[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Analysis / LoopInfo.cpp
blob419f013c0e7d23c5ce04c636c514e088f2f26a3c
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG. Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/ScopeExit.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/IVDescriptors.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/IRPrintingPasses.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 using namespace llvm;
43 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
44 template class llvm::LoopBase<BasicBlock, Loop>;
45 template class llvm::LoopInfoBase<BasicBlock, Loop>;
47 // Always verify loopinfo if expensive checking is enabled.
48 #ifdef EXPENSIVE_CHECKS
49 bool llvm::VerifyLoopInfo = true;
50 #else
51 bool llvm::VerifyLoopInfo = false;
52 #endif
53 static cl::opt<bool, true>
54 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
55 cl::Hidden, cl::desc("Verify loop info (time consuming)"));
57 //===----------------------------------------------------------------------===//
58 // Loop implementation
61 bool Loop::isLoopInvariant(const Value *V) const {
62 if (const Instruction *I = dyn_cast<Instruction>(V))
63 return !contains(I);
64 return true; // All non-instructions are loop invariant
67 bool Loop::hasLoopInvariantOperands(const Instruction *I) const {
68 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); });
71 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt,
72 MemorySSAUpdater *MSSAU) const {
73 if (Instruction *I = dyn_cast<Instruction>(V))
74 return makeLoopInvariant(I, Changed, InsertPt, MSSAU);
75 return true; // All non-instructions are loop-invariant.
78 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
79 Instruction *InsertPt,
80 MemorySSAUpdater *MSSAU) const {
81 // Test if the value is already loop-invariant.
82 if (isLoopInvariant(I))
83 return true;
84 if (!isSafeToSpeculativelyExecute(I))
85 return false;
86 if (I->mayReadFromMemory())
87 return false;
88 // EH block instructions are immobile.
89 if (I->isEHPad())
90 return false;
91 // Determine the insertion point, unless one was given.
92 if (!InsertPt) {
93 BasicBlock *Preheader = getLoopPreheader();
94 // Without a preheader, hoisting is not feasible.
95 if (!Preheader)
96 return false;
97 InsertPt = Preheader->getTerminator();
99 // Don't hoist instructions with loop-variant operands.
100 for (Value *Operand : I->operands())
101 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU))
102 return false;
104 // Hoist.
105 I->moveBefore(InsertPt);
106 if (MSSAU)
107 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I))
108 MSSAU->moveToPlace(MUD, InsertPt->getParent(), MemorySSA::End);
110 // There is possibility of hoisting this instruction above some arbitrary
111 // condition. Any metadata defined on it can be control dependent on this
112 // condition. Conservatively strip it here so that we don't give any wrong
113 // information to the optimizer.
114 I->dropUnknownNonDebugMetadata();
116 Changed = true;
117 return true;
120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming,
121 BasicBlock *&Backedge) const {
122 BasicBlock *H = getHeader();
124 Incoming = nullptr;
125 Backedge = nullptr;
126 pred_iterator PI = pred_begin(H);
127 assert(PI != pred_end(H) && "Loop must have at least one backedge!");
128 Backedge = *PI++;
129 if (PI == pred_end(H))
130 return false; // dead loop
131 Incoming = *PI++;
132 if (PI != pred_end(H))
133 return false; // multiple backedges?
135 if (contains(Incoming)) {
136 if (contains(Backedge))
137 return false;
138 std::swap(Incoming, Backedge);
139 } else if (!contains(Backedge))
140 return false;
142 assert(Incoming && Backedge && "expected non-null incoming and backedges");
143 return true;
146 PHINode *Loop::getCanonicalInductionVariable() const {
147 BasicBlock *H = getHeader();
149 BasicBlock *Incoming = nullptr, *Backedge = nullptr;
150 if (!getIncomingAndBackEdge(Incoming, Backedge))
151 return nullptr;
153 // Loop over all of the PHI nodes, looking for a canonical indvar.
154 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
155 PHINode *PN = cast<PHINode>(I);
156 if (ConstantInt *CI =
157 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
158 if (CI->isZero())
159 if (Instruction *Inc =
160 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
161 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
163 if (CI->isOne())
164 return PN;
166 return nullptr;
169 /// Get the latch condition instruction.
