[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Analysis / Loads.cpp
blobe74df9c69d7f2cfb75b2126ddb134efad9335561
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines simple local analyses for load instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/Loads.h"
14 #include "llvm/Analysis/AliasAnalysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/GlobalAlias.h"
18 #include "llvm/IR/GlobalVariable.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "llvm/IR/Statepoint.h"
25 using namespace llvm;
27 static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
28 const DataLayout &DL) {
29 APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
31 if (!BaseAlign) {
32 Type *Ty = Base->getType()->getPointerElementType();
33 if (!Ty->isSized())
34 return false;
35 BaseAlign = DL.getABITypeAlignment(Ty);
38 APInt Alignment(Offset.getBitWidth(), Align);
40 assert(Alignment.isPowerOf2() && "must be a power of 2!");
41 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
44 /// Test if V is always a pointer to allocated and suitably aligned memory for
45 /// a simple load or store.
46 static bool isDereferenceableAndAlignedPointer(
47 const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
48 const Instruction *CtxI, const DominatorTree *DT,
49 SmallPtrSetImpl<const Value *> &Visited) {
50 // Already visited? Bail out, we've likely hit unreachable code.
51 if (!Visited.insert(V).second)
52 return false;
54 // Note that it is not safe to speculate into a malloc'd region because
55 // malloc may return null.
57 // bitcast instructions are no-ops as far as dereferenceability is concerned.
58 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
59 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
60 DL, CtxI, DT, Visited);
62 bool CheckForNonNull = false;
63 APInt KnownDerefBytes(Size.getBitWidth(),
64 V->getPointerDereferenceableBytes(DL, CheckForNonNull));
65 if (KnownDerefBytes.getBoolValue() && KnownDerefBytes.uge(Size))
66 if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT)) {
67 // As we recursed through GEPs to get here, we've incrementally checked
68 // that each step advanced by a multiple of the alignment. If our base is
69 // properly aligned, then the original offset accessed must also be.
70 Type *Ty = V->getType();
71 assert(Ty->isSized() && "must be sized");
72 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
73 return isAligned(V, Offset, Align, DL);
76 // For GEPs, determine if the indexing lands within the allocated object.
77 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
78 const Value *Base = GEP->getPointerOperand();
80 APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
81 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
82 !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
83 return false;
85 // If the base pointer is dereferenceable for Offset+Size bytes, then the
86 // GEP (== Base + Offset) is dereferenceable for Size bytes. If the base
87 // pointer is aligned to Align bytes, and the Offset is divisible by Align
88 // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
89 // aligned to Align bytes.
91 // Offset and Size may have different bit widths if we have visited an
92 // addrspacecast, so we can't do arithmetic directly on the APInt values.
93 return isDereferenceableAndAlignedPointer(
94 Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
95 DL, CtxI, DT, Visited);
98 // For gc.relocate, look through relocations
99 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
100 return isDereferenceableAndAlignedPointer(
101 RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
103 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
104 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
105 DL, CtxI, DT, Visited);
107 if (const auto *Call = dyn_cast<CallBase>(V))
108 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
109 return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
110 Visited);
112 // If we don't know, assume the worst.
113 return false;
116 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
117 const APInt &Size,
118 const DataLayout &DL,
119 const Instruction *CtxI,
120 const DominatorTree *DT) {
121 assert(Align != 0 && "expected explicitly set alignment");
122 // Note: At the moment, Size can be zero. This ends up being interpreted as
123 // a query of whether [Base, V] is dereferenceable and V is aligned (since
124 // that's what the implementation happened to do). It's unclear if this is
125 // the desired semantic, but at least SelectionDAG does exercise this case.
127 SmallPtrSet<const Value *, 32> Visited;
128 return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
129 Visited);
132 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, Type *Ty,
133 unsigned Align,
134 const DataLayout &DL,
135 const Instruction *CtxI,
136 const DominatorTree *DT) {
137 // When dereferenceability information is provided by a dereferenceable
138 // attribute, we know exactly how many bytes are dereferenceable. If we can
139 // determine the exact offset to the attributed variable, we can use that
140 // information here.
