[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Analysis / VectorUtils.cpp
blob8bc910460476a56bd5d99e61dbe430dcf6ad5612
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
28 #define DEBUG_TYPE "vectorutils"
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35 "max-interleave-group-factor", cl::Hidden,
36 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37 cl::init(8));
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic, and vectors for the vector form of the
41 /// intrinsic (except operands that are marked as always being scalar by
42 /// hasVectorInstrinsicScalarOpd).
43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
44 switch (ID) {
45 case Intrinsic::bswap: // Begin integer bit-manipulation.
46 case Intrinsic::bitreverse:
47 case Intrinsic::ctpop:
48 case Intrinsic::ctlz:
49 case Intrinsic::cttz:
50 case Intrinsic::fshl:
51 case Intrinsic::fshr:
52 case Intrinsic::sadd_sat:
53 case Intrinsic::ssub_sat:
54 case Intrinsic::uadd_sat:
55 case Intrinsic::usub_sat:
56 case Intrinsic::smul_fix:
57 case Intrinsic::smul_fix_sat:
58 case Intrinsic::umul_fix:
59 case Intrinsic::sqrt: // Begin floating-point.
60 case Intrinsic::sin:
61 case Intrinsic::cos:
62 case Intrinsic::exp:
63 case Intrinsic::exp2:
64 case Intrinsic::log:
65 case Intrinsic::log10:
66 case Intrinsic::log2:
67 case Intrinsic::fabs:
68 case Intrinsic::minnum:
69 case Intrinsic::maxnum:
70 case Intrinsic::minimum:
71 case Intrinsic::maximum:
72 case Intrinsic::copysign:
73 case Intrinsic::floor:
74 case Intrinsic::ceil:
75 case Intrinsic::trunc:
76 case Intrinsic::rint:
77 case Intrinsic::nearbyint:
78 case Intrinsic::round:
79 case Intrinsic::pow:
80 case Intrinsic::fma:
81 case Intrinsic::fmuladd:
82 case Intrinsic::powi:
83 case Intrinsic::canonicalize:
84 return true;
85 default:
86 return false;
90 /// Identifies if the vector form of the intrinsic has a scalar operand.
91 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
92 unsigned ScalarOpdIdx) {
93 switch (ID) {
94 case Intrinsic::ctlz:
95 case Intrinsic::cttz:
96 case Intrinsic::powi:
97 return (ScalarOpdIdx == 1);
98 case Intrinsic::smul_fix:
99 case Intrinsic::smul_fix_sat:
100 case Intrinsic::umul_fix:
101 return (ScalarOpdIdx == 2);
102 default:
103 return false;
107 /// Returns intrinsic ID for call.
108 /// For the input call instruction it finds mapping intrinsic and returns
109 /// its ID, in case it does not found it return not_intrinsic.
110 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
111 const TargetLibraryInfo *TLI) {
112 Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
113 if (ID == Intrinsic::not_intrinsic)
114 return Intrinsic::not_intrinsic;
116 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
117 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
118 ID == Intrinsic::sideeffect)
119 return ID;
120 return Intrinsic::not_intrinsic;
123 /// Find the operand of the GEP that should be checked for consecutive
124 /// stores. This ignores trailing indices that have no effect on the final
125 /// pointer.
126 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
127 const DataLayout &DL = Gep->getModule()->getDataLayout();
128 unsigned LastOperand = Gep->getNumOperands() - 1;
129 unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
131 // Walk backwards and try to peel off zeros.
132 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
133 // Find the type we're currently indexing into.
134 gep_type_iterator GEPTI = gep_type_begin(Gep);
135 std::advance(GEPTI, LastOperand - 2);
137 // If it's a type with the same allocation size as the result of the GEP we
138 // can peel off the zero index.
139 if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
140 break;
141 --LastOperand;
144 return LastOperand;
147 /// If the argument is a GEP, then returns the operand identified by
148 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
149 /// operand, it returns that instead.
150 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
151 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
152 if (!GEP)
153 return Ptr;
155 unsigned InductionOperand = getGEPInductionOperand(GEP);
157 // Check that all of the gep indices are uniform except for our induction
158 // operand.
159 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
160 if (i != InductionOperand &&
161 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
162 return Ptr;
163 return GEP->getOperand(InductionOperand);
166 /// If a value has only one user that is a CastInst, return it.
