[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / AsmParser / LLParser.cpp
blobeb66a7c82b55870cc1c02928ef14ed5082e0e287
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the parser class for .ll files.
11 //===----------------------------------------------------------------------===//
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
54 using namespace llvm;
56 static std::string getTypeString(Type *T) {
57 std::string Result;
58 raw_string_ostream Tmp(Result);
59 Tmp << *T;
60 return Tmp.str();
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65 // Prime the lexer.
66 Lex.Lex();
68 if (Context.shouldDiscardValueNames())
69 return Error(
70 Lex.getLoc(),
71 "Can't read textual IR with a Context that discards named Values");
73 return ParseTopLevelEntities() || ValidateEndOfModule() ||
74 ValidateEndOfIndex();
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78 const SlotMapping *Slots) {
79 restoreParsingState(Slots);
80 Lex.Lex();
82 Type *Ty = nullptr;
83 if (ParseType(Ty) || parseConstantValue(Ty, C))
84 return true;
85 if (Lex.getKind() != lltok::Eof)
86 return Error(Lex.getLoc(), "expected end of string");
87 return false;
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91 const SlotMapping *Slots) {
92 restoreParsingState(Slots);
93 Lex.Lex();
95 Read = 0;
96 SMLoc Start = Lex.getLoc();
97 Ty = nullptr;
98 if (ParseType(Ty))
99 return true;
100 SMLoc End = Lex.getLoc();
101 Read = End.getPointer() - Start.getPointer();
103 return false;
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107 if (!Slots)
108 return;
109 NumberedVals = Slots->GlobalValues;
110 NumberedMetadata = Slots->MetadataNodes;
111 for (const auto &I : Slots->NamedTypes)
112 NamedTypes.insert(
113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114 for (const auto &I : Slots->Types)
115 NumberedTypes.insert(
116 std::make_pair(I.first, std::make_pair(I.second, LocTy())));
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122 if (!M)
123 return false;
124 // Handle any function attribute group forward references.
125 for (const auto &RAG : ForwardRefAttrGroups) {
126 Value *V = RAG.first;
127 const std::vector<unsigned> &Attrs = RAG.second;
128 AttrBuilder B;
130 for (const auto &Attr : Attrs)
131 B.merge(NumberedAttrBuilders[Attr]);
133 if (Function *Fn = dyn_cast<Function>(V)) {
134 AttributeList AS = Fn->getAttributes();
135 AttrBuilder FnAttrs(AS.getFnAttributes());
136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
138 FnAttrs.merge(B);
140 // If the alignment was parsed as an attribute, move to the alignment
141 // field.
142 if (FnAttrs.hasAlignmentAttr()) {
143 Fn->setAlignment(FnAttrs.getAlignment());
144 FnAttrs.removeAttribute(Attribute::Alignment);
147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148 AttributeSet::get(Context, FnAttrs));
149 Fn->setAttributes(AS);
150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151 AttributeList AS = CI->getAttributes();
152 AttrBuilder FnAttrs(AS.getFnAttributes());
153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154 FnAttrs.merge(B);
155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156 AttributeSet::get(Context, FnAttrs));
157 CI->setAttributes(AS);
158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159 AttributeList AS = II->getAttributes();
160 AttrBuilder FnAttrs(AS.getFnAttributes());
161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162 FnAttrs.merge(B);
163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164 AttributeSet::get(Context, FnAttrs));
165 II->setAttributes(AS);
166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167 AttributeList AS = CBI->getAttributes();
168 AttrBuilder FnAttrs(AS.getFnAttributes());
169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170 FnAttrs.merge(B);
171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172 AttributeSet::get(Context, FnAttrs));
173 CBI->setAttributes(AS);
174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175 AttrBuilder Attrs(GV->getAttributes());
176 Attrs.merge(B);
177 GV->setAttributes(AttributeSet::get(Context,Attrs));
178 } else {
179 llvm_unreachable("invalid object with forward attribute group reference");
183 // If there are entries in ForwardRefBlockAddresses at this point, the
184 // function was never defined.
185 if (!ForwardRefBlockAddresses.empty())
186 return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187 "expected function name in blockaddress");
189 for (const auto &NT : NumberedTypes)
190 if (NT.second.second.isValid())
191 return Error(NT.second.second,
192 "use of undefined type '%" + Twine(NT.first) + "'");
194 for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196 if (I->second.second.isValid())
197 return Error(I->second.second,
198 "use of undefined type named '" + I->getKey() + "'");
200 if (!ForwardRefComdats.empty())
201 return Error(ForwardRefComdats.begin()->second,
202 "use of undefined comdat '$" +
203 ForwardRefComdats.begin()->first + "'");
205 if (!ForwardRefVals.empty())
206 return Error(ForwardRefVals.begin()->second.second,
207 "use of undefined value '@" + ForwardRefVals.begin()->first +
208 "'");
210 if (!ForwardRefValIDs.empty())
211 return Error(ForwardRefValIDs.begin()->second.second,
212 "use of undefined value '@" +
213 Twine(ForwardRefValIDs.begin()->first) + "'");
215 if (!ForwardRefMDNodes.empty())
216 return Error(ForwardRefMDNodes.begin()->second.second,
217 "use of undefined metadata '!" +
218 Twine(ForwardRefMDNodes.begin()->first) + "'");
220 // Resolve metadata cycles.
221 for (auto &N : NumberedMetadata) {
222 if (N.second && !N.second->isResolved())
223 N.second->resolveCycles();
226 for (auto *Inst : InstsWithTBAATag) {
227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229 auto *UpgradedMD = UpgradeTBAANode(*MD);
230 if (MD != UpgradedMD)
231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
234 // Look for intrinsic functions and CallInst that need to be upgraded
235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
238 // Some types could be renamed during loading if several modules are
239 // loaded in the same LLVMContext (LTO scenario). In this case we should
240 // remangle intrinsics names as well.
241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242 Function *F = &*FI++;
243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244 F->replaceAllUsesWith(Remangled.getValue());
245 F->eraseFromParent();
249 if (UpgradeDebugInfo)
250 llvm::UpgradeDebugInfo(*M);
252 UpgradeModuleFlags(*M);
253 UpgradeSectionAttributes(*M);
255 if (!Slots)
256 return false;
257 // Initialize the slot mapping.
258 // Because by this point we've parsed and validated everything, we can "steal"
259 // the mapping from LLParser as it doesn't need it anymore.
260 Slots->GlobalValues = std::move(NumberedVals);
261 Slots->MetadataNodes = std::move(NumberedMetadata);
262 for (const auto &I : NamedTypes)
263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264 for (const auto &I : NumberedTypes)
265 Slots->Types.insert(std::make_pair(I.first, I.second.first));
267 return false;
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272 if (!Index)
273 return false;
275 if (!ForwardRefValueInfos.empty())
276 return Error(ForwardRefValueInfos.begin()->second.front().second,
277 "use of undefined summary '^" +
278 Twine(ForwardRefValueInfos.begin()->first) + "'");
280 if (!ForwardRefAliasees.empty())
281 return Error(ForwardRefAliasees.begin()->second.front().second,
282 "use of undefined summary '^" +
283 Twine(ForwardRefAliasees.begin()->first) + "'");
285 if (!ForwardRefTypeIds.empty())
286 return Error(ForwardRefTypeIds.begin()->second.front().second,
287 "use of undefined type id summary '^" +
288 Twine(ForwardRefTypeIds.begin()->first) + "'");
290 return false;
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
297 bool LLParser::ParseTopLevelEntities() {
298 // If there is no Module, then parse just the summary index entries.
299 if (!M) {
300 while (true) {
301 switch (Lex.getKind()) {
302 case lltok::Eof:
303 return false;
304 case lltok::SummaryID:
305 if (ParseSummaryEntry())
306 return true;
307 break;
308 case lltok::kw_source_filename:
309 if (ParseSourceFileName())
310 return true;
311 break;
312 default:
313 // Skip everything else
314 Lex.Lex();
318 while (true) {
319 switch (Lex.getKind()) {
320 default: return TokError("expected top-level entity");
321 case lltok::Eof: return false;
322 case lltok::kw_declare: if (ParseDeclare()) return true; break;
323 case lltok::kw_define: if (ParseDefine()) return true; break;
324 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
326 case lltok::kw_source_filename:
327 if (ParseSourceFileName())
328 return true;
329 break;
330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332 case lltok::LocalVar: if (ParseNamedType()) return true; break;
333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
335 case lltok::ComdatVar: if (parseComdat()) return true; break;
336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
337 case lltok::SummaryID:
338 if (ParseSummaryEntry())
339 return true;
340 break;
341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344 case lltok::kw_uselistorder_bb:
345 if (ParseUseListOrderBB())
346 return true;
347 break;
352 /// toplevelentity
353 /// ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355 assert(Lex.getKind() == lltok::kw_module);
356 Lex.Lex();
358 std::string AsmStr;
359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360 ParseStringConstant(AsmStr)) return true;
362 M->appendModuleInlineAsm(AsmStr);
363 return false;
366 /// toplevelentity
367 /// ::= 'target' 'triple' '=' STRINGCONSTANT
368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370 assert(Lex.getKind() == lltok::kw_target);
371 std::string Str;
372 switch (Lex.Lex()) {
373 default: return TokError("unknown target property");
374 case lltok::kw_triple:
375 Lex.Lex();
376 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377 ParseStringConstant(Str))
378 return true;
379 M->setTargetTriple(Str);
380 return false;
381 case lltok::kw_datalayout:
382 Lex.Lex();
383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384 ParseStringConstant(Str))
385 return true;
386 if (DataLayoutStr.empty())
387 M->setDataLayout(Str);
388 return false;
392 /// toplevelentity
393 /// ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395 assert(Lex.getKind() == lltok::kw_source_filename);
396 Lex.Lex();
397 if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398 ParseStringConstant(SourceFileName))
399 return true;
400 if (M)
401 M->setSourceFileName(SourceFileName);
402 return false;
405 /// toplevelentity
406 /// ::= 'deplibs' '=' '[' ']'
407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410 assert(Lex.getKind() == lltok::kw_deplibs);
411 Lex.Lex();
412 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414 return true;
416 if (EatIfPresent(lltok::rsquare))
417 return false;
419 do {
420 std::string Str;
421 if (ParseStringConstant(Str)) return true;
422 } while (EatIfPresent(lltok::comma));
424 return ParseToken(lltok::rsquare, "expected ']' at end of list");
427 /// ParseUnnamedType:
428 /// ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430 LocTy TypeLoc = Lex.getLoc();
431 unsigned TypeID = Lex.getUIntVal();
432 Lex.Lex(); // eat LocalVarID;
434 if (ParseToken(lltok::equal, "expected '=' after name") ||
435 ParseToken(lltok::kw_type, "expected 'type' after '='"))
436 return true;
438 Type *Result = nullptr;
439 if (ParseStructDefinition(TypeLoc, "",
440 NumberedTypes[TypeID], Result)) return true;
442 if (!isa<StructType>(Result)) {
443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444 if (Entry.first)
445 return Error(TypeLoc, "non-struct types may not be recursive");
446 Entry.first = Result;
447 Entry.second = SMLoc();
450 return false;
453 /// toplevelentity
454 /// ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456 std::string Name = Lex.getStrVal();
457 LocTy NameLoc = Lex.getLoc();
458 Lex.Lex(); // eat LocalVar.
460 if (ParseToken(lltok::equal, "expected '=' after name") ||
461 ParseToken(lltok::kw_type, "expected 'type' after name"))
462 return true;
464 Type *Result = nullptr;
465 if (ParseStructDefinition(NameLoc, Name,
466 NamedTypes[Name], Result)) return true;
468 if (!isa<StructType>(Result)) {
469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470 if (Entry.first)
471 return Error(NameLoc, "non-struct types may not be recursive");
472 Entry.first = Result;
473 Entry.second = SMLoc();
476 return false;
479 /// toplevelentity
480 /// ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482 assert(Lex.getKind() == lltok::kw_declare);
483 Lex.Lex();
485 std::vector<std::pair<unsigned, MDNode *>> MDs;
486 while (Lex.getKind() == lltok::MetadataVar) {
487 unsigned MDK;
488 MDNode *N;
489 if (ParseMetadataAttachment(MDK, N))
490 return true;
491 MDs.push_back({MDK, N});
494 Function *F;
495 if (ParseFunctionHeader(F, false))
496 return true;
497 for (auto &MD : MDs)
498 F->addMetadata(MD.first, *MD.second);
499 return false;
502 /// toplevelentity
503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505 assert(Lex.getKind() == lltok::kw_define);
506 Lex.Lex();
508 Function *F;
509 return ParseFunctionHeader(F, true) ||
510 ParseOptionalFunctionMetadata(*F) ||
511 ParseFunctionBody(*F);
514 /// ParseGlobalType
515 /// ::= 'constant'
516 /// ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518 if (Lex.getKind() == lltok::kw_constant)
519 IsConstant = true;
520 else if (Lex.getKind() == lltok::kw_global)
521 IsConstant = false;
522 else {
523 IsConstant = false;
524 return TokError("expected 'global' or 'constant'");
526 Lex.Lex();
527 return false;
530 bool LLParser::ParseOptionalUnnamedAddr(
531 GlobalVariable::UnnamedAddr &UnnamedAddr) {
532 if (EatIfPresent(lltok::kw_unnamed_addr))
533 UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534 else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535 UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536 else
537 UnnamedAddr = GlobalValue::UnnamedAddr::None;
538 return false;
541 /// ParseUnnamedGlobal:
542 /// OptionalVisibility (ALIAS | IFUNC) ...
543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 /// OptionalDLLStorageClass
545 /// ... -> global variable
546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 /// OptionalDLLStorageClass
549 /// ... -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551 unsigned VarID = NumberedVals.size();
552 std::string Name;
553 LocTy NameLoc = Lex.getLoc();
555 // Handle the GlobalID form.
556 if (Lex.getKind() == lltok::GlobalID) {
557 if (Lex.getUIntVal() != VarID)
558 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559 Twine(VarID) + "'");
560 Lex.Lex(); // eat GlobalID;
562 if (ParseToken(lltok::equal, "expected '=' after name"))
563 return true;
566 bool HasLinkage;
567 unsigned Linkage, Visibility, DLLStorageClass;
568 bool DSOLocal;
569 GlobalVariable::ThreadLocalMode TLM;
570 GlobalVariable::UnnamedAddr UnnamedAddr;
571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572 DSOLocal) ||
573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574 return true;
576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
584 /// ParseNamedGlobal:
585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 /// OptionalVisibility OptionalDLLStorageClass
588 /// ... -> global variable
589 bool LLParser::ParseNamedGlobal() {
590 assert(Lex.getKind() == lltok::GlobalVar);
591 LocTy NameLoc = Lex.getLoc();
592 std::string Name = Lex.getStrVal();
593 Lex.Lex();
595 bool HasLinkage;
596 unsigned Linkage, Visibility, DLLStorageClass;
597 bool DSOLocal;
598 GlobalVariable::ThreadLocalMode TLM;
599 GlobalVariable::UnnamedAddr UnnamedAddr;
600 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602 DSOLocal) ||
603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604 return true;
606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 bool LLParser::parseComdat() {
615 assert(Lex.getKind() == lltok::ComdatVar);
616 std::string Name = Lex.getStrVal();
617 LocTy NameLoc = Lex.getLoc();
618 Lex.Lex();
620 if (ParseToken(lltok::equal, "expected '=' here"))
621 return true;
623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624 return TokError("expected comdat type");
626 Comdat::SelectionKind SK;
627 switch (Lex.getKind()) {
628 default:
629 return TokError("unknown selection kind");
630 case lltok::kw_any:
631 SK = Comdat::Any;
632 break;
633 case lltok::kw_exactmatch:
634 SK = Comdat::ExactMatch;
635 break;
636 case lltok::kw_largest:
637 SK = Comdat::Largest;
638 break;
639 case lltok::kw_noduplicates:
640 SK = Comdat::NoDuplicates;
641 break;
642 case lltok::kw_samesize:
643 SK = Comdat::SameSize;
644 break;
646 Lex.Lex();
648 // See if the comdat was forward referenced, if so, use the comdat.
649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
654 Comdat *C;
655 if (I != ComdatSymTab.end())
656 C = &I->second;
657 else
658 C = M->getOrInsertComdat(Name);
659 C->setSelectionKind(SK);
661 return false;
664 // MDString:
665 // ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667 std::string Str;
668 if (ParseStringConstant(Str)) return true;
669 Result = MDString::get(Context, Str);
670 return false;
673 // MDNode:
674 // ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676 // !{ ..., !42, ... }
677 LocTy IDLoc = Lex.getLoc();
678 unsigned MID = 0;
679 if (ParseUInt32(MID))
680 return true;
682 // If not a forward reference, just return it now.
683 if (NumberedMetadata.count(MID)) {
684 Result = NumberedMetadata[MID];
685 return false;
688 // Otherwise, create MDNode forward reference.
689 auto &FwdRef = ForwardRefMDNodes[MID];
690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
692 Result = FwdRef.first.get();
693 NumberedMetadata[MID].reset(Result);
694 return false;
697 /// ParseNamedMetadata:
698 /// !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700 assert(Lex.getKind() == lltok::MetadataVar);
701 std::string Name = Lex.getStrVal();
702 Lex.Lex();
704 if (ParseToken(lltok::equal, "expected '=' here") ||
705 ParseToken(lltok::exclaim, "Expected '!' here") ||
706 ParseToken(lltok::lbrace, "Expected '{' here"))
707 return true;
709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710 if (Lex.getKind() != lltok::rbrace)
711 do {
712 MDNode *N = nullptr;
713 // Parse DIExpressions inline as a special case. They are still MDNodes,
714 // so they can still appear in named metadata. Remove this logic if they
715 // become plain Metadata.
716 if (Lex.getKind() == lltok::MetadataVar &&
717 Lex.getStrVal() == "DIExpression") {
718 if (ParseDIExpression(N, /*IsDistinct=*/false))
719 return true;
720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721 ParseMDNodeID(N)) {
722 return true;
724 NMD->addOperand(N);
725 } while (EatIfPresent(lltok::comma));
727 return ParseToken(lltok::rbrace, "expected end of metadata node");
730 /// ParseStandaloneMetadata:
731 /// !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733 assert(Lex.getKind() == lltok::exclaim);
734 Lex.Lex();
735 unsigned MetadataID = 0;
737 MDNode *Init;
738 if (ParseUInt32(MetadataID) ||
739 ParseToken(lltok::equal, "expected '=' here"))
740 return true;
742 // Detect common error, from old metadata syntax.
743 if (Lex.getKind() == lltok::Type)
744 return TokError("unexpected type in metadata definition");
746 bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747 if (Lex.getKind() == lltok::MetadataVar) {
748 if (ParseSpecializedMDNode(Init, IsDistinct))
749 return true;
750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751 ParseMDTuple(Init, IsDistinct))
752 return true;
754 // See if this was forward referenced, if so, handle it.
755 auto FI = ForwardRefMDNodes.find(MetadataID);
756 if (FI != ForwardRefMDNodes.end()) {
757 FI->second.first->replaceAllUsesWith(Init);
758 ForwardRefMDNodes.erase(FI);
760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761 } else {
762 if (NumberedMetadata.count(MetadataID))
763 return TokError("Metadata id is already used");
764 NumberedMetadata[MetadataID].reset(Init);
767 return false;
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772 // Each module summary entry consists of a tag for the entry
773 // type, followed by a colon, then the fields surrounded by nested sets of
774 // parentheses. The "tag:" looks like a Label. Once parsing support is
775 // in place we will look for the tokens corresponding to the expected tags.
776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777 Lex.getKind() != lltok::kw_typeid)
778 return TokError(
779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780 Lex.Lex();
781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782 ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783 return true;
784 // Now walk through the parenthesized entry, until the number of open
785 // parentheses goes back down to 0 (the first '(' was parsed above).
786 unsigned NumOpenParen = 1;
787 do {
788 switch (Lex.getKind()) {
789 case lltok::lparen:
790 NumOpenParen++;
791 break;
792 case lltok::rparen:
793 NumOpenParen--;
794 break;
795 case lltok::Eof:
796 return TokError("found end of file while parsing summary entry");
797 default:
798 // Skip everything in between parentheses.
799 break;
801 Lex.Lex();
802 } while (NumOpenParen > 0);
803 return false;
806 /// SummaryEntry
807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809 assert(Lex.getKind() == lltok::SummaryID);
810 unsigned SummaryID = Lex.getUIntVal();
812 // For summary entries, colons should be treated as distinct tokens,
813 // not an indication of the end of a label token.
814 Lex.setIgnoreColonInIdentifiers(true);
816 Lex.Lex();
817 if (ParseToken(lltok::equal, "expected '=' here"))
818 return true;
820 // If we don't have an index object, skip the summary entry.
821 if (!Index)
822 return SkipModuleSummaryEntry();
824 bool result = false;
825 switch (Lex.getKind()) {
826 case lltok::kw_gv:
827 result = ParseGVEntry(SummaryID);
828 break;
829 case lltok::kw_module:
830 result = ParseModuleEntry(SummaryID);
831 break;
832 case lltok::kw_typeid:
833 result = ParseTypeIdEntry(SummaryID);
834 break;
835 case lltok::kw_typeidCompatibleVTable:
836 result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837 break;
838 default:
839 result = Error(Lex.getLoc(), "unexpected summary kind");
840 break;
842 Lex.setIgnoreColonInIdentifiers(false);
843 return result;
846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854 if (DSOLocal)
855 GV.setDSOLocal(true);
858 /// parseIndirectSymbol:
859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 /// OptionalVisibility OptionalDLLStorageClass
861 /// OptionalThreadLocal OptionalUnnamedAddr
862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
864 /// IndirectSymbol
865 /// ::= TypeAndValue
867 /// IndirectSymbolAttr
868 /// ::= ',' 'partition' StringConstant
870 /// Everything through OptionalUnnamedAddr has already been parsed.
872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873 unsigned L, unsigned Visibility,
874 unsigned DLLStorageClass, bool DSOLocal,
875 GlobalVariable::ThreadLocalMode TLM,
876 GlobalVariable::UnnamedAddr UnnamedAddr) {
877 bool IsAlias;
878 if (Lex.getKind() == lltok::kw_alias)
879 IsAlias = true;
880 else if (Lex.getKind() == lltok::kw_ifunc)
881 IsAlias = false;
882 else
883 llvm_unreachable("Not an alias or ifunc!");
884 Lex.Lex();
886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889 return Error(NameLoc, "invalid linkage type for alias");
891 if (!isValidVisibilityForLinkage(Visibility, L))
892 return Error(NameLoc,
893 "symbol with local linkage must have default visibility");
895 Type *Ty;
896 LocTy ExplicitTypeLoc = Lex.getLoc();
897 if (ParseType(Ty) ||
898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899 return true;
901 Constant *Aliasee;
902 LocTy AliaseeLoc = Lex.getLoc();
903 if (Lex.getKind() != lltok::kw_bitcast &&
904 Lex.getKind() != lltok::kw_getelementptr &&
905 Lex.getKind() != lltok::kw_addrspacecast &&
906 Lex.getKind() != lltok::kw_inttoptr) {
907 if (ParseGlobalTypeAndValue(Aliasee))
908 return true;
909 } else {
910 // The bitcast dest type is not present, it is implied by the dest type.
911 ValID ID;
912 if (ParseValID(ID))
913 return true;
914 if (ID.Kind != ValID::t_Constant)
915 return Error(AliaseeLoc, "invalid aliasee");
916 Aliasee = ID.ConstantVal;
919 Type *AliaseeType = Aliasee->getType();
920 auto *PTy = dyn_cast<PointerType>(AliaseeType);
921 if (!PTy)
922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923 unsigned AddrSpace = PTy->getAddressSpace();
925 if (IsAlias && Ty != PTy->getElementType())
926 return Error(
927 ExplicitTypeLoc,
928 "explicit pointee type doesn't match operand's pointee type");
930 if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931 return Error(
932 ExplicitTypeLoc,
933 "explicit pointee type should be a function type");
935 GlobalValue *GVal = nullptr;
937 // See if the alias was forward referenced, if so, prepare to replace the
938 // forward reference.
939 if (!Name.empty()) {
940 GVal = M->getNamedValue(Name);
941 if (GVal) {
942 if (!ForwardRefVals.erase(Name))
943 return Error(NameLoc, "redefinition of global '@" + Name + "'");
945 } else {
946 auto I = ForwardRefValIDs.find(NumberedVals.size());
947 if (I != ForwardRefValIDs.end()) {
948 GVal = I->second.first;
949 ForwardRefValIDs.erase(I);
953 // Okay, create the alias but do not insert it into the module yet.
954 std::unique_ptr<GlobalIndirectSymbol> GA;
955 if (IsAlias)
956 GA.reset(GlobalAlias::create(Ty, AddrSpace,
957 (GlobalValue::LinkageTypes)Linkage, Name,
958 Aliasee, /*Parent*/ nullptr));
959 else
960 GA.reset(GlobalIFunc::create(Ty, AddrSpace,
961 (GlobalValue::LinkageTypes)Linkage, Name,
962 Aliasee, /*Parent*/ nullptr));
963 GA->setThreadLocalMode(TLM);
964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966 GA->setUnnamedAddr(UnnamedAddr);
967 maybeSetDSOLocal(DSOLocal, *GA);
969 // At this point we've parsed everything except for the IndirectSymbolAttrs.
970 // Now parse them if there are any.
971 while (Lex.getKind() == lltok::comma) {
972 Lex.Lex();
974 if (Lex.getKind() == lltok::kw_partition) {
975 Lex.Lex();
976 GA->setPartition(Lex.getStrVal());
977 if (ParseToken(lltok::StringConstant, "expected partition string"))
978 return true;
979 } else {
980 return TokError("unknown alias or ifunc property!");
984 if (Name.empty())
985 NumberedVals.push_back(GA.get());
987 if (GVal) {
988 // Verify that types agree.
989 if (GVal->getType() != GA->getType())
990 return Error(
991 ExplicitTypeLoc,
992 "forward reference and definition of alias have different types");
994 // If they agree, just RAUW the old value with the alias and remove the
995 // forward ref info.
996 GVal->replaceAllUsesWith(GA.get());
997 GVal->eraseFromParent();
1000 // Insert into the module, we know its name won't collide now.
1001 if (IsAlias)
1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003 else
1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005 assert(GA->getName() == Name && "Should not be a name conflict!");
1007 // The module owns this now
1008 GA.release();
1010 return false;
1013 /// ParseGlobal
1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 /// OptionalVisibility OptionalDLLStorageClass
1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 /// Const OptionalAttrs
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027 unsigned Linkage, bool HasLinkage,
1028 unsigned Visibility, unsigned DLLStorageClass,
1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030 GlobalVariable::UnnamedAddr UnnamedAddr) {
1031 if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032 return Error(NameLoc,
1033 "symbol with local linkage must have default visibility");
1035 unsigned AddrSpace;
1036 bool IsConstant, IsExternallyInitialized;
1037 LocTy IsExternallyInitializedLoc;
1038 LocTy TyLoc;
1040 Type *Ty = nullptr;
1041 if (ParseOptionalAddrSpace(AddrSpace) ||
1042 ParseOptionalToken(lltok::kw_externally_initialized,
1043 IsExternallyInitialized,
1044 &IsExternallyInitializedLoc) ||
1045 ParseGlobalType(IsConstant) ||
1046 ParseType(Ty, TyLoc))
1047 return true;
1049 // If the linkage is specified and is external, then no initializer is
1050 // present.
1051 Constant *Init = nullptr;
1052 if (!HasLinkage ||
1053 !GlobalValue::isValidDeclarationLinkage(
1054 (GlobalValue::LinkageTypes)Linkage)) {
1055 if (ParseGlobalValue(Ty, Init))
1056 return true;
1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1060 return Error(TyLoc, "invalid type for global variable");
1062 GlobalValue *GVal = nullptr;
1064 // See if the global was forward referenced, if so, use the global.
1065 if (!Name.empty()) {
1066 GVal = M->getNamedValue(Name);
1067 if (GVal) {
1068 if (!ForwardRefVals.erase(Name))
1069 return Error(NameLoc, "redefinition of global '@" + Name + "'");
1071 } else {
1072 auto I = ForwardRefValIDs.find(NumberedVals.size());
1073 if (I != ForwardRefValIDs.end()) {
1074 GVal = I->second.first;
1075 ForwardRefValIDs.erase(I);
1079 GlobalVariable *GV;
1080 if (!GVal) {
1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1082 Name, nullptr, GlobalVariable::NotThreadLocal,
1083 AddrSpace);
1084 } else {
1085 if (GVal->getValueType() != Ty)
1086 return Error(TyLoc,
1087 "forward reference and definition of global have different types");
1089 GV = cast<GlobalVariable>(GVal);
1091 // Move the forward-reference to the correct spot in the module.
1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1095 if (Name.empty())
1096 NumberedVals.push_back(GV);
1098 // Set the parsed properties on the global.
1099 if (Init)
1100 GV->setInitializer(Init);
1101 GV->setConstant(IsConstant);
1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103 maybeSetDSOLocal(DSOLocal, *GV);
1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1106 GV->setExternallyInitialized(IsExternallyInitialized);
1107 GV->setThreadLocalMode(TLM);
1108 GV->setUnnamedAddr(UnnamedAddr);
1110 // Parse attributes on the global.
1111 while (Lex.getKind() == lltok::comma) {
1112 Lex.Lex();
1114 if (Lex.getKind() == lltok::kw_section) {
1115 Lex.Lex();
1116 GV->setSection(Lex.getStrVal());
1117 if (ParseToken(lltok::StringConstant, "expected global section string"))
1118 return true;
1119 } else if (Lex.getKind() == lltok::kw_partition) {
1120 Lex.Lex();
1121 GV->setPartition(Lex.getStrVal());
1122 if (ParseToken(lltok::StringConstant, "expected partition string"))
1123 return true;
1124 } else if (Lex.getKind() == lltok::kw_align) {
1125 unsigned Alignment;
1126 if (ParseOptionalAlignment(Alignment)) return true;
1127 GV->setAlignment(Alignment);
1128 } else if (Lex.getKind() == lltok::MetadataVar) {
1129 if (ParseGlobalObjectMetadataAttachment(*GV))
1130 return true;
1131 } else {
1132 Comdat *C;
1133 if (parseOptionalComdat(Name, C))
1134 return true;
1135 if (C)
1136 GV->setComdat(C);
1137 else
1138 return TokError("unknown global variable property!");
1142 AttrBuilder Attrs;
1143 LocTy BuiltinLoc;
1144 std::vector<unsigned> FwdRefAttrGrps;
1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146 return true;
1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148 GV->setAttributes(AttributeSet::get(Context, Attrs));
1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1152 return false;
1155 /// ParseUnnamedAttrGrp
1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1158 assert(Lex.getKind() == lltok::kw_attributes);
1159 LocTy AttrGrpLoc = Lex.getLoc();
1160 Lex.Lex();
1162 if (Lex.getKind() != lltok::AttrGrpID)
1163 return TokError("expected attribute group id");
1165 unsigned VarID = Lex.getUIntVal();
1166 std::vector<unsigned> unused;
1167 LocTy BuiltinLoc;
1168 Lex.Lex();
1170 if (ParseToken(lltok::equal, "expected '=' here") ||
1171 ParseToken(lltok::lbrace, "expected '{' here") ||
1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173 BuiltinLoc) ||
1174 ParseToken(lltok::rbrace, "expected end of attribute group"))
1175 return true;
1177 if (!NumberedAttrBuilders[VarID].hasAttributes())
1178 return Error(AttrGrpLoc, "attribute group has no attributes");
1180 return false;
1183 /// ParseFnAttributeValuePairs
1184 /// ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186 std::vector<unsigned> &FwdRefAttrGrps,
1187 bool inAttrGrp, LocTy &BuiltinLoc) {
1188 bool HaveError = false;
1190 B.clear();
1192 while (true) {
1193 lltok::Kind Token = Lex.getKind();
1194 if (Token == lltok::kw_builtin)
1195 BuiltinLoc = Lex.getLoc();
1196 switch (Token) {
1197 default:
1198 if (!inAttrGrp) return HaveError;
1199 return Error(Lex.getLoc(), "unterminated attribute group");
1200 case lltok::rbrace:
1201 // Finished.