170 static ICmpInst *getLatchCmpInst(const Loop &L) {
171 if (BasicBlock *Latch = L.getLoopLatch())
172 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()))
173 if (BI->isConditional())
174 return dyn_cast<ICmpInst>(BI->getCondition());
176 return nullptr;
179 /// Return the final value of the loop induction variable if found.
180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar,
181 const Instruction &StepInst) {
182 ICmpInst *LatchCmpInst = getLatchCmpInst(L);
183 if (!LatchCmpInst)
184 return nullptr;
186 Value *Op0 = LatchCmpInst->getOperand(0);
187 Value *Op1 = LatchCmpInst->getOperand(1);
188 if (Op0 == &IndVar || Op0 == &StepInst)
189 return Op1;
191 if (Op1 == &IndVar || Op1 == &StepInst)
192 return Op0;
194 return nullptr;
197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L,
198 PHINode &IndVar,
199 ScalarEvolution &SE) {
200 InductionDescriptor IndDesc;
201 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc))
202 return None;
204 Value *InitialIVValue = IndDesc.getStartValue();
205 Instruction *StepInst = IndDesc.getInductionBinOp();
206 if (!InitialIVValue || !StepInst)
207 return None;
209 const SCEV *Step = IndDesc.getStep();
210 Value *StepInstOp1 = StepInst->getOperand(1);
211 Value *StepInstOp0 = StepInst->getOperand(0);
212 Value *StepValue = nullptr;
213 if (SE.getSCEV(StepInstOp1) == Step)
214 StepValue = StepInstOp1;
215 else if (SE.getSCEV(StepInstOp0) == Step)
216 StepValue = StepInstOp0;
218 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst);
219 if (!FinalIVValue)
220 return None;
222 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue,
223 SE);
226 using Direction = Loop::LoopBounds::Direction;
228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const {
229 BasicBlock *Latch = L.getLoopLatch();
230 assert(Latch && "Expecting valid latch");
232 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator());
233 assert(BI && BI->isConditional() && "Expecting conditional latch branch");
235 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition());
236 assert(LatchCmpInst &&
237 "Expecting the latch compare instruction to be a CmpInst");
239 // Need to inverse the predicate when first successor is not the loop
240 // header
241 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader())
242 ? LatchCmpInst->getPredicate()
243 : LatchCmpInst->getInversePredicate();
245 if (LatchCmpInst->getOperand(0) == &getFinalIVValue())
246 Pred = ICmpInst::getSwappedPredicate(Pred);
248 // Need to flip strictness of the predicate when the latch compare instruction
249 // is not using StepInst
250 if (LatchCmpInst->getOperand(0) == &getStepInst() ||
251 LatchCmpInst->getOperand(1) == &getStepInst())
252 return Pred;
254 // Cannot flip strictness of NE and EQ
255 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
256 return ICmpInst::getFlippedStrictnessPredicate(Pred);
258 Direction D = getDirection();
259 if (D == Direction::Increasing)
260 return ICmpInst::ICMP_SLT;
262 if (D == Direction::Decreasing)
263 return ICmpInst::ICMP_SGT;
265 // If cannot determine the direction, then unable to find the canonical
266 // predicate
267 return ICmpInst::BAD_ICMP_PREDICATE;
270 Direction Loop::LoopBounds::getDirection() const {
271 if (const SCEVAddRecExpr *StepAddRecExpr =
272 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst())))
273 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) {
274 if (SE.isKnownPositive(StepRecur))
275 return Direction::Increasing;
276 if (SE.isKnownNegative(StepRecur))
277 return Direction::Decreasing;
280 return Direction::Unknown;
283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const {
284 if (PHINode *IndVar = getInductionVariable(SE))
285 return LoopBounds::getBounds(*this, *IndVar, SE);
287 return None;
290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const {
291 if (!isLoopSimplifyForm())
292 return nullptr;
294 BasicBlock *Header = getHeader();
295 assert(Header && "Expected a valid loop header");
296 ICmpInst *CmpInst = getLatchCmpInst(*this);