167 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
168 Value *UniqueCast = nullptr;
169 for (User *U : Ptr->users()) {
170 CastInst *CI = dyn_cast<CastInst>(U);
171 if (CI && CI->getType() == Ty) {
172 if (!UniqueCast)
173 UniqueCast = CI;
174 else
175 return nullptr;
178 return UniqueCast;
181 /// Get the stride of a pointer access in a loop. Looks for symbolic
182 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
183 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
184 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
185 if (!PtrTy || PtrTy->isAggregateType())
186 return nullptr;
188 // Try to remove a gep instruction to make the pointer (actually index at this
189 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
190 // pointer, otherwise, we are analyzing the index.
191 Value *OrigPtr = Ptr;
193 // The size of the pointer access.
194 int64_t PtrAccessSize = 1;
196 Ptr = stripGetElementPtr(Ptr, SE, Lp);
197 const SCEV *V = SE->getSCEV(Ptr);
199 if (Ptr != OrigPtr)
200 // Strip off casts.
201 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
202 V = C->getOperand();
204 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
205 if (!S)
206 return nullptr;
208 V = S->getStepRecurrence(*SE);
209 if (!V)
210 return nullptr;
212 // Strip off the size of access multiplication if we are still analyzing the
213 // pointer.
214 if (OrigPtr == Ptr) {
215 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
216 if (M->getOperand(0)->getSCEVType() != scConstant)
217 return nullptr;
219 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
221 // Huge step value - give up.
222 if (APStepVal.getBitWidth() > 64)
223 return nullptr;
225 int64_t StepVal = APStepVal.getSExtValue();
226 if (PtrAccessSize != StepVal)
227 return nullptr;
228 V = M->getOperand(1);
232 // Strip off casts.
233 Type *StripedOffRecurrenceCast = nullptr;
234 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
235 StripedOffRecurrenceCast = C->getType();
236 V = C->getOperand();
239 // Look for the loop invariant symbolic value.
240 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
241 if (!U)
242 return nullptr;
244 Value *Stride = U->getValue();
245 if (!Lp->isLoopInvariant(Stride))
246 return nullptr;
248 // If we have stripped off the recurrence cast we have to make sure that we
249 // return the value that is used in this loop so that we can replace it later.
250 if (StripedOffRecurrenceCast)
251 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
253 return Stride;
256 /// Given a vector and an element number, see if the scalar value is
257 /// already around as a register, for example if it were inserted then extracted
258 /// from the vector.
259 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
260 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
261 VectorType *VTy = cast<VectorType>(V->getType());
262 unsigned Width = VTy->getNumElements();
263 if (EltNo >= Width) // Out of range access.
264 return UndefValue::get(VTy->getElementType());
266 if (Constant *C = dyn_cast<Constant>(V))
267 return C->getAggregateElement(EltNo);
269 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
270 // If this is an insert to a variable element, we don't know what it is.
271 if (!isa<ConstantInt>(III->getOperand(2)))
272 return nullptr;
273 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
275 // If this is an insert to the element we are looking for, return the
276 // inserted value.
277 if (EltNo == IIElt)
278 return III->getOperand(1);
280 // Otherwise, the insertelement doesn't modify the value, recurse on its
281 // vector input.
282 return findScalarElement(III->getOperand(0), EltNo);
285 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
286 unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
287 int InEl = SVI->getMaskValue(EltNo);
288 if (InEl < 0)
289 return UndefValue::get(VTy->getElementType());
290 if (InEl < (int)LHSWidth)
291 return findScalarElement(SVI->getOperand(0), InEl);
292 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
295 // Extract a value from a vector add operation with a constant zero.
296 // TODO: Use getBinOpIdentity() to generalize this.
297 Value *Val; Constant *C;
298 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
299 if (Constant *Elt = C->getAggregateElement(EltNo))
300 if (Elt->isNullValue())
301 return findScalarElement(Val, EltNo);
303 // Otherwise, we don't know.
304 return nullptr;
307 /// Get splat value if the input is a splat vector or return nullptr.
308 /// This function is not fully general. It checks only 2 cases:
309 /// the input value is (1) a splat constant vector or (2) a sequence
310 /// of instructions that broadcasts a scalar at element 0.
311 const llvm::Value *llvm::getSplatValue(const Value *V) {
312 if (isa<VectorType>(V->getType()))
313 if (auto *C = dyn_cast<Constant>(V))
314 return C->getSplatValue();
316 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
317 Value *Splat;
318 if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat),
319 m_ZeroInt()),
320 m_Value(), m_ZeroInt())))
321 return Splat;
323 return nullptr;
326 // This setting is based on its counterpart in value tracking, but it could be
327 // adjusted if needed.
