[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / include / llvm / Transforms / Utils / Cloning.h
blob872ab9cab85ca9051d680129f275be481d7c562a
1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various functions that are used to clone chunks of LLVM
10 // code for various purposes. This varies from copying whole modules into new
11 // modules, to cloning functions with different arguments, to inlining
12 // functions, to copying basic blocks to support loop unrolling or superblock
13 // formation, etc.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18 #define LLVM_TRANSFORMS_UTILS_CLONING_H
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/InlineCost.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/ValueHandle.h"
27 #include "llvm/Transforms/Utils/ValueMapper.h"
28 #include <functional>
29 #include <memory>
30 #include <vector>
32 namespace llvm {
34 class AllocaInst;
35 class BasicBlock;
36 class BlockFrequencyInfo;
37 class CallInst;
38 class CallGraph;
39 class DebugInfoFinder;
40 class DominatorTree;
41 class Function;
42 class Instruction;
43 class InvokeInst;
44 class Loop;
45 class LoopInfo;
46 class Module;
47 class ProfileSummaryInfo;
48 class ReturnInst;
49 class DomTreeUpdater;
51 /// Return an exact copy of the specified module
52 std::unique_ptr<Module> CloneModule(const Module &M);
53 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
55 /// Return a copy of the specified module. The ShouldCloneDefinition function
56 /// controls whether a specific GlobalValue's definition is cloned. If the
57 /// function returns false, the module copy will contain an external reference
58 /// in place of the global definition.
59 std::unique_ptr<Module>
60 CloneModule(const Module &M, ValueToValueMapTy &VMap,
61 function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
63 /// This struct can be used to capture information about code
64 /// being cloned, while it is being cloned.
65 struct ClonedCodeInfo {
66 /// This is set to true if the cloned code contains a normal call instruction.
67 bool ContainsCalls = false;
69 /// This is set to true if the cloned code contains a 'dynamic' alloca.
70 /// Dynamic allocas are allocas that are either not in the entry block or they
71 /// are in the entry block but are not a constant size.
72 bool ContainsDynamicAllocas = false;
74 /// All cloned call sites that have operand bundles attached are appended to
75 /// this vector. This vector may contain nulls or undefs if some of the
76 /// originally inserted callsites were DCE'ed after they were cloned.
77 std::vector<WeakTrackingVH> OperandBundleCallSites;
79 ClonedCodeInfo() = default;
82 /// Return a copy of the specified basic block, but without
83 /// embedding the block into a particular function. The block returned is an
84 /// exact copy of the specified basic block, without any remapping having been
85 /// performed. Because of this, this is only suitable for applications where
86 /// the basic block will be inserted into the same function that it was cloned
87 /// from (loop unrolling would use this, for example).
88 ///
89 /// Also, note that this function makes a direct copy of the basic block, and
90 /// can thus produce illegal LLVM code. In particular, it will copy any PHI
91 /// nodes from the original block, even though there are no predecessors for the
92 /// newly cloned block (thus, phi nodes will have to be updated). Also, this
93 /// block will branch to the old successors of the original block: these
94 /// successors will have to have any PHI nodes updated to account for the new
95 /// incoming edges.
96 ///
97 /// The correlation between instructions in the source and result basic blocks
98 /// is recorded in the VMap map.
99 ///
100 /// If you have a particular suffix you'd like to use to add to any cloned
101 /// names, specify it as the optional third parameter.
103 /// If you would like the basic block to be auto-inserted into the end of a
104 /// function, you can specify it as the optional fourth parameter.
106 /// If you would like to collect additional information about the cloned
107 /// function, you can specify a ClonedCodeInfo object with the optional fifth
108 /// parameter.
109 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
110 const Twine &NameSuffix = "", Function *F = nullptr,
111 ClonedCodeInfo *CodeInfo = nullptr,
112 DebugInfoFinder *DIFinder = nullptr);
114 /// Return a copy of the specified function and add it to that
115 /// function's module. Also, any references specified in the VMap are changed
116 /// to refer to their mapped value instead of the original one. If any of the
117 /// arguments to the function are in the VMap, the arguments are deleted from
118 /// the resultant function. The VMap is updated to include mappings from all of
119 /// the instructions and basicblocks in the function from their old to new
120 /// values. The final argument captures information about the cloned code if
121 /// non-null.
123 /// VMap contains no non-identity GlobalValue mappings and debug info metadata
124 /// will not be cloned.
126 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
127 ClonedCodeInfo *CodeInfo = nullptr);
129 /// Clone OldFunc into NewFunc, transforming the old arguments into references
130 /// to VMap values. Note that if NewFunc already has basic blocks, the ones
131 /// cloned into it will be added to the end of the function. This function
132 /// fills in a list of return instructions, and can optionally remap types
133 /// and/or append the specified suffix to all values cloned.
135 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
136 /// mappings.