297 if (!CmpInst)
298 return nullptr;
300 Instruction *LatchCmpOp0 = dyn_cast<Instruction>(CmpInst->getOperand(0));
301 Instruction *LatchCmpOp1 = dyn_cast<Instruction>(CmpInst->getOperand(1));
303 for (PHINode &IndVar : Header->phis()) {
304 InductionDescriptor IndDesc;
305 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc))
306 continue;
308 Instruction *StepInst = IndDesc.getInductionBinOp();
310 // case 1:
311 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
312 // StepInst = IndVar + step
313 // cmp = StepInst < FinalValue
314 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1)
315 return &IndVar;
317 // case 2:
318 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
319 // StepInst = IndVar + step
320 // cmp = IndVar < FinalValue
321 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1)
322 return &IndVar;
325 return nullptr;
328 bool Loop::getInductionDescriptor(ScalarEvolution &SE,
329 InductionDescriptor &IndDesc) const {
330 if (PHINode *IndVar = getInductionVariable(SE))
331 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc);
333 return false;
336 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar,
337 ScalarEvolution &SE) const {
338 // Located in the loop header
339 BasicBlock *Header = getHeader();
340 if (AuxIndVar.getParent() != Header)
341 return false;
343 // No uses outside of the loop
344 for (User *U : AuxIndVar.users())
345 if (const Instruction *I = dyn_cast<Instruction>(U))
346 if (!contains(I))
347 return false;
349 InductionDescriptor IndDesc;
350 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc))
351 return false;
353 // The step instruction opcode should be add or sub.
354 if (IndDesc.getInductionOpcode() != Instruction::Add &&
355 IndDesc.getInductionOpcode() != Instruction::Sub)
356 return false;
358 // Incremented by a loop invariant step for each loop iteration
359 return SE.isLoopInvariant(IndDesc.getStep(), this);
362 BranchInst *Loop::getLoopGuardBranch() const {
363 assert(isLoopSimplifyForm() && "Only valid for loop in simplify form");
364 BasicBlock *Preheader = getLoopPreheader();
365 BasicBlock *Latch = getLoopLatch();
366 assert(Preheader && Latch &&
367 "Expecting a loop with valid preheader and latch");
368 assert(isLoopExiting(Latch) && "Only valid for rotated loop");
370 Instruction *LatchTI = Latch->getTerminator();
371 if (!LatchTI || LatchTI->getNumSuccessors() != 2)
372 return nullptr;
374 BasicBlock *ExitFromLatch = (LatchTI->getSuccessor(0) == getHeader())
375 ? LatchTI->getSuccessor(1)
376 : LatchTI->getSuccessor(0);
377 BasicBlock *ExitFromLatchSucc = ExitFromLatch->getUniqueSuccessor();
378 if (!ExitFromLatchSucc)
379 return nullptr;
381 BasicBlock *GuardBB = Preheader->getUniquePredecessor();
382 if (!GuardBB)
383 return nullptr;
385 assert(GuardBB->getTerminator() && "Expecting valid guard terminator");
387 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator());
388 if (!GuardBI || GuardBI->isUnconditional())
389 return nullptr;
391 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader)
392 ? GuardBI->getSuccessor(1)
393 : GuardBI->getSuccessor(0);
394 return (GuardOtherSucc == ExitFromLatchSucc) ? GuardBI : nullptr;
397 bool Loop::isCanonical(ScalarEvolution &SE) const {
398 InductionDescriptor IndDesc;
399 if (!getInductionDescriptor(SE, IndDesc))
400 return false;
402 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue());
403 if (!Init || !Init->isZero())
404 return false;
406 if (IndDesc.getInductionOpcode() != Instruction::Add)
407 return false;
409 ConstantInt *Step = IndDesc.getConstIntStepValue();
410 if (!Step || !Step->isOne())
411 return false;
413 return true;
416 // Check that 'BB' doesn't have any uses outside of the 'L'
417 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB,
418 DominatorTree &DT) {
419 for (const Instruction &I : BB) {
420 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
421 // optimizations, so for the purposes of considered LCSSA form, we
422 // can ignore them.