1202 return false;
1204 case lltok::AttrGrpID: {
1205 // Allow a function to reference an attribute group:
1207 // define void @foo() #1 { ... }
1208 if (inAttrGrp)
1209 HaveError |=
1210 Error(Lex.getLoc(),
1211 "cannot have an attribute group reference in an attribute group");
1213 unsigned AttrGrpNum = Lex.getUIntVal();
1214 if (inAttrGrp) break;
1216 // Save the reference to the attribute group. We'll fill it in later.
1217 FwdRefAttrGrps.push_back(AttrGrpNum);
1218 break;
1220 // Target-dependent attributes:
1221 case lltok::StringConstant: {
1222 if (ParseStringAttribute(B))
1223 return true;
1224 continue;
1227 // Target-independent attributes:
1228 case lltok::kw_align: {
1229 // As a hack, we allow function alignment to be initially parsed as an
1230 // attribute on a function declaration/definition or added to an attribute
1231 // group and later moved to the alignment field.
1232 unsigned Alignment;
1233 if (inAttrGrp) {
1234 Lex.Lex();
1235 if (ParseToken(lltok::equal, "expected '=' here") ||
1236 ParseUInt32(Alignment))
1237 return true;
1238 } else {
1239 if (ParseOptionalAlignment(Alignment))
1240 return true;
1242 B.addAlignmentAttr(Alignment);
1243 continue;
1245 case lltok::kw_alignstack: {
1246 unsigned Alignment;
1247 if (inAttrGrp) {
1248 Lex.Lex();
1249 if (ParseToken(lltok::equal, "expected '=' here") ||
1250 ParseUInt32(Alignment))
1251 return true;
1252 } else {
1253 if (ParseOptionalStackAlignment(Alignment))
1254 return true;
1256 B.addStackAlignmentAttr(Alignment);
1257 continue;
1259 case lltok::kw_allocsize: {
1260 unsigned ElemSizeArg;
1261 Optional<unsigned> NumElemsArg;
1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1263 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1264 return true;
1265 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1266 continue;
1268 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1269 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1270 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1271 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1272 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1273 case lltok::kw_inaccessiblememonly:
1274 B.addAttribute(Attribute::InaccessibleMemOnly); break;
1275 case lltok::kw_inaccessiblemem_or_argmemonly:
1276 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1277 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1278 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1279 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1280 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1281 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1282 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1283 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1284 case lltok::kw_noimplicitfloat:
1285 B.addAttribute(Attribute::NoImplicitFloat); break;
1286 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1287 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1288 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1289 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1290 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1291 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1292 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1293 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1294 case lltok::kw_optforfuzzing:
1295 B.addAttribute(Attribute::OptForFuzzing); break;
1296 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1297 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1298 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1299 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1300 case lltok::kw_returns_twice:
1301 B.addAttribute(Attribute::ReturnsTwice); break;
1302 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1303 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1304 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1305 case lltok::kw_sspstrong:
1306 B.addAttribute(Attribute::StackProtectStrong); break;
1307 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1308 case lltok::kw_shadowcallstack:
1309 B.addAttribute(Attribute::ShadowCallStack); break;
1310 case lltok::kw_sanitize_address:
1311 B.addAttribute(Attribute::SanitizeAddress); break;
1312 case lltok::kw_sanitize_hwaddress:
1313 B.addAttribute(Attribute::SanitizeHWAddress); break;
1314 case lltok::kw_sanitize_memtag:
1315 B.addAttribute(Attribute::SanitizeMemTag); break;
1316 case lltok::kw_sanitize_thread:
1317 B.addAttribute(Attribute::SanitizeThread); break;
1318 case lltok::kw_sanitize_memory:
1319 B.addAttribute(Attribute::SanitizeMemory); break;
1320 case lltok::kw_speculative_load_hardening:
1321 B.addAttribute(Attribute::SpeculativeLoadHardening);
1322 break;
1323 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1324 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1325 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1326 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1328 // Error handling.
1329 case lltok::kw_inreg:
1330 case lltok::kw_signext:
1331 case lltok::kw_zeroext:
1332 HaveError |=
1333 Error(Lex.getLoc(),
1334 "invalid use of attribute on a function");
1335 break;
1336 case lltok::kw_byval:
1337 case lltok::kw_dereferenceable:
1338 case lltok::kw_dereferenceable_or_null:
1339 case lltok::kw_inalloca:
1340 case lltok::kw_nest:
1341 case lltok::kw_noalias:
1342 case lltok::kw_nocapture:
1343 case lltok::kw_nonnull:
1344 case lltok::kw_returned:
1345 case lltok::kw_sret:
1346 case lltok::kw_swifterror:
1347 case lltok::kw_swiftself:
1348 case lltok::kw_immarg:
1349 HaveError |=
1350 Error(Lex.getLoc(),
1351 "invalid use of parameter-only attribute on a function");
1352 break;
1355 Lex.Lex();
1359 //===----------------------------------------------------------------------===//
1360 // GlobalValue Reference/Resolution Routines.
1361 //===----------------------------------------------------------------------===//
1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1364 const std::string &Name) {
1365 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1366 return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1367 PTy->getAddressSpace(), Name, M);
1368 else
1369 return new GlobalVariable(*M, PTy->getElementType(), false,
1370 GlobalValue::ExternalWeakLinkage, nullptr, Name,
1371 nullptr, GlobalVariable::NotThreadLocal,
1372 PTy->getAddressSpace());
1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1376 Value *Val, bool IsCall) {
1377 if (Val->getType() == Ty)
1378 return Val;
1379 // For calls we also accept variables in the program address space.
1380 Type *SuggestedTy = Ty;
1381 if (IsCall && isa<PointerType>(Ty)) {
1382 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1383 M->getDataLayout().getProgramAddressSpace());
1384 SuggestedTy = TyInProgAS;
1385 if (Val->getType() == TyInProgAS)
1386 return Val;
1388 if (Ty->isLabelTy())
1389 Error(Loc, "'" + Name + "' is not a basic block");
1390 else
1391 Error(Loc, "'" + Name + "' defined with type '" +
1392 getTypeString(Val->getType()) + "' but expected '" +
1393 getTypeString(SuggestedTy) + "'");
1394 return nullptr;
1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1398 /// forward reference record if needed. This can return null if the value
1399 /// exists but does not have the right type.
1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1401 LocTy Loc, bool IsCall) {
1402 PointerType *PTy = dyn_cast<PointerType>(Ty);
1403 if (!PTy) {
1404 Error(Loc, "global variable reference must have pointer type");
1405 return nullptr;
1408 // Look this name up in the normal function symbol table.
1409 GlobalValue *Val =
1410 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1412 // If this is a forward reference for the value, see if we already created a
1413 // forward ref record.
1414 if (!Val) {
1415 auto I = ForwardRefVals.find(Name);
1416 if (I != ForwardRefVals.end())
1417 Val = I->second.first;
1420 // If we have the value in the symbol table or fwd-ref table, return it.
1421 if (Val)
1422 return cast_or_null<GlobalValue>(
1423 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1425 // Otherwise, create a new forward reference for this value and remember it.
1426 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1427 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1428 return FwdVal;
1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1432 bool IsCall) {
1433 PointerType *PTy = dyn_cast<PointerType>(Ty);
1434 if (!PTy) {
1435 Error(Loc, "global variable reference must have pointer type");
1436 return nullptr;
1439 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1441 // If this is a forward reference for the value, see if we already created a
1442 // forward ref record.
1443 if (!Val) {
1444 auto I = ForwardRefValIDs.find(ID);
1445 if (I != ForwardRefValIDs.end())
1446 Val = I->second.first;
1449 // If we have the value in the symbol table or fwd-ref table, return it.
1450 if (Val)
1451 return cast_or_null<GlobalValue>(
1452 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1454 // Otherwise, create a new forward reference for this value and remember it.
1455 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1456 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1457 return FwdVal;
1460 //===----------------------------------------------------------------------===//
1461 // Comdat Reference/Resolution Routines.
1462 //===----------------------------------------------------------------------===//
1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1465 // Look this name up in the comdat symbol table.
1466 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1467 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1468 if (I != ComdatSymTab.end())
1469 return &I->second;
1471 // Otherwise, create a new forward reference for this value and remember it.
1472 Comdat *C = M->getOrInsertComdat(Name);
1473 ForwardRefComdats[Name] = Loc;
1474 return C;
1477 //===----------------------------------------------------------------------===//
1478 // Helper Routines.
1479 //===----------------------------------------------------------------------===//
1481 /// ParseToken - If the current token has the specified kind, eat it and return
1482 /// success. Otherwise, emit the specified error and return failure.
1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1484 if (Lex.getKind() != T)
1485 return TokError(ErrMsg);
1486 Lex.Lex();
1487 return false;
1490 /// ParseStringConstant
1491 /// ::= StringConstant
1492 bool LLParser::ParseStringConstant(std::string &Result) {
1493 if (Lex.getKind() != lltok::StringConstant)
1494 return TokError("expected string constant");
1495 Result = Lex.getStrVal();
1496 Lex.Lex();
1497 return false;
1500 /// ParseUInt32
1501 /// ::= uint32
1502 bool LLParser::ParseUInt32(uint32_t &Val) {
1503 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1504 return TokError("expected integer");
1505 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1506 if (Val64 != unsigned(Val64))
1507 return TokError("expected 32-bit integer (too large)");
1508 Val = Val64;
1509 Lex.Lex();
1510 return false;
1513 /// ParseUInt64
1514 /// ::= uint64
1515 bool LLParser::ParseUInt64(uint64_t &Val) {
1516 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1517 return TokError("expected integer");
1518 Val = Lex.getAPSIntVal().getLimitedValue();
1519 Lex.Lex();
1520 return false;
1523 /// ParseTLSModel
1524 /// := 'localdynamic'
1525 /// := 'initialexec'
1526 /// := 'localexec'
1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1528 switch (Lex.getKind()) {
1529 default:
1530 return TokError("expected localdynamic, initialexec or localexec");
1531 case lltok::kw_localdynamic:
1532 TLM = GlobalVariable::LocalDynamicTLSModel;
1533 break;
1534 case lltok::kw_initialexec:
1535 TLM = GlobalVariable::InitialExecTLSModel;
1536 break;
1537 case lltok::kw_localexec:
1538 TLM = GlobalVariable::LocalExecTLSModel;
1539 break;
1542 Lex.Lex();
1543 return false;
1546 /// ParseOptionalThreadLocal
1547 /// := /*empty*/
1548 /// := 'thread_local'
1549 /// := 'thread_local' '(' tlsmodel ')'
1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1551 TLM = GlobalVariable::NotThreadLocal;
1552 if (!EatIfPresent(lltok::kw_thread_local))
1553 return false;
1555 TLM = GlobalVariable::GeneralDynamicTLSModel;
1556 if (Lex.getKind() == lltok::lparen) {
1557 Lex.Lex();
1558 return ParseTLSModel(TLM) ||
1559 ParseToken(lltok::rparen, "expected ')' after thread local model");
1561 return false;
1564 /// ParseOptionalAddrSpace
1565 /// := /*empty*/
1566 /// := 'addrspace' '(' uint32 ')'
1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1568 AddrSpace = DefaultAS;
1569 if (!EatIfPresent(lltok::kw_addrspace))
1570 return false;
1571 return ParseToken(lltok::lparen, "expected '(' in address space") ||
1572 ParseUInt32(AddrSpace) ||
1573 ParseToken(lltok::rparen, "expected ')' in address space");
1576 /// ParseStringAttribute
1577 /// := StringConstant
1578 /// := StringConstant '=' StringConstant
1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1580 std::string Attr = Lex.getStrVal();
1581 Lex.Lex();
1582 std::string Val;
1583 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1584 return true;
1585 B.addAttribute(Attr, Val);
1586 return false;
1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1591 bool HaveError = false;
1593 B.clear();
1595 while (true) {
1596 lltok::Kind Token = Lex.getKind();
1597 switch (Token) {
1598 default: // End of attributes.
1599 return HaveError;
1600 case lltok::StringConstant: {
1601 if (ParseStringAttribute(B))
1602 return true;
1603 continue;
1605 case lltok::kw_align: {
1606 unsigned Alignment;
1607 if (ParseOptionalAlignment(Alignment))
1608 return true;
1609 B.addAlignmentAttr(Alignment);
1610 continue;
1612 case lltok::kw_byval: {
1613 Type *Ty;
1614 if (ParseByValWithOptionalType(Ty))
1615 return true;
1616 B.addByValAttr(Ty);
1617 continue;
1619 case lltok::kw_dereferenceable: {
1620 uint64_t Bytes;
1621 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1622 return true;
1623 B.addDereferenceableAttr(Bytes);
1624 continue;
1626 case lltok::kw_dereferenceable_or_null: {
1627 uint64_t Bytes;
1628 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1629 return true;
1630 B.addDereferenceableOrNullAttr(Bytes);
1631 continue;
1633 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
1634 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1635 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
1636 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1637 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
1638 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1639 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1640 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1641 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
1642 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1643 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
1644 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break;
1645 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break;
1646 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1647 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1648 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break;
1650 case lltok::kw_alignstack:
1651 case lltok::kw_alwaysinline:
1652 case lltok::kw_argmemonly:
1653 case lltok::kw_builtin:
1654 case lltok::kw_inlinehint:
1655 case lltok::kw_jumptable:
1656 case lltok::kw_minsize:
1657 case lltok::kw_naked:
1658 case lltok::kw_nobuiltin:
1659 case lltok::kw_noduplicate:
1660 case lltok::kw_noimplicitfloat:
1661 case lltok::kw_noinline:
1662 case lltok::kw_nonlazybind:
1663 case lltok::kw_noredzone:
1664 case lltok::kw_noreturn:
1665 case lltok::kw_nocf_check:
1666 case lltok::kw_nounwind:
1667 case lltok::kw_optforfuzzing:
1668 case lltok::kw_optnone:
1669 case lltok::kw_optsize:
1670 case lltok::kw_returns_twice:
1671 case lltok::kw_sanitize_address:
1672 case lltok::kw_sanitize_hwaddress:
1673 case lltok::kw_sanitize_memtag:
1674 case lltok::kw_sanitize_memory:
1675 case lltok::kw_sanitize_thread:
1676 case lltok::kw_speculative_load_hardening:
1677 case lltok::kw_ssp:
1678 case lltok::kw_sspreq:
1679 case lltok::kw_sspstrong:
1680 case lltok::kw_safestack:
1681 case lltok::kw_shadowcallstack:
1682 case lltok::kw_strictfp:
1683 case lltok::kw_uwtable:
1684 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1685 break;
1688 Lex.Lex();
1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1694 bool HaveError = false;
1696 B.clear();
1698 while (true) {
1699 lltok::Kind Token = Lex.getKind();
1700 switch (Token) {
1701 default: // End of attributes.
1702 return HaveError;
1703 case lltok::StringConstant: {
1704 if (ParseStringAttribute(B))
1705 return true;
1706 continue;
1708 case lltok::kw_dereferenceable: {
1709 uint64_t Bytes;
1710 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1711 return true;
1712 B.addDereferenceableAttr(Bytes);
1713 continue;
1715 case lltok::kw_dereferenceable_or_null: {
1716 uint64_t Bytes;
1717 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1718 return true;
1719 B.addDereferenceableOrNullAttr(Bytes);
1720 continue;
1722 case lltok::kw_align: {
1723 unsigned Alignment;
1724 if (ParseOptionalAlignment(Alignment))
1725 return true;
1726 B.addAlignmentAttr(Alignment);
1727 continue;
1729 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
1730 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
1731 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
1732 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
1733 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
1735 // Error handling.
1736 case lltok::kw_byval:
1737 case lltok::kw_inalloca:
1738 case lltok::kw_nest:
1739 case lltok::kw_nocapture:
1740 case lltok::kw_returned:
1741 case lltok::kw_sret:
1742 case lltok::kw_swifterror:
1743 case lltok::kw_swiftself:
1744 case lltok::kw_immarg:
1745 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1746 break;
1748 case lltok::kw_alignstack:
1749 case lltok::kw_alwaysinline:
1750 case lltok::kw_argmemonly:
1751 case lltok::kw_builtin:
1752 case lltok::kw_cold:
1753 case lltok::kw_inlinehint:
1754 case lltok::kw_jumptable:
1755 case lltok::kw_minsize:
1756 case lltok::kw_naked:
1757 case lltok::kw_nobuiltin:
1758 case lltok::kw_noduplicate:
1759 case lltok::kw_noimplicitfloat:
1760 case lltok::kw_noinline:
1761 case lltok::kw_nonlazybind:
1762 case lltok::kw_noredzone:
1763 case lltok::kw_noreturn:
1764 case lltok::kw_nocf_check:
1765 case lltok::kw_nounwind:
1766 case lltok::kw_optforfuzzing:
1767 case lltok::kw_optnone:
1768 case lltok::kw_optsize:
1769 case lltok::kw_returns_twice:
1770 case lltok::kw_sanitize_address:
1771 case lltok::kw_sanitize_hwaddress:
1772 case lltok::kw_sanitize_memtag:
1773 case lltok::kw_sanitize_memory:
1774 case lltok::kw_sanitize_thread:
1775 case lltok::kw_speculative_load_hardening:
1776 case lltok::kw_ssp:
1777 case lltok::kw_sspreq:
1778 case lltok::kw_sspstrong:
1779 case lltok::kw_safestack:
1780 case lltok::kw_shadowcallstack:
1781 case lltok::kw_strictfp:
1782 case lltok::kw_uwtable:
1783 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1784 break;
1786 case lltok::kw_readnone:
1787 case lltok::kw_readonly:
1788 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1791 Lex.Lex();
1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1796 HasLinkage = true;
1797 switch (Kind) {
1798 default:
1799 HasLinkage = false;
1800 return GlobalValue::ExternalLinkage;
1801 case lltok::kw_private:
1802 return GlobalValue::PrivateLinkage;
1803 case lltok::kw_internal:
1804 return GlobalValue::InternalLinkage;
1805 case lltok::kw_weak:
1806 return GlobalValue::WeakAnyLinkage;
1807 case lltok::kw_weak_odr:
1808 return GlobalValue::WeakODRLinkage;
1809 case lltok::kw_linkonce:
1810 return GlobalValue::LinkOnceAnyLinkage;
1811 case lltok::kw_linkonce_odr:
1812 return GlobalValue::LinkOnceODRLinkage;
1813 case lltok::kw_available_externally:
1814 return GlobalValue::AvailableExternallyLinkage;
1815 case lltok::kw_appending:
1816 return GlobalValue::AppendingLinkage;
1817 case lltok::kw_common:
1818 return GlobalValue::CommonLinkage;
1819 case lltok::kw_extern_weak:
1820 return GlobalValue::ExternalWeakLinkage;
1821 case lltok::kw_external:
1822 return GlobalValue::ExternalLinkage;
1826 /// ParseOptionalLinkage
1827 /// ::= /*empty*/
1828 /// ::= 'private'
1829 /// ::= 'internal'
1830 /// ::= 'weak'
1831 /// ::= 'weak_odr'
1832 /// ::= 'linkonce'
1833 /// ::= 'linkonce_odr'
1834 /// ::= 'available_externally'
1835 /// ::= 'appending'
1836 /// ::= 'common'
1837 /// ::= 'extern_weak'
1838 /// ::= 'external'
1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1840 unsigned &Visibility,
1841 unsigned &DLLStorageClass,
1842 bool &DSOLocal) {
1843 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1844 if (HasLinkage)
1845 Lex.Lex();
1846 ParseOptionalDSOLocal(DSOLocal);
1847 ParseOptionalVisibility(Visibility);
1848 ParseOptionalDLLStorageClass(DLLStorageClass);
1850 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1851 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1854 return false;
1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1858 switch (Lex.getKind()) {
1859 default:
1860 DSOLocal = false;
1861 break;
1862 case lltok::kw_dso_local:
1863 DSOLocal = true;
1864 Lex.Lex();
1865 break;
1866 case lltok::kw_dso_preemptable:
1867 DSOLocal = false;
1868 Lex.Lex();
1869 break;
1873 /// ParseOptionalVisibility
1874 /// ::= /*empty*/
1875 /// ::= 'default'
1876 /// ::= 'hidden'
1877 /// ::= 'protected'
1879 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1880 switch (Lex.getKind()) {
1881 default:
1882 Res = GlobalValue::DefaultVisibility;
1883 return;
1884 case lltok::kw_default:
1885 Res = GlobalValue::DefaultVisibility;
1886 break;
1887 case lltok::kw_hidden:
1888 Res = GlobalValue::HiddenVisibility;
1889 break;
1890 case lltok::kw_protected:
1891 Res = GlobalValue::ProtectedVisibility;
1892 break;
1894 Lex.Lex();
1897 /// ParseOptionalDLLStorageClass
1898 /// ::= /*empty*/
1899 /// ::= 'dllimport'
1900 /// ::= 'dllexport'
1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1903 switch (Lex.getKind()) {
1904 default:
1905 Res = GlobalValue::DefaultStorageClass;
1906 return;
1907 case lltok::kw_dllimport:
1908 Res = GlobalValue::DLLImportStorageClass;
1909 break;
1910 case lltok::kw_dllexport:
1911 Res = GlobalValue::DLLExportStorageClass;
1912 break;
1914 Lex.Lex();
1917 /// ParseOptionalCallingConv
1918 /// ::= /*empty*/
1919 /// ::= 'ccc'
1920 /// ::= 'fastcc'
1921 /// ::= 'intel_ocl_bicc'
1922 /// ::= 'coldcc'
1923 /// ::= 'x86_stdcallcc'
1924 /// ::= 'x86_fastcallcc'
1925 /// ::= 'x86_thiscallcc'
1926 /// ::= 'x86_vectorcallcc'
1927 /// ::= 'arm_apcscc'
1928 /// ::= 'arm_aapcscc'
1929 /// ::= 'arm_aapcs_vfpcc'
1930 /// ::= 'aarch64_vector_pcs'
1931 /// ::= 'msp430_intrcc'
1932 /// ::= 'avr_intrcc'
1933 /// ::= 'avr_signalcc'
1934 /// ::= 'ptx_kernel'
1935 /// ::= 'ptx_device'
1936 /// ::= 'spir_func'
1937 /// ::= 'spir_kernel'
1938 /// ::= 'x86_64_sysvcc'
1939 /// ::= 'win64cc'
1940 /// ::= 'webkit_jscc'
1941 /// ::= 'anyregcc'
1942 /// ::= 'preserve_mostcc'
1943 /// ::= 'preserve_allcc'
1944 /// ::= 'ghccc'
1945 /// ::= 'swiftcc'
1946 /// ::= 'x86_intrcc'
1947 /// ::= 'hhvmcc'
1948 /// ::= 'hhvm_ccc'
1949 /// ::= 'cxx_fast_tlscc'
1950 /// ::= 'amdgpu_vs'
1951 /// ::= 'amdgpu_ls'
1952 /// ::= 'amdgpu_hs'
1953 /// ::= 'amdgpu_es'
1954 /// ::= 'amdgpu_gs'
1955 /// ::= 'amdgpu_ps'
1956 /// ::= 'amdgpu_cs'
1957 /// ::= 'amdgpu_kernel'
1958 /// ::= 'cc' UINT
1960 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1961 switch (Lex.getKind()) {
1962 default: CC = CallingConv::C; return false;
1963 case lltok::kw_ccc: CC = CallingConv::C; break;
1964 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1965 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1966 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1967 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1968 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
1969 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1970 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1971 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1972 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1973 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1974 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1975 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1976 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
1977 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
1978 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1979 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1980 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
1981 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
1982 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1983 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
1984 case lltok::kw_win64cc: CC = CallingConv::Win64; break;
1985 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
1986 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
1987 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1988 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1989 case lltok::kw_ghccc: CC = CallingConv::GHC; break;
1990 case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
1991 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
1992 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break;
1993 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break;
1994 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1995 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
1996 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
1997 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
1998 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
1999 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2000 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2001 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2002 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2003 case lltok::kw_cc: {
2004 Lex.Lex();
2005 return ParseUInt32(CC);
2009 Lex.Lex();
2010 return false;
2013 /// ParseMetadataAttachment
2014 /// ::= !dbg !42
2015 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2016 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2018 std::string Name = Lex.getStrVal();
2019 Kind = M->getMDKindID(Name);
2020 Lex.Lex();
2022 return ParseMDNode(MD);
2025 /// ParseInstructionMetadata
2026 /// ::= !dbg !42 (',' !dbg !57)*
2027 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2028 do {
2029 if (Lex.getKind() != lltok::MetadataVar)
2030 return TokError("expected metadata after comma");
2032 unsigned MDK;
2033 MDNode *N;
2034 if (ParseMetadataAttachment(MDK, N))
2035 return true;
2037 Inst.setMetadata(MDK, N);
2038 if (MDK == LLVMContext::MD_tbaa)
2039 InstsWithTBAATag.push_back(&Inst);
2041 // If this is the end of the list, we're done.
2042 } while (EatIfPresent(lltok::comma));
2043 return false;
2046 /// ParseGlobalObjectMetadataAttachment
2047 /// ::= !dbg !57
2048 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2049 unsigned MDK;
2050 MDNode *N;
2051 if (ParseMetadataAttachment(MDK, N))
2052 return true;
2054 GO.addMetadata(MDK, *N);
2055 return false;
2058 /// ParseOptionalFunctionMetadata
2059 /// ::= (!dbg !57)*
2060 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2061 while (Lex.getKind() == lltok::MetadataVar)
2062 if (ParseGlobalObjectMetadataAttachment(F))
2063 return true;
2064 return false;
2067 /// ParseOptionalAlignment
2068 /// ::= /* empty */
2069 /// ::= 'align' 4
2070 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2071 Alignment = 0;
2072 if (!EatIfPresent(lltok::kw_align))
2073 return false;
2074 LocTy AlignLoc = Lex.getLoc();
2075 if (ParseUInt32(Alignment)) return true;
2076 if (!isPowerOf2_32(Alignment))
2077 return Error(AlignLoc, "alignment is not a power of two");
2078 if (Alignment > Value::MaximumAlignment)
2079 return Error(AlignLoc, "huge alignments are not supported yet");
2080 return false;
2083 /// ParseOptionalDerefAttrBytes
2084 /// ::= /* empty */
2085 /// ::= AttrKind '(' 4 ')'
2087 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2088 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2089 uint64_t &Bytes) {
2090 assert((AttrKind == lltok::kw_dereferenceable ||
2091 AttrKind == lltok::kw_dereferenceable_or_null) &&
2092 "contract!");
2094 Bytes = 0;
2095 if (!EatIfPresent(AttrKind))
2096 return false;
2097 LocTy ParenLoc = Lex.getLoc();
2098 if (!EatIfPresent(lltok::lparen))
2099 return Error(ParenLoc, "expected '('");
2100 LocTy DerefLoc = Lex.getLoc();
2101 if (ParseUInt64(Bytes)) return true;
2102 ParenLoc = Lex.getLoc();
2103 if (!EatIfPresent(lltok::rparen))
2104 return Error(ParenLoc, "expected ')'");
2105 if (!Bytes)
2106 return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2107 return false;
2110 /// ParseOptionalCommaAlign
2111 /// ::=
2112 /// ::= ',' align 4
2114 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2115 /// end.
2116 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2117 bool &AteExtraComma) {
2118 AteExtraComma = false;
2119 while (EatIfPresent(lltok::comma)) {
2120 // Metadata at the end is an early exit.
2121 if (Lex.getKind() == lltok::MetadataVar) {
2122 AteExtraComma = true;
2123 return false;
2126 if (Lex.getKind() != lltok::kw_align)
2127 return Error(Lex.getLoc(), "expected metadata or 'align'");
2129 if (ParseOptionalAlignment(Alignment)) return true;
2132 return false;
2135 /// ParseOptionalCommaAddrSpace
2136 /// ::=
2137 /// ::= ',' addrspace(1)
2139 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2140 /// end.
2141 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2142 LocTy &Loc,
2143 bool &AteExtraComma) {
2144 AteExtraComma = false;
2145 while (EatIfPresent(lltok::comma)) {
2146 // Metadata at the end is an early exit.
2147 if (Lex.getKind() == lltok::MetadataVar) {
2148 AteExtraComma = true;
2149 return false;
2152 Loc = Lex.getLoc();
2153 if (Lex.getKind() != lltok::kw_addrspace)
2154 return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2156 if (ParseOptionalAddrSpace(AddrSpace))
2157 return true;
2160 return false;
2163 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2164 Optional<unsigned> &HowManyArg) {
2165 Lex.Lex();
2167 auto StartParen = Lex.getLoc();
2168 if (!EatIfPresent(lltok::lparen))
2169 return Error(StartParen, "expected '('");
2171 if (ParseUInt32(BaseSizeArg))
2172 return true;
2174 if (EatIfPresent(lltok::comma)) {
2175 auto HowManyAt = Lex.getLoc();
2176 unsigned HowMany;
2177 if (ParseUInt32(HowMany))
2178 return true;
2179 if (HowMany == BaseSizeArg)
2180 return Error(HowManyAt,
2181 "'allocsize' indices can't refer to the same parameter");
2182 HowManyArg = HowMany;
2183 } else
2184 HowManyArg = None;
2186 auto EndParen = Lex.getLoc();
2187 if (!EatIfPresent(lltok::rparen))
2188 return Error(EndParen, "expected ')'");
2189 return false;
2192 /// ParseScopeAndOrdering
2193 /// if isAtomic: ::= SyncScope? AtomicOrdering
2194 /// else: ::=
2196 /// This sets Scope and Ordering to the parsed values.
2197 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2198 AtomicOrdering &Ordering) {
2199 if (!isAtomic)
2200 return false;
2202 return ParseScope(SSID) || ParseOrdering(Ordering);
2205 /// ParseScope
2206 /// ::= syncscope("singlethread" | "<target scope>")?
2208 /// This sets synchronization scope ID to the ID of the parsed value.
2209 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2210 SSID = SyncScope::System;
2211 if (EatIfPresent(lltok::kw_syncscope)) {
2212 auto StartParenAt = Lex.getLoc();
2213 if (!EatIfPresent(lltok::lparen))
2214 return Error(StartParenAt, "Expected '(' in syncscope");
2216 std::string SSN;
2217 auto SSNAt = Lex.getLoc();
2218 if (ParseStringConstant(SSN))
2219 return Error(SSNAt, "Expected synchronization scope name");
2221 auto EndParenAt = Lex.getLoc();
2222 if (!EatIfPresent(lltok::rparen))
2223 return Error(EndParenAt, "Expected ')' in syncscope");
2225 SSID = Context.getOrInsertSyncScopeID(SSN);
2228 return false;
2231 /// ParseOrdering
2232 /// ::= AtomicOrdering
2234 /// This sets Ordering to the parsed value.
2235 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2236 switch (Lex.getKind()) {
2237 default: return TokError("Expected ordering on atomic instruction");
2238 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2239 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2240 // Not specified yet:
2241 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2242 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2243 case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2244 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2245 case lltok::kw_seq_cst:
2246 Ordering = AtomicOrdering::SequentiallyConsistent;
2247 break;
2249 Lex.Lex();
2250 return false;
2253 /// ParseOptionalStackAlignment
2254 /// ::= /* empty */
2255 /// ::= 'alignstack' '(' 4 ')'
2256 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2257 Alignment = 0;
2258 if (!EatIfPresent(lltok::kw_alignstack))
2259 return false;
2260 LocTy ParenLoc = Lex.getLoc();
2261 if (!EatIfPresent(lltok::lparen))
2262 return Error(ParenLoc, "expected '('");
2263 LocTy AlignLoc = Lex.getLoc();
2264 if (ParseUInt32(Alignment)) return true;
2265 ParenLoc = Lex.getLoc();
2266 if (!EatIfPresent(lltok::rparen))
2267 return Error(ParenLoc, "expected ')'");
2268 if (!isPowerOf2_32(Alignment))
2269 return Error(AlignLoc, "stack alignment is not a power of two");
2270 return false;
2273 /// ParseIndexList - This parses the index list for an insert/extractvalue
2274 /// instruction. This sets AteExtraComma in the case where we eat an extra
2275 /// comma at the end of the line and find that it is followed by metadata.
2276 /// Clients that don't allow metadata can call the version of this function that
2277 /// only takes one argument.
2279 /// ParseIndexList
2280 /// ::= (',' uint32)+
2282 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2283 bool &AteExtraComma) {
2284 AteExtraComma = false;
2286 if (Lex.getKind() != lltok::comma)
2287 return TokError("expected ',' as start of index list");
2289 while (EatIfPresent(lltok::comma)) {
2290 if (Lex.getKind() == lltok::MetadataVar) {
2291 if (Indices.empty()) return TokError("expected index");
2292 AteExtraComma = true;
2293 return false;
2295 unsigned Idx = 0;
2296 if (ParseUInt32(Idx)) return true;
2297 Indices.push_back(Idx);
2300 return false;
2303 //===----------------------------------------------------------------------===//
2304 // Type Parsing.