328 const unsigned MaxDepth = 6;
330 bool llvm::isSplatValue(const Value *V, unsigned Depth) {
331 assert(Depth <= MaxDepth && "Limit Search Depth");
333 if (isa<VectorType>(V->getType())) {
334 if (isa<UndefValue>(V))
335 return true;
336 // FIXME: Constant splat analysis does not allow undef elements.
337 if (auto *C = dyn_cast<Constant>(V))
338 return C->getSplatValue() != nullptr;
341 // FIXME: Constant splat analysis does not allow undef elements.
342 Constant *Mask;
343 if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask))))
344 return Mask->getSplatValue() != nullptr;
346 // The remaining tests are all recursive, so bail out if we hit the limit.
347 if (Depth++ == MaxDepth)
348 return false;
350 // If both operands of a binop are splats, the result is a splat.
351 Value *X, *Y, *Z;
352 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
353 return isSplatValue(X, Depth) && isSplatValue(Y, Depth);
355 // If all operands of a select are splats, the result is a splat.
356 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
357 return isSplatValue(X, Depth) && isSplatValue(Y, Depth) &&
358 isSplatValue(Z, Depth);
360 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
362 return false;
365 MapVector<Instruction *, uint64_t>
366 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
367 const TargetTransformInfo *TTI) {
369 // DemandedBits will give us every value's live-out bits. But we want
370 // to ensure no extra casts would need to be inserted, so every DAG
371 // of connected values must have the same minimum bitwidth.
372 EquivalenceClasses<Value *> ECs;
373 SmallVector<Value *, 16> Worklist;
374 SmallPtrSet<Value *, 4> Roots;
375 SmallPtrSet<Value *, 16> Visited;
376 DenseMap<Value *, uint64_t> DBits;
377 SmallPtrSet<Instruction *, 4> InstructionSet;
378 MapVector<Instruction *, uint64_t> MinBWs;
380 // Determine the roots. We work bottom-up, from truncs or icmps.
381 bool SeenExtFromIllegalType = false;
382 for (auto *BB : Blocks)
383 for (auto &I : *BB) {
384 InstructionSet.insert(&I);
386 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
387 !TTI->isTypeLegal(I.getOperand(0)->getType()))
388 SeenExtFromIllegalType = true;
390 // Only deal with non-vector integers up to 64-bits wide.
391 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
392 !I.getType()->isVectorTy() &&
393 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
394 // Don't make work for ourselves. If we know the loaded type is legal,
395 // don't add it to the worklist.
396 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
397 continue;
399 Worklist.push_back(&I);
400 Roots.insert(&I);
403 // Early exit.
404 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
405 return MinBWs;
407 // Now proceed breadth-first, unioning values together.
408 while (!Worklist.empty()) {
409 Value *Val = Worklist.pop_back_val();
410 Value *Leader = ECs.getOrInsertLeaderValue(Val);
412 if (Visited.count(Val))
413 continue;
414 Visited.insert(Val);
416 // Non-instructions terminate a chain successfully.
417 if (!isa<Instruction>(Val))
418 continue;
419 Instruction *I = cast<Instruction>(Val);
421 // If we encounter a type that is larger than 64 bits, we can't represent
422 // it so bail out.
423 if (DB.getDemandedBits(I).getBitWidth() > 64)
424 return MapVector<Instruction *, uint64_t>();
426 uint64_t V = DB.getDemandedBits(I).getZExtValue();
427 DBits[Leader] |= V;
428 DBits[I] = V;
430 // Casts, loads and instructions outside of our range terminate a chain
431 // successfully.
432 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
433 !InstructionSet.count(I))
434 continue;
436 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
437 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
438 // transform anything that relies on them.
439 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
440 !I->getType()->isIntegerTy()) {
441 DBits[Leader] |= ~0ULL;
442 continue;
445 // We don't modify the types of PHIs. Reductions will already have been
446 // truncated if possible, and inductions' sizes will have been chosen by
447 // indvars.
448 if (isa<PHINode>(I))
449 continue;
451 if (DBits[Leader] == ~0ULL)
452 // All bits demanded, no point continuing.
453 continue;
455 for (Value *O : cast<User>(I)->operands()) {
456 ECs.unionSets(Leader, O);
457 Worklist.push_back(O);
461 // Now we've discovered all values, walk them to see if there are
462 // any users we didn't see. If there are, we can't optimize that
463 // chain.
