuleInfo;
29 class Mangler;
30 class MCAsmInfo;
31 class MCContext;
32 class MCInstrInfo;
33 class MCRegisterInfo;
34 class MCSubtargetInfo;
35 class MCSymbol;
36 class raw_pwrite_stream;
37 class PassManagerBuilder;
38 struct PerFunctionMIParsingState;
39 class SMDiagnostic;
40 class SMRange;
41 class Target;
42 class TargetIntrinsicInfo;
43 class TargetIRAnalysis;
44 class TargetTransformInfo;
45 class TargetLoweringObjectFile;
46 class TargetPassConfig;
47 class TargetSubtargetInfo;
49 // The old pass manager infrastructure is hidden in a legacy namespace now.
50 namespace legacy {
51 class PassManagerBase;
53 using legacy::PassManagerBase;
55 namespace yaml {
56 struct MachineFunctionInfo;
59 //===----------------------------------------------------------------------===//
60 ///
61 /// Primary interface to the complete machine description for the target
62 /// machine. All target-specific information should be accessible through this
63 /// interface.
64 ///
65 class TargetMachine {
66 protected: // Can only create subclasses.
67 TargetMachine(const Target &T, StringRef DataLayoutString,
68 const Triple &TargetTriple, StringRef CPU, StringRef FS,
69 const TargetOptions &Options);
71 /// The Target that this machine was created for.
72 const Target &TheTarget;
74 /// DataLayout for the target: keep ABI type size and alignment.
75 ///
76 /// The DataLayout is created based on the string representation provided
77 /// during construction. It is kept here only to avoid reparsing the string
78 /// but should not really be used during compilation, because it has an
79 /// internal cache that is context specific.
80 const DataLayout DL;
82 /// Triple string, CPU name, and target feature strings the TargetMachine
83 /// instance is created with.
84 Triple TargetTriple;
85 std::string TargetCPU;
86 std::string TargetFS;
88 Reloc::Model RM = Reloc::Static;
89 CodeModel::Model CMModel = CodeModel::Small;
90 CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
92 /// Contains target specific asm information.
93 std::unique_ptr<const MCAsmInfo> AsmInfo;
94 std::unique_ptr<const MCRegisterInfo> MRI;
95 std::unique_ptr<const MCInstrInfo> MII;
96 std::unique_ptr<const MCSubtargetInfo> STI;
98 unsigned RequireStructuredCFG : 1;
99 unsigned O0WantsFastISel : 1;
101 public:
102 const TargetOptions DefaultOptions;
103 mutable TargetOptions Options;
105 TargetMachine(const TargetMachine &) = delete;
106 void operator=(const TargetMachine &) = delete;
107 virtual ~TargetMachine();
109 const Target &getTarget() const { return TheTarget; }
111 const Triple &getTargetTriple() const { return TargetTriple; }
112 StringRef getTargetCPU() const { return TargetCPU; }
113 StringRef getTargetFeatureString() const { return TargetFS; }
115 /// Virtual method implemented by subclasses that returns a reference to that
116 /// target's TargetSubtargetInfo-derived member variable.
117 virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
118 return nullptr;
120 virtual TargetLoweringObjectFile *getObjFileLowering() const {
121 return nullptr;
124 /// Allocate and return a default initialized instance of the YAML
125 /// representation for the MachineFunctionInfo.
126 virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
127 return nullptr;
130 /// Allocate and initialize an instance of the YAML representation of the
131 /// MachineFunctionInfo.
132 virtual yaml::MachineFunctionInfo *
133 convertFuncInfoToYAML(const MachineFunction &MF) const {
134 return nullptr;
137 /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
138 virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
139 PerFunctionMIParsingState &PFS,
140 SMDiagnostic &Error,
141 SMRange &SourceRange) const {
142 return false;
145 /// This method returns a pointer to the specified type of
146 /// TargetSubtargetInfo. In debug builds, it verifies that the object being
147 /// returned is of the correct type.
148 template <typename STC> const STC &getSubtarget(const Function &F) const {
149 return *static_cast<const STC*>(getSubtargetImpl(F));
152 /// Create a DataLayout.
153 const DataLayout createDataLayout() const { return DL; }
155 /// Test if a DataLayout if compatible with the CodeGen for this target.