2305 //===----------------------------------------------------------------------===//
2307 /// ParseType - Parse a type.
2308 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2309 SMLoc TypeLoc = Lex.getLoc();
2310 switch (Lex.getKind()) {
2311 default:
2312 return TokError(Msg);
2313 case lltok::Type:
2314 // Type ::= 'float' | 'void' (etc)
2315 Result = Lex.getTyVal();
2316 Lex.Lex();
2317 break;
2318 case lltok::lbrace:
2319 // Type ::= StructType
2320 if (ParseAnonStructType(Result, false))
2321 return true;
2322 break;
2323 case lltok::lsquare:
2324 // Type ::= '[' ... ']'
2325 Lex.Lex(); // eat the lsquare.
2326 if (ParseArrayVectorType(Result, false))
2327 return true;
2328 break;
2329 case lltok::less: // Either vector or packed struct.
2330 // Type ::= '<' ... '>'
2331 Lex.Lex();
2332 if (Lex.getKind() == lltok::lbrace) {
2333 if (ParseAnonStructType(Result, true) ||
2334 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2335 return true;
2336 } else if (ParseArrayVectorType(Result, true))
2337 return true;
2338 break;
2339 case lltok::LocalVar: {
2340 // Type ::= %foo
2341 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2343 // If the type hasn't been defined yet, create a forward definition and
2344 // remember where that forward def'n was seen (in case it never is defined).
2345 if (!Entry.first) {
2346 Entry.first = StructType::create(Context, Lex.getStrVal());
2347 Entry.second = Lex.getLoc();
2349 Result = Entry.first;
2350 Lex.Lex();
2351 break;
2354 case lltok::LocalVarID: {
2355 // Type ::= %4
2356 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2358 // If the type hasn't been defined yet, create a forward definition and
2359 // remember where that forward def'n was seen (in case it never is defined).
2360 if (!Entry.first) {
2361 Entry.first = StructType::create(Context);
2362 Entry.second = Lex.getLoc();
2364 Result = Entry.first;
2365 Lex.Lex();
2366 break;
2370 // Parse the type suffixes.
2371 while (true) {
2372 switch (Lex.getKind()) {
2373 // End of type.
2374 default:
2375 if (!AllowVoid && Result->isVoidTy())
2376 return Error(TypeLoc, "void type only allowed for function results");
2377 return false;
2379 // Type ::= Type '*'
2380 case lltok::star:
2381 if (Result->isLabelTy())
2382 return TokError("basic block pointers are invalid");
2383 if (Result->isVoidTy())
2384 return TokError("pointers to void are invalid - use i8* instead");
2385 if (!PointerType::isValidElementType(Result))
2386 return TokError("pointer to this type is invalid");
2387 Result = PointerType::getUnqual(Result);
2388 Lex.Lex();
2389 break;
2391 // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2392 case lltok::kw_addrspace: {
2393 if (Result->isLabelTy())
2394 return TokError("basic block pointers are invalid");
2395 if (Result->isVoidTy())
2396 return TokError("pointers to void are invalid; use i8* instead");
2397 if (!PointerType::isValidElementType(Result))
2398 return TokError("pointer to this type is invalid");
2399 unsigned AddrSpace;
2400 if (ParseOptionalAddrSpace(AddrSpace) ||
2401 ParseToken(lltok::star, "expected '*' in address space"))
2402 return true;
2404 Result = PointerType::get(Result, AddrSpace);
2405 break;
2408 /// Types '(' ArgTypeListI ')' OptFuncAttrs
2409 case lltok::lparen:
2410 if (ParseFunctionType(Result))
2411 return true;
2412 break;
2417 /// ParseParameterList
2418 /// ::= '(' ')'
2419 /// ::= '(' Arg (',' Arg)* ')'
2420 /// Arg
2421 /// ::= Type OptionalAttributes Value OptionalAttributes
2422 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2423 PerFunctionState &PFS, bool IsMustTailCall,
2424 bool InVarArgsFunc) {
2425 if (ParseToken(lltok::lparen, "expected '(' in call"))
2426 return true;
2428 while (Lex.getKind() != lltok::rparen) {
2429 // If this isn't the first argument, we need a comma.
2430 if (!ArgList.empty() &&
2431 ParseToken(lltok::comma, "expected ',' in argument list"))
2432 return true;
2434 // Parse an ellipsis if this is a musttail call in a variadic function.
2435 if (Lex.getKind() == lltok::dotdotdot) {
2436 const char *Msg = "unexpected ellipsis in argument list for ";
2437 if (!IsMustTailCall)
2438 return TokError(Twine(Msg) + "non-musttail call");
2439 if (!InVarArgsFunc)
2440 return TokError(Twine(Msg) + "musttail call in non-varargs function");
2441 Lex.Lex(); // Lex the '...', it is purely for readability.
2442 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2445 // Parse the argument.
2446 LocTy ArgLoc;
2447 Type *ArgTy = nullptr;
2448 AttrBuilder ArgAttrs;
2449 Value *V;
2450 if (ParseType(ArgTy, ArgLoc))
2451 return true;
2453 if (ArgTy->isMetadataTy()) {
2454 if (ParseMetadataAsValue(V, PFS))
2455 return true;
2456 } else {
2457 // Otherwise, handle normal operands.
2458 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2459 return true;
2461 ArgList.push_back(ParamInfo(
2462 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2465 if (IsMustTailCall && InVarArgsFunc)
2466 return TokError("expected '...' at end of argument list for musttail call "
2467 "in varargs function");
2469 Lex.Lex(); // Lex the ')'.
2470 return false;
2473 /// ParseByValWithOptionalType
2474 /// ::= byval
2475 /// ::= byval(<ty>)
2476 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2477 Result = nullptr;
2478 if (!EatIfPresent(lltok::kw_byval))
2479 return true;
2480 if (!EatIfPresent(lltok::lparen))
2481 return false;
2482 if (ParseType(Result))
2483 return true;
2484 if (!EatIfPresent(lltok::rparen))
2485 return Error(Lex.getLoc(), "expected ')'");
2486 return false;
2489 /// ParseOptionalOperandBundles
2490 /// ::= /*empty*/
2491 /// ::= '[' OperandBundle [, OperandBundle ]* ']'
2493 /// OperandBundle
2494 /// ::= bundle-tag '(' ')'
2495 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2497 /// bundle-tag ::= String Constant
2498 bool LLParser::ParseOptionalOperandBundles(
2499 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2500 LocTy BeginLoc = Lex.getLoc();
2501 if (!EatIfPresent(lltok::lsquare))
2502 return false;
2504 while (Lex.getKind() != lltok::rsquare) {
2505 // If this isn't the first operand bundle, we need a comma.
2506 if (!BundleList.empty() &&
2507 ParseToken(lltok::comma, "expected ',' in input list"))
2508 return true;
2510 std::string Tag;
2511 if (ParseStringConstant(Tag))
2512 return true;
2514 if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2515 return true;
2517 std::vector<Value *> Inputs;
2518 while (Lex.getKind() != lltok::rparen) {
2519 // If this isn't the first input, we need a comma.
2520 if (!Inputs.empty() &&
2521 ParseToken(lltok::comma, "expected ',' in input list"))
2522 return true;
2524 Type *Ty = nullptr;
2525 Value *Input = nullptr;
2526 if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2527 return true;
2528 Inputs.push_back(Input);
2531 BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2533 Lex.Lex(); // Lex the ')'.
2536 if (BundleList.empty())
2537 return Error(BeginLoc, "operand bundle set must not be empty");
2539 Lex.Lex(); // Lex the ']'.
2540 return false;
2543 /// ParseArgumentList - Parse the argument list for a function type or function
2544 /// prototype.
2545 /// ::= '(' ArgTypeListI ')'
2546 /// ArgTypeListI
2547 /// ::= /*empty*/
2548 /// ::= '...'
2549 /// ::= ArgTypeList ',' '...'
2550 /// ::= ArgType (',' ArgType)*
2552 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2553 bool &isVarArg){
2554 unsigned CurValID = 0;
2555 isVarArg = false;
2556 assert(Lex.getKind() == lltok::lparen);
2557 Lex.Lex(); // eat the (.
2559 if (Lex.getKind() == lltok::rparen) {
2560 // empty
2561 } else if (Lex.getKind() == lltok::dotdotdot) {
2562 isVarArg = true;
2563 Lex.Lex();
2564 } else {
2565 LocTy TypeLoc = Lex.getLoc();
2566 Type *ArgTy = nullptr;
2567 AttrBuilder Attrs;
2568 std::string Name;
2570 if (ParseType(ArgTy) ||
2571 ParseOptionalParamAttrs(Attrs)) return true;
2573 if (ArgTy->isVoidTy())
2574 return Error(TypeLoc, "argument can not have void type");
2576 if (Lex.getKind() == lltok::LocalVar) {
2577 Name = Lex.getStrVal();
2578 Lex.Lex();
2579 } else if (Lex.getKind() == lltok::LocalVarID) {
2580 if (Lex.getUIntVal() != CurValID)
2581 return Error(TypeLoc, "argument expected to be numbered '%" +
2582 Twine(CurValID) + "'");
2583 ++CurValID;
2584 Lex.Lex();
2587 if (!FunctionType::isValidArgumentType(ArgTy))
2588 return Error(TypeLoc, "invalid type for function argument");
2590 ArgList.emplace_back(TypeLoc, ArgTy,
2591 AttributeSet::get(ArgTy->getContext(), Attrs),
2592 std::move(Name));
2594 while (EatIfPresent(lltok::comma)) {
2595 // Handle ... at end of arg list.
2596 if (EatIfPresent(lltok::dotdotdot)) {
2597 isVarArg = true;
2598 break;
2601 // Otherwise must be an argument type.
2602 TypeLoc = Lex.getLoc();
2603 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2605 if (ArgTy->isVoidTy())
2606 return Error(TypeLoc, "argument can not have void type");
2608 if (Lex.getKind() == lltok::LocalVar) {
2609 Name = Lex.getStrVal();
2610 Lex.Lex();
2611 } else {
2612 if (Lex.getKind() == lltok::LocalVarID) {
2613 if (Lex.getUIntVal() != CurValID)
2614 return Error(TypeLoc, "argument expected to be numbered '%" +
2615 Twine(CurValID) + "'");
2616 Lex.Lex();
2618 ++CurValID;
2619 Name = "";
2622 if (!ArgTy->isFirstClassType())
2623 return Error(TypeLoc, "invalid type for function argument");
2625 ArgList.emplace_back(TypeLoc, ArgTy,
2626 AttributeSet::get(ArgTy->getContext(), Attrs),
2627 std::move(Name));
2631 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2634 /// ParseFunctionType
2635 /// ::= Type ArgumentList OptionalAttrs
2636 bool LLParser::ParseFunctionType(Type *&Result) {
2637 assert(Lex.getKind() == lltok::lparen);
2639 if (!FunctionType::isValidReturnType(Result))
2640 return TokError("invalid function return type");
2642 SmallVector<ArgInfo, 8> ArgList;
2643 bool isVarArg;
2644 if (ParseArgumentList(ArgList, isVarArg))
2645 return true;
2647 // Reject names on the arguments lists.
2648 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2649 if (!ArgList[i].Name.empty())
2650 return Error(ArgList[i].Loc, "argument name invalid in function type");
2651 if (ArgList[i].Attrs.hasAttributes())
2652 return Error(ArgList[i].Loc,
2653 "argument attributes invalid in function type");
2656 SmallVector<Type*, 16> ArgListTy;
2657 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2658 ArgListTy.push_back(ArgList[i].Ty);
2660 Result = FunctionType::get(Result, ArgListTy, isVarArg);
2661 return false;
2664 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2665 /// other structs.
2666 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2667 SmallVector<Type*, 8> Elts;
2668 if (ParseStructBody(Elts)) return true;
2670 Result = StructType::get(Context, Elts, Packed);
2671 return false;
2674 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2675 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2676 std::pair<Type*, LocTy> &Entry,
2677 Type *&ResultTy) {
2678 // If the type was already defined, diagnose the redefinition.
2679 if (Entry.first && !Entry.second.isValid())
2680 return Error(TypeLoc, "redefinition of type");
2682 // If we have opaque, just return without filling in the definition for the
2683 // struct. This counts as a definition as far as the .ll file goes.
2684 if (EatIfPresent(lltok::kw_opaque)) {
2685 // This type is being defined, so clear the location to indicate this.
2686 Entry.second = SMLoc();
2688 // If this type number has never been uttered, create it.
2689 if (!Entry.first)
2690 Entry.first = StructType::create(Context, Name);
2691 ResultTy = Entry.first;
2692 return false;
2695 // If the type starts with '<', then it is either a packed struct or a vector.
2696 bool isPacked = EatIfPresent(lltok::less);
2698 // If we don't have a struct, then we have a random type alias, which we
2699 // accept for compatibility with old files. These types are not allowed to be
2700 // forward referenced and not allowed to be recursive.
2701 if (Lex.getKind() != lltok::lbrace) {
2702 if (Entry.first)
2703 return Error(TypeLoc, "forward references to non-struct type");
2705 ResultTy = nullptr;
2706 if (isPacked)
2707 return ParseArrayVectorType(ResultTy, true);
2708 return ParseType(ResultTy);
2711 // This type is being defined, so clear the location to indicate this.
2712 Entry.second = SMLoc();
2714 // If this type number has never been uttered, create it.
2715 if (!Entry.first)
2716 Entry.first = StructType::create(Context, Name);
2718 StructType *STy = cast<StructType>(Entry.first);
2720 SmallVector<Type*, 8> Body;
2721 if (ParseStructBody(Body) ||
2722 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2723 return true;
2725 STy->setBody(Body, isPacked);
2726 ResultTy = STy;
2727 return false;
2730 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
2731 /// StructType
2732 /// ::= '{' '}'
2733 /// ::= '{' Type (',' Type)* '}'
2734 /// ::= '<' '{' '}' '>'
2735 /// ::= '<' '{' Type (',' Type)* '}' '>'
2736 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2737 assert(Lex.getKind() == lltok::lbrace);
2738 Lex.Lex(); // Consume the '{'
2740 // Handle the empty struct.
2741 if (EatIfPresent(lltok::rbrace))
2742 return false;
2744 LocTy EltTyLoc = Lex.getLoc();
2745 Type *Ty = nullptr;
2746 if (ParseType(Ty)) return true;
2747 Body.push_back(Ty);
2749 if (!StructType::isValidElementType(Ty))
2750 return Error(EltTyLoc, "invalid element type for struct");
2752 while (EatIfPresent(lltok::comma)) {
2753 EltTyLoc = Lex.getLoc();
2754 if (ParseType(Ty)) return true;
2756 if (!StructType::isValidElementType(Ty))
2757 return Error(EltTyLoc, "invalid element type for struct");
2759 Body.push_back(Ty);
2762 return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2765 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2766 /// token has already been consumed.
2767 /// Type
2768 /// ::= '[' APSINTVAL 'x' Types ']'
2769 /// ::= '<' APSINTVAL 'x' Types '>'
2770 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2771 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2772 bool Scalable = false;
2774 if (isVector && Lex.getKind() == lltok::kw_vscale) {
2775 Lex.Lex(); // consume the 'vscale'
2776 if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2777 return true;
2779 Scalable = true;
2782 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2783 Lex.getAPSIntVal().getBitWidth() > 64)
2784 return TokError("expected number in address space");
2786 LocTy SizeLoc = Lex.getLoc();
2787 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2788 Lex.Lex();
2790 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2791 return true;
2793 LocTy TypeLoc = Lex.getLoc();
2794 Type *EltTy = nullptr;
2795 if (ParseType(EltTy)) return true;
2797 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2798 "expected end of sequential type"))
2799 return true;
2801 if (isVector) {
2802 if (Size == 0)
2803 return Error(SizeLoc, "zero element vector is illegal");
2804 if ((unsigned)Size != Size)
2805 return Error(SizeLoc, "size too large for vector");
2806 if (!VectorType::isValidElementType(EltTy))
2807 return Error(TypeLoc, "invalid vector element type");
2808 Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2809 } else {
2810 if (!ArrayType::isValidElementType(EltTy))
2811 return Error(TypeLoc, "invalid array element type");
2812 Result = ArrayType::get(EltTy, Size);
2814 return false;
2817 //===----------------------------------------------------------------------===//
2818 // Function Semantic Analysis.
2819 //===----------------------------------------------------------------------===//
2821 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2822 int functionNumber)
2823 : P(p), F(f), FunctionNumber(functionNumber) {
2825 // Insert unnamed arguments into the NumberedVals list.
2826 for (Argument &A : F.args())
2827 if (!A.hasName())
2828 NumberedVals.push_back(&A);
2831 LLParser::PerFunctionState::~PerFunctionState() {
2832 // If there were any forward referenced non-basicblock values, delete them.
2834 for (const auto &P : ForwardRefVals) {
2835 if (isa<BasicBlock>(P.second.first))
2836 continue;
2837 P.second.first->replaceAllUsesWith(
2838 UndefValue::get(P.second.first->getType()));
2839 P.second.first->deleteValue();
2842 for (const auto &P : ForwardRefValIDs) {
2843 if (isa<BasicBlock>(P.second.first))
2844 continue;
2845 P.second.first->replaceAllUsesWith(
2846 UndefValue::get(P.second.first->getType()));
2847 P.second.first->deleteValue();
2851 bool LLParser::PerFunctionState::FinishFunction() {
2852 if (!ForwardRefVals.empty())
2853 return P.Error(ForwardRefVals.begin()->second.second,
2854 "use of undefined value '%" + ForwardRefVals.begin()->first +
2855 "'");
2856 if (!ForwardRefValIDs.empty())
2857 return P.Error(ForwardRefValIDs.begin()->second.second,
2858 "use of undefined value '%" +
2859 Twine(ForwardRefValIDs.begin()->first) + "'");
2860 return false;
2863 /// GetVal - Get a value with the specified name or ID, creating a
2864 /// forward reference record if needed. This can return null if the value
2865 /// exists but does not have the right type.
2866 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2867 LocTy Loc, bool IsCall) {
2868 // Look this name up in the normal function symbol table.
2869 Value *Val = F.getValueSymbolTable()->lookup(Name);
2871 // If this is a forward reference for the value, see if we already created a
2872 // forward ref record.
2873 if (!Val) {
2874 auto I = ForwardRefVals.find(Name);
2875 if (I != ForwardRefVals.end())
2876 Val = I->second.first;
2879 // If we have the value in the symbol table or fwd-ref table, return it.
2880 if (Val)
2881 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2883 // Don't make placeholders with invalid type.
2884 if (!Ty->isFirstClassType()) {
2885 P.Error(Loc, "invalid use of a non-first-class type");
2886 return nullptr;
2889 // Otherwise, create a new forward reference for this value and remember it.
2890 Value *FwdVal;
2891 if (Ty->isLabelTy()) {
2892 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2893 } else {
2894 FwdVal = new Argument(Ty, Name);
2897 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2898 return FwdVal;
2901 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2902 bool IsCall) {
2903 // Look this name up in the normal function symbol table.
2904 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2906 // If this is a forward reference for the value, see if we already created a
2907 // forward ref record.
2908 if (!Val) {
2909 auto I = ForwardRefValIDs.find(ID);
2910 if (I != ForwardRefValIDs.end())
2911 Val = I->second.first;
2914 // If we have the value in the symbol table or fwd-ref table, return it.
2915 if (Val)
2916 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2918 if (!Ty->isFirstClassType()) {
2919 P.Error(Loc, "invalid use of a non-first-class type");
2920 return nullptr;
2923 // Otherwise, create a new forward reference for this value and remember it.
2924 Value *FwdVal;
2925 if (Ty->isLabelTy()) {
2926 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2927 } else {
2928 FwdVal = new Argument(Ty);
2931 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2932 return FwdVal;
2935 /// SetInstName - After an instruction is parsed and inserted into its
2936 /// basic block, this installs its name.
2937 bool LLParser::PerFunctionState::SetInstName(int NameID,
2938 const std::string &NameStr,
2939 LocTy NameLoc, Instruction *Inst) {
2940 // If this instruction has void type, it cannot have a name or ID specified.
2941 if (Inst->getType()->isVoidTy()) {
2942 if (NameID != -1 || !NameStr.empty())
2943 return P.Error(NameLoc, "instructions returning void cannot have a name");
2944 return false;
2947 // If this was a numbered instruction, verify that the instruction is the
2948 // expected value and resolve any forward references.
2949 if (NameStr.empty()) {
2950 // If neither a name nor an ID was specified, just use the next ID.
2951 if (NameID == -1)
2952 NameID = NumberedVals.size();
2954 if (unsigned(NameID) != NumberedVals.size())
2955 return P.Error(NameLoc, "instruction expected to be numbered '%" +
2956 Twine(NumberedVals.size()) + "'");
2958 auto FI = ForwardRefValIDs.find(NameID);
2959 if (FI != ForwardRefValIDs.end()) {
2960 Value *Sentinel = FI->second.first;
2961 if (Sentinel->getType() != Inst->getType())
2962 return P.Error(NameLoc, "instruction forward referenced with type '" +
2963 getTypeString(FI->second.first->getType()) + "'");
2965 Sentinel->replaceAllUsesWith(Inst);
2966 Sentinel->deleteValue();
2967 ForwardRefValIDs.erase(FI);
2970 NumberedVals.push_back(Inst);
2971 return false;
2974 // Otherwise, the instruction had a name. Resolve forward refs and set it.
2975 auto FI = ForwardRefVals.find(NameStr);
2976 if (FI != ForwardRefVals.end()) {
2977 Value *Sentinel = FI->second.first;
2978 if (Sentinel->getType() != Inst->getType())
2979 return P.Error(NameLoc, "instruction forward referenced with type '" +
2980 getTypeString(FI->second.first->getType()) + "'");
2982 Sentinel->replaceAllUsesWith(Inst);
2983 Sentinel->deleteValue();
2984 ForwardRefVals.erase(FI);
2987 // Set the name on the instruction.
2988 Inst->setName(NameStr);
2990 if (Inst->getName() != NameStr)
2991 return P.Error(NameLoc, "multiple definition of local value named '" +
2992 NameStr + "'");
2993 return false;
2996 /// GetBB - Get a basic block with the specified name or ID, creating a
2997 /// forward reference record if needed.
2998 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2999 LocTy Loc) {
3000 return dyn_cast_or_null<BasicBlock>(
3001 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3004 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3005 return dyn_cast_or_null<BasicBlock>(
3006 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3009 /// DefineBB - Define the specified basic block, which is either named or
3010 /// unnamed. If there is an error, this returns null otherwise it returns
3011 /// the block being defined.
3012 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3013 int NameID, LocTy Loc) {
3014 BasicBlock *BB;
3015 if (Name.empty()) {
3016 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3017 P.Error(Loc, "label expected to be numbered '" +
3018 Twine(NumberedVals.size()) + "'");
3019 return nullptr;
3021 BB = GetBB(NumberedVals.size(), Loc);
3022 if (!BB) {
3023 P.Error(Loc, "unable to create block numbered '" +
3024 Twine(NumberedVals.size()) + "'");
3025 return nullptr;
3027 } else {
3028 BB = GetBB(Name, Loc);
3029 if (!BB) {
3030 P.Error(Loc, "unable to create block named '" + Name + "'");
3031 return nullptr;
3035 // Move the block to the end of the function. Forward ref'd blocks are
3036 // inserted wherever they happen to be referenced.
3037 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3039 // Remove the block from forward ref sets.
3040 if (Name.empty()) {
3041 ForwardRefValIDs.erase(NumberedVals.size());
3042 NumberedVals.push_back(BB);
3043 } else {
3044 // BB forward references are already in the function symbol table.
3045 ForwardRefVals.erase(Name);
3048 return BB;
3051 //===----------------------------------------------------------------------===//
3052 // Constants.
3053 //===----------------------------------------------------------------------===//
3055 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3056 /// type implied. For example, if we parse "4" we don't know what integer type
3057 /// it has. The value will later be combined with its type and checked for
3058 /// sanity. PFS is used to convert function-local operands of metadata (since
3059 /// metadata operands are not just parsed here but also converted to values).
3060 /// PFS can be null when we are not parsing metadata values inside a function.
3061 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3062 ID.Loc = Lex.getLoc();
3063 switch (Lex.getKind()) {
3064 default: return TokError("expected value token");
3065 case lltok::GlobalID: // @42
3066 ID.UIntVal = Lex.getUIntVal();
3067 ID.Kind = ValID::t_GlobalID;
3068 break;
3069 case lltok::GlobalVar: // @foo
3070 ID.StrVal = Lex.getStrVal();
3071 ID.Kind = ValID::t_GlobalName;
3072 break;
3073 case lltok::LocalVarID: // %42
3074 ID.UIntVal = Lex.getUIntVal();
3075 ID.Kind = ValID::t_LocalID;
3076 break;
3077 case lltok::LocalVar: // %foo
3078 ID.StrVal = Lex.getStrVal();
3079 ID.Kind = ValID::t_LocalName;
3080 break;
3081 case lltok::APSInt:
3082 ID.APSIntVal = Lex.getAPSIntVal();
3083 ID.Kind = ValID::t_APSInt;
3084 break;
3085 case lltok::APFloat:
3086 ID.APFloatVal = Lex.getAPFloatVal();
3087 ID.Kind = ValID::t_APFloat;
3088 break;
3089 case lltok::kw_true:
3090 ID.ConstantVal = ConstantInt::getTrue(Context);
3091 ID.Kind = ValID::t_Constant;
3092 break;
3093 case lltok::kw_false:
3094 ID.ConstantVal = ConstantInt::getFalse(Context);
3095 ID.Kind = ValID::t_Constant;
3096 break;
3097 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3098 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3099 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3100 case lltok::kw_none: ID.Kind = ValID::t_None; break;
3102 case lltok::lbrace: {
3103 // ValID ::= '{' ConstVector '}'
3104 Lex.Lex();
3105 SmallVector<Constant*, 16> Elts;
3106 if (ParseGlobalValueVector(Elts) ||
3107 ParseToken(lltok::rbrace, "expected end of struct constant"))
3108 return true;
3110 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3111 ID.UIntVal = Elts.size();
3112 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3113 Elts.size() * sizeof(Elts[0]));
3114 ID.Kind = ValID::t_ConstantStruct;
3115 return false;
3117 case lltok::less: {
3118 // ValID ::= '<' ConstVector '>' --> Vector.
3119 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3120 Lex.Lex();
3121 bool isPackedStruct = EatIfPresent(lltok::lbrace);
3123 SmallVector<Constant*, 16> Elts;
3124 LocTy FirstEltLoc = Lex.getLoc();
3125 if (ParseGlobalValueVector(Elts) ||
3126 (isPackedStruct &&
3127 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3128 ParseToken(lltok::greater, "expected end of constant"))
3129 return true;
3131 if (isPackedStruct) {
3132 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3133 memcpy(ID.ConstantStructElts.get(), Elts.data(),
3134 Elts.size() * sizeof(Elts[0]));
3135 ID.UIntVal = Elts.size();
3136 ID.Kind = ValID::t_PackedConstantStruct;
3137 return false;
3140 if (Elts.empty())
3141 return Error(ID.Loc, "constant vector must not be empty");
3143 if (!Elts[0]->getType()->isIntegerTy() &&
3144 !Elts[0]->getType()->isFloatingPointTy() &&
3145 !Elts[0]->getType()->isPointerTy())
3146 return Error(FirstEltLoc,
3147 "vector elements must have integer, pointer or floating point type");
3149 // Verify that all the vector elements have the same type.
3150 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3151 if (Elts[i]->getType() != Elts[0]->getType())
3152 return Error(FirstEltLoc,
3153 "vector element #" + Twine(i) +
3154 " is not of type '" + getTypeString(Elts[0]->getType()));
3156 ID.ConstantVal = ConstantVector::get(Elts);
3157 ID.Kind = ValID::t_Constant;
3158 return false;
3160 case lltok::lsquare: { // Array Constant
3161 Lex.Lex();
3162 SmallVector<Constant*, 16> Elts;
3163 LocTy FirstEltLoc = Lex.getLoc();
3164 if (ParseGlobalValueVector(Elts) ||
3165 ParseToken(lltok::rsquare, "expected end of array constant"))
3166 return true;
3168 // Handle empty element.
3169 if (Elts.empty()) {
3170 // Use undef instead of an array because it's inconvenient to determine
3171 // the element type at this point, there being no elements to examine.
3172 ID.Kind = ValID::t_EmptyArray;
3173 return false;
3176 if (!Elts[0]->getType()->isFirstClassType())
3177 return Error(FirstEltLoc, "invalid array element type: " +
3178 getTypeString(Elts[0]->getType()));
3180 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3182 // Verify all elements are correct type!
3183 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3184 if (Elts[i]->getType() != Elts[0]->getType())
3185 return Error(FirstEltLoc,
3186 "array element #" + Twine(i) +
3187 " is not of type '" + getTypeString(Elts[0]->getType()));
3190 ID.ConstantVal = ConstantArray::get(ATy, Elts);
3191 ID.Kind = ValID::t_Constant;
3192 return false;
3194 case lltok::kw_c: // c "foo"
3195 Lex.Lex();
3196 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3197 false);
3198 if (ParseToken(lltok::StringConstant, "expected string")) return true;
3199 ID.Kind = ValID::t_Constant;
3200 return false;
3202 case lltok::kw_asm: {
3203 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3204 // STRINGCONSTANT
3205 bool HasSideEffect, AlignStack, AsmDialect;
3206 Lex.Lex();
3207 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3208 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3209 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3210 ParseStringConstant(ID.StrVal) ||
3211 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3212 ParseToken(lltok::StringConstant, "expected constraint string"))
3213 return true;
3214 ID.StrVal2 = Lex.getStrVal();
3215 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3216 (unsigned(AsmDialect)<<2);
3217 ID.Kind = ValID::t_InlineAsm;
3218 return false;
3221 case lltok::kw_blockaddress: {
3222 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3223 Lex.Lex();
3225 ValID Fn, Label;
3227 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3228 ParseValID(Fn) ||
3229 ParseToken(lltok::comma, "expected comma in block address expression")||
3230 ParseValID(Label) ||
3231 ParseToken(lltok::rparen, "expected ')' in block address expression"))
3232 return true;
3234 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3235 return Error(Fn.Loc, "expected function name in blockaddress");
3236 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3237 return Error(Label.Loc, "expected basic block name in blockaddress");
3239 // Try to find the function (but skip it if it's forward-referenced).
3240 GlobalValue *GV = nullptr;
3241 if (Fn.Kind == ValID::t_GlobalID) {
3242 if (Fn.UIntVal < NumberedVals.size())
3243 GV = NumberedVals[Fn.UIntVal];
3244 } else if (!ForwardRefVals.count(Fn.StrVal)) {
3245 GV = M->getNamedValue(Fn.StrVal);
3247 Function *F = nullptr;
3248 if (GV) {
3249 // Confirm that it's actually a function with a definition.
3250 if (!isa<Function>(GV))
3251 return Error(Fn.Loc, "expected function name in blockaddress");
3252 F = cast<Function>(GV);
3253 if (F->isDeclaration())
3254 return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3257 if (!F) {
3258 // Make a global variable as a placeholder for this reference.
3259 GlobalValue *&FwdRef =
3260 ForwardRefBlockAddresses.insert(std::make_pair(
3261 std::move(Fn),
3262 std::map<ValID, GlobalValue *>()))
3263 .first->second.insert(std::make_pair(std::move(Label), nullptr))
3264 .first->second;
3265 if (!FwdRef)
3266 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3267 GlobalValue::InternalLinkage, nullptr, "");
3268 ID.ConstantVal = FwdRef;
3269 ID.Kind = ValID::t_Constant;
3270 return false;
3273 // We found the function; now find the basic block. Don't use PFS, since we
3274 // might be inside a constant expression.