464 for (auto &I : DBits)
465 for (auto *U : I.first->users())
466 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
467 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
469 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
470 uint64_t LeaderDemandedBits = 0;
471 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
472 LeaderDemandedBits |= DBits[*MI];
474 uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
475 llvm::countLeadingZeros(LeaderDemandedBits);
476 // Round up to a power of 2
477 if (!isPowerOf2_64((uint64_t)MinBW))
478 MinBW = NextPowerOf2(MinBW);
480 // We don't modify the types of PHIs. Reductions will already have been
481 // truncated if possible, and inductions' sizes will have been chosen by
482 // indvars.
483 // If we are required to shrink a PHI, abandon this entire equivalence class.
484 bool Abort = false;
485 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
486 if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
487 Abort = true;
488 break;
490 if (Abort)
491 continue;
493 for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
494 if (!isa<Instruction>(*MI))
495 continue;
496 Type *Ty = (*MI)->getType();
497 if (Roots.count(*MI))
498 Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
499 if (MinBW < Ty->getScalarSizeInBits())
500 MinBWs[cast<Instruction>(*MI)] = MinBW;
504 return MinBWs;
507 /// Add all access groups in @p AccGroups to @p List.
508 template <typename ListT>
509 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
510 // Interpret an access group as a list containing itself.
511 if (AccGroups->getNumOperands() == 0) {
512 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
513 List.insert(AccGroups);
514 return;
517 for (auto &AccGroupListOp : AccGroups->operands()) {
518 auto *Item = cast<MDNode>(AccGroupListOp.get());
519 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
520 List.insert(Item);
524 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
525 if (!AccGroups1)
526 return AccGroups2;
527 if (!AccGroups2)
528 return AccGroups1;
529 if (AccGroups1 == AccGroups2)
530 return AccGroups1;
532 SmallSetVector<Metadata *, 4> Union;
533 addToAccessGroupList(Union, AccGroups1);
534 addToAccessGroupList(Union, AccGroups2);
536 if (Union.size() == 0)
537 return nullptr;
538 if (Union.size() == 1)
539 return cast<MDNode>(Union.front());
541 LLVMContext &Ctx = AccGroups1->getContext();
542 return MDNode::get(Ctx, Union.getArrayRef());
545 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
546 const Instruction *Inst2) {
547 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
548 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
550 if (!MayAccessMem1 && !MayAccessMem2)
551 return nullptr;
552 if (!MayAccessMem1)
553 return Inst2->getMetadata(LLVMContext::MD_access_group);
554 if (!MayAccessMem2)
555 return Inst1->getMetadata(LLVMContext::MD_access_group);
557 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
558 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
559 if (!MD1 || !MD2)
560 return nullptr;
561 if (MD1 == MD2)
562 return MD1;
564 // Use set for scalable 'contains' check.
565 SmallPtrSet<Metadata *, 4> AccGroupSet2;
566 addToAccessGroupList(AccGroupSet2, MD2);
568 SmallVector<Metadata *, 4> Intersection;
569 if (MD1->getNumOperands() == 0) {
570 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
571 if (AccGroupSet2.count(MD1))
572 Intersection.push_back(MD1);
573 } else {
574 for (const MDOperand &Node : MD1->operands()) {
575 auto *Item = cast<MDNode>(Node.get());
576 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
577 if (AccGroupSet2.count(Item))
578 Intersection.push_back(Item);
582 if (Intersection.size() == 0)
583 return nullptr;
584 if (Intersection.size() == 1)
585 return cast<MDNode>(Intersection.front());
587 LLVMContext &Ctx = Inst1->getContext();
588 return MDNode::get(Ctx, Intersection);
591 /// \returns \p I after propagating metadata from \p VL.
592 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
593 Instruction *I0 = cast<Instruction>(VL[0]);
594 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
595 I0->getAllMetadataOtherThanDebugLoc(Metadata);
597 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
598 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
599 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
600 LLVMContext::MD_access_group}) {
601 MDNode *MD = I0->getMetadata(Kind);
603 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
604 const Instruction *IJ = cast<Instruction>(VL[J]);
605 MDNode *IMD = IJ->getMetadata(Kind);
606 switch (Kind) {
607 case LLVMContext::MD_tbaa:
608 MD = MDNode::getMostGenericTBAA(MD, IMD);
609 break;
610 case LLVMContext::MD_alias_scope:
611 MD = MDNode::getMostGenericAliasScope(MD, IMD);
612 break;
613 case LLVMContext::MD_fpmath:
614 MD = MDNode::getMostGenericFPMath(MD, IMD);
615 break;
616 case LLVMContext::MD_noalias:
617 case LLVMContext::MD_nontemporal:
618 case LLVMContext::MD_invariant_load:
619 MD = MDNode::intersect(MD, IMD);
620 break;
621 case LLVMContext::MD_access_group:
622 MD = intersectAccessGroups(Inst, IJ);
623 break;
624 default:
625 llvm_unreachable("unhandled metadata");
629 Inst->setMetadata(Kind, MD);
632 return Inst;
635 Constant *
636 llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF,
637 const InterleaveGroup<Instruction> &Group) {
638 // All 1's means mask is not needed.