142 // Require ABI alignment for loads without alignment specification
143 if (Align == 0)
144 Align = DL.getABITypeAlignment(Ty);
146 if (!Ty->isSized())
147 return false;
149 APInt AccessSize(DL.getIndexTypeSizeInBits(V->getType()),
150 DL.getTypeStoreSize(Ty));
151 return isDereferenceableAndAlignedPointer(V, Align, AccessSize,
152 DL, CtxI, DT);
155 bool llvm::isDereferenceablePointer(const Value *V, Type *Ty,
156 const DataLayout &DL,
157 const Instruction *CtxI,
158 const DominatorTree *DT) {
159 return isDereferenceableAndAlignedPointer(V, Ty, 1, DL, CtxI, DT);
162 /// Test if A and B will obviously have the same value.
164 /// This includes recognizing that %t0 and %t1 will have the same
165 /// value in code like this:
166 /// \code
167 /// %t0 = getelementptr \@a, 0, 3
168 /// store i32 0, i32* %t0
169 /// %t1 = getelementptr \@a, 0, 3
170 /// %t2 = load i32* %t1
171 /// \endcode
173 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
174 // Test if the values are trivially equivalent.
175 if (A == B)
176 return true;
178 // Test if the values come from identical arithmetic instructions.
179 // Use isIdenticalToWhenDefined instead of isIdenticalTo because
180 // this function is only used when one address use dominates the
181 // other, which means that they'll always either have the same
182 // value or one of them will have an undefined value.
183 if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
184 isa<GetElementPtrInst>(A))
185 if (const Instruction *BI = dyn_cast<Instruction>(B))
186 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
187 return true;
189 // Otherwise they may not be equivalent.
190 return false;
193 /// Check if executing a load of this pointer value cannot trap.
195 /// If DT and ScanFrom are specified this method performs context-sensitive
196 /// analysis and returns true if it is safe to load immediately before ScanFrom.
198 /// If it is not obviously safe to load from the specified pointer, we do
199 /// a quick local scan of the basic block containing \c ScanFrom, to determine
200 /// if the address is already accessed.
202 /// This uses the pointee type to determine how many bytes need to be safe to
203 /// load from the pointer.
204 bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align, APInt &Size,
205 const DataLayout &DL,
206 Instruction *ScanFrom,
207 const DominatorTree *DT) {
208 // Zero alignment means that the load has the ABI alignment for the target
209 if (Align == 0)
210 Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
211 assert(isPowerOf2_32(Align));
213 // If DT is not specified we can't make context-sensitive query
214 const Instruction* CtxI = DT ? ScanFrom : nullptr;
215 if (isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT))
216 return true;
218 if (!ScanFrom)
219 return false;
221 if (Size.getBitWidth() > 64)
222 return false;
223 const uint64_t LoadSize = Size.getZExtValue();
225 // Otherwise, be a little bit aggressive by scanning the local block where we
226 // want to check to see if the pointer is already being loaded or stored
227 // from/to. If so, the previous load or store would have already trapped,
228 // so there is no harm doing an extra load (also, CSE will later eliminate
229 // the load entirely).
230 BasicBlock::iterator BBI = ScanFrom->getIterator(),
231 E = ScanFrom->getParent()->begin();
233 // We can at least always strip pointer casts even though we can't use the
234 // base here.
235 V = V->stripPointerCasts();
237 while (BBI != E) {
238 --BBI;
240 // If we see a free or a call which may write to memory (i.e. which might do
241 // a free) the pointer could be marked invalid.
242 if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
243 !isa<DbgInfoIntrinsic>(BBI))
244 return false;
246 Value *AccessedPtr;
247 unsigned AccessedAlign;
248 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
249 // Ignore volatile loads. The execution of a volatile load cannot
250 // be used to prove an address is backed by regular memory; it can,
251 // for example, point to an MMIO register.
252 if (LI->isVolatile())
253 continue;
254 AccessedPtr = LI->getPointerOperand();
255 AccessedAlign = LI->getAlignment();
256 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
257 // Ignore volatile stores (see comment for loads).
258 if (SI->isVolatile())
259 continue;
260 AccessedPtr = SI->getPointerOperand();
261 AccessedAlign = SI->getAlignment();
262 } else
263 continue;
265 Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
266 if (AccessedAlign == 0)
267 AccessedAlign = DL.getABITypeAlignment(AccessedTy);
268 if (AccessedAlign < Align)
269 continue;
271 // Handle trivial cases.