3275 BasicBlock *BB;
3276 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3277 if (Label.Kind == ValID::t_LocalID)
3278 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3279 else
3280 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3281 if (!BB)
3282 return Error(Label.Loc, "referenced value is not a basic block");
3283 } else {
3284 if (Label.Kind == ValID::t_LocalID)
3285 return Error(Label.Loc, "cannot take address of numeric label after "
3286 "the function is defined");
3287 BB = dyn_cast_or_null<BasicBlock>(
3288 F->getValueSymbolTable()->lookup(Label.StrVal));
3289 if (!BB)
3290 return Error(Label.Loc, "referenced value is not a basic block");
3293 ID.ConstantVal = BlockAddress::get(F, BB);
3294 ID.Kind = ValID::t_Constant;
3295 return false;
3298 case lltok::kw_trunc:
3299 case lltok::kw_zext:
3300 case lltok::kw_sext:
3301 case lltok::kw_fptrunc:
3302 case lltok::kw_fpext:
3303 case lltok::kw_bitcast:
3304 case lltok::kw_addrspacecast:
3305 case lltok::kw_uitofp:
3306 case lltok::kw_sitofp:
3307 case lltok::kw_fptoui:
3308 case lltok::kw_fptosi:
3309 case lltok::kw_inttoptr:
3310 case lltok::kw_ptrtoint: {
3311 unsigned Opc = Lex.getUIntVal();
3312 Type *DestTy = nullptr;
3313 Constant *SrcVal;
3314 Lex.Lex();
3315 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3316 ParseGlobalTypeAndValue(SrcVal) ||
3317 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3318 ParseType(DestTy) ||
3319 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3320 return true;
3321 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3322 return Error(ID.Loc, "invalid cast opcode for cast from '" +
3323 getTypeString(SrcVal->getType()) + "' to '" +
3324 getTypeString(DestTy) + "'");
3325 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3326 SrcVal, DestTy);
3327 ID.Kind = ValID::t_Constant;
3328 return false;
3330 case lltok::kw_extractvalue: {
3331 Lex.Lex();
3332 Constant *Val;
3333 SmallVector<unsigned, 4> Indices;
3334 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3335 ParseGlobalTypeAndValue(Val) ||
3336 ParseIndexList(Indices) ||
3337 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3338 return true;
3340 if (!Val->getType()->isAggregateType())
3341 return Error(ID.Loc, "extractvalue operand must be aggregate type");
3342 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3343 return Error(ID.Loc, "invalid indices for extractvalue");
3344 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3345 ID.Kind = ValID::t_Constant;
3346 return false;
3348 case lltok::kw_insertvalue: {
3349 Lex.Lex();
3350 Constant *Val0, *Val1;
3351 SmallVector<unsigned, 4> Indices;
3352 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3353 ParseGlobalTypeAndValue(Val0) ||
3354 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3355 ParseGlobalTypeAndValue(Val1) ||
3356 ParseIndexList(Indices) ||
3357 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3358 return true;
3359 if (!Val0->getType()->isAggregateType())
3360 return Error(ID.Loc, "insertvalue operand must be aggregate type");
3361 Type *IndexedType =
3362 ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3363 if (!IndexedType)
3364 return Error(ID.Loc, "invalid indices for insertvalue");
3365 if (IndexedType != Val1->getType())
3366 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3367 getTypeString(Val1->getType()) +
3368 "' instead of '" + getTypeString(IndexedType) +
3369 "'");
3370 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3371 ID.Kind = ValID::t_Constant;
3372 return false;
3374 case lltok::kw_icmp:
3375 case lltok::kw_fcmp: {
3376 unsigned PredVal, Opc = Lex.getUIntVal();
3377 Constant *Val0, *Val1;
3378 Lex.Lex();
3379 if (ParseCmpPredicate(PredVal, Opc) ||
3380 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3381 ParseGlobalTypeAndValue(Val0) ||
3382 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3383 ParseGlobalTypeAndValue(Val1) ||
3384 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3385 return true;
3387 if (Val0->getType() != Val1->getType())
3388 return Error(ID.Loc, "compare operands must have the same type");
3390 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3392 if (Opc == Instruction::FCmp) {
3393 if (!Val0->getType()->isFPOrFPVectorTy())
3394 return Error(ID.Loc, "fcmp requires floating point operands");
3395 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3396 } else {
3397 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3398 if (!Val0->getType()->isIntOrIntVectorTy() &&
3399 !Val0->getType()->isPtrOrPtrVectorTy())
3400 return Error(ID.Loc, "icmp requires pointer or integer operands");
3401 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3403 ID.Kind = ValID::t_Constant;
3404 return false;
3407 // Unary Operators.
3408 case lltok::kw_fneg: {
3409 unsigned Opc = Lex.getUIntVal();
3410 Constant *Val;
3411 Lex.Lex();
3412 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3413 ParseGlobalTypeAndValue(Val) ||
3414 ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3415 return true;
3417 // Check that the type is valid for the operator.
3418 switch (Opc) {
3419 case Instruction::FNeg:
3420 if (!Val->getType()->isFPOrFPVectorTy())
3421 return Error(ID.Loc, "constexpr requires fp operands");
3422 break;
3423 default: llvm_unreachable("Unknown unary operator!");
3425 unsigned Flags = 0;
3426 Constant *C = ConstantExpr::get(Opc, Val, Flags);
3427 ID.ConstantVal = C;
3428 ID.Kind = ValID::t_Constant;
3429 return false;
3431 // Binary Operators.
3432 case lltok::kw_add:
3433 case lltok::kw_fadd:
3434 case lltok::kw_sub:
3435 case lltok::kw_fsub:
3436 case lltok::kw_mul:
3437 case lltok::kw_fmul:
3438 case lltok::kw_udiv:
3439 case lltok::kw_sdiv:
3440 case lltok::kw_fdiv:
3441 case lltok::kw_urem:
3442 case lltok::kw_srem:
3443 case lltok::kw_frem:
3444 case lltok::kw_shl:
3445 case lltok::kw_lshr:
3446 case lltok::kw_ashr: {
3447 bool NUW = false;
3448 bool NSW = false;
3449 bool Exact = false;
3450 unsigned Opc = Lex.getUIntVal();
3451 Constant *Val0, *Val1;
3452 Lex.Lex();
3453 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3454 Opc == Instruction::Mul || Opc == Instruction::Shl) {
3455 if (EatIfPresent(lltok::kw_nuw))
3456 NUW = true;
3457 if (EatIfPresent(lltok::kw_nsw)) {
3458 NSW = true;
3459 if (EatIfPresent(lltok::kw_nuw))
3460 NUW = true;
3462 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3463 Opc == Instruction::LShr || Opc == Instruction::AShr) {
3464 if (EatIfPresent(lltok::kw_exact))
3465 Exact = true;
3467 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3468 ParseGlobalTypeAndValue(Val0) ||
3469 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3470 ParseGlobalTypeAndValue(Val1) ||
3471 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3472 return true;
3473 if (Val0->getType() != Val1->getType())
3474 return Error(ID.Loc, "operands of constexpr must have same type");
3475 // Check that the type is valid for the operator.
3476 switch (Opc) {
3477 case Instruction::Add:
3478 case Instruction::Sub:
3479 case Instruction::Mul:
3480 case Instruction::UDiv:
3481 case Instruction::SDiv:
3482 case Instruction::URem:
3483 case Instruction::SRem:
3484 case Instruction::Shl:
3485 case Instruction::AShr:
3486 case Instruction::LShr:
3487 if (!Val0->getType()->isIntOrIntVectorTy())
3488 return Error(ID.Loc, "constexpr requires integer operands");
3489 break;
3490 case Instruction::FAdd:
3491 case Instruction::FSub:
3492 case Instruction::FMul:
3493 case Instruction::FDiv:
3494 case Instruction::FRem:
3495 if (!Val0->getType()->isFPOrFPVectorTy())
3496 return Error(ID.Loc, "constexpr requires fp operands");
3497 break;
3498 default: llvm_unreachable("Unknown binary operator!");
3500 unsigned Flags = 0;
3501 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3502 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
3503 if (Exact) Flags |= PossiblyExactOperator::IsExact;
3504 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3505 ID.ConstantVal = C;
3506 ID.Kind = ValID::t_Constant;
3507 return false;
3510 // Logical Operations
3511 case lltok::kw_and:
3512 case lltok::kw_or:
3513 case lltok::kw_xor: {
3514 unsigned Opc = Lex.getUIntVal();
3515 Constant *Val0, *Val1;
3516 Lex.Lex();
3517 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3518 ParseGlobalTypeAndValue(Val0) ||
3519 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3520 ParseGlobalTypeAndValue(Val1) ||
3521 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3522 return true;
3523 if (Val0->getType() != Val1->getType())
3524 return Error(ID.Loc, "operands of constexpr must have same type");
3525 if (!Val0->getType()->isIntOrIntVectorTy())
3526 return Error(ID.Loc,
3527 "constexpr requires integer or integer vector operands");
3528 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3529 ID.Kind = ValID::t_Constant;
3530 return false;
3533 case lltok::kw_getelementptr:
3534 case lltok::kw_shufflevector:
3535 case lltok::kw_insertelement:
3536 case lltok::kw_extractelement:
3537 case lltok::kw_select: {
3538 unsigned Opc = Lex.getUIntVal();
3539 SmallVector<Constant*, 16> Elts;
3540 bool InBounds = false;
3541 Type *Ty;
3542 Lex.Lex();
3544 if (Opc == Instruction::GetElementPtr)
3545 InBounds = EatIfPresent(lltok::kw_inbounds);
3547 if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3548 return true;
3550 LocTy ExplicitTypeLoc = Lex.getLoc();
3551 if (Opc == Instruction::GetElementPtr) {
3552 if (ParseType(Ty) ||
3553 ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3554 return true;
3557 Optional<unsigned> InRangeOp;
3558 if (ParseGlobalValueVector(
3559 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3560 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3561 return true;
3563 if (Opc == Instruction::GetElementPtr) {
3564 if (Elts.size() == 0 ||
3565 !Elts[0]->getType()->isPtrOrPtrVectorTy())
3566 return Error(ID.Loc, "base of getelementptr must be a pointer");
3568 Type *BaseType = Elts[0]->getType();
3569 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3570 if (Ty != BasePointerType->getElementType())
3571 return Error(
3572 ExplicitTypeLoc,
3573 "explicit pointee type doesn't match operand's pointee type");
3575 unsigned GEPWidth =
3576 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3578 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3579 for (Constant *Val : Indices) {
3580 Type *ValTy = Val->getType();
3581 if (!ValTy->isIntOrIntVectorTy())
3582 return Error(ID.Loc, "getelementptr index must be an integer");
3583 if (ValTy->isVectorTy()) {
3584 unsigned ValNumEl = ValTy->getVectorNumElements();
3585 if (GEPWidth && (ValNumEl != GEPWidth))
3586 return Error(
3587 ID.Loc,
3588 "getelementptr vector index has a wrong number of elements");
3589 // GEPWidth may have been unknown because the base is a scalar,
3590 // but it is known now.
3591 GEPWidth = ValNumEl;
3595 SmallPtrSet<Type*, 4> Visited;
3596 if (!Indices.empty() && !Ty->isSized(&Visited))
3597 return Error(ID.Loc, "base element of getelementptr must be sized");
3599 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3600 return Error(ID.Loc, "invalid getelementptr indices");
3602 if (InRangeOp) {
3603 if (*InRangeOp == 0)
3604 return Error(ID.Loc,
3605 "inrange keyword may not appear on pointer operand");
3606 --*InRangeOp;
3609 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3610 InBounds, InRangeOp);
3611 } else if (Opc == Instruction::Select) {
3612 if (Elts.size() != 3)
3613 return Error(ID.Loc, "expected three operands to select");
3614 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3615 Elts[2]))
3616 return Error(ID.Loc, Reason);
3617 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3618 } else if (Opc == Instruction::ShuffleVector) {
3619 if (Elts.size() != 3)
3620 return Error(ID.Loc, "expected three operands to shufflevector");
3621 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3622 return Error(ID.Loc, "invalid operands to shufflevector");
3623 ID.ConstantVal =
3624 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3625 } else if (Opc == Instruction::ExtractElement) {
3626 if (Elts.size() != 2)
3627 return Error(ID.Loc, "expected two operands to extractelement");
3628 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3629 return Error(ID.Loc, "invalid extractelement operands");
3630 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3631 } else {
3632 assert(Opc == Instruction::InsertElement && "Unknown opcode");
3633 if (Elts.size() != 3)
3634 return Error(ID.Loc, "expected three operands to insertelement");
3635 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3636 return Error(ID.Loc, "invalid insertelement operands");
3637 ID.ConstantVal =
3638 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3641 ID.Kind = ValID::t_Constant;
3642 return false;
3646 Lex.Lex();
3647 return false;
3650 /// ParseGlobalValue - Parse a global value with the specified type.
3651 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3652 C = nullptr;
3653 ValID ID;
3654 Value *V = nullptr;
3655 bool Parsed = ParseValID(ID) ||
3656 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3657 if (V && !(C = dyn_cast<Constant>(V)))
3658 return Error(ID.Loc, "global values must be constants");
3659 return Parsed;
3662 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3663 Type *Ty = nullptr;
3664 return ParseType(Ty) ||
3665 ParseGlobalValue(Ty, V);
3668 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3669 C = nullptr;
3671 LocTy KwLoc = Lex.getLoc();
3672 if (!EatIfPresent(lltok::kw_comdat))
3673 return false;
3675 if (EatIfPresent(lltok::lparen)) {
3676 if (Lex.getKind() != lltok::ComdatVar)
3677 return TokError("expected comdat variable");
3678 C = getComdat(Lex.getStrVal(), Lex.getLoc());
3679 Lex.Lex();
3680 if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3681 return true;
3682 } else {
3683 if (GlobalName.empty())
3684 return TokError("comdat cannot be unnamed");
3685 C = getComdat(GlobalName, KwLoc);
3688 return false;
3691 /// ParseGlobalValueVector
3692 /// ::= /*empty*/
3693 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3694 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3695 Optional<unsigned> *InRangeOp) {
3696 // Empty list.
3697 if (Lex.getKind() == lltok::rbrace ||
3698 Lex.getKind() == lltok::rsquare ||
3699 Lex.getKind() == lltok::greater ||
3700 Lex.getKind() == lltok::rparen)
3701 return false;
3703 do {
3704 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3705 *InRangeOp = Elts.size();
3707 Constant *C;
3708 if (ParseGlobalTypeAndValue(C)) return true;
3709 Elts.push_back(C);
3710 } while (EatIfPresent(lltok::comma));
3712 return false;
3715 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3716 SmallVector<Metadata *, 16> Elts;
3717 if (ParseMDNodeVector(Elts))
3718 return true;
3720 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3721 return false;
3724 /// MDNode:
3725 /// ::= !{ ... }
3726 /// ::= !7
3727 /// ::= !DILocation(...)
3728 bool LLParser::ParseMDNode(MDNode *&N) {
3729 if (Lex.getKind() == lltok::MetadataVar)
3730 return ParseSpecializedMDNode(N);
3732 return ParseToken(lltok::exclaim, "expected '!' here") ||
3733 ParseMDNodeTail(N);
3736 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3737 // !{ ... }
3738 if (Lex.getKind() == lltok::lbrace)
3739 return ParseMDTuple(N);
3741 // !42
3742 return ParseMDNodeID(N);
3745 namespace {
3747 /// Structure to represent an optional metadata field.
3748 template <class FieldTy> struct MDFieldImpl {
3749 typedef MDFieldImpl ImplTy;
3750 FieldTy Val;
3751 bool Seen;
3753 void assign(FieldTy Val) {
3754 Seen = true;
3755 this->Val = std::move(Val);
3758 explicit MDFieldImpl(FieldTy Default)
3759 : Val(std::move(Default)), Seen(false) {}
3762 /// Structure to represent an optional metadata field that
3763 /// can be of either type (A or B) and encapsulates the
3764 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3765 /// to reimplement the specifics for representing each Field.
3766 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3767 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3768 FieldTypeA A;
3769 FieldTypeB B;
3770 bool Seen;
3772 enum {
3773 IsInvalid = 0,
3774 IsTypeA = 1,
3775 IsTypeB = 2
3776 } WhatIs;
3778 void assign(FieldTypeA A) {
3779 Seen = true;
3780 this->A = std::move(A);
3781 WhatIs = IsTypeA;
3784 void assign(FieldTypeB B) {
3785 Seen = true;
3786 this->B = std::move(B);
3787 WhatIs = IsTypeB;
3790 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3791 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3792 WhatIs(IsInvalid) {}
3795 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3796 uint64_t Max;
3798 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3799 : ImplTy(Default), Max(Max) {}
3802 struct LineField : public MDUnsignedField {
3803 LineField() : MDUnsignedField(0, UINT32_MAX) {}
3806 struct ColumnField : public MDUnsignedField {
3807 ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3810 struct DwarfTagField : public MDUnsignedField {
3811 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3812 DwarfTagField(dwarf::Tag DefaultTag)
3813 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3816 struct DwarfMacinfoTypeField : public MDUnsignedField {
3817 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3818 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3819 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3822 struct DwarfAttEncodingField : public MDUnsignedField {
3823 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3826 struct DwarfVirtualityField : public MDUnsignedField {
3827 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3830 struct DwarfLangField : public MDUnsignedField {
3831 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3834 struct DwarfCCField : public MDUnsignedField {
3835 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3838 struct EmissionKindField : public MDUnsignedField {
3839 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3842 struct NameTableKindField : public MDUnsignedField {
3843 NameTableKindField()
3844 : MDUnsignedField(
3845 0, (unsigned)
3846 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3849 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3850 DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3853 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3854 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3857 struct MDSignedField : public MDFieldImpl<int64_t> {
3858 int64_t Min;
3859 int64_t Max;
3861 MDSignedField(int64_t Default = 0)
3862 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3863 MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3864 : ImplTy(Default), Min(Min), Max(Max) {}
3867 struct MDBoolField : public MDFieldImpl<bool> {
3868 MDBoolField(bool Default = false) : ImplTy(Default) {}
3871 struct MDField : public MDFieldImpl<Metadata *> {
3872 bool AllowNull;
3874 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3877 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3878 MDConstant() : ImplTy(nullptr) {}
3881 struct MDStringField : public MDFieldImpl<MDString *> {
3882 bool AllowEmpty;
3883 MDStringField(bool AllowEmpty = true)
3884 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3887 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3888 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3891 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3892 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3895 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3896 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3897 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3899 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3900 bool AllowNull = true)
3901 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3903 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3904 bool isMDField() const { return WhatIs == IsTypeB; }
3905 int64_t getMDSignedValue() const {
3906 assert(isMDSignedField() && "Wrong field type");
3907 return A.Val;
3909 Metadata *getMDFieldValue() const {
3910 assert(isMDField() && "Wrong field type");
3911 return B.Val;
3915 struct MDSignedOrUnsignedField
3916 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3917 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3919 bool isMDSignedField() const { return WhatIs == IsTypeA; }
3920 bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3921 int64_t getMDSignedValue() const {
3922 assert(isMDSignedField() && "Wrong field type");
3923 return A.Val;
3925 uint64_t getMDUnsignedValue() const {
3926 assert(isMDUnsignedField() && "Wrong field type");
3927 return B.Val;
3931 } // end anonymous namespace
3933 namespace llvm {
3935 template <>
3936 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3937 MDUnsignedField &Result) {
3938 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3939 return TokError("expected unsigned integer");
3941 auto &U = Lex.getAPSIntVal();
3942 if (U.ugt(Result.Max))
3943 return TokError("value for '" + Name + "' too large, limit is " +
3944 Twine(Result.Max));
3945 Result.assign(U.getZExtValue());
3946 assert(Result.Val <= Result.Max && "Expected value in range");
3947 Lex.Lex();
3948 return false;
3951 template <>
3952 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3953 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3955 template <>
3956 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3957 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3960 template <>
3961 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3962 if (Lex.getKind() == lltok::APSInt)
3963 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3965 if (Lex.getKind() != lltok::DwarfTag)
3966 return TokError("expected DWARF tag");
3968 unsigned Tag = dwarf::getTag(Lex.getStrVal());
3969 if (Tag == dwarf::DW_TAG_invalid)
3970 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3971 assert(Tag <= Result.Max && "Expected valid DWARF tag");
3973 Result.assign(Tag);
3974 Lex.Lex();
3975 return false;
3978 template <>
3979 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3980 DwarfMacinfoTypeField &Result) {
3981 if (Lex.getKind() == lltok::APSInt)
3982 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3984 if (Lex.getKind() != lltok::DwarfMacinfo)
3985 return TokError("expected DWARF macinfo type");
3987 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3988 if (Macinfo == dwarf::DW_MACINFO_invalid)
3989 return TokError(
3990 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3991 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3993 Result.assign(Macinfo);
3994 Lex.Lex();
3995 return false;
3998 template <>
3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4000 DwarfVirtualityField &Result) {
4001 if (Lex.getKind() == lltok::APSInt)
4002 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4004 if (Lex.getKind() != lltok::DwarfVirtuality)
4005 return TokError("expected DWARF virtuality code");
4007 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4008 if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4009 return TokError("invalid DWARF virtuality code" + Twine(" '") +
4010 Lex.getStrVal() + "'");
4011 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4012 Result.assign(Virtuality);
4013 Lex.Lex();
4014 return false;
4017 template <>
4018 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4019 if (Lex.getKind() == lltok::APSInt)
4020 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4022 if (Lex.getKind() != lltok::DwarfLang)
4023 return TokError("expected DWARF language");
4025 unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4026 if (!Lang)
4027 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4028 "'");
4029 assert(Lang <= Result.Max && "Expected valid DWARF language");
4030 Result.assign(Lang);
4031 Lex.Lex();
4032 return false;
4035 template <>
4036 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4037 if (Lex.getKind() == lltok::APSInt)
4038 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4040 if (Lex.getKind() != lltok::DwarfCC)
4041 return TokError("expected DWARF calling convention");
4043 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4044 if (!CC)
4045 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4046 "'");
4047 assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4048 Result.assign(CC);
4049 Lex.Lex();
4050 return false;
4053 template <>
4054 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4055 if (Lex.getKind() == lltok::APSInt)
4056 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4058 if (Lex.getKind() != lltok::EmissionKind)
4059 return TokError("expected emission kind");
4061 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4062 if (!Kind)
4063 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4064 "'");
4065 assert(*Kind <= Result.Max && "Expected valid emission kind");
4066 Result.assign(*Kind);
4067 Lex.Lex();
4068 return false;
4071 template <>
4072 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4073 NameTableKindField &Result) {
4074 if (Lex.getKind() == lltok::APSInt)
4075 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4077 if (Lex.getKind() != lltok::NameTableKind)
4078 return TokError("expected nameTable kind");
4080 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4081 if (!Kind)
4082 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4083 "'");
4084 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4085 Result.assign((unsigned)*Kind);
4086 Lex.Lex();
4087 return false;
4090 template <>
4091 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4092 DwarfAttEncodingField &Result) {
4093 if (Lex.getKind() == lltok::APSInt)
4094 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4096 if (Lex.getKind() != lltok::DwarfAttEncoding)
4097 return TokError("expected DWARF type attribute encoding");
4099 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4100 if (!Encoding)
4101 return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4102 Lex.getStrVal() + "'");
4103 assert(Encoding <= Result.Max && "Expected valid DWARF language");
4104 Result.assign(Encoding);
4105 Lex.Lex();
4106 return false;
4109 /// DIFlagField
4110 /// ::= uint32
4111 /// ::= DIFlagVector
4112 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4113 template <>
4114 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4116 // Parser for a single flag.
4117 auto parseFlag = [&](DINode::DIFlags &Val) {
4118 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4119 uint32_t TempVal = static_cast<uint32_t>(Val);
4120 bool Res = ParseUInt32(TempVal);
4121 Val = static_cast<DINode::DIFlags>(TempVal);
4122 return Res;
4125 if (Lex.getKind() != lltok::DIFlag)
4126 return TokError("expected debug info flag");
4128 Val = DINode::getFlag(Lex.getStrVal());
4129 if (!Val)
4130 return TokError(Twine("invalid debug info flag flag '") +
4131 Lex.getStrVal() + "'");
4132 Lex.Lex();
4133 return false;
4136 // Parse the flags and combine them together.
4137 DINode::DIFlags Combined = DINode::FlagZero;
4138 do {
4139 DINode::DIFlags Val;
4140 if (parseFlag(Val))
4141 return true;
4142 Combined |= Val;
4143 } while (EatIfPresent(lltok::bar));
4145 Result.assign(Combined);
4146 return false;
4149 /// DISPFlagField
4150 /// ::= uint32
4151 /// ::= DISPFlagVector
4152 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4153 template <>
4154 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4156 // Parser for a single flag.
4157 auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4158 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4159 uint32_t TempVal = static_cast<uint32_t>(Val);
4160 bool Res = ParseUInt32(TempVal);
4161 Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4162 return Res;
4165 if (Lex.getKind() != lltok::DISPFlag)
4166 return TokError("expected debug info flag");
4168 Val = DISubprogram::getFlag(Lex.getStrVal());
4169 if (!Val)
4170 return TokError(Twine("invalid subprogram debug info flag '") +
4171 Lex.getStrVal() + "'");
4172 Lex.Lex();
4173 return false;
4176 // Parse the flags and combine them together.
4177 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4178 do {
4179 DISubprogram::DISPFlags Val;
4180 if (parseFlag(Val))
4181 return true;
4182 Combined |= Val;
4183 } while (EatIfPresent(lltok::bar));
4185 Result.assign(Combined);
4186 return false;
4189 template <>
4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4191 MDSignedField &Result) {
4192 if (Lex.getKind() != lltok::APSInt)
4193 return TokError("expected signed integer");
4195 auto &S = Lex.getAPSIntVal();
4196 if (S < Result.Min)
4197 return TokError("value for '" + Name + "' too small, limit is " +
4198 Twine(Result.Min));
4199 if (S > Result.Max)
4200 return TokError("value for '" + Name + "' too large, limit is " +
4201 Twine(Result.Max));
4202 Result.assign(S.getExtValue());
4203 assert(Result.Val >= Result.Min && "Expected value in range");
4204 assert(Result.Val <= Result.Max && "Expected value in range");
4205 Lex.Lex();
4206 return false;
4209 template <>
4210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4211 switch (Lex.getKind()) {
4212 default:
4213 return TokError("expected 'true' or 'false'");
4214 case lltok::kw_true:
4215 Result.assign(true);
4216 break;
4217 case lltok::kw_false:
4218 Result.assign(false);
4219 break;
4221 Lex.Lex();
4222 return false;
4225 template <>
4226 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4227 if (Lex.getKind() == lltok::kw_null) {
4228 if (!Result.AllowNull)
4229 return TokError("'" + Name + "' cannot be null");
4230 Lex.Lex();
4231 Result.assign(nullptr);
4232 return false;
4235 Metadata *MD;
4236 if (ParseMetadata(MD, nullptr))
4237 return true;
4239 Result.assign(MD);
4240 return false;
4243 template <>
4244 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4245 MDSignedOrMDField &Result) {
4246 // Try to parse a signed int.
4247 if (Lex.getKind() == lltok::APSInt) {
4248 MDSignedField Res = Result.A;
4249 if (!ParseMDField(Loc, Name, Res)) {
4250 Result.assign(Res);
4251 return false;
4253 return true;
4256 // Otherwise, try to parse as an MDField.
4257 MDField Res = Result.B;
4258 if (!ParseMDField(Loc, Name, Res)) {
4259 Result.assign(Res);
4260 return false;
4263 return true;
4266 template <>
4267 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4268 MDSignedOrUnsignedField &Result) {
4269 if (Lex.getKind() != lltok::APSInt)
4270 return false;
4272 if (Lex.getAPSIntVal().isSigned()) {
4273 MDSignedField Res = Result.A;
4274 if (ParseMDField(Loc, Name, Res))
4275 return true;
4276 Result.assign(Res);
4277 return false;
4280 MDUnsignedField Res = Result.B;
4281 if (ParseMDField(Loc, Name, Res))
4282 return true;
4283 Result.assign(Res);
4284 return false;
4287 template <>
4288 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4289 LocTy ValueLoc = Lex.getLoc();
4290 std::string S;
4291 if (ParseStringConstant(S))
4292 return true;
4294 if (!Result.AllowEmpty && S.empty())
4295 return Error(ValueLoc, "'" + Name + "' cannot be empty");
4297 Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4298 return false;
4301 template <>
4302 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4303 SmallVector<Metadata *, 4> MDs;
4304 if (ParseMDNodeVector(MDs))
4305 return true;
4307 Result.assign(std::move(MDs));
4308 return false;
4311 template <>
4312 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4313 ChecksumKindField &Result) {
4314 Optional<DIFile::ChecksumKind> CSKind =
4315 DIFile::getChecksumKind(Lex.getStrVal());
4317 if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4318 return TokError(
4319 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4321 Result.assign(*CSKind);
4322 Lex.Lex();
4323 return false;
4326 } // end namespace llvm
4328 template <class ParserTy>
4329 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4330 do {
4331 if (Lex.getKind() != lltok::LabelStr)
4332 return TokError("expected field label here");
4334 if (parseField())
4335 return true;
4336 } while (EatIfPresent(lltok::comma));
4338 return false;
4341 template <class ParserTy>
4342 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4343 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4344 Lex.Lex();
4346 if (ParseToken(lltok::lparen, "expected '(' here"))
4347 return true;
4348 if (Lex.getKind() != lltok::rparen)
4349 if (ParseMDFieldsImplBody(parseField))
4350 return true;
4352 ClosingLoc = Lex.getLoc();
4353 return ParseToken(lltok::rparen, "expected ')' here");
4356 template <class FieldTy>
4357 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4358 if (Result.Seen)
4359 return TokError("field '" + Name + "' cannot be specified more than once");
4361 LocTy Loc = Lex.getLoc();
4362 Lex.Lex();
4363 return ParseMDField(Loc, Name, Result);
4366 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4367 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4369 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
4370 if (Lex.getStrVal() == #CLASS) \
4371 return Parse##CLASS(N, IsDistinct);
4372 #include "llvm/IR/Metadata.def"
4374 return TokError("expected metadata type");
4377 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4378 #define NOP_FIELD(NAME, TYPE, INIT)
4379 #define REQUIRE_FIELD(NAME, TYPE, INIT) \
4380 if (!NAME.Seen) \
4381 return Error(ClosingLoc, "missing required field '" #NAME "'");
4382 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
4383 if (Lex.getStrVal() == #NAME) \
4384 return ParseMDField(#NAME, NAME);
4385 #define PARSE_MD_FIELDS() \
4386 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
4387 do { \
4388 LocTy ClosingLoc; \
4389 if (ParseMDFieldsImpl([&]() -> bool { \
4390 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
4391 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
4392 }, ClosingLoc)) \
4393 return true; \
4394 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
4395 } while (false)
4396 #define GET_OR_DISTINCT(CLASS, ARGS) \
4397 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4399 /// ParseDILocationFields:
4400 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4401 /// isImplicitCode: true)
4402 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4403 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4404 OPTIONAL(line, LineField, ); \
4405 OPTIONAL(column, ColumnField, ); \
4406 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4407 OPTIONAL(inlinedAt, MDField, ); \
4408 OPTIONAL(isImplicitCode, MDBoolField, (false));
4409 PARSE_MD_FIELDS();
4410 #undef VISIT_MD_FIELDS
4412 Result =
4413 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4414 inlinedAt.Val, isImplicitCode.Val));
4415 return false;
4418 /// ParseGenericDINode:
4419 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4420 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4421 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4422 REQUIRED(tag, DwarfTagField, ); \
4423 OPTIONAL(header, MDStringField, ); \
4424 OPTIONAL(operands, MDFieldList, );
4425 PARSE_MD_FIELDS();
4426 #undef VISIT_MD_FIELDS
4428 Result = GET_OR_DISTINCT(GenericDINode,
4429 (Context, tag.Val, header.Val, operands.Val));
4430 return false;
4433 /// ParseDISubrange:
4434 /// ::= !DISubrange(count: 30, lowerBound: 2)
4435 /// ::= !DISubrange(count: !node, lowerBound: 2)
4436 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4438 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
4439 OPTIONAL(lowerBound, MDSignedField, );
4440 PARSE_MD_FIELDS();
4441 #undef VISIT_MD_FIELDS
4443 if (count.isMDSignedField())
4444 Result = GET_OR_DISTINCT(
4445 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4446 else if (count.isMDField())
4447 Result = GET_OR_DISTINCT(
4448 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4449 else
4450 return true;
4452 return false;
4455 /// ParseDIEnumerator:
4456 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4457 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4458 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4459 REQUIRED(name, MDStringField, ); \
4460 REQUIRED(value, MDSignedOrUnsignedField, ); \
4461 OPTIONAL(isUnsigned, MDBoolField, (false));
4462 PARSE_MD_FIELDS();
4463 #undef VISIT_MD_FIELDS
4465 if (isUnsigned.Val && value.isMDSignedField())
4466 return TokError("unsigned enumerator with negative value");
4468 int64_t Value = value.isMDSignedField()
4469 ? value.getMDSignedValue()
4470 : static_cast<int64_t>(value.getMDUnsignedValue());
4471 Result =
4472 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4474 return false;
4477 /// ParseDIBasicType:
4478 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4479 /// encoding: DW_ATE_encoding, flags: 0)
4480 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4482 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
4483 OPTIONAL(name, MDStringField, ); \
4484 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4485 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4486 OPTIONAL(encoding, DwarfAttEncodingField, ); \
4487 OPTIONAL(flags, DIFlagField, );
4488 PARSE_MD_FIELDS();
4489 #undef VISIT_MD_FIELDS
4491 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4492 align.Val, encoding.Val, flags.Val));
4493 return false;
4496 /// ParseDIDerivedType:
4497 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4498 /// line: 7, scope: !1, baseType: !2, size: 32,
4499 /// align: 32, offset: 0, flags: 0, extraData: !3,
4500 /// dwarfAddressSpace: 3)
4501 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4502 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4503 REQUIRED(tag, DwarfTagField, ); \
4504 OPTIONAL(name, MDStringField, ); \
4505 OPTIONAL(file, MDField, ); \
4506 OPTIONAL(line, LineField, ); \
4507 OPTIONAL(scope, MDField, ); \
4508 REQUIRED(baseType, MDField, ); \
4509 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4510 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4511 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4512 OPTIONAL(flags, DIFlagField, ); \
4513 OPTIONAL(extraData, MDField, ); \
4514 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4515 PARSE_MD_FIELDS();
4516 #undef VISIT_MD_FIELDS
4518 Optional<unsigned> DWARFAddressSpace;
4519 if (dwarfAddressSpace.Val != UINT32_MAX)
4520 DWARFAddressSpace = dwarfAddressSpace.Val;
4522 Result = GET_OR_DISTINCT(DIDerivedType,
4523 (Context, tag.Val, name.Val, file.Val, line.Val,
4524 scope.Val, baseType.Val, size.Val, align.Val,
4525 offset.Val, DWARFAddressSpace, flags.Val,
4526 extraData.Val));
4527 return false;
4530 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4531 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4532 REQUIRED(tag, DwarfTagField, ); \
4533 OPTIONAL(name, MDStringField, ); \
4534 OPTIONAL(file, MDField, ); \
4535 OPTIONAL(line, LineField, ); \
4536 OPTIONAL(scope, MDField, ); \
4537 OPTIONAL(baseType, MDField, ); \
4538 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
4539 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
4540 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
4541 OPTIONAL(flags, DIFlagField, ); \
4542 OPTIONAL(elements, MDField, ); \
4543 OPTIONAL(runtimeLang, DwarfLangField, ); \
4544 OPTIONAL(vtableHolder, MDField, ); \
4545 OPTIONAL(templateParams, MDField, ); \
4546 OPTIONAL(identifier, MDStringField, ); \
4547 OPTIONAL(discriminator, MDField, );
4548 PARSE_MD_FIELDS();
4549 #undef VISIT_MD_FIELDS
4551 // If this has an identifier try to build an ODR type.