639 if (Group.getNumMembers() == Group.getFactor())
640 return nullptr;
642 // TODO: support reversed access.
643 assert(!Group.isReverse() && "Reversed group not supported.");
645 SmallVector<Constant *, 16> Mask;
646 for (unsigned i = 0; i < VF; i++)
647 for (unsigned j = 0; j < Group.getFactor(); ++j) {
648 unsigned HasMember = Group.getMember(j) ? 1 : 0;
649 Mask.push_back(Builder.getInt1(HasMember));
652 return ConstantVector::get(Mask);
655 Constant *llvm::createReplicatedMask(IRBuilder<> &Builder,
656 unsigned ReplicationFactor, unsigned VF) {
657 SmallVector<Constant *, 16> MaskVec;
658 for (unsigned i = 0; i < VF; i++)
659 for (unsigned j = 0; j < ReplicationFactor; j++)
660 MaskVec.push_back(Builder.getInt32(i));
662 return ConstantVector::get(MaskVec);
665 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
666 unsigned NumVecs) {
667 SmallVector<Constant *, 16> Mask;
668 for (unsigned i = 0; i < VF; i++)
669 for (unsigned j = 0; j < NumVecs; j++)
670 Mask.push_back(Builder.getInt32(j * VF + i));
672 return ConstantVector::get(Mask);
675 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
676 unsigned Stride, unsigned VF) {
677 SmallVector<Constant *, 16> Mask;
678 for (unsigned i = 0; i < VF; i++)
679 Mask.push_back(Builder.getInt32(Start + i * Stride));
681 return ConstantVector::get(Mask);
684 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
685 unsigned NumInts, unsigned NumUndefs) {
686 SmallVector<Constant *, 16> Mask;
687 for (unsigned i = 0; i < NumInts; i++)
688 Mask.push_back(Builder.getInt32(Start + i));
690 Constant *Undef = UndefValue::get(Builder.getInt32Ty());
691 for (unsigned i = 0; i < NumUndefs; i++)
692 Mask.push_back(Undef);
694 return ConstantVector::get(Mask);
697 /// A helper function for concatenating vectors. This function concatenates two
698 /// vectors having the same element type. If the second vector has fewer
699 /// elements than the first, it is padded with undefs.
700 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
701 Value *V2) {
702 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
703 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
704 assert(VecTy1 && VecTy2 &&
705 VecTy1->getScalarType() == VecTy2->getScalarType() &&
706 "Expect two vectors with the same element type");
708 unsigned NumElts1 = VecTy1->getNumElements();
709 unsigned NumElts2 = VecTy2->getNumElements();
710 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
712 if (NumElts1 > NumElts2) {
713 // Extend with UNDEFs.
714 Constant *ExtMask =
715 createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
716 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
719 Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
720 return Builder.CreateShuffleVector(V1, V2, Mask);
723 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
724 unsigned NumVecs = Vecs.size();
725 assert(NumVecs > 1 && "Should be at least two vectors");
727 SmallVector<Value *, 8> ResList;
728 ResList.append(Vecs.begin(), Vecs.end());
729 do {
730 SmallVector<Value *, 8> TmpList;
731 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
732 Value *V0 = ResList[i], *V1 = ResList[i + 1];
733 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
734 "Only the last vector may have a different type");
736 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
739 // Push the last vector if the total number of vectors is odd.
740 if (NumVecs % 2 != 0)
741 TmpList.push_back(ResList[NumVecs - 1]);
743 ResList = TmpList;
744 NumVecs = ResList.size();
745 } while (NumVecs > 1);
747 return ResList[0];
750 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
751 auto *ConstMask = dyn_cast<Constant>(Mask);
752 if (!ConstMask)
753 return false;
754 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
755 return true;
756 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
757 ++I) {
758 if (auto *MaskElt = ConstMask->getAggregateElement(I))
759 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
760 continue;
761 return false;
763 return true;
767 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
768 auto *ConstMask = dyn_cast<Constant>(Mask);
769 if (!ConstMask)
770 return false;
771 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
772 return true;
773 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
774 ++I) {
775 if (auto *MaskElt = ConstMask->getAggregateElement(I))
776 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
777 continue;
778 return false;
780 return true;
783 /// TODO: This is a lot like known bits, but for
784 /// vectors. Is there something we can common this with?