157 /// The LLVM Module owns a DataLayout that is used for the target independent
158 /// optimizations and code generation. This hook provides a target specific
159 /// check on the validity of this DataLayout.
160 bool isCompatibleDataLayout(const DataLayout &Candidate) const {
161 return DL == Candidate;
164 /// Get the pointer size for this target.
166 /// This is the only time the DataLayout in the TargetMachine is used.
167 unsigned getPointerSize(unsigned AS) const {
168 return DL.getPointerSize(AS);
171 unsigned getPointerSizeInBits(unsigned AS) const {
172 return DL.getPointerSizeInBits(AS);
175 unsigned getProgramPointerSize() const {
176 return DL.getPointerSize(DL.getProgramAddressSpace());
179 unsigned getAllocaPointerSize() const {
180 return DL.getPointerSize(DL.getAllocaAddrSpace());
183 /// Reset the target options based on the function's attributes.
184 // FIXME: Remove TargetOptions that affect per-function code generation
185 // from TargetMachine.
186 void resetTargetOptions(const Function &F) const;
188 /// Return target specific asm information.
189 const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
191 const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
192 const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
193 const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
195 /// If intrinsic information is available, return it. If not, return null.
196 virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
197 return nullptr;
200 bool requiresStructuredCFG() const { return RequireStructuredCFG; }
201 void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
203 /// Returns the code generation relocation model. The choices are static, PIC,
204 /// and dynamic-no-pic, and target default.
205 Reloc::Model getRelocationModel() const;
207 /// Returns the code model. The choices are small, kernel, medium, large, and
208 /// target default.
209 CodeModel::Model getCodeModel() const;
211 bool isPositionIndependent() const;
213 bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
215 /// Returns true if this target uses emulated TLS.
216 bool useEmulatedTLS() const;
218 /// Returns the TLS model which should be used for the given global variable.
219 TLSModel::Model getTLSModel(const GlobalValue *GV) const;
221 /// Returns the optimization level: None, Less, Default, or Aggressive.
222 CodeGenOpt::Level getOptLevel() const;
224 /// Overrides the optimization level.
225 void setOptLevel(CodeGenOpt::Level Level);
227 void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
228 bool getO0WantsFastISel() { return O0WantsFastISel; }
229 void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
230 void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
231 void setGlobalISelAbort(GlobalISelAbortMode Mode) {
232 Options.GlobalISelAbort = Mode;
234 void setMachineOutliner(bool Enable) {
235 Options.EnableMachineOutliner = Enable;
237 void setSupportsDefaultOutlining(bool Enable) {
238 Options.SupportsDefaultOutlining = Enable;
241 bool shouldPrintMachineCode() const { return Options.PrintMachineCode; }
243 bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
245 /// Return true if data objects should be emitted into their own section,
246 /// corresponds to -fdata-sections.
247 bool getDataSections() const {
248 return Options.DataSections;
251 /// Return true if functions should be emitted into their own section,
252 /// corresponding to -ffunction-sections.
253 bool getFunctionSections() const {
254 return Options.FunctionSections;
257 /// Get a \c TargetIRAnalysis appropriate for the target.
259 /// This is used to construct the new pass manager's target IR analysis pass,
260 /// set up appropriately for this target machine. Even the old pass manager
261 /// uses this to answer queries about the IR.
262 TargetIRAnalysis getTargetIRAnalysis();
264 /// Return a TargetTransformInfo for a given function.
266 /// The returned TargetTransformInfo is specialized to the subtarget
267 /// corresponding to \p F.
268 virtual TargetTransformInfo getTargetTransformInfo(const Function &F);
270 /// Allow the target to modify the pass manager, e.g. by calling
271 /// PassManagerBuilder::addExtension.
272 virtual void adjustPassManager(PassManagerBuilder &) {}
274 /// These enums are meant to be passed into addPassesToEmitFile to indicate
275 /// what type of file to emit, and returned by it to indicate what type of
276 /// file could actually be made.
277 enum CodeGenFileType {
278 CGFT_AssemblyFile,
279 CGFT_ObjectFile,
280 CGFT_Null // Do not emit any output.
283 /// Add passes to the specified pass manager to get the specified file
284 /// emitted. Typically this will involve several steps of code generation.
285 /// This method should return true if emission of this file type is not
286 /// supported, or false on success.
287 /// \p MMI is an optional parameter that, if set to non-nullptr,
288 /// will be used to set the MachineModuloInfo for this PM.