4552 if (identifier.Val)
4553 if (auto *CT = DICompositeType::buildODRType(
4554 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4555 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4556 elements.Val, runtimeLang.Val, vtableHolder.Val,
4557 templateParams.Val, discriminator.Val)) {
4558 Result = CT;
4559 return false;
4562 // Create a new node, and save it in the context if it belongs in the type
4563 // map.
4564 Result = GET_OR_DISTINCT(
4565 DICompositeType,
4566 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4567 size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4568 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4569 discriminator.Val));
4570 return false;
4573 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4575 OPTIONAL(flags, DIFlagField, ); \
4576 OPTIONAL(cc, DwarfCCField, ); \
4577 REQUIRED(types, MDField, );
4578 PARSE_MD_FIELDS();
4579 #undef VISIT_MD_FIELDS
4581 Result = GET_OR_DISTINCT(DISubroutineType,
4582 (Context, flags.Val, cc.Val, types.Val));
4583 return false;
4586 /// ParseDIFileType:
4587 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4588 /// checksumkind: CSK_MD5,
4589 /// checksum: "000102030405060708090a0b0c0d0e0f",
4590 /// source: "source file contents")
4591 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4592 // The default constructed value for checksumkind is required, but will never
4593 // be used, as the parser checks if the field was actually Seen before using
4594 // the Val.
4595 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4596 REQUIRED(filename, MDStringField, ); \
4597 REQUIRED(directory, MDStringField, ); \
4598 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
4599 OPTIONAL(checksum, MDStringField, ); \
4600 OPTIONAL(source, MDStringField, );
4601 PARSE_MD_FIELDS();
4602 #undef VISIT_MD_FIELDS
4604 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4605 if (checksumkind.Seen && checksum.Seen)
4606 OptChecksum.emplace(checksumkind.Val, checksum.Val);
4607 else if (checksumkind.Seen || checksum.Seen)
4608 return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4610 Optional<MDString *> OptSource;
4611 if (source.Seen)
4612 OptSource = source.Val;
4613 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4614 OptChecksum, OptSource));
4615 return false;
4618 /// ParseDICompileUnit:
4619 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4620 /// isOptimized: true, flags: "-O2", runtimeVersion: 1,
4621 /// splitDebugFilename: "abc.debug",
4622 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4623 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4624 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4625 if (!IsDistinct)
4626 return Lex.Error("missing 'distinct', required for !DICompileUnit");
4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4629 REQUIRED(language, DwarfLangField, ); \
4630 REQUIRED(file, MDField, (/* AllowNull */ false)); \
4631 OPTIONAL(producer, MDStringField, ); \
4632 OPTIONAL(isOptimized, MDBoolField, ); \
4633 OPTIONAL(flags, MDStringField, ); \
4634 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
4635 OPTIONAL(splitDebugFilename, MDStringField, ); \
4636 OPTIONAL(emissionKind, EmissionKindField, ); \
4637 OPTIONAL(enums, MDField, ); \
4638 OPTIONAL(retainedTypes, MDField, ); \
4639 OPTIONAL(globals, MDField, ); \
4640 OPTIONAL(imports, MDField, ); \
4641 OPTIONAL(macros, MDField, ); \
4642 OPTIONAL(dwoId, MDUnsignedField, ); \
4643 OPTIONAL(splitDebugInlining, MDBoolField, = true); \
4644 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
4645 OPTIONAL(nameTableKind, NameTableKindField, ); \
4646 OPTIONAL(debugBaseAddress, MDBoolField, = false);
4647 PARSE_MD_FIELDS();
4648 #undef VISIT_MD_FIELDS
4650 Result = DICompileUnit::getDistinct(
4651 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4652 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4653 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4654 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4655 debugBaseAddress.Val);
4656 return false;
4659 /// ParseDISubprogram:
4660 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4661 /// file: !1, line: 7, type: !2, isLocal: false,
4662 /// isDefinition: true, scopeLine: 8, containingType: !3,
4663 /// virtuality: DW_VIRTUALTIY_pure_virtual,
4664 /// virtualIndex: 10, thisAdjustment: 4, flags: 11,
4665 /// spFlags: 10, isOptimized: false, templateParams: !4,
4666 /// declaration: !5, retainedNodes: !6, thrownTypes: !7)
4667 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4668 auto Loc = Lex.getLoc();
4669 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4670 OPTIONAL(scope, MDField, ); \
4671 OPTIONAL(name, MDStringField, ); \
4672 OPTIONAL(linkageName, MDStringField, ); \
4673 OPTIONAL(file, MDField, ); \
4674 OPTIONAL(line, LineField, ); \
4675 OPTIONAL(type, MDField, ); \
4676 OPTIONAL(isLocal, MDBoolField, ); \
4677 OPTIONAL(isDefinition, MDBoolField, (true)); \
4678 OPTIONAL(scopeLine, LineField, ); \
4679 OPTIONAL(containingType, MDField, ); \
4680 OPTIONAL(virtuality, DwarfVirtualityField, ); \
4681 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
4682 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
4683 OPTIONAL(flags, DIFlagField, ); \
4684 OPTIONAL(spFlags, DISPFlagField, ); \
4685 OPTIONAL(isOptimized, MDBoolField, ); \
4686 OPTIONAL(unit, MDField, ); \
4687 OPTIONAL(templateParams, MDField, ); \
4688 OPTIONAL(declaration, MDField, ); \
4689 OPTIONAL(retainedNodes, MDField, ); \
4690 OPTIONAL(thrownTypes, MDField, );
4691 PARSE_MD_FIELDS();
4692 #undef VISIT_MD_FIELDS
4694 // An explicit spFlags field takes precedence over individual fields in
4695 // older IR versions.
4696 DISubprogram::DISPFlags SPFlags =
4697 spFlags.Seen ? spFlags.Val
4698 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4699 isOptimized.Val, virtuality.Val);
4700 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4701 return Lex.Error(
4702 Loc,
4703 "missing 'distinct', required for !DISubprogram that is a Definition");
4704 Result = GET_OR_DISTINCT(
4705 DISubprogram,
4706 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4707 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4708 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4709 declaration.Val, retainedNodes.Val, thrownTypes.Val));
4710 return false;
4713 /// ParseDILexicalBlock:
4714 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4715 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4717 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4718 OPTIONAL(file, MDField, ); \
4719 OPTIONAL(line, LineField, ); \
4720 OPTIONAL(column, ColumnField, );
4721 PARSE_MD_FIELDS();
4722 #undef VISIT_MD_FIELDS
4724 Result = GET_OR_DISTINCT(
4725 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4726 return false;
4729 /// ParseDILexicalBlockFile:
4730 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4731 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4732 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4733 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4734 OPTIONAL(file, MDField, ); \
4735 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4736 PARSE_MD_FIELDS();
4737 #undef VISIT_MD_FIELDS
4739 Result = GET_OR_DISTINCT(DILexicalBlockFile,
4740 (Context, scope.Val, file.Val, discriminator.Val));
4741 return false;
4744 /// ParseDICommonBlock:
4745 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4746 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4748 REQUIRED(scope, MDField, ); \
4749 OPTIONAL(declaration, MDField, ); \
4750 OPTIONAL(name, MDStringField, ); \
4751 OPTIONAL(file, MDField, ); \
4752 OPTIONAL(line, LineField, );
4753 PARSE_MD_FIELDS();
4754 #undef VISIT_MD_FIELDS
4756 Result = GET_OR_DISTINCT(DICommonBlock,
4757 (Context, scope.Val, declaration.Val, name.Val,
4758 file.Val, line.Val));
4759 return false;
4762 /// ParseDINamespace:
4763 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4764 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4765 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4766 REQUIRED(scope, MDField, ); \
4767 OPTIONAL(name, MDStringField, ); \
4768 OPTIONAL(exportSymbols, MDBoolField, );
4769 PARSE_MD_FIELDS();
4770 #undef VISIT_MD_FIELDS
4772 Result = GET_OR_DISTINCT(DINamespace,
4773 (Context, scope.Val, name.Val, exportSymbols.Val));
4774 return false;
4777 /// ParseDIMacro:
4778 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4779 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4781 REQUIRED(type, DwarfMacinfoTypeField, ); \
4782 OPTIONAL(line, LineField, ); \
4783 REQUIRED(name, MDStringField, ); \
4784 OPTIONAL(value, MDStringField, );
4785 PARSE_MD_FIELDS();
4786 #undef VISIT_MD_FIELDS
4788 Result = GET_OR_DISTINCT(DIMacro,
4789 (Context, type.Val, line.Val, name.Val, value.Val));
4790 return false;
4793 /// ParseDIMacroFile:
4794 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4795 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4796 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4797 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
4798 OPTIONAL(line, LineField, ); \
4799 REQUIRED(file, MDField, ); \
4800 OPTIONAL(nodes, MDField, );
4801 PARSE_MD_FIELDS();
4802 #undef VISIT_MD_FIELDS
4804 Result = GET_OR_DISTINCT(DIMacroFile,
4805 (Context, type.Val, line.Val, file.Val, nodes.Val));
4806 return false;
4809 /// ParseDIModule:
4810 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4811 /// includePath: "/usr/include", isysroot: "/")
4812 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4814 REQUIRED(scope, MDField, ); \
4815 REQUIRED(name, MDStringField, ); \
4816 OPTIONAL(configMacros, MDStringField, ); \
4817 OPTIONAL(includePath, MDStringField, ); \
4818 OPTIONAL(isysroot, MDStringField, );
4819 PARSE_MD_FIELDS();
4820 #undef VISIT_MD_FIELDS
4822 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4823 configMacros.Val, includePath.Val, isysroot.Val));
4824 return false;
4827 /// ParseDITemplateTypeParameter:
4828 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4829 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4831 OPTIONAL(name, MDStringField, ); \
4832 REQUIRED(type, MDField, );
4833 PARSE_MD_FIELDS();
4834 #undef VISIT_MD_FIELDS
4836 Result =
4837 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4838 return false;
4841 /// ParseDITemplateValueParameter:
4842 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4843 /// name: "V", type: !1, value: i32 7)
4844 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4845 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4846 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
4847 OPTIONAL(name, MDStringField, ); \
4848 OPTIONAL(type, MDField, ); \
4849 REQUIRED(value, MDField, );
4850 PARSE_MD_FIELDS();
4851 #undef VISIT_MD_FIELDS
4853 Result = GET_OR_DISTINCT(DITemplateValueParameter,
4854 (Context, tag.Val, name.Val, type.Val, value.Val));
4855 return false;
4858 /// ParseDIGlobalVariable:
4859 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4860 /// file: !1, line: 7, type: !2, isLocal: false,
4861 /// isDefinition: true, templateParams: !3,
4862 /// declaration: !4, align: 8)
4863 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4865 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
4866 OPTIONAL(scope, MDField, ); \
4867 OPTIONAL(linkageName, MDStringField, ); \
4868 OPTIONAL(file, MDField, ); \
4869 OPTIONAL(line, LineField, ); \
4870 OPTIONAL(type, MDField, ); \
4871 OPTIONAL(isLocal, MDBoolField, ); \
4872 OPTIONAL(isDefinition, MDBoolField, (true)); \
4873 OPTIONAL(templateParams, MDField, ); \
4874 OPTIONAL(declaration, MDField, ); \
4875 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4876 PARSE_MD_FIELDS();
4877 #undef VISIT_MD_FIELDS
4879 Result =
4880 GET_OR_DISTINCT(DIGlobalVariable,
4881 (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4882 line.Val, type.Val, isLocal.Val, isDefinition.Val,
4883 declaration.Val, templateParams.Val, align.Val));
4884 return false;
4887 /// ParseDILocalVariable:
4888 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4889 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4890 /// align: 8)
4891 /// ::= !DILocalVariable(scope: !0, name: "foo",
4892 /// file: !1, line: 7, type: !2, arg: 2, flags: 7,
4893 /// align: 8)
4894 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4896 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4897 OPTIONAL(name, MDStringField, ); \
4898 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
4899 OPTIONAL(file, MDField, ); \
4900 OPTIONAL(line, LineField, ); \
4901 OPTIONAL(type, MDField, ); \
4902 OPTIONAL(flags, DIFlagField, ); \
4903 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4904 PARSE_MD_FIELDS();
4905 #undef VISIT_MD_FIELDS
4907 Result = GET_OR_DISTINCT(DILocalVariable,
4908 (Context, scope.Val, name.Val, file.Val, line.Val,
4909 type.Val, arg.Val, flags.Val, align.Val));
4910 return false;
4913 /// ParseDILabel:
4914 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4915 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4917 REQUIRED(scope, MDField, (/* AllowNull */ false)); \
4918 REQUIRED(name, MDStringField, ); \
4919 REQUIRED(file, MDField, ); \
4920 REQUIRED(line, LineField, );
4921 PARSE_MD_FIELDS();
4922 #undef VISIT_MD_FIELDS
4924 Result = GET_OR_DISTINCT(DILabel,
4925 (Context, scope.Val, name.Val, file.Val, line.Val));
4926 return false;
4929 /// ParseDIExpression:
4930 /// ::= !DIExpression(0, 7, -1)
4931 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4932 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4933 Lex.Lex();
4935 if (ParseToken(lltok::lparen, "expected '(' here"))
4936 return true;
4938 SmallVector<uint64_t, 8> Elements;
4939 if (Lex.getKind() != lltok::rparen)
4940 do {
4941 if (Lex.getKind() == lltok::DwarfOp) {
4942 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4943 Lex.Lex();
4944 Elements.push_back(Op);
4945 continue;
4947 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4950 if (Lex.getKind() == lltok::DwarfAttEncoding) {
4951 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4952 Lex.Lex();
4953 Elements.push_back(Op);
4954 continue;
4956 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4959 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4960 return TokError("expected unsigned integer");
4962 auto &U = Lex.getAPSIntVal();
4963 if (U.ugt(UINT64_MAX))
4964 return TokError("element too large, limit is " + Twine(UINT64_MAX));
4965 Elements.push_back(U.getZExtValue());
4966 Lex.Lex();
4967 } while (EatIfPresent(lltok::comma));
4969 if (ParseToken(lltok::rparen, "expected ')' here"))
4970 return true;
4972 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4973 return false;
4976 /// ParseDIGlobalVariableExpression:
4977 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4978 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4979 bool IsDistinct) {
4980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4981 REQUIRED(var, MDField, ); \
4982 REQUIRED(expr, MDField, );
4983 PARSE_MD_FIELDS();
4984 #undef VISIT_MD_FIELDS
4986 Result =
4987 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4988 return false;
4991 /// ParseDIObjCProperty:
4992 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4993 /// getter: "getFoo", attributes: 7, type: !2)
4994 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4995 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
4996 OPTIONAL(name, MDStringField, ); \
4997 OPTIONAL(file, MDField, ); \
4998 OPTIONAL(line, LineField, ); \
4999 OPTIONAL(setter, MDStringField, ); \
5000 OPTIONAL(getter, MDStringField, ); \
5001 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5002 OPTIONAL(type, MDField, );
5003 PARSE_MD_FIELDS();
5004 #undef VISIT_MD_FIELDS
5006 Result = GET_OR_DISTINCT(DIObjCProperty,
5007 (Context, name.Val, file.Val, line.Val, setter.Val,
5008 getter.Val, attributes.Val, type.Val));
5009 return false;
5012 /// ParseDIImportedEntity:
5013 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5014 /// line: 7, name: "foo")
5015 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5016 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5017 REQUIRED(tag, DwarfTagField, ); \
5018 REQUIRED(scope, MDField, ); \
5019 OPTIONAL(entity, MDField, ); \
5020 OPTIONAL(file, MDField, ); \
5021 OPTIONAL(line, LineField, ); \
5022 OPTIONAL(name, MDStringField, );
5023 PARSE_MD_FIELDS();
5024 #undef VISIT_MD_FIELDS
5026 Result = GET_OR_DISTINCT(
5027 DIImportedEntity,
5028 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5029 return false;
5032 #undef PARSE_MD_FIELD
5033 #undef NOP_FIELD
5034 #undef REQUIRE_FIELD
5035 #undef DECLARE_FIELD
5037 /// ParseMetadataAsValue
5038 /// ::= metadata i32 %local
5039 /// ::= metadata i32 @global
5040 /// ::= metadata i32 7
5041 /// ::= metadata !0
5042 /// ::= metadata !{...}
5043 /// ::= metadata !"string"
5044 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5045 // Note: the type 'metadata' has already been parsed.
5046 Metadata *MD;
5047 if (ParseMetadata(MD, &PFS))
5048 return true;
5050 V = MetadataAsValue::get(Context, MD);
5051 return false;
5054 /// ParseValueAsMetadata
5055 /// ::= i32 %local
5056 /// ::= i32 @global
5057 /// ::= i32 7
5058 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5059 PerFunctionState *PFS) {
5060 Type *Ty;
5061 LocTy Loc;
5062 if (ParseType(Ty, TypeMsg, Loc))
5063 return true;
5064 if (Ty->isMetadataTy())
5065 return Error(Loc, "invalid metadata-value-metadata roundtrip");
5067 Value *V;
5068 if (ParseValue(Ty, V, PFS))
5069 return true;
5071 MD = ValueAsMetadata::get(V);
5072 return false;
5075 /// ParseMetadata
5076 /// ::= i32 %local
5077 /// ::= i32 @global
5078 /// ::= i32 7
5079 /// ::= !42
5080 /// ::= !{...}
5081 /// ::= !"string"
5082 /// ::= !DILocation(...)
5083 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5084 if (Lex.getKind() == lltok::MetadataVar) {
5085 MDNode *N;
5086 if (ParseSpecializedMDNode(N))
5087 return true;
5088 MD = N;
5089 return false;
5092 // ValueAsMetadata:
5093 // <type> <value>
5094 if (Lex.getKind() != lltok::exclaim)
5095 return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5097 // '!'.
5098 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5099 Lex.Lex();
5101 // MDString:
5102 // ::= '!' STRINGCONSTANT
5103 if (Lex.getKind() == lltok::StringConstant) {
5104 MDString *S;
5105 if (ParseMDString(S))
5106 return true;
5107 MD = S;
5108 return false;
5111 // MDNode:
5112 // !{ ... }
5113 // !7
5114 MDNode *N;
5115 if (ParseMDNodeTail(N))
5116 return true;
5117 MD = N;
5118 return false;
5121 //===----------------------------------------------------------------------===//
5122 // Function Parsing.
5123 //===----------------------------------------------------------------------===//
5125 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5126 PerFunctionState *PFS, bool IsCall) {
5127 if (Ty->isFunctionTy())
5128 return Error(ID.Loc, "functions are not values, refer to them as pointers");
5130 switch (ID.Kind) {
5131 case ValID::t_LocalID:
5132 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5133 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5134 return V == nullptr;
5135 case ValID::t_LocalName:
5136 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5137 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5138 return V == nullptr;
5139 case ValID::t_InlineAsm: {
5140 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5141 return Error(ID.Loc, "invalid type for inline asm constraint string");
5142 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5143 (ID.UIntVal >> 1) & 1,
5144 (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5145 return false;
5147 case ValID::t_GlobalName:
5148 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5149 return V == nullptr;
5150 case ValID::t_GlobalID:
5151 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5152 return V == nullptr;
5153 case ValID::t_APSInt:
5154 if (!Ty->isIntegerTy())
5155 return Error(ID.Loc, "integer constant must have integer type");
5156 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5157 V = ConstantInt::get(Context, ID.APSIntVal);
5158 return false;
5159 case ValID::t_APFloat:
5160 if (!Ty->isFloatingPointTy() ||
5161 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5162 return Error(ID.Loc, "floating point constant invalid for type");
5164 // The lexer has no type info, so builds all half, float, and double FP
5165 // constants as double. Fix this here. Long double does not need this.
5166 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5167 bool Ignored;
5168 if (Ty->isHalfTy())
5169 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5170 &Ignored);
5171 else if (Ty->isFloatTy())
5172 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5173 &Ignored);
5175 V = ConstantFP::get(Context, ID.APFloatVal);
5177 if (V->getType() != Ty)
5178 return Error(ID.Loc, "floating point constant does not have type '" +
5179 getTypeString(Ty) + "'");
5181 return false;
5182 case ValID::t_Null:
5183 if (!Ty->isPointerTy())
5184 return Error(ID.Loc, "null must be a pointer type");
5185 V = ConstantPointerNull::get(cast<PointerType>(Ty));
5186 return false;
5187 case ValID::t_Undef:
5188 // FIXME: LabelTy should not be a first-class type.
5189 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5190 return Error(ID.Loc, "invalid type for undef constant");
5191 V = UndefValue::get(Ty);
5192 return false;
5193 case ValID::t_EmptyArray:
5194 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5195 return Error(ID.Loc, "invalid empty array initializer");
5196 V = UndefValue::get(Ty);
5197 return false;
5198 case ValID::t_Zero:
5199 // FIXME: LabelTy should not be a first-class type.
5200 if (!Ty->isFirstClassType() || Ty->isLabelTy())
5201 return Error(ID.Loc, "invalid type for null constant");
5202 V = Constant::getNullValue(Ty);
5203 return false;
5204 case ValID::t_None:
5205 if (!Ty->isTokenTy())
5206 return Error(ID.Loc, "invalid type for none constant");
5207 V = Constant::getNullValue(Ty);
5208 return false;
5209 case ValID::t_Constant:
5210 if (ID.ConstantVal->getType() != Ty)
5211 return Error(ID.Loc, "constant expression type mismatch");
5213 V = ID.ConstantVal;
5214 return false;
5215 case ValID::t_ConstantStruct:
5216 case ValID::t_PackedConstantStruct:
5217 if (StructType *ST = dyn_cast<StructType>(Ty)) {
5218 if (ST->getNumElements() != ID.UIntVal)
5219 return Error(ID.Loc,
5220 "initializer with struct type has wrong # elements");
5221 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5222 return Error(ID.Loc, "packed'ness of initializer and type don't match");
5224 // Verify that the elements are compatible with the structtype.
5225 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5226 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5227 return Error(ID.Loc, "element " + Twine(i) +
5228 " of struct initializer doesn't match struct element type");
5230 V = ConstantStruct::get(
5231 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5232 } else
5233 return Error(ID.Loc, "constant expression type mismatch");
5234 return false;
5236 llvm_unreachable("Invalid ValID");
5239 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5240 C = nullptr;
5241 ValID ID;
5242 auto Loc = Lex.getLoc();
5243 if (ParseValID(ID, /*PFS=*/nullptr))
5244 return true;
5245 switch (ID.Kind) {
5246 case ValID::t_APSInt:
5247 case ValID::t_APFloat:
5248 case ValID::t_Undef:
5249 case ValID::t_Constant:
5250 case ValID::t_ConstantStruct:
5251 case ValID::t_PackedConstantStruct: {
5252 Value *V;
5253 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5254 return true;
5255 assert(isa<Constant>(V) && "Expected a constant value");
5256 C = cast<Constant>(V);
5257 return false;
5259 case ValID::t_Null:
5260 C = Constant::getNullValue(Ty);
5261 return false;
5262 default:
5263 return Error(Loc, "expected a constant value");
5267 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5268 V = nullptr;
5269 ValID ID;
5270 return ParseValID(ID, PFS) ||
5271 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5274 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5275 Type *Ty = nullptr;
5276 return ParseType(Ty) ||
5277 ParseValue(Ty, V, PFS);
5280 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5281 PerFunctionState &PFS) {
5282 Value *V;
5283 Loc = Lex.getLoc();
5284 if (ParseTypeAndValue(V, PFS)) return true;
5285 if (!isa<BasicBlock>(V))
5286 return Error(Loc, "expected a basic block");
5287 BB = cast<BasicBlock>(V);
5288 return false;
5291 /// FunctionHeader
5292 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5293 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5294 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5295 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5296 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5297 // Parse the linkage.
5298 LocTy LinkageLoc = Lex.getLoc();
5299 unsigned Linkage;
5300 unsigned Visibility;
5301 unsigned DLLStorageClass;
5302 bool DSOLocal;
5303 AttrBuilder RetAttrs;
5304 unsigned CC;
5305 bool HasLinkage;
5306 Type *RetType = nullptr;
5307 LocTy RetTypeLoc = Lex.getLoc();
5308 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5309 DSOLocal) ||
5310 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5311 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5312 return true;
5314 // Verify that the linkage is ok.
5315 switch ((GlobalValue::LinkageTypes)Linkage) {
5316 case GlobalValue::ExternalLinkage:
5317 break; // always ok.
5318 case GlobalValue::ExternalWeakLinkage:
5319 if (isDefine)
5320 return Error(LinkageLoc, "invalid linkage for function definition");
5321 break;
5322 case GlobalValue::PrivateLinkage:
5323 case GlobalValue::InternalLinkage:
5324 case GlobalValue::AvailableExternallyLinkage:
5325 case GlobalValue::LinkOnceAnyLinkage:
5326 case GlobalValue::LinkOnceODRLinkage:
5327 case GlobalValue::WeakAnyLinkage:
5328 case GlobalValue::WeakODRLinkage:
5329 if (!isDefine)
5330 return Error(LinkageLoc, "invalid linkage for function declaration");
5331 break;
5332 case GlobalValue::AppendingLinkage:
5333 case GlobalValue::CommonLinkage:
5334 return Error(LinkageLoc, "invalid function linkage type");
5337 if (!isValidVisibilityForLinkage(Visibility, Linkage))
5338 return Error(LinkageLoc,
5339 "symbol with local linkage must have default visibility");
5341 if (!FunctionType::isValidReturnType(RetType))
5342 return Error(RetTypeLoc, "invalid function return type");
5344 LocTy NameLoc = Lex.getLoc();
5346 std::string FunctionName;
5347 if (Lex.getKind() == lltok::GlobalVar) {
5348 FunctionName = Lex.getStrVal();
5349 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
5350 unsigned NameID = Lex.getUIntVal();
5352 if (NameID != NumberedVals.size())
5353 return TokError("function expected to be numbered '%" +
5354 Twine(NumberedVals.size()) + "'");
5355 } else {
5356 return TokError("expected function name");
5359 Lex.Lex();
5361 if (Lex.getKind() != lltok::lparen)
5362 return TokError("expected '(' in function argument list");
5364 SmallVector<ArgInfo, 8> ArgList;
5365 bool isVarArg;
5366 AttrBuilder FuncAttrs;
5367 std::vector<unsigned> FwdRefAttrGrps;
5368 LocTy BuiltinLoc;
5369 std::string Section;
5370 std::string Partition;
5371 unsigned Alignment;
5372 std::string GC;
5373 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5374 unsigned AddrSpace = 0;
5375 Constant *Prefix = nullptr;
5376 Constant *Prologue = nullptr;
5377 Constant *PersonalityFn = nullptr;
5378 Comdat *C;
5380 if (ParseArgumentList(ArgList, isVarArg) ||
5381 ParseOptionalUnnamedAddr(UnnamedAddr) ||
5382 ParseOptionalProgramAddrSpace(AddrSpace) ||
5383 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5384 BuiltinLoc) ||
5385 (EatIfPresent(lltok::kw_section) &&
5386 ParseStringConstant(Section)) ||
5387 (EatIfPresent(lltok::kw_partition) &&
5388 ParseStringConstant(Partition)) ||
5389 parseOptionalComdat(FunctionName, C) ||
5390 ParseOptionalAlignment(Alignment) ||
5391 (EatIfPresent(lltok::kw_gc) &&
5392 ParseStringConstant(GC)) ||
5393 (EatIfPresent(lltok::kw_prefix) &&
5394 ParseGlobalTypeAndValue(Prefix)) ||
5395 (EatIfPresent(lltok::kw_prologue) &&
5396 ParseGlobalTypeAndValue(Prologue)) ||
5397 (EatIfPresent(lltok::kw_personality) &&
5398 ParseGlobalTypeAndValue(PersonalityFn)))
5399 return true;
5401 if (FuncAttrs.contains(Attribute::Builtin))
5402 return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5404 // If the alignment was parsed as an attribute, move to the alignment field.
5405 if (FuncAttrs.hasAlignmentAttr()) {
5406 Alignment = FuncAttrs.getAlignment();
5407 FuncAttrs.removeAttribute(Attribute::Alignment);
5410 // Okay, if we got here, the function is syntactically valid. Convert types
5411 // and do semantic checks.
5412 std::vector<Type*> ParamTypeList;
5413 SmallVector<AttributeSet, 8> Attrs;
5415 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5416 ParamTypeList.push_back(ArgList[i].Ty);
5417 Attrs.push_back(ArgList[i].Attrs);
5420 AttributeList PAL =
5421 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5422 AttributeSet::get(Context, RetAttrs), Attrs);
5424 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5425 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5427 FunctionType *FT =
5428 FunctionType::get(RetType, ParamTypeList, isVarArg);
5429 PointerType *PFT = PointerType::get(FT, AddrSpace);
5431 Fn = nullptr;
5432 if (!FunctionName.empty()) {
5433 // If this was a definition of a forward reference, remove the definition
5434 // from the forward reference table and fill in the forward ref.