785 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
787 const unsigned VWidth = cast<VectorType>(Mask->getType())->getNumElements();
788 APInt DemandedElts = APInt::getAllOnesValue(VWidth);
789 if (auto *CV = dyn_cast<ConstantVector>(Mask))
790 for (unsigned i = 0; i < VWidth; i++)
791 if (CV->getAggregateElement(i)->isNullValue())
792 DemandedElts.clearBit(i);
793 return DemandedElts;
796 bool InterleavedAccessInfo::isStrided(int Stride) {
797 unsigned Factor = std::abs(Stride);
798 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
801 void InterleavedAccessInfo::collectConstStrideAccesses(
802 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
803 const ValueToValueMap &Strides) {
804 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
806 // Since it's desired that the load/store instructions be maintained in
807 // "program order" for the interleaved access analysis, we have to visit the
808 // blocks in the loop in reverse postorder (i.e., in a topological order).
809 // Such an ordering will ensure that any load/store that may be executed
810 // before a second load/store will precede the second load/store in
811 // AccessStrideInfo.
812 LoopBlocksDFS DFS(TheLoop);
813 DFS.perform(LI);
814 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
815 for (auto &I : *BB) {
816 auto *LI = dyn_cast<LoadInst>(&I);
817 auto *SI = dyn_cast<StoreInst>(&I);
818 if (!LI && !SI)
819 continue;
821 Value *Ptr = getLoadStorePointerOperand(&I);
822 // We don't check wrapping here because we don't know yet if Ptr will be
823 // part of a full group or a group with gaps. Checking wrapping for all
824 // pointers (even those that end up in groups with no gaps) will be overly
825 // conservative. For full groups, wrapping should be ok since if we would
826 // wrap around the address space we would do a memory access at nullptr
827 // even without the transformation. The wrapping checks are therefore
828 // deferred until after we've formed the interleaved groups.
829 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
830 /*Assume=*/true, /*ShouldCheckWrap=*/false);
832 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
833 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
834 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
836 // An alignment of 0 means target ABI alignment.
837 unsigned Align = getLoadStoreAlignment(&I);
838 if (!Align)
839 Align = DL.getABITypeAlignment(PtrTy->getElementType());
841 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
845 // Analyze interleaved accesses and collect them into interleaved load and
846 // store groups.
848 // When generating code for an interleaved load group, we effectively hoist all
849 // loads in the group to the location of the first load in program order. When
850 // generating code for an interleaved store group, we sink all stores to the
851 // location of the last store. This code motion can change the order of load
852 // and store instructions and may break dependences.
854 // The code generation strategy mentioned above ensures that we won't violate
855 // any write-after-read (WAR) dependences.
857 // E.g., for the WAR dependence: a = A[i]; // (1)
858 // A[i] = b; // (2)
860 // The store group of (2) is always inserted at or below (2), and the load
861 // group of (1) is always inserted at or above (1). Thus, the instructions will
862 // never be reordered. All other dependences are checked to ensure the
863 // correctness of the instruction reordering.
865 // The algorithm visits all memory accesses in the loop in bottom-up program
866 // order. Program order is established by traversing the blocks in the loop in
867 // reverse postorder when collecting the accesses.
869 // We visit the memory accesses in bottom-up order because it can simplify the
870 // construction of store groups in the presence of write-after-write (WAW)
871 // dependences.
873 // E.g., for the WAW dependence: A[i] = a; // (1)
874 // A[i] = b; // (2)
875 // A[i + 1] = c; // (3)
877 // We will first create a store group with (3) and (2). (1) can't be added to
878 // this group because it and (2) are dependent. However, (1) can be grouped
879 // with other accesses that may precede it in program order. Note that a
880 // bottom-up order does not imply that WAW dependences should not be checked.
881 void InterleavedAccessInfo::analyzeInterleaving(
882 bool EnablePredicatedInterleavedMemAccesses) {
883 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
884 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
886 // Holds all accesses with a constant stride.
887 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
888 collectConstStrideAccesses(AccessStrideInfo, Strides);
890 if (AccessStrideInfo.empty())
891 return;
893 // Collect the dependences in the loop.
