[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Analysis / CFG.cpp
blob8215b4ecbb03dc316c5789d3f8e0aaa49a105f4f
1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/Dominators.h"
20 using namespace llvm;
22 /// FindFunctionBackedges - Analyze the specified function to find all of the
23 /// loop backedges in the function and return them. This is a relatively cheap
24 /// (compared to computing dominators and loop info) analysis.
25 ///
26 /// The output is added to Result, as pairs of <from,to> edge info.
27 void llvm::FindFunctionBackedges(const Function &F,
28 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
29 const BasicBlock *BB = &F.getEntryBlock();
30 if (succ_empty(BB))
31 return;
33 SmallPtrSet<const BasicBlock*, 8> Visited;
34 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack;
35 SmallPtrSet<const BasicBlock*, 8> InStack;
37 Visited.insert(BB);
38 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
39 InStack.insert(BB);
40 do {
41 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
42 const BasicBlock *ParentBB = Top.first;
43 succ_const_iterator &I = Top.second;
45 bool FoundNew = false;
46 while (I != succ_end(ParentBB)) {
47 BB = *I++;
48 if (Visited.insert(BB).second) {
49 FoundNew = true;
50 break;
52 // Successor is in VisitStack, it's a back edge.
53 if (InStack.count(BB))
54 Result.push_back(std::make_pair(ParentBB, BB));
57 if (FoundNew) {
58 // Go down one level if there is a unvisited successor.
59 InStack.insert(BB);
60 VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
61 } else {
62 // Go up one level.
63 InStack.erase(VisitStack.pop_back_val().first);
65 } while (!VisitStack.empty());
68 /// GetSuccessorNumber - Search for the specified successor of basic block BB
69 /// and return its position in the terminator instruction's list of
70 /// successors. It is an error to call this with a block that is not a
71 /// successor.
72 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
73 const BasicBlock *Succ) {
74 const Instruction *Term = BB->getTerminator();
75 #ifndef NDEBUG
76 unsigned e = Term->getNumSuccessors();
77 #endif
78 for (unsigned i = 0; ; ++i) {
79 assert(i != e && "Didn't find edge?");
80 if (Term->getSuccessor(i) == Succ)
81 return i;
85 /// isCriticalEdge - Return true if the specified edge is a critical edge.
86 /// Critical edges are edges from a block with multiple successors to a block
87 /// with multiple predecessors.
88 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
89 bool AllowIdenticalEdges) {
90 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
91 return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
94 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
95 bool AllowIdenticalEdges) {
96 assert(TI->isTerminator() && "Must be a terminator to have successors!");
97 if (TI->getNumSuccessors() == 1) return false;
99 assert(find(predecessors(Dest), TI->getParent()) != pred_end(Dest) &&
100 "No edge between TI's block and Dest.");
102 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
104 // If there is more than one predecessor, this is a critical edge...
105 assert(I != E && "No preds, but we have an edge to the block?");
106 const BasicBlock *FirstPred = *I;
107 ++I; // Skip one edge due to the incoming arc from TI.
108 if (!AllowIdenticalEdges)
109 return I != E;
111 // If AllowIdenticalEdges is true, then we allow this edge to be considered
112 // non-critical iff all preds come from TI's block.
113 for (; I != E; ++I)
114 if (*I != FirstPred)
115 return true;
116 return false;
119 // LoopInfo contains a mapping from basic block to the innermost loop. Find
120 // the outermost loop in the loop nest that contains BB.
121 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
122 const Loop *L = LI->getLoopFor(BB);
123 if (L) {
124 while (const Loop *Parent = L->getParentLoop())
125 L = Parent;
127 return L;
130 bool llvm::isPotentiallyReachableFromMany(
131 SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB,
132 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
133 const LoopInfo *LI) {
134 // When the stop block is unreachable, it's dominated from everywhere,
135 // regardless of whether there's a path between the two blocks.
136 if (DT && !DT->isReachableFromEntry(StopBB))
137 DT = nullptr;
139 // We can't skip directly from a block that dominates the stop block if the
140 // exclusion block is potentially in between.
141 if (ExclusionSet && !ExclusionSet->empty())
142 DT = nullptr;
144 // Normally any block in a loop is reachable from any other block in a loop,
145 // however excluded blocks might partition the body of a loop to make that
146 // untrue.