423 if (I.getType()->isTokenTy())
424 continue;
426 for (const Use &U : I.uses()) {
427 const Instruction *UI = cast<Instruction>(U.getUser());
428 const BasicBlock *UserBB = UI->getParent();
429 if (const PHINode *P = dyn_cast<PHINode>(UI))
430 UserBB = P->getIncomingBlock(U);
432 // Check the current block, as a fast-path, before checking whether
433 // the use is anywhere in the loop. Most values are used in the same
434 // block they are defined in. Also, blocks not reachable from the
435 // entry are special; uses in them don't need to go through PHIs.
436 if (UserBB != &BB && !L.contains(UserBB) &&
437 DT.isReachableFromEntry(UserBB))
438 return false;
441 return true;
444 bool Loop::isLCSSAForm(DominatorTree &DT) const {
445 // For each block we check that it doesn't have any uses outside of this loop.
446 return all_of(this->blocks(), [&](const BasicBlock *BB) {
447 return isBlockInLCSSAForm(*this, *BB, DT);
451 bool Loop::isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const {
452 // For each block we check that it doesn't have any uses outside of its
453 // innermost loop. This process will transitively guarantee that the current
454 // loop and all of the nested loops are in LCSSA form.
455 return all_of(this->blocks(), [&](const BasicBlock *BB) {
456 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT);
460 bool Loop::isLoopSimplifyForm() const {
461 // Normal-form loops have a preheader, a single backedge, and all of their
462 // exits have all their predecessors inside the loop.
463 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
466 // Routines that reform the loop CFG and split edges often fail on indirectbr.
467 bool Loop::isSafeToClone() const {
468 // Return false if any loop blocks contain indirectbrs, or there are any calls
469 // to noduplicate functions.
470 // FIXME: it should be ok to clone CallBrInst's if we correctly update the
471 // operand list to reflect the newly cloned labels.
472 for (BasicBlock *BB : this->blocks()) {
473 if (isa<IndirectBrInst>(BB->getTerminator()) ||
474 isa<CallBrInst>(BB->getTerminator()))
475 return false;
477 for (Instruction &I : *BB)
478 if (auto CS = CallSite(&I))
479 if (CS.cannotDuplicate())
480 return false;
482 return true;
485 MDNode *Loop::getLoopID() const {
486 MDNode *LoopID = nullptr;
488 // Go through the latch blocks and check the terminator for the metadata.
489 SmallVector<BasicBlock *, 4> LatchesBlocks;
490 getLoopLatches(LatchesBlocks);
491 for (BasicBlock *BB : LatchesBlocks) {
492 Instruction *TI = BB->getTerminator();
493 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop);
495 if (!MD)
496 return nullptr;
498 if (!LoopID)
499 LoopID = MD;
500 else if (MD != LoopID)
501 return nullptr;
503 if (!LoopID || LoopID->getNumOperands() == 0 ||
504 LoopID->getOperand(0) != LoopID)
505 return nullptr;
506 return LoopID;
509 void Loop::setLoopID(MDNode *LoopID) const {
510 assert((!LoopID || LoopID->getNumOperands() > 0) &&
511 "Loop ID needs at least one operand");
512 assert((!LoopID || LoopID->getOperand(0) == LoopID) &&
513 "Loop ID should refer to itself");
515 SmallVector<BasicBlock *, 4> LoopLatches;
516 getLoopLatches(LoopLatches);
517 for (BasicBlock *BB : LoopLatches)
518 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID);
521 void Loop::setLoopAlreadyUnrolled() {
522 LLVMContext &Context = getHeader()->getContext();
524 MDNode *DisableUnrollMD =
525 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable"));
526 MDNode *LoopID = getLoopID();
527 MDNode *NewLoopID = makePostTransformationMetadata(
528 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD});
529 setLoopID(NewLoopID);
532 bool Loop::isAnnotatedParallel() const {
533 MDNode *DesiredLoopIdMetadata = getLoopID();
535 if (!DesiredLoopIdMetadata)
536 return false;
538 MDNode *ParallelAccesses =
539 findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
540 SmallPtrSet<MDNode *, 4>
541 ParallelAccessGroups; // For scalable 'contains' check.
542 if (ParallelAccesses) {
543 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands(), 1)) {
544 MDNode *AccGroup = cast<MDNode>(MD.get());
545 assert(isValidAsAccessGroup(AccGroup) &&
546 "List item must be an access group");
547 ParallelAccessGroups.insert(AccGroup);
551 // The loop branch contains the parallel loop metadata. In order to ensure
552 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
553 // dependencies (thus converted the loop back to a sequential loop), check
554 // that all the memory instructions in the loop belong to an access group that
555 // is parallel to this loop.