894 collectDependences();
896 // Holds all interleaved store groups temporarily.
897 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
898 // Holds all interleaved load groups temporarily.
899 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
901 // Search in bottom-up program order for pairs of accesses (A and B) that can
902 // form interleaved load or store groups. In the algorithm below, access A
903 // precedes access B in program order. We initialize a group for B in the
904 // outer loop of the algorithm, and then in the inner loop, we attempt to
905 // insert each A into B's group if:
907 // 1. A and B have the same stride,
908 // 2. A and B have the same memory object size, and
909 // 3. A belongs in B's group according to its distance from B.
911 // Special care is taken to ensure group formation will not break any
912 // dependences.
913 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
914 BI != E; ++BI) {
915 Instruction *B = BI->first;
916 StrideDescriptor DesB = BI->second;
918 // Initialize a group for B if it has an allowable stride. Even if we don't
919 // create a group for B, we continue with the bottom-up algorithm to ensure
920 // we don't break any of B's dependences.
921 InterleaveGroup<Instruction> *Group = nullptr;
922 if (isStrided(DesB.Stride) &&
923 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
924 Group = getInterleaveGroup(B);
925 if (!Group) {
926 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
927 << '\n');
928 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
930 if (B->mayWriteToMemory())
931 StoreGroups.insert(Group);
932 else
933 LoadGroups.insert(Group);
936 for (auto AI = std::next(BI); AI != E; ++AI) {
937 Instruction *A = AI->first;
938 StrideDescriptor DesA = AI->second;
940 // Our code motion strategy implies that we can't have dependences
941 // between accesses in an interleaved group and other accesses located
942 // between the first and last member of the group. Note that this also
943 // means that a group can't have more than one member at a given offset.
944 // The accesses in a group can have dependences with other accesses, but
945 // we must ensure we don't extend the boundaries of the group such that
946 // we encompass those dependent accesses.
948 // For example, assume we have the sequence of accesses shown below in a
949 // stride-2 loop:
951 // (1, 2) is a group | A[i] = a; // (1)
952 // | A[i-1] = b; // (2) |
953 // A[i-3] = c; // (3)
954 // A[i] = d; // (4) | (2, 4) is not a group
956 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
957 // but not with (4). If we did, the dependent access (3) would be within
958 // the boundaries of the (2, 4) group.
959 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
960 // If a dependence exists and A is already in a group, we know that A
961 // must be a store since A precedes B and WAR dependences are allowed.
962 // Thus, A would be sunk below B. We release A's group to prevent this
963 // illegal code motion. A will then be free to form another group with
964 // instructions that precede it.
965 if (isInterleaved(A)) {
966 InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
968 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
969 "dependence between " << *A << " and "<< *B << '\n');
971 StoreGroups.remove(StoreGroup);
972 releaseGroup(StoreGroup);
975 // If a dependence exists and A is not already in a group (or it was
976 // and we just released it), B might be hoisted above A (if B is a
977 // load) or another store might be sunk below A (if B is a store). In
978 // either case, we can't add additional instructions to B's group. B
979 // will only form a group with instructions that it precedes.
980 break;
983 // At this point, we've checked for illegal code motion. If either A or B
984 // isn't strided, there's nothing left to do.
985 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
986 continue;
988 // Ignore A if it's already in a group or isn't the same kind of memory
989 // operation as B.
990 // Note that mayReadFromMemory() isn't mutually exclusive to
991 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
992 // here, canVectorizeMemory() should have returned false - except for the
993 // case we asked for optimization remarks.
994 if (isInterleaved(A) ||
995 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
996 (A->mayWriteToMemory() != B->mayWriteToMemory()))
997 continue;
999 // Check rules 1 and 2. Ignore A if its stride or size is different from
1000 // that of B.
1001 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1002 continue;
1004 // Ignore A if the memory object of A and B don't belong to the same
1005 // address space
1006 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1007 continue;
1009 // Calculate the distance from A to B.
1010 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1011 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1012 if (!DistToB)
1013 continue;
1014 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1016 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1017 // size.
1018 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1019 continue;
1021 // All members of a predicated interleave-group must have the same predicate,
1022 // and currently must reside in the same BB.
1023 BasicBlock *BlockA = A->getParent();
1024 BasicBlock *BlockB = B->getParent();
1025 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1026 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1027 continue;
1029 // The index of A is the index of B plus A's distance to B in multiples
1030 // of the size.