272 if (AccessedPtr == V &&
273 LoadSize <= DL.getTypeStoreSize(AccessedTy))
274 return true;
276 if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
277 LoadSize <= DL.getTypeStoreSize(AccessedTy))
278 return true;
280 return false;
283 bool llvm::isSafeToLoadUnconditionally(Value *V, Type *Ty, unsigned Align,
284 const DataLayout &DL,
285 Instruction *ScanFrom,
286 const DominatorTree *DT) {
287 APInt Size(DL.getIndexTypeSizeInBits(V->getType()), DL.getTypeStoreSize(Ty));
288 return isSafeToLoadUnconditionally(V, Align, Size, DL, ScanFrom, DT);
291 /// DefMaxInstsToScan - the default number of maximum instructions
292 /// to scan in the block, used by FindAvailableLoadedValue().
293 /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
294 /// threading in part by eliminating partially redundant loads.
295 /// At that point, the value of MaxInstsToScan was already set to '6'
296 /// without documented explanation.
297 cl::opt<unsigned>
298 llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
299 cl::desc("Use this to specify the default maximum number of instructions "
300 "to scan backward from a given instruction, when searching for "
301 "available loaded value"));
303 Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
304 BasicBlock *ScanBB,
305 BasicBlock::iterator &ScanFrom,
306 unsigned MaxInstsToScan,
307 AliasAnalysis *AA, bool *IsLoad,
308 unsigned *NumScanedInst) {
309 // Don't CSE load that is volatile or anything stronger than unordered.
310 if (!Load->isUnordered())
311 return nullptr;
313 return FindAvailablePtrLoadStore(
314 Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
315 ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
318 Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
319 bool AtLeastAtomic, BasicBlock *ScanBB,
320 BasicBlock::iterator &ScanFrom,
321 unsigned MaxInstsToScan,
322 AliasAnalysis *AA, bool *IsLoadCSE,
323 unsigned *NumScanedInst) {
324 if (MaxInstsToScan == 0)
325 MaxInstsToScan = ~0U;
327 const DataLayout &DL = ScanBB->getModule()->getDataLayout();
329 // Try to get the store size for the type.
330 auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
332 Value *StrippedPtr = Ptr->stripPointerCasts();
334 while (ScanFrom != ScanBB->begin()) {
335 // We must ignore debug info directives when counting (otherwise they
336 // would affect codegen).
337 Instruction *Inst = &*--ScanFrom;
338 if (isa<DbgInfoIntrinsic>(Inst))
339 continue;
341 // Restore ScanFrom to expected value in case next test succeeds
342 ScanFrom++;
344 if (NumScanedInst)
345 ++(*NumScanedInst);
347 // Don't scan huge blocks.
348 if (MaxInstsToScan-- == 0)
349 return nullptr;
351 --ScanFrom;
352 // If this is a load of Ptr, the loaded value is available.
353 // (This is true even if the load is volatile or atomic, although
354 // those cases are unlikely.)
355 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
356 if (AreEquivalentAddressValues(
357 LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
358 CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
360 // We can value forward from an atomic to a non-atomic, but not the
361 // other way around.
362 if (LI->isAtomic() < AtLeastAtomic)
363 return nullptr;
365 if (IsLoadCSE)
366 *IsLoadCSE = true;
367 return LI;
370 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
371 Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
372 // If this is a store through Ptr, the value is available!
373 // (This is true even if the store is volatile or atomic, although
374 // those cases are unlikely.)
375 if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
376 CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
377 AccessTy, DL)) {
379 // We can value forward from an atomic to a non-atomic, but not the
380 // other way around.
381 if (SI->isAtomic() < AtLeastAtomic)
382 return nullptr;
384 if (IsLoadCSE)
385 *IsLoadCSE = false;
386 return SI->getOperand(0);
389 // If both StrippedPtr and StorePtr reach all the way to an alloca or
390 // global and they are different, ignore the store. This is a trivial form
391 // of alias analysis that is important for reg2mem'd code.
392 if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
393 (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
394 StrippedPtr != StorePtr)
395 continue;
397 // If we have alias analysis and it says the store won't modify the loaded
398 // value, ignore the store.
399 if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
400 continue;
402 // Otherwise the store that may or may not alias the pointer, bail out.
403 ++ScanFrom;
404 return nullptr;
407 // If this is some other instruction that may clobber Ptr, bail out.
408 if (Inst->mayWriteToMemory()) {
409 // If alias analysis claims that it really won't modify the load,
410 // ignore it.
411 if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
412 continue;
414 // May modify the pointer, bail out.
415 ++ScanFrom;
416 return nullptr;
420 // Got to the start of the block, we didn't find it, but are done for this
421 // block.
422 return nullptr;