556 for (BasicBlock *BB : this->blocks()) {
557 for (Instruction &I : *BB) {
558 if (!I.mayReadOrWriteMemory())
559 continue;
561 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) {
562 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool {
563 if (AG->getNumOperands() == 0) {
564 assert(isValidAsAccessGroup(AG) && "Item must be an access group");
565 return ParallelAccessGroups.count(AG);
568 for (const MDOperand &AccessListItem : AG->operands()) {
569 MDNode *AccGroup = cast<MDNode>(AccessListItem.get());
570 assert(isValidAsAccessGroup(AccGroup) &&
571 "List item must be an access group");
572 if (ParallelAccessGroups.count(AccGroup))
573 return true;
575 return false;
578 if (ContainsAccessGroup(AccessGroup))
579 continue;
582 // The memory instruction can refer to the loop identifier metadata
583 // directly or indirectly through another list metadata (in case of
584 // nested parallel loops). The loop identifier metadata refers to
585 // itself so we can check both cases with the same routine.
586 MDNode *LoopIdMD =
587 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
589 if (!LoopIdMD)
590 return false;
592 bool LoopIdMDFound = false;
593 for (const MDOperand &MDOp : LoopIdMD->operands()) {
594 if (MDOp == DesiredLoopIdMetadata) {
595 LoopIdMDFound = true;
596 break;
600 if (!LoopIdMDFound)
601 return false;
604 return true;
607 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); }
609 Loop::LocRange Loop::getLocRange() const {
610 // If we have a debug location in the loop ID, then use it.
611 if (MDNode *LoopID = getLoopID()) {
612 DebugLoc Start;
613 // We use the first DebugLoc in the header as the start location of the loop
614 // and if there is a second DebugLoc in the header we use it as end location
615 // of the loop.
616 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
617 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) {
618 if (!Start)
619 Start = DebugLoc(L);
620 else
621 return LocRange(Start, DebugLoc(L));
625 if (Start)
626 return LocRange(Start);
629 // Try the pre-header first.
630 if (BasicBlock *PHeadBB = getLoopPreheader())
631 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
632 return LocRange(DL);
634 // If we have no pre-header or there are no instructions with debug
635 // info in it, try the header.
636 if (BasicBlock *HeadBB = getHeader())
637 return LocRange(HeadBB->getTerminator()->getDebugLoc());
639 return LocRange();
642 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
643 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); }
645 LLVM_DUMP_METHOD void Loop::dumpVerbose() const {
646 print(dbgs(), /*Depth=*/0, /*Verbose=*/true);
648 #endif
650 //===----------------------------------------------------------------------===//
651 // UnloopUpdater implementation
654 namespace {
655 /// Find the new parent loop for all blocks within the "unloop" whose last
656 /// backedges has just been removed.
657 class UnloopUpdater {
658 Loop &Unloop;
659 LoopInfo *LI;
661 LoopBlocksDFS DFS;
663 // Map unloop's immediate subloops to their nearest reachable parents. Nested
664 // loops within these subloops will not change parents. However, an immediate
665 // subloop's new parent will be the nearest loop reachable from either its own
666 // exits *or* any of its nested loop's exits.
667 DenseMap<Loop *, Loop *> SubloopParents;
669 // Flag the presence of an irreducible backedge whose destination is a block
670 // directly contained by the original unloop.
671 bool FoundIB;
673 public:
674 UnloopUpdater(Loop *UL, LoopInfo *LInfo)
675 : Unloop(*UL), LI(LInfo), DFS(UL), FoundIB(false) {}
677 void updateBlockParents();
679 void removeBlocksFromAncestors();
681 void updateSubloopParents();
683 protected:
684 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
686 } // end anonymous namespace
688 /// Update the parent loop for all blocks that are directly contained within the
689 /// original "unloop".