5435 auto FRVI = ForwardRefVals.find(FunctionName);
5436 if (FRVI != ForwardRefVals.end()) {
5437 Fn = M->getFunction(FunctionName);
5438 if (!Fn)
5439 return Error(FRVI->second.second, "invalid forward reference to "
5440 "function as global value!");
5441 if (Fn->getType() != PFT)
5442 return Error(FRVI->second.second, "invalid forward reference to "
5443 "function '" + FunctionName + "' with wrong type: "
5444 "expected '" + getTypeString(PFT) + "' but was '" +
5445 getTypeString(Fn->getType()) + "'");
5446 ForwardRefVals.erase(FRVI);
5447 } else if ((Fn = M->getFunction(FunctionName))) {
5448 // Reject redefinitions.
5449 return Error(NameLoc, "invalid redefinition of function '" +
5450 FunctionName + "'");
5451 } else if (M->getNamedValue(FunctionName)) {
5452 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5455 } else {
5456 // If this is a definition of a forward referenced function, make sure the
5457 // types agree.
5458 auto I = ForwardRefValIDs.find(NumberedVals.size());
5459 if (I != ForwardRefValIDs.end()) {
5460 Fn = cast<Function>(I->second.first);
5461 if (Fn->getType() != PFT)
5462 return Error(NameLoc, "type of definition and forward reference of '@" +
5463 Twine(NumberedVals.size()) + "' disagree: "
5464 "expected '" + getTypeString(PFT) + "' but was '" +
5465 getTypeString(Fn->getType()) + "'");
5466 ForwardRefValIDs.erase(I);
5470 if (!Fn)
5471 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5472 FunctionName, M);
5473 else // Move the forward-reference to the correct spot in the module.
5474 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5476 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5478 if (FunctionName.empty())
5479 NumberedVals.push_back(Fn);
5481 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5482 maybeSetDSOLocal(DSOLocal, *Fn);
5483 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5484 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5485 Fn->setCallingConv(CC);
5486 Fn->setAttributes(PAL);
5487 Fn->setUnnamedAddr(UnnamedAddr);
5488 Fn->setAlignment(Alignment);
5489 Fn->setSection(Section);
5490 Fn->setPartition(Partition);
5491 Fn->setComdat(C);
5492 Fn->setPersonalityFn(PersonalityFn);
5493 if (!GC.empty()) Fn->setGC(GC);
5494 Fn->setPrefixData(Prefix);
5495 Fn->setPrologueData(Prologue);
5496 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5498 // Add all of the arguments we parsed to the function.
5499 Function::arg_iterator ArgIt = Fn->arg_begin();
5500 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5501 // If the argument has a name, insert it into the argument symbol table.
5502 if (ArgList[i].Name.empty()) continue;
5504 // Set the name, if it conflicted, it will be auto-renamed.
5505 ArgIt->setName(ArgList[i].Name);
5507 if (ArgIt->getName() != ArgList[i].Name)
5508 return Error(ArgList[i].Loc, "redefinition of argument '%" +
5509 ArgList[i].Name + "'");
5512 if (isDefine)
5513 return false;
5515 // Check the declaration has no block address forward references.
5516 ValID ID;
5517 if (FunctionName.empty()) {
5518 ID.Kind = ValID::t_GlobalID;
5519 ID.UIntVal = NumberedVals.size() - 1;
5520 } else {
5521 ID.Kind = ValID::t_GlobalName;
5522 ID.StrVal = FunctionName;
5524 auto Blocks = ForwardRefBlockAddresses.find(ID);
5525 if (Blocks != ForwardRefBlockAddresses.end())
5526 return Error(Blocks->first.Loc,
5527 "cannot take blockaddress inside a declaration");
5528 return false;
5531 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5532 ValID ID;
5533 if (FunctionNumber == -1) {
5534 ID.Kind = ValID::t_GlobalName;
5535 ID.StrVal = F.getName();
5536 } else {
5537 ID.Kind = ValID::t_GlobalID;
5538 ID.UIntVal = FunctionNumber;
5541 auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5542 if (Blocks == P.ForwardRefBlockAddresses.end())
5543 return false;
5545 for (const auto &I : Blocks->second) {
5546 const ValID &BBID = I.first;
5547 GlobalValue *GV = I.second;
5549 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5550 "Expected local id or name");
5551 BasicBlock *BB;
5552 if (BBID.Kind == ValID::t_LocalName)
5553 BB = GetBB(BBID.StrVal, BBID.Loc);
5554 else
5555 BB = GetBB(BBID.UIntVal, BBID.Loc);
5556 if (!BB)
5557 return P.Error(BBID.Loc, "referenced value is not a basic block");
5559 GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5560 GV->eraseFromParent();
5563 P.ForwardRefBlockAddresses.erase(Blocks);
5564 return false;
5567 /// ParseFunctionBody
5568 /// ::= '{' BasicBlock+ UseListOrderDirective* '}'
5569 bool LLParser::ParseFunctionBody(Function &Fn) {
5570 if (Lex.getKind() != lltok::lbrace)
5571 return TokError("expected '{' in function body");
5572 Lex.Lex(); // eat the {.
5574 int FunctionNumber = -1;
5575 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5577 PerFunctionState PFS(*this, Fn, FunctionNumber);
5579 // Resolve block addresses and allow basic blocks to be forward-declared
5580 // within this function.
5581 if (PFS.resolveForwardRefBlockAddresses())
5582 return true;
5583 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5585 // We need at least one basic block.
5586 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5587 return TokError("function body requires at least one basic block");
5589 while (Lex.getKind() != lltok::rbrace &&
5590 Lex.getKind() != lltok::kw_uselistorder)
5591 if (ParseBasicBlock(PFS)) return true;
5593 while (Lex.getKind() != lltok::rbrace)
5594 if (ParseUseListOrder(&PFS))
5595 return true;
5597 // Eat the }.
5598 Lex.Lex();
5600 // Verify function is ok.
5601 return PFS.FinishFunction();
5604 /// ParseBasicBlock
5605 /// ::= (LabelStr|LabelID)? Instruction*
5606 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5607 // If this basic block starts out with a name, remember it.
5608 std::string Name;
5609 int NameID = -1;
5610 LocTy NameLoc = Lex.getLoc();
5611 if (Lex.getKind() == lltok::LabelStr) {
5612 Name = Lex.getStrVal();
5613 Lex.Lex();
5614 } else if (Lex.getKind() == lltok::LabelID) {
5615 NameID = Lex.getUIntVal();
5616 Lex.Lex();
5619 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5620 if (!BB)
5621 return true;
5623 std::string NameStr;
5625 // Parse the instructions in this block until we get a terminator.
5626 Instruction *Inst;
5627 do {
5628 // This instruction may have three possibilities for a name: a) none
5629 // specified, b) name specified "%foo =", c) number specified: "%4 =".
5630 LocTy NameLoc = Lex.getLoc();
5631 int NameID = -1;
5632 NameStr = "";
5634 if (Lex.getKind() == lltok::LocalVarID) {
5635 NameID = Lex.getUIntVal();
5636 Lex.Lex();
5637 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5638 return true;
5639 } else if (Lex.getKind() == lltok::LocalVar) {
5640 NameStr = Lex.getStrVal();
5641 Lex.Lex();
5642 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5643 return true;
5646 switch (ParseInstruction(Inst, BB, PFS)) {
5647 default: llvm_unreachable("Unknown ParseInstruction result!");
5648 case InstError: return true;
5649 case InstNormal:
5650 BB->getInstList().push_back(Inst);
5652 // With a normal result, we check to see if the instruction is followed by
5653 // a comma and metadata.
5654 if (EatIfPresent(lltok::comma))
5655 if (ParseInstructionMetadata(*Inst))
5656 return true;
5657 break;
5658 case InstExtraComma:
5659 BB->getInstList().push_back(Inst);
5661 // If the instruction parser ate an extra comma at the end of it, it
5662 // *must* be followed by metadata.
5663 if (ParseInstructionMetadata(*Inst))
5664 return true;
5665 break;
5668 // Set the name on the instruction.
5669 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5670 } while (!Inst->isTerminator());
5672 return false;
5675 //===----------------------------------------------------------------------===//
5676 // Instruction Parsing.
5677 //===----------------------------------------------------------------------===//
5679 /// ParseInstruction - Parse one of the many different instructions.
5681 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5682 PerFunctionState &PFS) {
5683 lltok::Kind Token = Lex.getKind();
5684 if (Token == lltok::Eof)
5685 return TokError("found end of file when expecting more instructions");
5686 LocTy Loc = Lex.getLoc();
5687 unsigned KeywordVal = Lex.getUIntVal();
5688 Lex.Lex(); // Eat the keyword.
5690 switch (Token) {
5691 default: return Error(Loc, "expected instruction opcode");
5692 // Terminator Instructions.
5693 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5694 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
5695 case lltok::kw_br: return ParseBr(Inst, PFS);
5696 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
5697 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
5698 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
5699 case lltok::kw_resume: return ParseResume(Inst, PFS);
5700 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS);
5701 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS);
5702 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5703 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS);
5704 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS);
5705 case lltok::kw_callbr: return ParseCallBr(Inst, PFS);
5706 // Unary Operators.
5707 case lltok::kw_fneg: {
5708 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5709 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5710 if (Res != 0)
5711 return Res;
5712 if (FMF.any())
5713 Inst->setFastMathFlags(FMF);
5714 return false;
5716 // Binary Operators.
5717 case lltok::kw_add:
5718 case lltok::kw_sub:
5719 case lltok::kw_mul:
5720 case lltok::kw_shl: {
5721 bool NUW = EatIfPresent(lltok::kw_nuw);
5722 bool NSW = EatIfPresent(lltok::kw_nsw);
5723 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5725 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5727 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5728 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5729 return false;
5731 case lltok::kw_fadd:
5732 case lltok::kw_fsub:
5733 case lltok::kw_fmul:
5734 case lltok::kw_fdiv:
5735 case lltok::kw_frem: {
5736 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5737 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5738 if (Res != 0)
5739 return Res;
5740 if (FMF.any())
5741 Inst->setFastMathFlags(FMF);
5742 return 0;
5745 case lltok::kw_sdiv:
5746 case lltok::kw_udiv:
5747 case lltok::kw_lshr:
5748 case lltok::kw_ashr: {
5749 bool Exact = EatIfPresent(lltok::kw_exact);
5751 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5752 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5753 return false;
5756 case lltok::kw_urem:
5757 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal,
5758 /*IsFP*/false);
5759 case lltok::kw_and:
5760 case lltok::kw_or:
5761 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
5762 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
5763 case lltok::kw_fcmp: {
5764 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5765 int Res = ParseCompare(Inst, PFS, KeywordVal);
5766 if (Res != 0)
5767 return Res;
5768 if (FMF.any())
5769 Inst->setFastMathFlags(FMF);
5770 return 0;
5773 // Casts.
5774 case lltok::kw_trunc:
5775 case lltok::kw_zext:
5776 case lltok::kw_sext:
5777 case lltok::kw_fptrunc:
5778 case lltok::kw_fpext:
5779 case lltok::kw_bitcast:
5780 case lltok::kw_addrspacecast:
5781 case lltok::kw_uitofp:
5782 case lltok::kw_sitofp:
5783 case lltok::kw_fptoui:
5784 case lltok::kw_fptosi:
5785 case lltok::kw_inttoptr:
5786 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
5787 // Other.
5788 case lltok::kw_select: {
5789 FastMathFlags FMF = EatFastMathFlagsIfPresent();
5790 int Res = ParseSelect(Inst, PFS);
5791 if (Res != 0)
5792 return Res;
5793 if (FMF.any()) {
5794 if (!Inst->getType()->isFPOrFPVectorTy())
5795 return Error(Loc, "fast-math-flags specified for select without "
5796 "floating-point scalar or vector return type");
5797 Inst->setFastMathFlags(FMF);
5799 return 0;
5801 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
5802 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5803 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
5804 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
5805 case lltok::kw_phi: return ParsePHI(Inst, PFS);
5806 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
5807 // Call.
5808 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
5809 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5810 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5811 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5812 // Memory.
5813 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
5814 case lltok::kw_load: return ParseLoad(Inst, PFS);
5815 case lltok::kw_store: return ParseStore(Inst, PFS);
5816 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
5817 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
5818 case lltok::kw_fence: return ParseFence(Inst, PFS);
5819 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5820 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
5821 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
5825 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5826 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5827 if (Opc == Instruction::FCmp) {
5828 switch (Lex.getKind()) {
5829 default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5830 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5831 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5832 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5833 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5834 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5835 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5836 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5837 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5838 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5839 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5840 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5841 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5842 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5843 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5844 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5845 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5847 } else {
5848 switch (Lex.getKind()) {
5849 default: return TokError("expected icmp predicate (e.g. 'eq')");
5850 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
5851 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
5852 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5853 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5854 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5855 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5856 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5857 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5858 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5859 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5862 Lex.Lex();
5863 return false;
5866 //===----------------------------------------------------------------------===//
5867 // Terminator Instructions.
5868 //===----------------------------------------------------------------------===//
5870 /// ParseRet - Parse a return instruction.
5871 /// ::= 'ret' void (',' !dbg, !1)*
5872 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
5873 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5874 PerFunctionState &PFS) {
5875 SMLoc TypeLoc = Lex.getLoc();
5876 Type *Ty = nullptr;
5877 if (ParseType(Ty, true /*void allowed*/)) return true;
5879 Type *ResType = PFS.getFunction().getReturnType();
5881 if (Ty->isVoidTy()) {
5882 if (!ResType->isVoidTy())
5883 return Error(TypeLoc, "value doesn't match function result type '" +
5884 getTypeString(ResType) + "'");
5886 Inst = ReturnInst::Create(Context);
5887 return false;
5890 Value *RV;
5891 if (ParseValue(Ty, RV, PFS)) return true;
5893 if (ResType != RV->getType())
5894 return Error(TypeLoc, "value doesn't match function result type '" +
5895 getTypeString(ResType) + "'");
5897 Inst = ReturnInst::Create(Context, RV);
5898 return false;
5901 /// ParseBr
5902 /// ::= 'br' TypeAndValue
5903 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5904 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5905 LocTy Loc, Loc2;
5906 Value *Op0;
5907 BasicBlock *Op1, *Op2;
5908 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5910 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5911 Inst = BranchInst::Create(BB);
5912 return false;
5915 if (Op0->getType() != Type::getInt1Ty(Context))
5916 return Error(Loc, "branch condition must have 'i1' type");
5918 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5919 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5920 ParseToken(lltok::comma, "expected ',' after true destination") ||
5921 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5922 return true;
5924 Inst = BranchInst::Create(Op1, Op2, Op0);
5925 return false;
5928 /// ParseSwitch
5929 /// Instruction
5930 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5931 /// JumpTable
5932 /// ::= (TypeAndValue ',' TypeAndValue)*
5933 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5934 LocTy CondLoc, BBLoc;
5935 Value *Cond;
5936 BasicBlock *DefaultBB;
5937 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5938 ParseToken(lltok::comma, "expected ',' after switch condition") ||
5939 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5940 ParseToken(lltok::lsquare, "expected '[' with switch table"))
5941 return true;
5943 if (!Cond->getType()->isIntegerTy())
5944 return Error(CondLoc, "switch condition must have integer type");
5946 // Parse the jump table pairs.
5947 SmallPtrSet<Value*, 32> SeenCases;
5948 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5949 while (Lex.getKind() != lltok::rsquare) {
5950 Value *Constant;
5951 BasicBlock *DestBB;
5953 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5954 ParseToken(lltok::comma, "expected ',' after case value") ||
5955 ParseTypeAndBasicBlock(DestBB, PFS))
5956 return true;
5958 if (!SeenCases.insert(Constant).second)
5959 return Error(CondLoc, "duplicate case value in switch");
5960 if (!isa<ConstantInt>(Constant))
5961 return Error(CondLoc, "case value is not a constant integer");
5963 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5966 Lex.Lex(); // Eat the ']'.
5968 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5969 for (unsigned i = 0, e = Table.size(); i != e; ++i)
5970 SI->addCase(Table[i].first, Table[i].second);
5971 Inst = SI;
5972 return false;
5975 /// ParseIndirectBr
5976 /// Instruction
5977 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5978 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5979 LocTy AddrLoc;
5980 Value *Address;
5981 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5982 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5983 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5984 return true;
5986 if (!Address->getType()->isPointerTy())
5987 return Error(AddrLoc, "indirectbr address must have pointer type");
5989 // Parse the destination list.
5990 SmallVector<BasicBlock*, 16> DestList;
5992 if (Lex.getKind() != lltok::rsquare) {
5993 BasicBlock *DestBB;
5994 if (ParseTypeAndBasicBlock(DestBB, PFS))
5995 return true;
5996 DestList.push_back(DestBB);
5998 while (EatIfPresent(lltok::comma)) {
5999 if (ParseTypeAndBasicBlock(DestBB, PFS))
6000 return true;
6001 DestList.push_back(DestBB);
6005 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6006 return true;
6008 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6009 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6010 IBI->addDestination(DestList[i]);
6011 Inst = IBI;
6012 return false;
6015 /// ParseInvoke
6016 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6017 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6018 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6019 LocTy CallLoc = Lex.getLoc();
6020 AttrBuilder RetAttrs, FnAttrs;
6021 std::vector<unsigned> FwdRefAttrGrps;
6022 LocTy NoBuiltinLoc;
6023 unsigned CC;
6024 unsigned InvokeAddrSpace;
6025 Type *RetType = nullptr;
6026 LocTy RetTypeLoc;
6027 ValID CalleeID;
6028 SmallVector<ParamInfo, 16> ArgList;
6029 SmallVector<OperandBundleDef, 2> BundleList;
6031 BasicBlock *NormalBB, *UnwindBB;
6032 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6033 ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6034 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6035 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6036 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6037 NoBuiltinLoc) ||
6038 ParseOptionalOperandBundles(BundleList, PFS) ||
6039 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6040 ParseTypeAndBasicBlock(NormalBB, PFS) ||
6041 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6042 ParseTypeAndBasicBlock(UnwindBB, PFS))
6043 return true;
6045 // If RetType is a non-function pointer type, then this is the short syntax
6046 // for the call, which means that RetType is just the return type. Infer the
6047 // rest of the function argument types from the arguments that are present.
6048 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6049 if (!Ty) {
6050 // Pull out the types of all of the arguments...
6051 std::vector<Type*> ParamTypes;
6052 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6053 ParamTypes.push_back(ArgList[i].V->getType());
6055 if (!FunctionType::isValidReturnType(RetType))
6056 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6058 Ty = FunctionType::get(RetType, ParamTypes, false);
6061 CalleeID.FTy = Ty;
6063 // Look up the callee.
6064 Value *Callee;
6065 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6066 Callee, &PFS, /*IsCall=*/true))
6067 return true;
6069 // Set up the Attribute for the function.
6070 SmallVector<Value *, 8> Args;
6071 SmallVector<AttributeSet, 8> ArgAttrs;
6073 // Loop through FunctionType's arguments and ensure they are specified
6074 // correctly. Also, gather any parameter attributes.
6075 FunctionType::param_iterator I = Ty->param_begin();
6076 FunctionType::param_iterator E = Ty->param_end();
6077 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6078 Type *ExpectedTy = nullptr;
6079 if (I != E) {
6080 ExpectedTy = *I++;
6081 } else if (!Ty->isVarArg()) {
6082 return Error(ArgList[i].Loc, "too many arguments specified");
6085 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6086 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6087 getTypeString(ExpectedTy) + "'");
6088 Args.push_back(ArgList[i].V);
6089 ArgAttrs.push_back(ArgList[i].Attrs);
6092 if (I != E)
6093 return Error(CallLoc, "not enough parameters specified for call");
6095 if (FnAttrs.hasAlignmentAttr())
6096 return Error(CallLoc, "invoke instructions may not have an alignment");
6098 // Finish off the Attribute and check them
6099 AttributeList PAL =
6100 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6101 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6103 InvokeInst *II =
6104 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6105 II->setCallingConv(CC);
6106 II->setAttributes(PAL);
6107 ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6108 Inst = II;
6109 return false;
6112 /// ParseResume
6113 /// ::= 'resume' TypeAndValue
6114 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6115 Value *Exn; LocTy ExnLoc;
6116 if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6117 return true;
6119 ResumeInst *RI = ResumeInst::Create(Exn);
6120 Inst = RI;
6121 return false;
6124 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6125 PerFunctionState &PFS) {
6126 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6127 return true;
6129 while (Lex.getKind() != lltok::rsquare) {
6130 // If this isn't the first argument, we need a comma.
6131 if (!Args.empty() &&
6132 ParseToken(lltok::comma, "expected ',' in argument list"))
6133 return true;
6135 // Parse the argument.
6136 LocTy ArgLoc;
6137 Type *ArgTy = nullptr;
6138 if (ParseType(ArgTy, ArgLoc))
6139 return true;
6141 Value *V;
6142 if (ArgTy->isMetadataTy()) {
6143 if (ParseMetadataAsValue(V, PFS))
6144 return true;
6145 } else {
6146 if (ParseValue(ArgTy, V, PFS))
6147 return true;
6149 Args.push_back(V);
6152 Lex.Lex(); // Lex the ']'.
6153 return false;
6156 /// ParseCleanupRet
6157 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6158 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6159 Value *CleanupPad = nullptr;
6161 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6162 return true;
6164 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6165 return true;
6167 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6168 return true;
6170 BasicBlock *UnwindBB = nullptr;
6171 if (Lex.getKind() == lltok::kw_to) {
6172 Lex.Lex();
6173 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6174 return true;
6175 } else {
6176 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6177 return true;
6181 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6182 return false;
6185 /// ParseCatchRet
6186 /// ::= 'catchret' from Parent Value 'to' TypeAndValue
6187 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6188 Value *CatchPad = nullptr;
6190 if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6191 return true;
6193 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6194 return true;
6196 BasicBlock *BB;
6197 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6198 ParseTypeAndBasicBlock(BB, PFS))
6199 return true;
6201 Inst = CatchReturnInst::Create(CatchPad, BB);
6202 return false;
6205 /// ParseCatchSwitch
6206 /// ::= 'catchswitch' within Parent
6207 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6208 Value *ParentPad;
6210 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6211 return true;
6213 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6214 Lex.getKind() != lltok::LocalVarID)
6215 return TokError("expected scope value for catchswitch");
6217 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6218 return true;
6220 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6221 return true;
6223 SmallVector<BasicBlock *, 32> Table;
6224 do {
6225 BasicBlock *DestBB;
6226 if (ParseTypeAndBasicBlock(DestBB, PFS))
6227 return true;
6228 Table.push_back(DestBB);
6229 } while (EatIfPresent(lltok::comma));
6231 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6232 return true;
6234 if (ParseToken(lltok::kw_unwind,
6235 "expected 'unwind' after catchswitch scope"))
6236 return true;
6238 BasicBlock *UnwindBB = nullptr;
6239 if (EatIfPresent(lltok::kw_to)) {
6240 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6241 return true;
6242 } else {
6243 if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6244 return true;
6247 auto *CatchSwitch =
6248 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6249 for (BasicBlock *DestBB : Table)
6250 CatchSwitch->addHandler(DestBB);
6251 Inst = CatchSwitch;
6252 return false;
6255 /// ParseCatchPad
6256 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6257 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6258 Value *CatchSwitch = nullptr;
6260 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6261 return true;
6263 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6264 return TokError("expected scope value for catchpad");
6266 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6267 return true;
6269 SmallVector<Value *, 8> Args;
6270 if (ParseExceptionArgs(Args, PFS))
6271 return true;
6273 Inst = CatchPadInst::Create(CatchSwitch, Args);
6274 return false;
6277 /// ParseCleanupPad
6278 /// ::= 'cleanuppad' within Parent ParamList
6279 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6280 Value *ParentPad = nullptr;
6282 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6283 return true;
6285 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6286 Lex.getKind() != lltok::LocalVarID)
6287 return TokError("expected scope value for cleanuppad");
6289 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6290 return true;
6292 SmallVector<Value *, 8> Args;
6293 if (ParseExceptionArgs(Args, PFS))
6294 return true;
6296 Inst = CleanupPadInst::Create(ParentPad, Args);
6297 return false;
6300 //===----------------------------------------------------------------------===//
6301 // Unary Operators.
6302 //===----------------------------------------------------------------------===//
6304 /// ParseUnaryOp
6305 /// ::= UnaryOp TypeAndValue ',' Value
6307 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6308 /// operand is allowed.
6309 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6310 unsigned Opc, bool IsFP) {
6311 LocTy Loc; Value *LHS;
6312 if (ParseTypeAndValue(LHS, Loc, PFS))
6313 return true;
6315 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6316 : LHS->getType()->isIntOrIntVectorTy();
6318 if (!Valid)
6319 return Error(Loc, "invalid operand type for instruction");
6321 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6322 return false;
6325 /// ParseCallBr
6326 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6327 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6328 /// '[' LabelList ']'
6329 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6330 LocTy CallLoc = Lex.getLoc();
6331 AttrBuilder RetAttrs, FnAttrs;
6332 std::vector<unsigned> FwdRefAttrGrps;
6333 LocTy NoBuiltinLoc;
6334 unsigned CC;
6335 Type *RetType = nullptr;
6336 LocTy RetTypeLoc;
6337 ValID CalleeID;
6338 SmallVector<ParamInfo, 16> ArgList;
6339 SmallVector<OperandBundleDef, 2> BundleList;
6341 BasicBlock *DefaultDest;
6342 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6343 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6344 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6345 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6346 NoBuiltinLoc) ||
6347 ParseOptionalOperandBundles(BundleList, PFS) ||
6348 ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6349 ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6350 ParseToken(lltok::lsquare, "expected '[' in callbr"))
6351 return true;
6353 // Parse the destination list.
6354 SmallVector<BasicBlock *, 16> IndirectDests;
6356 if (Lex.getKind() != lltok::rsquare) {
6357 BasicBlock *DestBB;
6358 if (ParseTypeAndBasicBlock(DestBB, PFS))
6359 return true;
6360 IndirectDests.push_back(DestBB);
6362 while (EatIfPresent(lltok::comma)) {
6363 if (ParseTypeAndBasicBlock(DestBB, PFS))
6364 return true;
6365 IndirectDests.push_back(DestBB);
6369 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6370 return true;
6372 // If RetType is a non-function pointer type, then this is the short syntax
6373 // for the call, which means that RetType is just the return type. Infer the
6374 // rest of the function argument types from the arguments that are present.
6375 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6376 if (!Ty) {
6377 // Pull out the types of all of the arguments...
6378 std::vector<Type *> ParamTypes;
6379 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6380 ParamTypes.push_back(ArgList[i].V->getType());
6382 if (!FunctionType::isValidReturnType(RetType))
6383 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6385 Ty = FunctionType::get(RetType, ParamTypes, false);
6388 CalleeID.FTy = Ty;
6390 // Look up the callee.
6391 Value *Callee;
6392 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6393 /*IsCall=*/true))
6394 return true;
6396 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6397 return Error(RetTypeLoc, "asm-goto outputs not supported");
6399 // Set up the Attribute for the function.
6400 SmallVector<Value *, 8> Args;
6401 SmallVector<AttributeSet, 8> ArgAttrs;
6403 // Loop through FunctionType's arguments and ensure they are specified
6404 // correctly. Also, gather any parameter attributes.
6405 FunctionType::param_iterator I = Ty->param_begin();
6406 FunctionType::param_iterator E = Ty->param_end();
6407 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6408 Type *ExpectedTy = nullptr;
6409 if (I != E) {
6410 ExpectedTy = *I++;
6411 } else if (!Ty->isVarArg()) {
6412 return Error(ArgList[i].Loc, "too many arguments specified");
6415 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6416 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6417 getTypeString(ExpectedTy) + "'");
6418 Args.push_back(ArgList[i].V);
6419 ArgAttrs.push_back(ArgList[i].Attrs);
6422 if (I != E)
6423 return Error(CallLoc, "not enough parameters specified for call");
6425 if (FnAttrs.hasAlignmentAttr())
6426 return Error(CallLoc, "callbr instructions may not have an alignment");
6428 // Finish off the Attribute and check them
6429 AttributeList PAL =
6430 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6431 AttributeSet::get(Context, RetAttrs), ArgAttrs);
6433 CallBrInst *CBI =
6434 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6435 BundleList);
6436 CBI->setCallingConv(CC);
6437 CBI->setAttributes(PAL);
6438 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6439 Inst = CBI;
6440 return false;
6443 //===----------------------------------------------------------------------===//
6444 // Binary Operators.
6445 //===----------------------------------------------------------------------===//
6447 /// ParseArithmetic
6448 /// ::= ArithmeticOps TypeAndValue ',' Value
6450 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6451 /// operand is allowed.
6452 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6453 unsigned Opc, bool IsFP) {
6454 LocTy Loc; Value *LHS, *RHS;
6455 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6456 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6457 ParseValue(LHS->getType(), RHS, PFS))
6458 return true;
6460 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6461 : LHS->getType()->isIntOrIntVectorTy();
6463 if (!Valid)
6464 return Error(Loc, "invalid operand type for instruction");
6466 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6467 return false;
6470 /// ParseLogical
6471 /// ::= ArithmeticOps TypeAndValue ',' Value {
6472 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6473 unsigned Opc) {
6474 LocTy Loc; Value *LHS, *RHS;
6475 if (ParseTypeAndValue(LHS, Loc, PFS) ||
6476 ParseToken(lltok::comma, "expected ',' in logical operation") ||
6477 ParseValue(LHS->getType(), RHS, PFS))
6478 return true;
6480 if (!LHS->getType()->isIntOrIntVectorTy())
6481 return Error(Loc,"instruction requires integer or integer vector operands");
6483 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6484 return false;
6487 /// ParseCompare
6488 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
6489 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
6490 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6491 unsigned Opc) {
6492 // Parse the integer/fp comparison predicate.
6493 LocTy Loc;
6494 unsigned Pred;
6495 Value *LHS, *RHS;
6496 if (ParseCmpPredicate(Pred, Opc) ||
6497 ParseTypeAndValue(LHS, Loc, PFS) ||
6498 ParseToken(lltok::comma, "expected ',' after compare value") ||
6499 ParseValue(LHS->getType(), RHS, PFS))
6500 return true;
6502 if (Opc == Instruction::FCmp) {
6503 if (!LHS->getType()->isFPOrFPVectorTy())
6504 return Error(Loc, "fcmp requires floating point operands");
6505 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6506 } else {
6507 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6508 if (!LHS->getType()->isIntOrIntVectorTy() &&
6509 !LHS->getType()->isPtrOrPtrVectorTy())
6510 return Error(Loc, "icmp requires integer operands");
6511 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6513 return false;
6516 //===----------------------------------------------------------------------===//
6517 // Other Instructions.