1031 int IndexA =
1032 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1034 // Try to insert A into B's group.
1035 if (Group->insertMember(A, IndexA, DesA.Align)) {
1036 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1037 << " into the interleave group with" << *B
1038 << '\n');
1039 InterleaveGroupMap[A] = Group;
1041 // Set the first load in program order as the insert position.
1042 if (A->mayReadFromMemory())
1043 Group->setInsertPos(A);
1045 } // Iteration over A accesses.
1046 } // Iteration over B accesses.
1048 // Remove interleaved store groups with gaps.
1049 for (auto *Group : StoreGroups)
1050 if (Group->getNumMembers() != Group->getFactor()) {
1051 LLVM_DEBUG(
1052 dbgs() << "LV: Invalidate candidate interleaved store group due "
1053 "to gaps.\n");
1054 releaseGroup(Group);
1056 // Remove interleaved groups with gaps (currently only loads) whose memory
1057 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1058 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1059 // not check wrapping (see documentation there).
1060 // FORNOW we use Assume=false;
1061 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1062 // of runtime SCEV assumptions checks (thereby potentially failing to
1063 // vectorize altogether).
1064 // Additional optional optimizations:
1065 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1066 // wrap then we can deduce that all pointers in the group don't wrap.
1067 // This means that we can forcefully peel the loop in order to only have to
1068 // check the first pointer for no-wrap. When we'll change to use Assume=true
1069 // we'll only need at most one runtime check per interleaved group.
1070 for (auto *Group : LoadGroups) {
1071 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1072 // load would wrap around the address space we would do a memory access at
1073 // nullptr even without the transformation.
1074 if (Group->getNumMembers() == Group->getFactor())
1075 continue;
1077 // Case 2: If first and last members of the group don't wrap this implies
1078 // that all the pointers in the group don't wrap.
1079 // So we check only group member 0 (which is always guaranteed to exist),
1080 // and group member Factor - 1; If the latter doesn't exist we rely on
1081 // peeling (if it is a non-reversed accsess -- see Case 3).
1082 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
1083 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
1084 /*ShouldCheckWrap=*/true)) {
1085 LLVM_DEBUG(
1086 dbgs() << "LV: Invalidate candidate interleaved group due to "
1087 "first group member potentially pointer-wrapping.\n");
1088 releaseGroup(Group);
1089 continue;
1091 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
1092 if (LastMember) {
1093 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
1094 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
1095 /*ShouldCheckWrap=*/true)) {
1096 LLVM_DEBUG(
1097 dbgs() << "LV: Invalidate candidate interleaved group due to "
1098 "last group member potentially pointer-wrapping.\n");
1099 releaseGroup(Group);
1101 } else {
1102 // Case 3: A non-reversed interleaved load group with gaps: We need
1103 // to execute at least one scalar epilogue iteration. This will ensure
1104 // we don't speculatively access memory out-of-bounds. We only need
1105 // to look for a member at index factor - 1, since every group must have
1106 // a member at index zero.
1107 if (Group->isReverse()) {
1108 LLVM_DEBUG(
1109 dbgs() << "LV: Invalidate candidate interleaved group due to "
1110 "a reverse access with gaps.\n");
1111 releaseGroup(Group);
1112 continue;
1114 LLVM_DEBUG(
1115 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1116 RequiresScalarEpilogue = true;
1121 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1122 // If no group had triggered the requirement to create an epilogue loop,
1123 // there is nothing to do.
1124 if (!requiresScalarEpilogue())
1125 return;
1127 // Avoid releasing a Group twice.
1128 SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet;
1129 for (auto &I : InterleaveGroupMap) {
1130 InterleaveGroup<Instruction> *Group = I.second;
1131 if (Group->requiresScalarEpilogue())
1132 DelSet.insert(Group);
1134 for (auto *Ptr : DelSet) {
1135 LLVM_DEBUG(
1136 dbgs()
1137 << "LV: Invalidate candidate interleaved group due to gaps that "
1138 "require a scalar epilogue (not allowed under optsize) and cannot "
1139 "be masked (not enabled). \n");
1140 releaseGroup(Ptr);
1143 RequiresScalarEpilogue = false;
1146 template <typename InstT>
1147 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1148 llvm_unreachable("addMetadata can only be used for Instruction");
1151 namespace llvm {
1152 template <>
1153 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1154 SmallVector<Value *, 4> VL;
1155 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1156 [](std::pair<int, Instruction *> p) { return p.second; });
1157 propagateMetadata(NewInst, VL);