690 void UnloopUpdater::updateBlockParents() {
691 if (Unloop.getNumBlocks()) {
692 // Perform a post order CFG traversal of all blocks within this loop,
693 // propagating the nearest loop from successors to predecessors.
694 LoopBlocksTraversal Traversal(DFS, LI);
695 for (BasicBlock *POI : Traversal) {
697 Loop *L = LI->getLoopFor(POI);
698 Loop *NL = getNearestLoop(POI, L);
700 if (NL != L) {
701 // For reducible loops, NL is now an ancestor of Unloop.
702 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) &&
703 "uninitialized successor");
704 LI->changeLoopFor(POI, NL);
705 } else {
706 // Or the current block is part of a subloop, in which case its parent
707 // is unchanged.
708 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor");
712 // Each irreducible loop within the unloop induces a round of iteration using
713 // the DFS result cached by Traversal.
714 bool Changed = FoundIB;
715 for (unsigned NIters = 0; Changed; ++NIters) {
716 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm");
718 // Iterate over the postorder list of blocks, propagating the nearest loop
719 // from successors to predecessors as before.
720 Changed = false;
721 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
722 POE = DFS.endPostorder();
723 POI != POE; ++POI) {
725 Loop *L = LI->getLoopFor(*POI);
726 Loop *NL = getNearestLoop(*POI, L);
727 if (NL != L) {
728 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) &&
729 "uninitialized successor");
730 LI->changeLoopFor(*POI, NL);
731 Changed = true;
737 /// Remove unloop's blocks from all ancestors below their new parents.
738 void UnloopUpdater::removeBlocksFromAncestors() {
739 // Remove all unloop's blocks (including those in nested subloops) from
740 // ancestors below the new parent loop.
741 for (Loop::block_iterator BI = Unloop.block_begin(), BE = Unloop.block_end();
742 BI != BE; ++BI) {
743 Loop *OuterParent = LI->getLoopFor(*BI);
744 if (Unloop.contains(OuterParent)) {
745 while (OuterParent->getParentLoop() != &Unloop)
746 OuterParent = OuterParent->getParentLoop();
747 OuterParent = SubloopParents[OuterParent];
749 // Remove blocks from former Ancestors except Unloop itself which will be
750 // deleted.
751 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent;
752 OldParent = OldParent->getParentLoop()) {
753 assert(OldParent && "new loop is not an ancestor of the original");
754 OldParent->removeBlockFromLoop(*BI);
759 /// Update the parent loop for all subloops directly nested within unloop.
760 void UnloopUpdater::updateSubloopParents() {
761 while (!Unloop.empty()) {
762 Loop *Subloop = *std::prev(Unloop.end());
763 Unloop.removeChildLoop(std::prev(Unloop.end()));
765 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
766 if (Loop *Parent = SubloopParents[Subloop])
767 Parent->addChildLoop(Subloop);
768 else
769 LI->addTopLevelLoop(Subloop);
773 /// Return the nearest parent loop among this block's successors. If a successor
774 /// is a subloop header, consider its parent to be the nearest parent of the
775 /// subloop's exits.
777 /// For subloop blocks, simply update SubloopParents and return NULL.
778 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
780 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
781 // is considered uninitialized.
782 Loop *NearLoop = BBLoop;
784 Loop *Subloop = nullptr;
785 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) {
786 Subloop = NearLoop;
787 // Find the subloop ancestor that is directly contained within Unloop.
788 while (Subloop->getParentLoop() != &Unloop) {
789 Subloop = Subloop->getParentLoop();
790 assert(Subloop && "subloop is not an ancestor of the original loop");
792 // Get the current nearest parent of the Subloop exits, initially Unloop.
793 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second;
796 succ_iterator I = succ_begin(BB), E = succ_end(BB);
797 if (I == E) {
798 assert(!Subloop && "subloop blocks must have a successor");
799 NearLoop = nullptr; // unloop blocks may now exit the function.
801 for (; I != E; ++I) {
802 if (*I == BB)
803 continue; // self loops are uninteresting
805 Loop *L = LI->getLoopFor(*I);
806 if (L == &Unloop) {
807 // This successor has not been processed. This path must lead to an
808 // irreducible backedge.
809 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
810 FoundIB = true;
812 if (L != &Unloop && Unloop.contains(L)) {
813 // Successor is in a subloop.