6518 //===----------------------------------------------------------------------===//
6521 /// ParseCast
6522 /// ::= CastOpc TypeAndValue 'to' Type
6523 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6524 unsigned Opc) {
6525 LocTy Loc;
6526 Value *Op;
6527 Type *DestTy = nullptr;
6528 if (ParseTypeAndValue(Op, Loc, PFS) ||
6529 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6530 ParseType(DestTy))
6531 return true;
6533 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6534 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6535 return Error(Loc, "invalid cast opcode for cast from '" +
6536 getTypeString(Op->getType()) + "' to '" +
6537 getTypeString(DestTy) + "'");
6539 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6540 return false;
6543 /// ParseSelect
6544 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6545 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6546 LocTy Loc;
6547 Value *Op0, *Op1, *Op2;
6548 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6549 ParseToken(lltok::comma, "expected ',' after select condition") ||
6550 ParseTypeAndValue(Op1, PFS) ||
6551 ParseToken(lltok::comma, "expected ',' after select value") ||
6552 ParseTypeAndValue(Op2, PFS))
6553 return true;
6555 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6556 return Error(Loc, Reason);
6558 Inst = SelectInst::Create(Op0, Op1, Op2);
6559 return false;
6562 /// ParseVA_Arg
6563 /// ::= 'va_arg' TypeAndValue ',' Type
6564 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6565 Value *Op;
6566 Type *EltTy = nullptr;
6567 LocTy TypeLoc;
6568 if (ParseTypeAndValue(Op, PFS) ||
6569 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6570 ParseType(EltTy, TypeLoc))
6571 return true;
6573 if (!EltTy->isFirstClassType())
6574 return Error(TypeLoc, "va_arg requires operand with first class type");
6576 Inst = new VAArgInst(Op, EltTy);
6577 return false;
6580 /// ParseExtractElement
6581 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
6582 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6583 LocTy Loc;
6584 Value *Op0, *Op1;
6585 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6586 ParseToken(lltok::comma, "expected ',' after extract value") ||
6587 ParseTypeAndValue(Op1, PFS))
6588 return true;
6590 if (!ExtractElementInst::isValidOperands(Op0, Op1))
6591 return Error(Loc, "invalid extractelement operands");
6593 Inst = ExtractElementInst::Create(Op0, Op1);
6594 return false;
6597 /// ParseInsertElement
6598 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6599 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6600 LocTy Loc;
6601 Value *Op0, *Op1, *Op2;
6602 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6603 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6604 ParseTypeAndValue(Op1, PFS) ||
6605 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6606 ParseTypeAndValue(Op2, PFS))
6607 return true;
6609 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6610 return Error(Loc, "invalid insertelement operands");
6612 Inst = InsertElementInst::Create(Op0, Op1, Op2);
6613 return false;
6616 /// ParseShuffleVector
6617 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6618 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6619 LocTy Loc;
6620 Value *Op0, *Op1, *Op2;
6621 if (ParseTypeAndValue(Op0, Loc, PFS) ||
6622 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6623 ParseTypeAndValue(Op1, PFS) ||
6624 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6625 ParseTypeAndValue(Op2, PFS))
6626 return true;
6628 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6629 return Error(Loc, "invalid shufflevector operands");
6631 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6632 return false;
6635 /// ParsePHI
6636 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6637 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6638 Type *Ty = nullptr; LocTy TypeLoc;
6639 Value *Op0, *Op1;
6641 if (ParseType(Ty, TypeLoc) ||
6642 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6643 ParseValue(Ty, Op0, PFS) ||
6644 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6645 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6646 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6647 return true;
6649 bool AteExtraComma = false;
6650 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6652 while (true) {
6653 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6655 if (!EatIfPresent(lltok::comma))
6656 break;
6658 if (Lex.getKind() == lltok::MetadataVar) {
6659 AteExtraComma = true;
6660 break;
6663 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6664 ParseValue(Ty, Op0, PFS) ||
6665 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6666 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6667 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6668 return true;
6671 if (!Ty->isFirstClassType())
6672 return Error(TypeLoc, "phi node must have first class type");
6674 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6675 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6676 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6677 Inst = PN;
6678 return AteExtraComma ? InstExtraComma : InstNormal;
6681 /// ParseLandingPad
6682 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6683 /// Clause
6684 /// ::= 'catch' TypeAndValue
6685 /// ::= 'filter'
6686 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6687 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6688 Type *Ty = nullptr; LocTy TyLoc;
6690 if (ParseType(Ty, TyLoc))
6691 return true;
6693 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6694 LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6696 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6697 LandingPadInst::ClauseType CT;
6698 if (EatIfPresent(lltok::kw_catch))
6699 CT = LandingPadInst::Catch;
6700 else if (EatIfPresent(lltok::kw_filter))
6701 CT = LandingPadInst::Filter;
6702 else
6703 return TokError("expected 'catch' or 'filter' clause type");
6705 Value *V;
6706 LocTy VLoc;
6707 if (ParseTypeAndValue(V, VLoc, PFS))
6708 return true;
6710 // A 'catch' type expects a non-array constant. A filter clause expects an
6711 // array constant.
6712 if (CT == LandingPadInst::Catch) {
6713 if (isa<ArrayType>(V->getType()))
6714 Error(VLoc, "'catch' clause has an invalid type");
6715 } else {
6716 if (!isa<ArrayType>(V->getType()))
6717 Error(VLoc, "'filter' clause has an invalid type");
6720 Constant *CV = dyn_cast<Constant>(V);
6721 if (!CV)
6722 return Error(VLoc, "clause argument must be a constant");
6723 LP->addClause(CV);
6726 Inst = LP.release();
6727 return false;
6730 /// ParseCall
6731 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv
6732 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6733 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6734 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6735 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6736 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6737 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
6738 /// OptionalAttrs Type Value ParameterList OptionalAttrs
6739 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6740 CallInst::TailCallKind TCK) {
6741 AttrBuilder RetAttrs, FnAttrs;
6742 std::vector<unsigned> FwdRefAttrGrps;
6743 LocTy BuiltinLoc;
6744 unsigned CallAddrSpace;
6745 unsigned CC;
6746 Type *RetType = nullptr;
6747 LocTy RetTypeLoc;
6748 ValID CalleeID;
6749 SmallVector<ParamInfo, 16> ArgList;
6750 SmallVector<OperandBundleDef, 2> BundleList;
6751 LocTy CallLoc = Lex.getLoc();
6753 if (TCK != CallInst::TCK_None &&
6754 ParseToken(lltok::kw_call,
6755 "expected 'tail call', 'musttail call', or 'notail call'"))
6756 return true;
6758 FastMathFlags FMF = EatFastMathFlagsIfPresent();
6760 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6761 ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6762 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6763 ParseValID(CalleeID) ||
6764 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6765 PFS.getFunction().isVarArg()) ||
6766 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6767 ParseOptionalOperandBundles(BundleList, PFS))
6768 return true;
6770 if (FMF.any() && !RetType->isFPOrFPVectorTy())
6771 return Error(CallLoc, "fast-math-flags specified for call without "
6772 "floating-point scalar or vector return type");
6774 // If RetType is a non-function pointer type, then this is the short syntax
6775 // for the call, which means that RetType is just the return type. Infer the
6776 // rest of the function argument types from the arguments that are present.
6777 FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6778 if (!Ty) {
6779 // Pull out the types of all of the arguments...
6780 std::vector<Type*> ParamTypes;
6781 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6782 ParamTypes.push_back(ArgList[i].V->getType());
6784 if (!FunctionType::isValidReturnType(RetType))
6785 return Error(RetTypeLoc, "Invalid result type for LLVM function");
6787 Ty = FunctionType::get(RetType, ParamTypes, false);
6790 CalleeID.FTy = Ty;
6792 // Look up the callee.
6793 Value *Callee;
6794 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6795 &PFS, /*IsCall=*/true))
6796 return true;
6798 // Set up the Attribute for the function.
6799 SmallVector<AttributeSet, 8> Attrs;
6801 SmallVector<Value*, 8> Args;
6803 // Loop through FunctionType's arguments and ensure they are specified
6804 // correctly. Also, gather any parameter attributes.
6805 FunctionType::param_iterator I = Ty->param_begin();
6806 FunctionType::param_iterator E = Ty->param_end();
6807 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6808 Type *ExpectedTy = nullptr;
6809 if (I != E) {
6810 ExpectedTy = *I++;
6811 } else if (!Ty->isVarArg()) {
6812 return Error(ArgList[i].Loc, "too many arguments specified");
6815 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6816 return Error(ArgList[i].Loc, "argument is not of expected type '" +
6817 getTypeString(ExpectedTy) + "'");
6818 Args.push_back(ArgList[i].V);
6819 Attrs.push_back(ArgList[i].Attrs);
6822 if (I != E)
6823 return Error(CallLoc, "not enough parameters specified for call");
6825 if (FnAttrs.hasAlignmentAttr())
6826 return Error(CallLoc, "call instructions may not have an alignment");
6828 // Finish off the Attribute and check them
6829 AttributeList PAL =
6830 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6831 AttributeSet::get(Context, RetAttrs), Attrs);
6833 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6834 CI->setTailCallKind(TCK);
6835 CI->setCallingConv(CC);
6836 if (FMF.any())
6837 CI->setFastMathFlags(FMF);
6838 CI->setAttributes(PAL);
6839 ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6840 Inst = CI;
6841 return false;
6844 //===----------------------------------------------------------------------===//
6845 // Memory Instructions.
6846 //===----------------------------------------------------------------------===//
6848 /// ParseAlloc
6849 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6850 /// (',' 'align' i32)? (',', 'addrspace(n))?
6851 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6852 Value *Size = nullptr;
6853 LocTy SizeLoc, TyLoc, ASLoc;
6854 unsigned Alignment = 0;
6855 unsigned AddrSpace = 0;
6856 Type *Ty = nullptr;
6858 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6859 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6861 if (ParseType(Ty, TyLoc)) return true;
6863 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6864 return Error(TyLoc, "invalid type for alloca");
6866 bool AteExtraComma = false;
6867 if (EatIfPresent(lltok::comma)) {
6868 if (Lex.getKind() == lltok::kw_align) {
6869 if (ParseOptionalAlignment(Alignment))
6870 return true;
6871 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6872 return true;
6873 } else if (Lex.getKind() == lltok::kw_addrspace) {
6874 ASLoc = Lex.getLoc();
6875 if (ParseOptionalAddrSpace(AddrSpace))
6876 return true;
6877 } else if (Lex.getKind() == lltok::MetadataVar) {
6878 AteExtraComma = true;
6879 } else {
6880 if (ParseTypeAndValue(Size, SizeLoc, PFS))
6881 return true;
6882 if (EatIfPresent(lltok::comma)) {
6883 if (Lex.getKind() == lltok::kw_align) {
6884 if (ParseOptionalAlignment(Alignment))
6885 return true;
6886 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6887 return true;
6888 } else if (Lex.getKind() == lltok::kw_addrspace) {
6889 ASLoc = Lex.getLoc();
6890 if (ParseOptionalAddrSpace(AddrSpace))
6891 return true;
6892 } else if (Lex.getKind() == lltok::MetadataVar) {
6893 AteExtraComma = true;
6899 if (Size && !Size->getType()->isIntegerTy())
6900 return Error(SizeLoc, "element count must have integer type");
6902 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6903 AI->setUsedWithInAlloca(IsInAlloca);
6904 AI->setSwiftError(IsSwiftError);
6905 Inst = AI;
6906 return AteExtraComma ? InstExtraComma : InstNormal;
6909 /// ParseLoad
6910 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6911 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue
6912 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6913 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6914 Value *Val; LocTy Loc;
6915 unsigned Alignment = 0;
6916 bool AteExtraComma = false;
6917 bool isAtomic = false;
6918 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6919 SyncScope::ID SSID = SyncScope::System;
6921 if (Lex.getKind() == lltok::kw_atomic) {
6922 isAtomic = true;
6923 Lex.Lex();
6926 bool isVolatile = false;
6927 if (Lex.getKind() == lltok::kw_volatile) {
6928 isVolatile = true;
6929 Lex.Lex();
6932 Type *Ty;
6933 LocTy ExplicitTypeLoc = Lex.getLoc();
6934 if (ParseType(Ty) ||
6935 ParseToken(lltok::comma, "expected comma after load's type") ||
6936 ParseTypeAndValue(Val, Loc, PFS) ||
6937 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6938 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6939 return true;
6941 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6942 return Error(Loc, "load operand must be a pointer to a first class type");
6943 if (isAtomic && !Alignment)
6944 return Error(Loc, "atomic load must have explicit non-zero alignment");
6945 if (Ordering == AtomicOrdering::Release ||
6946 Ordering == AtomicOrdering::AcquireRelease)
6947 return Error(Loc, "atomic load cannot use Release ordering");
6949 if (Ty != cast<PointerType>(Val->getType())->getElementType())
6950 return Error(ExplicitTypeLoc,
6951 "explicit pointee type doesn't match operand's pointee type");
6953 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6954 return AteExtraComma ? InstExtraComma : InstNormal;
6957 /// ParseStore
6959 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6960 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6961 /// 'singlethread'? AtomicOrdering (',' 'align' i32)?
6962 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6963 Value *Val, *Ptr; LocTy Loc, PtrLoc;
6964 unsigned Alignment = 0;
6965 bool AteExtraComma = false;
6966 bool isAtomic = false;
6967 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6968 SyncScope::ID SSID = SyncScope::System;
6970 if (Lex.getKind() == lltok::kw_atomic) {
6971 isAtomic = true;
6972 Lex.Lex();
6975 bool isVolatile = false;
6976 if (Lex.getKind() == lltok::kw_volatile) {
6977 isVolatile = true;
6978 Lex.Lex();
6981 if (ParseTypeAndValue(Val, Loc, PFS) ||
6982 ParseToken(lltok::comma, "expected ',' after store operand") ||
6983 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6984 ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6985 ParseOptionalCommaAlign(Alignment, AteExtraComma))
6986 return true;
6988 if (!Ptr->getType()->isPointerTy())
6989 return Error(PtrLoc, "store operand must be a pointer");
6990 if (!Val->getType()->isFirstClassType())
6991 return Error(Loc, "store operand must be a first class value");
6992 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6993 return Error(Loc, "stored value and pointer type do not match");
6994 if (isAtomic && !Alignment)
6995 return Error(Loc, "atomic store must have explicit non-zero alignment");
6996 if (Ordering == AtomicOrdering::Acquire ||
6997 Ordering == AtomicOrdering::AcquireRelease)
6998 return Error(Loc, "atomic store cannot use Acquire ordering");
7000 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7001 return AteExtraComma ? InstExtraComma : InstNormal;
7004 /// ParseCmpXchg
7005 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7006 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7007 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7008 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7009 bool AteExtraComma = false;
7010 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7011 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7012 SyncScope::ID SSID = SyncScope::System;
7013 bool isVolatile = false;
7014 bool isWeak = false;
7016 if (EatIfPresent(lltok::kw_weak))
7017 isWeak = true;
7019 if (EatIfPresent(lltok::kw_volatile))
7020 isVolatile = true;
7022 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7023 ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7024 ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7025 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7026 ParseTypeAndValue(New, NewLoc, PFS) ||
7027 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7028 ParseOrdering(FailureOrdering))
7029 return true;
7031 if (SuccessOrdering == AtomicOrdering::Unordered ||
7032 FailureOrdering == AtomicOrdering::Unordered)
7033 return TokError("cmpxchg cannot be unordered");
7034 if (isStrongerThan(FailureOrdering, SuccessOrdering))
7035 return TokError("cmpxchg failure argument shall be no stronger than the "
7036 "success argument");
7037 if (FailureOrdering == AtomicOrdering::Release ||
7038 FailureOrdering == AtomicOrdering::AcquireRelease)
7039 return TokError(
7040 "cmpxchg failure ordering cannot include release semantics");
7041 if (!Ptr->getType()->isPointerTy())
7042 return Error(PtrLoc, "cmpxchg operand must be a pointer");
7043 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7044 return Error(CmpLoc, "compare value and pointer type do not match");
7045 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7046 return Error(NewLoc, "new value and pointer type do not match");
7047 if (!New->getType()->isFirstClassType())
7048 return Error(NewLoc, "cmpxchg operand must be a first class value");
7049 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7050 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7051 CXI->setVolatile(isVolatile);
7052 CXI->setWeak(isWeak);
7053 Inst = CXI;
7054 return AteExtraComma ? InstExtraComma : InstNormal;
7057 /// ParseAtomicRMW
7058 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7059 /// 'singlethread'? AtomicOrdering
7060 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7061 Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7062 bool AteExtraComma = false;
7063 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7064 SyncScope::ID SSID = SyncScope::System;
7065 bool isVolatile = false;
7066 bool IsFP = false;
7067 AtomicRMWInst::BinOp Operation;
7069 if (EatIfPresent(lltok::kw_volatile))
7070 isVolatile = true;
7072 switch (Lex.getKind()) {
7073 default: return TokError("expected binary operation in atomicrmw");
7074 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7075 case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7076 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7077 case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7078 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7079 case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7080 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7081 case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7082 case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7083 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7084 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7085 case lltok::kw_fadd:
7086 Operation = AtomicRMWInst::FAdd;
7087 IsFP = true;
7088 break;
7089 case lltok::kw_fsub:
7090 Operation = AtomicRMWInst::FSub;
7091 IsFP = true;
7092 break;
7094 Lex.Lex(); // Eat the operation.
7096 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7097 ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7098 ParseTypeAndValue(Val, ValLoc, PFS) ||
7099 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7100 return true;
7102 if (Ordering == AtomicOrdering::Unordered)
7103 return TokError("atomicrmw cannot be unordered");
7104 if (!Ptr->getType()->isPointerTy())
7105 return Error(PtrLoc, "atomicrmw operand must be a pointer");
7106 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7107 return Error(ValLoc, "atomicrmw value and pointer type do not match");
7109 if (Operation == AtomicRMWInst::Xchg) {
7110 if (!Val->getType()->isIntegerTy() &&
7111 !Val->getType()->isFloatingPointTy()) {
7112 return Error(ValLoc, "atomicrmw " +
7113 AtomicRMWInst::getOperationName(Operation) +
7114 " operand must be an integer or floating point type");
7116 } else if (IsFP) {
7117 if (!Val->getType()->isFloatingPointTy()) {
7118 return Error(ValLoc, "atomicrmw " +
7119 AtomicRMWInst::getOperationName(Operation) +
7120 " operand must be a floating point type");
7122 } else {
7123 if (!Val->getType()->isIntegerTy()) {
7124 return Error(ValLoc, "atomicrmw " +
7125 AtomicRMWInst::getOperationName(Operation) +
7126 " operand must be an integer");
7130 unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7131 if (Size < 8 || (Size & (Size - 1)))
7132 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7133 " integer");
7135 AtomicRMWInst *RMWI =
7136 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7137 RMWI->setVolatile(isVolatile);
7138 Inst = RMWI;
7139 return AteExtraComma ? InstExtraComma : InstNormal;
7142 /// ParseFence
7143 /// ::= 'fence' 'singlethread'? AtomicOrdering
7144 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7145 AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7146 SyncScope::ID SSID = SyncScope::System;
7147 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7148 return true;
7150 if (Ordering == AtomicOrdering::Unordered)
7151 return TokError("fence cannot be unordered");
7152 if (Ordering == AtomicOrdering::Monotonic)
7153 return TokError("fence cannot be monotonic");
7155 Inst = new FenceInst(Context, Ordering, SSID);
7156 return InstNormal;
7159 /// ParseGetElementPtr
7160 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7161 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7162 Value *Ptr = nullptr;
7163 Value *Val = nullptr;
7164 LocTy Loc, EltLoc;
7166 bool InBounds = EatIfPresent(lltok::kw_inbounds);
7168 Type *Ty = nullptr;
7169 LocTy ExplicitTypeLoc = Lex.getLoc();
7170 if (ParseType(Ty) ||
7171 ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7172 ParseTypeAndValue(Ptr, Loc, PFS))
7173 return true;
7175 Type *BaseType = Ptr->getType();
7176 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7177 if (!BasePointerType)
7178 return Error(Loc, "base of getelementptr must be a pointer");
7180 if (Ty != BasePointerType->getElementType())
7181 return Error(ExplicitTypeLoc,
7182 "explicit pointee type doesn't match operand's pointee type");
7184 SmallVector<Value*, 16> Indices;
7185 bool AteExtraComma = false;
7186 // GEP returns a vector of pointers if at least one of parameters is a vector.
7187 // All vector parameters should have the same vector width.
7188 unsigned GEPWidth = BaseType->isVectorTy() ?
7189 BaseType->getVectorNumElements() : 0;
7191 while (EatIfPresent(lltok::comma)) {
7192 if (Lex.getKind() == lltok::MetadataVar) {
7193 AteExtraComma = true;
7194 break;
7196 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7197 if (!Val->getType()->isIntOrIntVectorTy())
7198 return Error(EltLoc, "getelementptr index must be an integer");
7200 if (Val->getType()->isVectorTy()) {
7201 unsigned ValNumEl = Val->getType()->getVectorNumElements();
7202 if (GEPWidth && GEPWidth != ValNumEl)
7203 return Error(EltLoc,
7204 "getelementptr vector index has a wrong number of elements");
7205 GEPWidth = ValNumEl;
7207 Indices.push_back(Val);
7210 SmallPtrSet<Type*, 4> Visited;
7211 if (!Indices.empty() && !Ty->isSized(&Visited))
7212 return Error(Loc, "base element of getelementptr must be sized");
7214 if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7215 return Error(Loc, "invalid getelementptr indices");
7216 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7217 if (InBounds)
7218 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7219 return AteExtraComma ? InstExtraComma : InstNormal;
7222 /// ParseExtractValue
7223 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
7224 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7225 Value *Val; LocTy Loc;
7226 SmallVector<unsigned, 4> Indices;
7227 bool AteExtraComma;
7228 if (ParseTypeAndValue(Val, Loc, PFS) ||
7229 ParseIndexList(Indices, AteExtraComma))
7230 return true;
7232 if (!Val->getType()->isAggregateType())
7233 return Error(Loc, "extractvalue operand must be aggregate type");
7235 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7236 return Error(Loc, "invalid indices for extractvalue");
7237 Inst = ExtractValueInst::Create(Val, Indices);
7238 return AteExtraComma ? InstExtraComma : InstNormal;
7241 /// ParseInsertValue
7242 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7243 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7244 Value *Val0, *Val1; LocTy Loc0, Loc1;
7245 SmallVector<unsigned, 4> Indices;
7246 bool AteExtraComma;
7247 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7248 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7249 ParseTypeAndValue(Val1, Loc1, PFS) ||
7250 ParseIndexList(Indices, AteExtraComma))
7251 return true;
7253 if (!Val0->getType()->isAggregateType())
7254 return Error(Loc0, "insertvalue operand must be aggregate type");
7256 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7257 if (!IndexedType)
7258 return Error(Loc0, "invalid indices for insertvalue");
7259 if (IndexedType != Val1->getType())
7260 return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7261 getTypeString(Val1->getType()) + "' instead of '" +
7262 getTypeString(IndexedType) + "'");
7263 Inst = InsertValueInst::Create(Val0, Val1, Indices);
7264 return AteExtraComma ? InstExtraComma : InstNormal;
7267 //===----------------------------------------------------------------------===//
7268 // Embedded metadata.
7269 //===----------------------------------------------------------------------===//
7271 /// ParseMDNodeVector
7272 /// ::= { Element (',' Element)* }
7273 /// Element
7274 /// ::= 'null' | TypeAndValue
7275 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7276 if (ParseToken(lltok::lbrace, "expected '{' here"))
7277 return true;
7279 // Check for an empty list.
7280 if (EatIfPresent(lltok::rbrace))
7281 return false;
7283 do {
7284 // Null is a special case since it is typeless.
7285 if (EatIfPresent(lltok::kw_null)) {
7286 Elts.push_back(nullptr);
7287 continue;
7290 Metadata *MD;
7291 if (ParseMetadata(MD, nullptr))
7292 return true;
7293 Elts.push_back(MD);
7294 } while (EatIfPresent(lltok::comma));
7296 return ParseToken(lltok::rbrace, "expected end of metadata node");
7299 //===----------------------------------------------------------------------===//
7300 // Use-list order directives.
7301 //===----------------------------------------------------------------------===//
7302 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7303 SMLoc Loc) {
7304 if (V->use_empty())
7305 return Error(Loc, "value has no uses");
7307 unsigned NumUses = 0;
7308 SmallDenseMap<const Use *, unsigned, 16> Order;
7309 for (const Use &U : V->uses()) {
7310 if (++NumUses > Indexes.size())
7311 break;
7312 Order[&U] = Indexes[NumUses - 1];
7314 if (NumUses < 2)
7315 return Error(Loc, "value only has one use");
7316 if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7317 return Error(Loc,
7318 "wrong number of indexes, expected " + Twine(V->getNumUses()));
7320 V->sortUseList([&](const Use &L, const Use &R) {
7321 return Order.lookup(&L) < Order.lookup(&R);
7323 return false;
7326 /// ParseUseListOrderIndexes
7327 /// ::= '{' uint32 (',' uint32)+ '}'
7328 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7329 SMLoc Loc = Lex.getLoc();
7330 if (ParseToken(lltok::lbrace, "expected '{' here"))
7331 return true;
7332 if (Lex.getKind() == lltok::rbrace)
7333 return Lex.Error("expected non-empty list of uselistorder indexes");
7335 // Use Offset, Max, and IsOrdered to check consistency of indexes. The
7336 // indexes should be distinct numbers in the range [0, size-1], and should
7337 // not be in order.
7338 unsigned Offset = 0;
7339 unsigned Max = 0;
7340 bool IsOrdered = true;
7341 assert(Indexes.empty() && "Expected empty order vector");
7342 do {
7343 unsigned Index;
7344 if (ParseUInt32(Index))
7345 return true;
7347 // Update consistency checks.
7348 Offset += Index - Indexes.size();
7349 Max = std::max(Max, Index);
7350 IsOrdered &= Index == Indexes.size();
7352 Indexes.push_back(Index);
7353 } while (EatIfPresent(lltok::comma));
7355 if (ParseToken(lltok::rbrace, "expected '}' here"))
7356 return true;
7358 if (Indexes.size() < 2)
7359 return Error(Loc, "expected >= 2 uselistorder indexes");
7360 if (Offset != 0 || Max >= Indexes.size())
7361 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7362 if (IsOrdered)
7363 return Error(Loc, "expected uselistorder indexes to change the order");
7365 return false;
7368 /// ParseUseListOrder
7369 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7370 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7371 SMLoc Loc = Lex.getLoc();
7372 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7373 return true;
7375 Value *V;
7376 SmallVector<unsigned, 16> Indexes;
7377 if (ParseTypeAndValue(V, PFS) ||
7378 ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7379 ParseUseListOrderIndexes(Indexes))
7380 return true;
7382 return sortUseListOrder(V, Indexes, Loc);
7385 /// ParseUseListOrderBB
7386 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7387 bool LLParser::ParseUseListOrderBB() {
7388 assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7389 SMLoc Loc = Lex.getLoc();
7390 Lex.Lex();
7392 ValID Fn, Label;
7393 SmallVector<unsigned, 16> Indexes;
7394 if (ParseValID(Fn) ||
7395 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7396 ParseValID(Label) ||
7397 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7398 ParseUseListOrderIndexes(Indexes))
7399 return true;
7401 // Check the function.
7402 GlobalValue *GV;
7403 if (Fn.Kind == ValID::t_GlobalName)
7404 GV = M->getNamedValue(Fn.StrVal);
7405 else if (Fn.Kind == ValID::t_GlobalID)
7406 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7407 else
7408 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7409 if (!GV)
7410 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7411 auto *F = dyn_cast<Function>(GV);
7412 if (!F)
7413 return Error(Fn.Loc, "expected function name in uselistorder_bb");
7414 if (F->isDeclaration())
7415 return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7417 // Check the basic block.
7418 if (Label.Kind == ValID::t_LocalID)
7419 return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7420 if (Label.Kind != ValID::t_LocalName)
7421 return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7422 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7423 if (!V)
7424 return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7425 if (!isa<BasicBlock>(V))
7426 return Error(Label.Loc, "expected basic block in uselistorder_bb");
7428 return sortUseListOrder(V, Indexes, Loc);
7431 /// ModuleEntry
7432 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7433 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7434 bool LLParser::ParseModuleEntry(unsigned ID) {
7435 assert(Lex.getKind() == lltok::kw_module);
7436 Lex.Lex();
7438 std::string Path;
7439 if (ParseToken(lltok::colon, "expected ':' here") ||
7440 ParseToken(lltok::lparen, "expected '(' here") ||
7441 ParseToken(lltok::kw_path, "expected 'path' here") ||
7442 ParseToken(lltok::colon, "expected ':' here") ||
7443 ParseStringConstant(Path) ||
7444 ParseToken(lltok::comma, "expected ',' here") ||
7445 ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7446 ParseToken(lltok::colon, "expected ':' here") ||
7447 ParseToken(lltok::lparen, "expected '(' here"))
7448 return true;
7450 ModuleHash Hash;
7451 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7452 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7453 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7454 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7455 ParseUInt32(Hash[4]))
7456 return true;
7458 if (ParseToken(lltok::rparen, "expected ')' here") ||
7459 ParseToken(lltok::rparen, "expected ')' here"))
7460 return true;
7462 auto ModuleEntry = Index->addModule(Path, ID, Hash);
7463 ModuleIdMap[ID] = ModuleEntry->first();
7465 return false;
7468 /// TypeIdEntry
7469 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7470 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7471 assert(Lex.getKind() == lltok::kw_typeid);
7472 Lex.Lex();
7474 std::string Name;
7475 if (ParseToken(lltok::colon, "expected ':' here") ||
7476 ParseToken(lltok::lparen, "expected '(' here") ||
7477 ParseToken(lltok::kw_name, "expected 'name' here") ||
7478 ParseToken(lltok::colon, "expected ':' here") ||
7479 ParseStringConstant(Name))
7480 return true;
7482 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7483 if (ParseToken(lltok::comma, "expected ',' here") ||
7484 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7485 return true;
7487 // Check if this ID was forward referenced, and if so, update the
7488 // corresponding GUIDs.
7489 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7490 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7491 for (auto TIDRef : FwdRefTIDs->second) {
7492 assert(!*TIDRef.first &&
7493 "Forward referenced type id GUID expected to be 0");
7494 *TIDRef.first = GlobalValue::getGUID(Name);
7496 ForwardRefTypeIds.erase(FwdRefTIDs);
7499 return false;
7502 /// TypeIdSummary
7503 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7504 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7505 if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7506 ParseToken(lltok::colon, "expected ':' here") ||
7507 ParseToken(lltok::lparen, "expected '(' here") ||
7508 ParseTypeTestResolution(TIS.TTRes))
7509 return true;
7511 if (EatIfPresent(lltok::comma)) {
7512 // Expect optional wpdResolutions field
7513 if (ParseOptionalWpdResolutions(TIS.WPDRes))
7514 return true;
7517 if (ParseToken(lltok::rparen, "expected ')' here"))
7518 return true;
7520 return false;
7523 static ValueInfo EmptyVI =
7524 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7526 /// TypeIdCompatibleVtableEntry
7527 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7528 /// TypeIdCompatibleVtableInfo
7529 /// ')'
7530 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7531 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7532 Lex.Lex();
7534 std::string Name;
7535 if (ParseToken(lltok::colon, "expected ':' here") ||
7536 ParseToken(lltok::lparen, "expected '(' here") ||
7537 ParseToken(lltok::kw_name, "expected 'name' here") ||
7538 ParseToken(lltok::colon, "expected ':' here") ||
7539 ParseStringConstant(Name))
7540 return true;
7542 TypeIdCompatibleVtableInfo &TI =
7543 Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7544 if (ParseToken(lltok::comma, "expected ',' here") ||
7545 ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7546 ParseToken(lltok::colon, "expected ':' here") ||
7547 ParseToken(lltok::lparen, "expected '(' here"))
7548 return true;
7550 IdToIndexMapType IdToIndexMap;
7551 // Parse each call edge
7552 do {
7553 uint64_t Offset;
7554 if (ParseToken(lltok::lparen, "expected '(' here") ||
7555 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7556 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7557 ParseToken(lltok::comma, "expected ',' here"))
7558 return true;
7560 LocTy Loc = Lex.getLoc();
7561 unsigned GVId;
7562 ValueInfo VI;
7563 if (ParseGVReference(VI, GVId))
7564 return true;
7566 // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7567 // forward reference. We will save the location of the ValueInfo needing an
7568 // update, but can only do so once the std::vector is finalized.
7569 if (VI == EmptyVI)
7570 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7571 TI.push_back({Offset, VI});
7573 if (ParseToken(lltok::rparen, "expected ')' in call"))
7574 return true;
7575 } while (EatIfPresent(lltok::comma));
7577 // Now that the TI vector is finalized, it is safe to save the locations
7578 // of any forward GV references that need updating later.
7579 for (auto I : IdToIndexMap) {
7580 for (auto P : I.second) {
7581 assert(TI[P.first].VTableVI == EmptyVI &&
7582 "Forward referenced ValueInfo expected to be empty");
7583 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7584 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7585 FwdRef.first->second.push_back(
7586 std::make_pair(&TI[P.first].VTableVI, P.second));
7590 if (ParseToken(lltok::rparen, "expected ')' here") ||
7591 ParseToken(lltok::rparen, "expected ')' here"))
7592 return true;
7594 // Check if this ID was forward referenced, and if so, update the
7595 // corresponding GUIDs.