147 SmallPtrSet<const Loop *, 8> LoopsWithHoles;
148 if (LI && ExclusionSet) {
149 for (auto BB : *ExclusionSet) {
150 if (const Loop *L = getOutermostLoop(LI, BB))
151 LoopsWithHoles.insert(L);
155 const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;
157 // Limit the number of blocks we visit. The goal is to avoid run-away compile
158 // times on large CFGs without hampering sensible code. Arbitrarily chosen.
159 unsigned Limit = 32;
160 SmallPtrSet<const BasicBlock*, 32> Visited;
161 do {
162 BasicBlock *BB = Worklist.pop_back_val();
163 if (!Visited.insert(BB).second)
164 continue;
165 if (BB == StopBB)
166 return true;
167 if (ExclusionSet && ExclusionSet->count(BB))
168 continue;
169 if (DT && DT->dominates(BB, StopBB))
170 return true;
172 const Loop *Outer = nullptr;
173 if (LI) {
174 Outer = getOutermostLoop(LI, BB);
175 // If we're in a loop with a hole, not all blocks in the loop are
176 // reachable from all other blocks. That implies we can't simply jump to
177 // the loop's exit blocks, as that exit might need to pass through an
178 // excluded block. Clear Outer so we process BB's successors.
179 if (LoopsWithHoles.count(Outer))
180 Outer = nullptr;
181 if (StopLoop && Outer == StopLoop)
182 return true;
185 if (!--Limit) {
186 // We haven't been able to prove it one way or the other. Conservatively
187 // answer true -- that there is potentially a path.
188 return true;
191 if (Outer) {
192 // All blocks in a single loop are reachable from all other blocks. From
193 // any of these blocks, we can skip directly to the exits of the loop,
194 // ignoring any other blocks inside the loop body.
195 Outer->getExitBlocks(Worklist);
196 } else {
197 Worklist.append(succ_begin(BB), succ_end(BB));
199 } while (!Worklist.empty());
201 // We have exhausted all possible paths and are certain that 'To' can not be
202 // reached from 'From'.
203 return false;
206 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B,
207 const DominatorTree *DT, const LoopInfo *LI) {
208 assert(A->getParent() == B->getParent() &&
209 "This analysis is function-local!");
211 SmallVector<BasicBlock*, 32> Worklist;
212 Worklist.push_back(const_cast<BasicBlock*>(A));
214 return isPotentiallyReachableFromMany(Worklist, const_cast<BasicBlock *>(B),
215 nullptr, DT, LI);
218 bool llvm::isPotentiallyReachable(
219 const Instruction *A, const Instruction *B,
220 const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
221 const LoopInfo *LI) {
222 assert(A->getParent()->getParent() == B->getParent()->getParent() &&
223 "This analysis is function-local!");
225 SmallVector<BasicBlock*, 32> Worklist;
227 if (A->getParent() == B->getParent()) {
228 // The same block case is special because it's the only time we're looking
229 // within a single block to see which instruction comes first. Once we
230 // start looking at multiple blocks, the first instruction of the block is
231 // reachable, so we only need to determine reachability between whole
232 // blocks.
233 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
235 // If the block is in a loop then we can reach any instruction in the block
236 // from any other instruction in the block by going around a backedge.
237 if (LI && LI->getLoopFor(BB) != nullptr)
238 return true;
240 // Linear scan, start at 'A', see whether we hit 'B' or the end first.
241 for (BasicBlock::const_iterator I = A->getIterator(), E = BB->end(); I != E;
242 ++I) {
243 if (&*I == B)
244 return true;
247 // Can't be in a loop if it's the entry block -- the entry block may not
248 // have predecessors.
249 if (BB == &BB->getParent()->getEntryBlock())
250 return false;
252 // Otherwise, continue doing the normal per-BB CFG walk.
253 Worklist.append(succ_begin(BB), succ_end(BB));
255 if (Worklist.empty()) {
256 // We've proven that there's no path!
257 return false;
259 } else {
260 Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
263 if (DT) {
264 if (DT->isReachableFromEntry(A->getParent()) &&
265 !DT->isReachableFromEntry(B->getParent()))
266 return false;
267 if (!ExclusionSet || ExclusionSet->empty()) {
268 if (A->getParent() == &A->getParent()->getParent()->getEntryBlock() &&
269 DT->isReachableFromEntry(B->getParent()))
270 return true;
271 if (B->getParent() == &A->getParent()->getParent()->getEntryBlock() &&
272 DT->isReachableFromEntry(A->getParent()))
273 return false;
277 return isPotentiallyReachableFromMany(
278 Worklist, const_cast<BasicBlock *>(B->getParent()), ExclusionSet, DT, LI);