814 if (Subloop)
815 continue; // Branching within subloops. Ignore it.
817 // BB branches from the original into a subloop header.
818 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops");
820 // Get the current nearest parent of the Subloop's exits.
821 L = SubloopParents[L];
822 // L could be Unloop if the only exit was an irreducible backedge.
824 if (L == &Unloop) {
825 continue;
827 // Handle critical edges from Unloop into a sibling loop.
828 if (L && !L->contains(&Unloop)) {
829 L = L->getParentLoop();
831 // Remember the nearest parent loop among successors or subloop exits.
832 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L))
833 NearLoop = L;
835 if (Subloop) {
836 SubloopParents[Subloop] = NearLoop;
837 return BBLoop;
839 return NearLoop;
842 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); }
844 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA,
845 FunctionAnalysisManager::Invalidator &) {
846 // Check whether the analysis, all analyses on functions, or the function's
847 // CFG have been preserved.
848 auto PAC = PA.getChecker<LoopAnalysis>();
849 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
850 PAC.preservedSet<CFGAnalyses>());
853 void LoopInfo::erase(Loop *Unloop) {
854 assert(!Unloop->isInvalid() && "Loop has already been erased!");
856 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); });
858 // First handle the special case of no parent loop to simplify the algorithm.
859 if (!Unloop->getParentLoop()) {
860 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
861 for (Loop::block_iterator I = Unloop->block_begin(),
862 E = Unloop->block_end();
863 I != E; ++I) {
865 // Don't reparent blocks in subloops.
866 if (getLoopFor(*I) != Unloop)
867 continue;
869 // Blocks no longer have a parent but are still referenced by Unloop until
870 // the Unloop object is deleted.
871 changeLoopFor(*I, nullptr);
874 // Remove the loop from the top-level LoopInfo object.
875 for (iterator I = begin();; ++I) {
876 assert(I != end() && "Couldn't find loop");
877 if (*I == Unloop) {
878 removeLoop(I);
879 break;
883 // Move all of the subloops to the top-level.
884 while (!Unloop->empty())
885 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end())));
887 return;
890 // Update the parent loop for all blocks within the loop. Blocks within
891 // subloops will not change parents.
892 UnloopUpdater Updater(Unloop, this);
893 Updater.updateBlockParents();
895 // Remove blocks from former ancestor loops.
896 Updater.removeBlocksFromAncestors();
898 // Add direct subloops as children in their new parent loop.
899 Updater.updateSubloopParents();
901 // Remove unloop from its parent loop.
902 Loop *ParentLoop = Unloop->getParentLoop();
903 for (Loop::iterator I = ParentLoop->begin();; ++I) {
904 assert(I != ParentLoop->end() && "Couldn't find loop");
905 if (*I == Unloop) {
906 ParentLoop->removeChildLoop(I);
907 break;
912 AnalysisKey LoopAnalysis::Key;
914 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
915 // FIXME: Currently we create a LoopInfo from scratch for every function.
916 // This may prove to be too wasteful due to deallocating and re-allocating
917 // memory each time for the underlying map and vector datastructures. At some
918 // point it may prove worthwhile to use a freelist and recycle LoopInfo
919 // objects. I don't want to add that kind of complexity until the scope of
920 // the problem is better understood.
921 LoopInfo LI;
922 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F));
923 return LI;
926 PreservedAnalyses LoopPrinterPass::run(Function &F,
927 FunctionAnalysisManager &AM) {
928 AM.getResult<LoopAnalysis>(F).print(OS);
929 return PreservedAnalyses::all();
932 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) {
934 if (forcePrintModuleIR()) {
935 // handling -print-module-scope
936 OS << Banner << " (loop: ";
937 L.getHeader()->printAsOperand(OS, false);
938 OS << ")\n";
940 // printing whole module
941 OS << *L.getHeader()->getModule();
942 return;
945 OS << Banner;
947 auto *PreHeader = L.getLoopPreheader();
948 if (PreHeader) {
949 OS << "\n; Preheader:";
950 PreHeader->print(OS);
951 OS << "\n; Loop:";
954 for (auto *Block : L.blocks())
955 if (Block)
956 Block->print(OS);
957 else
958 OS << "Printing <null> block";
960 SmallVector<BasicBlock *, 8> ExitBlocks;
961 L.getExitBlocks(ExitBlocks);
962 if (!ExitBlocks.empty()) {
963 OS << "\n; Exit blocks";
964 for (auto *Block : ExitBlocks)
965 if (Block)
966 Block->print(OS);
967 else
968 OS << "Printing <null> block";
972 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) {
973 // No loop metadata node, no loop properties.