138 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
139 ValueToValueMapTy &VMap, bool ModuleLevelChanges,
140 SmallVectorImpl<ReturnInst*> &Returns,
141 const char *NameSuffix = "",
142 ClonedCodeInfo *CodeInfo = nullptr,
143 ValueMapTypeRemapper *TypeMapper = nullptr,
144 ValueMaterializer *Materializer = nullptr);
146 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
147 const Instruction *StartingInst,
148 ValueToValueMapTy &VMap, bool ModuleLevelChanges,
149 SmallVectorImpl<ReturnInst *> &Returns,
150 const char *NameSuffix = "",
151 ClonedCodeInfo *CodeInfo = nullptr);
153 /// This works exactly like CloneFunctionInto,
154 /// except that it does some simple constant prop and DCE on the fly. The
155 /// effect of this is to copy significantly less code in cases where (for
156 /// example) a function call with constant arguments is inlined, and those
157 /// constant arguments cause a significant amount of code in the callee to be
158 /// dead. Since this doesn't produce an exactly copy of the input, it can't be
159 /// used for things like CloneFunction or CloneModule.
161 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
162 /// mappings.
164 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
165 ValueToValueMapTy &VMap, bool ModuleLevelChanges,
166 SmallVectorImpl<ReturnInst*> &Returns,
167 const char *NameSuffix = "",
168 ClonedCodeInfo *CodeInfo = nullptr,
169 Instruction *TheCall = nullptr);
171 /// This class captures the data input to the InlineFunction call, and records
172 /// the auxiliary results produced by it.
173 class InlineFunctionInfo {
174 public:
175 explicit InlineFunctionInfo(CallGraph *cg = nullptr,
176 std::function<AssumptionCache &(Function &)>
177 *GetAssumptionCache = nullptr,
178 ProfileSummaryInfo *PSI = nullptr,
179 BlockFrequencyInfo *CallerBFI = nullptr,
180 BlockFrequencyInfo *CalleeBFI = nullptr)
181 : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
182 CallerBFI(CallerBFI), CalleeBFI(CalleeBFI) {}
184 /// If non-null, InlineFunction will update the callgraph to reflect the
185 /// changes it makes.
186 CallGraph *CG;
187 std::function<AssumptionCache &(Function &)> *GetAssumptionCache;
188 ProfileSummaryInfo *PSI;
189 BlockFrequencyInfo *CallerBFI, *CalleeBFI;
191 /// InlineFunction fills this in with all static allocas that get copied into
192 /// the caller.
193 SmallVector<AllocaInst *, 4> StaticAllocas;
195 /// InlineFunction fills this in with callsites that were inlined from the
196 /// callee. This is only filled in if CG is non-null.
197 SmallVector<WeakTrackingVH, 8> InlinedCalls;
199 /// All of the new call sites inlined into the caller.
201 /// 'InlineFunction' fills this in by scanning the inlined instructions, and
202 /// only if CG is null. If CG is non-null, instead the value handle
203 /// `InlinedCalls` above is used.
204 SmallVector<CallSite, 8> InlinedCallSites;
206 void reset() {
207 StaticAllocas.clear();
208 InlinedCalls.clear();
209 InlinedCallSites.clear();
213 /// This function inlines the called function into the basic
214 /// block of the caller. This returns false if it is not possible to inline
215 /// this call. The program is still in a well defined state if this occurs
216 /// though.
218 /// Note that this only does one level of inlining. For example, if the
219 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
220 /// exists in the instruction stream. Similarly this will inline a recursive
221 /// function by one level.
223 /// Note that while this routine is allowed to cleanup and optimize the
224 /// *inlined* code to minimize the actual inserted code, it must not delete
225 /// code in the caller as users of this routine may have pointers to
226 /// instructions in the caller that need to remain stable.
228 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
229 /// and all varargs at the callsite will be passed to any calls to
230 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
231 /// are only used by ForwardVarArgsTo.
232 InlineResult InlineFunction(CallBase *CB, InlineFunctionInfo &IFI,
233 AAResults *CalleeAAR = nullptr,
234 bool InsertLifetime = true);
235 InlineResult InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
236 AAResults *CalleeAAR = nullptr,
237 bool InsertLifetime = true,
238 Function *ForwardVarArgsTo = nullptr);
240 /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
241 /// Blocks.
243 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
244 /// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
245 /// Note: Only innermost loops are supported.
246 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
247 Loop *OrigLoop, ValueToValueMapTy &VMap,
248 const Twine &NameSuffix, LoopInfo *LI,
249 DominatorTree *DT,
250 SmallVectorImpl<BasicBlock *> &Blocks);
252 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
253 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
254 ValueToValueMapTy &VMap);
256 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
257 /// from BB between its beginning and the StopAt instruction into the split
258 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
259 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
260 /// is used to map the original instructions from BB to their newly-created
261 /// copies. Returns the split block.
262 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
263 BasicBlock *PredBB,
264 Instruction *StopAt,
265 ValueToValueMapTy &ValueMapping,
266 DomTreeUpdater &DTU);
268 /// Updates profile information by adjusting the entry count by adding
269 /// entryDelta then scaling callsite information by the new count divided by the
270 /// old count. VMap is used during inlinng to also update the new clone
271 void updateProfileCallee(
272 Function *Callee, int64_t entryDelta,
273 const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
275 } // end namespace llvm
277 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H