289 virtual bool addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
290 raw_pwrite_stream *, CodeGenFileType,
291 bool /*DisableVerify*/ = true,
292 MachineModuleInfo *MMI = nullptr) {
293 return true;
296 /// Add passes to the specified pass manager to get machine code emitted with
297 /// the MCJIT. This method returns true if machine code is not supported. It
298 /// fills the MCContext Ctx pointer which can be used to build custom
299 /// MCStreamer.
301 virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
302 raw_pwrite_stream &,
303 bool /*DisableVerify*/ = true) {
304 return true;
307 /// True if subtarget inserts the final scheduling pass on its own.
309 /// Branch relaxation, which must happen after block placement, can
310 /// on some targets (e.g. SystemZ) expose additional post-RA
311 /// scheduling opportunities.
312 virtual bool targetSchedulesPostRAScheduling() const { return false; };
314 void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
315 Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
316 MCSymbol *getSymbol(const GlobalValue *GV) const;
319 /// This class describes a target machine that is implemented with the LLVM
320 /// target-independent code generator.
322 class LLVMTargetMachine : public TargetMachine {
323 protected: // Can only create subclasses.
324 LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
325 const Triple &TT, StringRef CPU, StringRef FS,
326 const TargetOptions &Options, Reloc::Model RM,
327 CodeModel::Model CM, CodeGenOpt::Level OL);
329 void initAsmInfo();
331 public:
332 /// Get a TargetTransformInfo implementation for the target.
334 /// The TTI returned uses the common code generator to answer queries about
335 /// the IR.
336 TargetTransformInfo getTargetTransformInfo(const Function &F) override;
338 /// Create a pass configuration object to be used by addPassToEmitX methods
339 /// for generating a pipeline of CodeGen passes.
340 virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
342 /// Add passes to the specified pass manager to get the specified file
343 /// emitted. Typically this will involve several steps of code generation.
344 /// \p MMI is an optional parameter that, if set to non-nullptr,
345 /// will be used to set the MachineModuloInfofor this PM.
346 bool addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
347 raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
348 bool DisableVerify = true,
349 MachineModuleInfo *MMI = nullptr) override;
351 /// Add passes to the specified pass manager to get machine code emitted with
352 /// the MCJIT. This method returns true if machine code is not supported. It
353 /// fills the MCContext Ctx pointer which can be used to build custom
354 /// MCStreamer.
355 bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
356 raw_pwrite_stream &Out,
357 bool DisableVerify = true) override;
359 /// Returns true if the target is expected to pass all machine verifier
360 /// checks. This is a stopgap measure to fix targets one by one. We will
361 /// remove this at some point and always enable the verifier when
362 /// EXPENSIVE_CHECKS is enabled.
363 virtual bool isMachineVerifierClean() const { return true; }
365 /// Adds an AsmPrinter pass to the pipeline that prints assembly or
366 /// machine code from the MI representation.
367 bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
368 raw_pwrite_stream *DwoOut, CodeGenFileType FileTYpe,
369 MCContext &Context);
371 /// True if the target uses physical regs at Prolog/Epilog insertion
372 /// time. If true (most machines), all vregs must be allocated before
373 /// PEI. If false (virtual-register machines), then callee-save register
374 /// spilling and scavenging are not needed or used.
375 virtual bool usesPhysRegsForPEI() const { return true; }
377 /// True if the target wants to use interprocedural register allocation by
378 /// default. The -enable-ipra flag can be used to override this.
379 virtual bool useIPRA() const {
380 return false;
384 /// Helper method for getting the code model, returning Default if
385 /// CM does not have a value. The tiny and kernel models will produce
386 /// an error, so targets that support them or require more complex codemodel
387 /// selection logic should implement and call their own getEffectiveCodeModel.
388 inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
389 CodeModel::Model Default) {
390 if (CM) {
391 // By default, targets do not support the tiny and kernel models.
392 if (*CM == CodeModel::Tiny)
393 report_fatal_error("Target does not support the tiny CodeModel", false);
394 if (*CM == CodeModel::Kernel)
395 report_fatal_error("Target does not support the kernel CodeModel", false);
396 return *CM;
398 return Default;
401 } // end namespace llvm
403 #endif // LLVM_TARGET_TARGETMACHINE_H