974 if (!LoopID)
975 return nullptr;
977 // First operand should refer to the metadata node itself, for legacy reasons.
978 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
979 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
981 // Iterate over the metdata node operands and look for MDString metadata.
982 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
983 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
984 if (!MD || MD->getNumOperands() < 1)
985 continue;
986 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
987 if (!S)
988 continue;
989 // Return the operand node if MDString holds expected metadata.
990 if (Name.equals(S->getString()))
991 return MD;
994 // Loop property not found.
995 return nullptr;
998 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) {
999 return findOptionMDForLoopID(TheLoop->getLoopID(), Name);
1002 bool llvm::isValidAsAccessGroup(MDNode *Node) {
1003 return Node->getNumOperands() == 0 && Node->isDistinct();
1006 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context,
1007 MDNode *OrigLoopID,
1008 ArrayRef<StringRef> RemovePrefixes,
1009 ArrayRef<MDNode *> AddAttrs) {
1010 // First remove any existing loop metadata related to this transformation.
1011 SmallVector<Metadata *, 4> MDs;
1013 // Reserve first location for self reference to the LoopID metadata node.
1014 TempMDTuple TempNode = MDNode::getTemporary(Context, None);
1015 MDs.push_back(TempNode.get());
1017 // Remove metadata for the transformation that has been applied or that became
1018 // outdated.
1019 if (OrigLoopID) {
1020 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) {
1021 bool IsVectorMetadata = false;
1022 Metadata *Op = OrigLoopID->getOperand(i);
1023 if (MDNode *MD = dyn_cast<MDNode>(Op)) {
1024 const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1025 if (S)
1026 IsVectorMetadata =
1027 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool {
1028 return S->getString().startswith(Prefix);
1031 if (!IsVectorMetadata)
1032 MDs.push_back(Op);
1036 // Add metadata to avoid reapplying a transformation, such as
1037 // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1038 MDs.append(AddAttrs.begin(), AddAttrs.end());
1040 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs);
1041 // Replace the temporary node with a self-reference.
1042 NewLoopID->replaceOperandWith(0, NewLoopID);
1043 return NewLoopID;
1046 //===----------------------------------------------------------------------===//
1047 // LoopInfo implementation
1050 char LoopInfoWrapperPass::ID = 0;
1051 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1052 true, true)
1053 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1054 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information",
1055 true, true)
1057 bool LoopInfoWrapperPass::runOnFunction(Function &) {
1058 releaseMemory();
1059 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree());
1060 return false;
1063 void LoopInfoWrapperPass::verifyAnalysis() const {
1064 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1065 // function each time verifyAnalysis is called is very expensive. The
1066 // -verify-loop-info option can enable this. In order to perform some
1067 // checking by default, LoopPass has been taught to call verifyLoop manually
1068 // during loop pass sequences.
1069 if (VerifyLoopInfo) {
1070 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1071 LI.verify(DT);
1075 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1076 AU.setPreservesAll();
1077 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1080 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
1081 LI.print(OS);
1084 PreservedAnalyses LoopVerifierPass::run(Function &F,
1085 FunctionAnalysisManager &AM) {
1086 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1087 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1088 LI.verify(DT);
1089 return PreservedAnalyses::all();
1092 //===----------------------------------------------------------------------===//
1093 // LoopBlocksDFS implementation
1096 /// Traverse the loop blocks and store the DFS result.
1097 /// Useful for clients that just want the final DFS result and don't need to
1098 /// visit blocks during the initial traversal.
1099 void LoopBlocksDFS::perform(LoopInfo *LI) {
1100 LoopBlocksTraversal Traversal(*this, LI);
1101 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
1102 POE = Traversal.end();
1103 POI != POE; ++POI)