7596 auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7597 if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7598 for (auto TIDRef : FwdRefTIDs->second) {
7599 assert(!*TIDRef.first &&
7600 "Forward referenced type id GUID expected to be 0");
7601 *TIDRef.first = GlobalValue::getGUID(Name);
7603 ForwardRefTypeIds.erase(FwdRefTIDs);
7606 return false;
7609 /// TypeTestResolution
7610 /// ::= 'typeTestRes' ':' '(' 'kind' ':'
7611 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7612 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7613 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7614 /// [',' 'inlinesBits' ':' UInt64]? ')'
7615 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7616 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7617 ParseToken(lltok::colon, "expected ':' here") ||
7618 ParseToken(lltok::lparen, "expected '(' here") ||
7619 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7620 ParseToken(lltok::colon, "expected ':' here"))
7621 return true;
7623 switch (Lex.getKind()) {
7624 case lltok::kw_unsat:
7625 TTRes.TheKind = TypeTestResolution::Unsat;
7626 break;
7627 case lltok::kw_byteArray:
7628 TTRes.TheKind = TypeTestResolution::ByteArray;
7629 break;
7630 case lltok::kw_inline:
7631 TTRes.TheKind = TypeTestResolution::Inline;
7632 break;
7633 case lltok::kw_single:
7634 TTRes.TheKind = TypeTestResolution::Single;
7635 break;
7636 case lltok::kw_allOnes:
7637 TTRes.TheKind = TypeTestResolution::AllOnes;
7638 break;
7639 default:
7640 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7642 Lex.Lex();
7644 if (ParseToken(lltok::comma, "expected ',' here") ||
7645 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7646 ParseToken(lltok::colon, "expected ':' here") ||
7647 ParseUInt32(TTRes.SizeM1BitWidth))
7648 return true;
7650 // Parse optional fields
7651 while (EatIfPresent(lltok::comma)) {
7652 switch (Lex.getKind()) {
7653 case lltok::kw_alignLog2:
7654 Lex.Lex();
7655 if (ParseToken(lltok::colon, "expected ':'") ||
7656 ParseUInt64(TTRes.AlignLog2))
7657 return true;
7658 break;
7659 case lltok::kw_sizeM1:
7660 Lex.Lex();
7661 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7662 return true;
7663 break;
7664 case lltok::kw_bitMask: {
7665 unsigned Val;
7666 Lex.Lex();
7667 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7668 return true;
7669 assert(Val <= 0xff);
7670 TTRes.BitMask = (uint8_t)Val;
7671 break;
7673 case lltok::kw_inlineBits:
7674 Lex.Lex();
7675 if (ParseToken(lltok::colon, "expected ':'") ||
7676 ParseUInt64(TTRes.InlineBits))
7677 return true;
7678 break;
7679 default:
7680 return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7684 if (ParseToken(lltok::rparen, "expected ')' here"))
7685 return true;
7687 return false;
7690 /// OptionalWpdResolutions
7691 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7692 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7693 bool LLParser::ParseOptionalWpdResolutions(
7694 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7695 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7696 ParseToken(lltok::colon, "expected ':' here") ||
7697 ParseToken(lltok::lparen, "expected '(' here"))
7698 return true;
7700 do {
7701 uint64_t Offset;
7702 WholeProgramDevirtResolution WPDRes;
7703 if (ParseToken(lltok::lparen, "expected '(' here") ||
7704 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7705 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7706 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7707 ParseToken(lltok::rparen, "expected ')' here"))
7708 return true;
7709 WPDResMap[Offset] = WPDRes;
7710 } while (EatIfPresent(lltok::comma));
7712 if (ParseToken(lltok::rparen, "expected ')' here"))
7713 return true;
7715 return false;
7718 /// WpdRes
7719 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7720 /// [',' OptionalResByArg]? ')'
7721 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7722 /// ',' 'singleImplName' ':' STRINGCONSTANT ','
7723 /// [',' OptionalResByArg]? ')'
7724 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7725 /// [',' OptionalResByArg]? ')'
7726 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7727 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7728 ParseToken(lltok::colon, "expected ':' here") ||
7729 ParseToken(lltok::lparen, "expected '(' here") ||
7730 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7731 ParseToken(lltok::colon, "expected ':' here"))
7732 return true;
7734 switch (Lex.getKind()) {
7735 case lltok::kw_indir:
7736 WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7737 break;
7738 case lltok::kw_singleImpl:
7739 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7740 break;
7741 case lltok::kw_branchFunnel:
7742 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7743 break;
7744 default:
7745 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7747 Lex.Lex();
7749 // Parse optional fields
7750 while (EatIfPresent(lltok::comma)) {
7751 switch (Lex.getKind()) {
7752 case lltok::kw_singleImplName:
7753 Lex.Lex();
7754 if (ParseToken(lltok::colon, "expected ':' here") ||
7755 ParseStringConstant(WPDRes.SingleImplName))
7756 return true;
7757 break;
7758 case lltok::kw_resByArg:
7759 if (ParseOptionalResByArg(WPDRes.ResByArg))
7760 return true;
7761 break;
7762 default:
7763 return Error(Lex.getLoc(),
7764 "expected optional WholeProgramDevirtResolution field");
7768 if (ParseToken(lltok::rparen, "expected ')' here"))
7769 return true;
7771 return false;
7774 /// OptionalResByArg
7775 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7776 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7777 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7778 /// 'virtualConstProp' )
7779 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7780 /// [',' 'bit' ':' UInt32]? ')'
7781 bool LLParser::ParseOptionalResByArg(
7782 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7783 &ResByArg) {
7784 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7785 ParseToken(lltok::colon, "expected ':' here") ||
7786 ParseToken(lltok::lparen, "expected '(' here"))
7787 return true;
7789 do {
7790 std::vector<uint64_t> Args;
7791 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7792 ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7793 ParseToken(lltok::colon, "expected ':' here") ||
7794 ParseToken(lltok::lparen, "expected '(' here") ||
7795 ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7796 ParseToken(lltok::colon, "expected ':' here"))
7797 return true;
7799 WholeProgramDevirtResolution::ByArg ByArg;
7800 switch (Lex.getKind()) {
7801 case lltok::kw_indir:
7802 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7803 break;
7804 case lltok::kw_uniformRetVal:
7805 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7806 break;
7807 case lltok::kw_uniqueRetVal:
7808 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7809 break;
7810 case lltok::kw_virtualConstProp:
7811 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7812 break;
7813 default:
7814 return Error(Lex.getLoc(),
7815 "unexpected WholeProgramDevirtResolution::ByArg kind");
7817 Lex.Lex();
7819 // Parse optional fields
7820 while (EatIfPresent(lltok::comma)) {
7821 switch (Lex.getKind()) {
7822 case lltok::kw_info:
7823 Lex.Lex();
7824 if (ParseToken(lltok::colon, "expected ':' here") ||
7825 ParseUInt64(ByArg.Info))
7826 return true;
7827 break;
7828 case lltok::kw_byte:
7829 Lex.Lex();
7830 if (ParseToken(lltok::colon, "expected ':' here") ||
7831 ParseUInt32(ByArg.Byte))
7832 return true;
7833 break;
7834 case lltok::kw_bit:
7835 Lex.Lex();
7836 if (ParseToken(lltok::colon, "expected ':' here") ||
7837 ParseUInt32(ByArg.Bit))
7838 return true;
7839 break;
7840 default:
7841 return Error(Lex.getLoc(),
7842 "expected optional whole program devirt field");
7846 if (ParseToken(lltok::rparen, "expected ')' here"))
7847 return true;
7849 ResByArg[Args] = ByArg;
7850 } while (EatIfPresent(lltok::comma));
7852 if (ParseToken(lltok::rparen, "expected ')' here"))
7853 return true;
7855 return false;
7858 /// OptionalResByArg
7859 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7860 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7861 if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7862 ParseToken(lltok::colon, "expected ':' here") ||
7863 ParseToken(lltok::lparen, "expected '(' here"))
7864 return true;
7866 do {
7867 uint64_t Val;
7868 if (ParseUInt64(Val))
7869 return true;
7870 Args.push_back(Val);
7871 } while (EatIfPresent(lltok::comma));
7873 if (ParseToken(lltok::rparen, "expected ')' here"))
7874 return true;
7876 return false;
7879 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7881 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7882 bool ReadOnly = Fwd->isReadOnly();
7883 bool WriteOnly = Fwd->isWriteOnly();
7884 assert(!(ReadOnly && WriteOnly));
7885 *Fwd = Resolved;
7886 if (ReadOnly)
7887 Fwd->setReadOnly();
7888 if (WriteOnly)
7889 Fwd->setWriteOnly();
7892 /// Stores the given Name/GUID and associated summary into the Index.
7893 /// Also updates any forward references to the associated entry ID.
7894 void LLParser::AddGlobalValueToIndex(
7895 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7896 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7897 // First create the ValueInfo utilizing the Name or GUID.
7898 ValueInfo VI;
7899 if (GUID != 0) {
7900 assert(Name.empty());
7901 VI = Index->getOrInsertValueInfo(GUID);
7902 } else {
7903 assert(!Name.empty());
7904 if (M) {
7905 auto *GV = M->getNamedValue(Name);
7906 assert(GV);
7907 VI = Index->getOrInsertValueInfo(GV);
7908 } else {
7909 assert(
7910 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7911 "Need a source_filename to compute GUID for local");
7912 GUID = GlobalValue::getGUID(
7913 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7914 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7918 // Resolve forward references from calls/refs
7919 auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7920 if (FwdRefVIs != ForwardRefValueInfos.end()) {
7921 for (auto VIRef : FwdRefVIs->second) {
7922 assert(VIRef.first->getRef() == FwdVIRef &&
7923 "Forward referenced ValueInfo expected to be empty");
7924 resolveFwdRef(VIRef.first, VI);
7926 ForwardRefValueInfos.erase(FwdRefVIs);
7929 // Resolve forward references from aliases
7930 auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7931 if (FwdRefAliasees != ForwardRefAliasees.end()) {
7932 for (auto AliaseeRef : FwdRefAliasees->second) {
7933 assert(!AliaseeRef.first->hasAliasee() &&
7934 "Forward referencing alias already has aliasee");
7935 assert(Summary && "Aliasee must be a definition");
7936 AliaseeRef.first->setAliasee(VI, Summary.get());
7938 ForwardRefAliasees.erase(FwdRefAliasees);
7941 // Add the summary if one was provided.
7942 if (Summary)
7943 Index->addGlobalValueSummary(VI, std::move(Summary));
7945 // Save the associated ValueInfo for use in later references by ID.
7946 if (ID == NumberedValueInfos.size())
7947 NumberedValueInfos.push_back(VI);
7948 else {
7949 // Handle non-continuous numbers (to make test simplification easier).
7950 if (ID > NumberedValueInfos.size())
7951 NumberedValueInfos.resize(ID + 1);
7952 NumberedValueInfos[ID] = VI;
7956 /// ParseGVEntry
7957 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7958 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7959 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7960 bool LLParser::ParseGVEntry(unsigned ID) {
7961 assert(Lex.getKind() == lltok::kw_gv);
7962 Lex.Lex();
7964 if (ParseToken(lltok::colon, "expected ':' here") ||
7965 ParseToken(lltok::lparen, "expected '(' here"))
7966 return true;
7968 std::string Name;
7969 GlobalValue::GUID GUID = 0;
7970 switch (Lex.getKind()) {
7971 case lltok::kw_name:
7972 Lex.Lex();
7973 if (ParseToken(lltok::colon, "expected ':' here") ||
7974 ParseStringConstant(Name))
7975 return true;
7976 // Can't create GUID/ValueInfo until we have the linkage.
7977 break;
7978 case lltok::kw_guid:
7979 Lex.Lex();
7980 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7981 return true;
7982 break;
7983 default:
7984 return Error(Lex.getLoc(), "expected name or guid tag");
7987 if (!EatIfPresent(lltok::comma)) {
7988 // No summaries. Wrap up.
7989 if (ParseToken(lltok::rparen, "expected ')' here"))
7990 return true;
7991 // This was created for a call to an external or indirect target.
7992 // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7993 // created for indirect calls with VP. A Name with no GUID came from
7994 // an external definition. We pass ExternalLinkage since that is only
7995 // used when the GUID must be computed from Name, and in that case
7996 // the symbol must have external linkage.
7997 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7998 nullptr);
7999 return false;
8002 // Have a list of summaries
8003 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8004 ParseToken(lltok::colon, "expected ':' here"))
8005 return true;
8007 do {
8008 if (ParseToken(lltok::lparen, "expected '(' here"))
8009 return true;
8010 switch (Lex.getKind()) {
8011 case lltok::kw_function:
8012 if (ParseFunctionSummary(Name, GUID, ID))
8013 return true;
8014 break;
8015 case lltok::kw_variable:
8016 if (ParseVariableSummary(Name, GUID, ID))
8017 return true;
8018 break;
8019 case lltok::kw_alias:
8020 if (ParseAliasSummary(Name, GUID, ID))
8021 return true;
8022 break;
8023 default:
8024 return Error(Lex.getLoc(), "expected summary type");
8026 if (ParseToken(lltok::rparen, "expected ')' here"))
8027 return true;
8028 } while (EatIfPresent(lltok::comma));
8030 if (ParseToken(lltok::rparen, "expected ')' here"))
8031 return true;
8033 return false;
8036 /// FunctionSummary
8037 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8038 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8039 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8040 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8041 unsigned ID) {
8042 assert(Lex.getKind() == lltok::kw_function);
8043 Lex.Lex();
8045 StringRef ModulePath;
8046 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8047 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8048 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8049 unsigned InstCount;
8050 std::vector<FunctionSummary::EdgeTy> Calls;
8051 FunctionSummary::TypeIdInfo TypeIdInfo;
8052 std::vector<ValueInfo> Refs;
8053 // Default is all-zeros (conservative values).
8054 FunctionSummary::FFlags FFlags = {};
8055 if (ParseToken(lltok::colon, "expected ':' here") ||
8056 ParseToken(lltok::lparen, "expected '(' here") ||
8057 ParseModuleReference(ModulePath) ||
8058 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8059 ParseToken(lltok::comma, "expected ',' here") ||
8060 ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8061 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8062 return true;
8064 // Parse optional fields
8065 while (EatIfPresent(lltok::comma)) {
8066 switch (Lex.getKind()) {
8067 case lltok::kw_funcFlags:
8068 if (ParseOptionalFFlags(FFlags))
8069 return true;
8070 break;
8071 case lltok::kw_calls:
8072 if (ParseOptionalCalls(Calls))
8073 return true;
8074 break;
8075 case lltok::kw_typeIdInfo:
8076 if (ParseOptionalTypeIdInfo(TypeIdInfo))
8077 return true;
8078 break;
8079 case lltok::kw_refs:
8080 if (ParseOptionalRefs(Refs))
8081 return true;
8082 break;
8083 default:
8084 return Error(Lex.getLoc(), "expected optional function summary field");
8088 if (ParseToken(lltok::rparen, "expected ')' here"))
8089 return true;
8091 auto FS = std::make_unique<FunctionSummary>(
8092 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8093 std::move(Calls), std::move(TypeIdInfo.TypeTests),
8094 std::move(TypeIdInfo.TypeTestAssumeVCalls),
8095 std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8096 std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8097 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8099 FS->setModulePath(ModulePath);
8101 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8102 ID, std::move(FS));
8104 return false;
8107 /// VariableSummary
8108 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8109 /// [',' OptionalRefs]? ')'
8110 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8111 unsigned ID) {
8112 assert(Lex.getKind() == lltok::kw_variable);
8113 Lex.Lex();
8115 StringRef ModulePath;
8116 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8117 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8118 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8119 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8120 /* WriteOnly */ false);
8121 std::vector<ValueInfo> Refs;
8122 VTableFuncList VTableFuncs;
8123 if (ParseToken(lltok::colon, "expected ':' here") ||
8124 ParseToken(lltok::lparen, "expected '(' here") ||
8125 ParseModuleReference(ModulePath) ||
8126 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8127 ParseToken(lltok::comma, "expected ',' here") ||
8128 ParseGVarFlags(GVarFlags))
8129 return true;
8131 // Parse optional fields
8132 while (EatIfPresent(lltok::comma)) {
8133 switch (Lex.getKind()) {
8134 case lltok::kw_vTableFuncs:
8135 if (ParseOptionalVTableFuncs(VTableFuncs))
8136 return true;
8137 break;
8138 case lltok::kw_refs:
8139 if (ParseOptionalRefs(Refs))
8140 return true;
8141 break;
8142 default:
8143 return Error(Lex.getLoc(), "expected optional variable summary field");
8147 if (ParseToken(lltok::rparen, "expected ')' here"))
8148 return true;
8150 auto GS =
8151 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8153 GS->setModulePath(ModulePath);
8154 GS->setVTableFuncs(std::move(VTableFuncs));
8156 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8157 ID, std::move(GS));
8159 return false;
8162 /// AliasSummary
8163 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8164 /// 'aliasee' ':' GVReference ')'
8165 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8166 unsigned ID) {
8167 assert(Lex.getKind() == lltok::kw_alias);
8168 LocTy Loc = Lex.getLoc();
8169 Lex.Lex();
8171 StringRef ModulePath;
8172 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8173 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8174 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8175 if (ParseToken(lltok::colon, "expected ':' here") ||
8176 ParseToken(lltok::lparen, "expected '(' here") ||
8177 ParseModuleReference(ModulePath) ||
8178 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8179 ParseToken(lltok::comma, "expected ',' here") ||
8180 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8181 ParseToken(lltok::colon, "expected ':' here"))
8182 return true;
8184 ValueInfo AliaseeVI;
8185 unsigned GVId;
8186 if (ParseGVReference(AliaseeVI, GVId))
8187 return true;
8189 if (ParseToken(lltok::rparen, "expected ')' here"))
8190 return true;
8192 auto AS = std::make_unique<AliasSummary>(GVFlags);
8194 AS->setModulePath(ModulePath);
8196 // Record forward reference if the aliasee is not parsed yet.
8197 if (AliaseeVI.getRef() == FwdVIRef) {
8198 auto FwdRef = ForwardRefAliasees.insert(
8199 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8200 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8201 } else {
8202 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8203 assert(Summary && "Aliasee must be a definition");
8204 AS->setAliasee(AliaseeVI, Summary);
8207 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8208 ID, std::move(AS));
8210 return false;
8213 /// Flag
8214 /// ::= [0|1]
8215 bool LLParser::ParseFlag(unsigned &Val) {
8216 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8217 return TokError("expected integer");
8218 Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8219 Lex.Lex();
8220 return false;
8223 /// OptionalFFlags
8224 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8225 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8226 /// [',' 'returnDoesNotAlias' ':' Flag]? ')'
8227 /// [',' 'noInline' ':' Flag]? ')'
8228 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8229 assert(Lex.getKind() == lltok::kw_funcFlags);
8230 Lex.Lex();
8232 if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8233 ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8234 return true;
8236 do {
8237 unsigned Val = 0;
8238 switch (Lex.getKind()) {
8239 case lltok::kw_readNone:
8240 Lex.Lex();
8241 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8242 return true;
8243 FFlags.ReadNone = Val;
8244 break;
8245 case lltok::kw_readOnly:
8246 Lex.Lex();
8247 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8248 return true;
8249 FFlags.ReadOnly = Val;
8250 break;
8251 case lltok::kw_noRecurse:
8252 Lex.Lex();
8253 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8254 return true;
8255 FFlags.NoRecurse = Val;
8256 break;
8257 case lltok::kw_returnDoesNotAlias:
8258 Lex.Lex();
8259 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8260 return true;
8261 FFlags.ReturnDoesNotAlias = Val;
8262 break;
8263 case lltok::kw_noInline:
8264 Lex.Lex();
8265 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8266 return true;
8267 FFlags.NoInline = Val;
8268 break;
8269 default:
8270 return Error(Lex.getLoc(), "expected function flag type");
8272 } while (EatIfPresent(lltok::comma));
8274 if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8275 return true;
8277 return false;
8280 /// OptionalCalls
8281 /// := 'calls' ':' '(' Call [',' Call]* ')'
8282 /// Call ::= '(' 'callee' ':' GVReference
8283 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8284 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8285 assert(Lex.getKind() == lltok::kw_calls);
8286 Lex.Lex();
8288 if (ParseToken(lltok::colon, "expected ':' in calls") |
8289 ParseToken(lltok::lparen, "expected '(' in calls"))
8290 return true;
8292 IdToIndexMapType IdToIndexMap;
8293 // Parse each call edge
8294 do {
8295 ValueInfo VI;
8296 if (ParseToken(lltok::lparen, "expected '(' in call") ||
8297 ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8298 ParseToken(lltok::colon, "expected ':'"))
8299 return true;
8301 LocTy Loc = Lex.getLoc();
8302 unsigned GVId;
8303 if (ParseGVReference(VI, GVId))
8304 return true;
8306 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8307 unsigned RelBF = 0;
8308 if (EatIfPresent(lltok::comma)) {
8309 // Expect either hotness or relbf
8310 if (EatIfPresent(lltok::kw_hotness)) {
8311 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8312 return true;
8313 } else {
8314 if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8315 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8316 return true;
8319 // Keep track of the Call array index needing a forward reference.
8320 // We will save the location of the ValueInfo needing an update, but
8321 // can only do so once the std::vector is finalized.
8322 if (VI.getRef() == FwdVIRef)
8323 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8324 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8326 if (ParseToken(lltok::rparen, "expected ')' in call"))
8327 return true;
8328 } while (EatIfPresent(lltok::comma));
8330 // Now that the Calls vector is finalized, it is safe to save the locations
8331 // of any forward GV references that need updating later.
8332 for (auto I : IdToIndexMap) {
8333 for (auto P : I.second) {
8334 assert(Calls[P.first].first.getRef() == FwdVIRef &&
8335 "Forward referenced ValueInfo expected to be empty");
8336 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8337 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8338 FwdRef.first->second.push_back(
8339 std::make_pair(&Calls[P.first].first, P.second));
8343 if (ParseToken(lltok::rparen, "expected ')' in calls"))
8344 return true;
8346 return false;
8349 /// Hotness
8350 /// := ('unknown'|'cold'|'none'|'hot'|'critical')
8351 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8352 switch (Lex.getKind()) {
8353 case lltok::kw_unknown:
8354 Hotness = CalleeInfo::HotnessType::Unknown;
8355 break;
8356 case lltok::kw_cold:
8357 Hotness = CalleeInfo::HotnessType::Cold;
8358 break;
8359 case lltok::kw_none:
8360 Hotness = CalleeInfo::HotnessType::None;
8361 break;
8362 case lltok::kw_hot:
8363 Hotness = CalleeInfo::HotnessType::Hot;
8364 break;
8365 case lltok::kw_critical:
8366 Hotness = CalleeInfo::HotnessType::Critical;
8367 break;
8368 default:
8369 return Error(Lex.getLoc(), "invalid call edge hotness");
8371 Lex.Lex();
8372 return false;
8375 /// OptionalVTableFuncs
8376 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8377 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8378 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8379 assert(Lex.getKind() == lltok::kw_vTableFuncs);
8380 Lex.Lex();
8382 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8383 ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8384 return true;
8386 IdToIndexMapType IdToIndexMap;
8387 // Parse each virtual function pair
8388 do {
8389 ValueInfo VI;
8390 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8391 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8392 ParseToken(lltok::colon, "expected ':'"))
8393 return true;
8395 LocTy Loc = Lex.getLoc();
8396 unsigned GVId;
8397 if (ParseGVReference(VI, GVId))
8398 return true;
8400 uint64_t Offset;
8401 if (ParseToken(lltok::comma, "expected comma") ||
8402 ParseToken(lltok::kw_offset, "expected offset") ||
8403 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8404 return true;
8406 // Keep track of the VTableFuncs array index needing a forward reference.
8407 // We will save the location of the ValueInfo needing an update, but
8408 // can only do so once the std::vector is finalized.
8409 if (VI == EmptyVI)
8410 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8411 VTableFuncs.push_back({VI, Offset});
8413 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8414 return true;
8415 } while (EatIfPresent(lltok::comma));
8417 // Now that the VTableFuncs vector is finalized, it is safe to save the
8418 // locations of any forward GV references that need updating later.
8419 for (auto I : IdToIndexMap) {
8420 for (auto P : I.second) {
8421 assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8422 "Forward referenced ValueInfo expected to be empty");
8423 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8424 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8425 FwdRef.first->second.push_back(
8426 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8430 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8431 return true;
8433 return false;
8436 /// OptionalRefs
8437 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8438 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8439 assert(Lex.getKind() == lltok::kw_refs);
8440 Lex.Lex();
8442 if (ParseToken(lltok::colon, "expected ':' in refs") |
8443 ParseToken(lltok::lparen, "expected '(' in refs"))
8444 return true;
8446 struct ValueContext {
8447 ValueInfo VI;
8448 unsigned GVId;
8449 LocTy Loc;
8451 std::vector<ValueContext> VContexts;
8452 // Parse each ref edge
8453 do {
8454 ValueContext VC;
8455 VC.Loc = Lex.getLoc();
8456 if (ParseGVReference(VC.VI, VC.GVId))
8457 return true;
8458 VContexts.push_back(VC);
8459 } while (EatIfPresent(lltok::comma));
8461 // Sort value contexts so that ones with writeonly
8462 // and readonly ValueInfo are at the end of VContexts vector.
8463 // See FunctionSummary::specialRefCounts()
8464 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8465 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8468 IdToIndexMapType IdToIndexMap;
8469 for (auto &VC : VContexts) {
8470 // Keep track of the Refs array index needing a forward reference.
8471 // We will save the location of the ValueInfo needing an update, but
8472 // can only do so once the std::vector is finalized.
8473 if (VC.VI.getRef() == FwdVIRef)
8474 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8475 Refs.push_back(VC.VI);
8478 // Now that the Refs vector is finalized, it is safe to save the locations
8479 // of any forward GV references that need updating later.
8480 for (auto I : IdToIndexMap) {
8481 for (auto P : I.second) {
8482 assert(Refs[P.first].getRef() == FwdVIRef &&
8483 "Forward referenced ValueInfo expected to be empty");
8484 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8485 I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8486 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8490 if (ParseToken(lltok::rparen, "expected ')' in refs"))
8491 return true;
8493 return false;
8496 /// OptionalTypeIdInfo
8497 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8498 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
8499 /// [',' TypeCheckedLoadConstVCalls]? ')'
8500 bool LLParser::ParseOptionalTypeIdInfo(
8501 FunctionSummary::TypeIdInfo &TypeIdInfo) {
8502 assert(Lex.getKind() == lltok::kw_typeIdInfo);
8503 Lex.Lex();
8505 if (ParseToken(lltok::colon, "expected ':' here") ||
8506 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8507 return true;
8509 do {
8510 switch (Lex.getKind()) {
8511 case lltok::kw_typeTests:
8512 if (ParseTypeTests(TypeIdInfo.TypeTests))
8513 return true;
8514 break;
8515 case lltok::kw_typeTestAssumeVCalls:
8516 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8517 TypeIdInfo.TypeTestAssumeVCalls))
8518 return true;
8519 break;
8520 case lltok::kw_typeCheckedLoadVCalls:
8521 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8522 TypeIdInfo.TypeCheckedLoadVCalls))
8523 return true;
8524 break;
8525 case lltok::kw_typeTestAssumeConstVCalls:
8526 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8527 TypeIdInfo.TypeTestAssumeConstVCalls))
8528 return true;
8529 break;
8530 case lltok::kw_typeCheckedLoadConstVCalls:
8531 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8532 TypeIdInfo.TypeCheckedLoadConstVCalls))
8533 return true;
8534 break;
8535 default:
8536 return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8538 } while (EatIfPresent(lltok::comma));
8540 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8541 return true;
8543 return false;
8546 /// TypeTests
8547 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8548 /// [',' (SummaryID | UInt64)]* ')'
8549 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8550 assert(Lex.getKind() == lltok::kw_typeTests);
8551 Lex.Lex();
8553 if (ParseToken(lltok::colon, "expected ':' here") ||
8554 ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8555 return true;
8557 IdToIndexMapType IdToIndexMap;
8558 do {
8559 GlobalValue::GUID GUID = 0;
8560 if (Lex.getKind() == lltok::SummaryID) {
8561 unsigned ID = Lex.getUIntVal();
8562 LocTy Loc = Lex.getLoc();
8563 // Keep track of the TypeTests array index needing a forward reference.
8564 // We will save the location of the GUID needing an update, but
8565 // can only do so once the std::vector is finalized.
8566 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8567 Lex.Lex();
8568 } else if (ParseUInt64(GUID))
8569 return true;
8570 TypeTests.push_back(GUID);
8571 } while (EatIfPresent(lltok::comma));
8573 // Now that the TypeTests vector is finalized, it is safe to save the
8574 // locations of any forward GV references that need updating later.
8575 for (auto I : IdToIndexMap) {
8576 for (auto P : I.second) {
8577 assert(TypeTests[P.first] == 0 &&
8578 "Forward referenced type id GUID expected to be 0");
8579 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8580 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8581 FwdRef.first->second.push_back(
8582 std::make_pair(&TypeTests[P.first], P.second));
8586 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8587 return true;
8589 return false;
8592 /// VFuncIdList
8593 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8594 bool LLParser::ParseVFuncIdList(
8595 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8596 assert(Lex.getKind() == Kind);
8597 Lex.Lex();
8599 if (ParseToken(lltok::colon, "expected ':' here") ||
8600 ParseToken(lltok::lparen, "expected '(' here"))
8601 return true;
8603 IdToIndexMapType IdToIndexMap;
8604 do {
8605 FunctionSummary::VFuncId VFuncId;
8606 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8607 return true;
8608 VFuncIdList.push_back(VFuncId);
8609 } while (EatIfPresent(lltok::comma));
8611 if (ParseToken(lltok::rparen, "expected ')' here"))
8612 return true;
8614 // Now that the VFuncIdList vector is finalized, it is safe to save the
8615 // locations of any forward GV references that need updating later.
8616 for (auto I : IdToIndexMap) {
8617 for (auto P : I.second) {
8618 assert(VFuncIdList[P.first].GUID == 0 &&
8619 "Forward referenced type id GUID expected to be 0");
8620 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8621 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8622 FwdRef.first->second.push_back(
8623 std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8627 return false;
8630 /// ConstVCallList
8631 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8632 bool LLParser::ParseConstVCallList(
8633 lltok::Kind Kind,
8634 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8635 assert(Lex.getKind() == Kind);
8636 Lex.Lex();
8638 if (ParseToken(lltok::colon, "expected ':' here") ||
8639 ParseToken(lltok::lparen, "expected '(' here"))
8640 return true;
8642 IdToIndexMapType IdToIndexMap;
8643 do {
8644 FunctionSummary::ConstVCall ConstVCall;
8645 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8646 return true;
8647 ConstVCallList.push_back(ConstVCall);
8648 } while (EatIfPresent(lltok::comma));
8650 if (ParseToken(lltok::rparen, "expected ')' here"))
8651 return true;
8653 // Now that the ConstVCallList vector is finalized, it is safe to save the
8654 // locations of any forward GV references that need updating later.
8655 for (auto I : IdToIndexMap) {
8656 for (auto P : I.second) {
8657 assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8658 "Forward referenced type id GUID expected to be 0");
8659 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8660 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8661 FwdRef.first->second.push_back(
8662 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8666 return false;
8669 /// ConstVCall
8670 /// ::= '(' VFuncId ',' Args ')'
8671 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8672 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8673 if (ParseToken(lltok::lparen, "expected '(' here") ||
8674 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8675 return true;
8677 if (EatIfPresent(lltok::comma))
8678 if (ParseArgs(ConstVCall.Args))
8679 return true;
8681 if (ParseToken(lltok::rparen, "expected ')' here"))
8682 return true;
8684 return false;
8687 /// VFuncId
8688 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8689 /// 'offset' ':' UInt64 ')'
8690 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8691 IdToIndexMapType &IdToIndexMap, unsigned Index) {
8692 assert(Lex.getKind() == lltok::kw_vFuncId);
8693 Lex.Lex();
8695 if (ParseToken(lltok::colon, "expected ':' here") ||
8696 ParseToken(lltok::lparen, "expected '(' here"))
8697 return true;
8699 if (Lex.getKind() == lltok::SummaryID) {
8700 VFuncId.GUID = 0;
8701 unsigned ID = Lex.getUIntVal();
8702 LocTy Loc = Lex.getLoc();
8703 // Keep track of the array index needing a forward reference.
8704 // We will save the location of the GUID needing an update, but
8705 // can only do so once the caller's std::vector is finalized.
8706 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8707 Lex.Lex();
8708 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8709 ParseToken(lltok::colon, "expected ':' here") ||
8710 ParseUInt64(VFuncId.GUID))
8711 return true;
8713 if (ParseToken(lltok::comma, "expected ',' here") ||
8714 ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8715 ParseToken(lltok::colon, "expected ':' here") ||
8716 ParseUInt64(VFuncId.Offset) ||
8717 ParseToken(lltok::rparen, "expected ')' here"))
8718 return true;
8720 return false;
8723 /// GVFlags
8724 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8725 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8726 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8727 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8728 assert(Lex.getKind() == lltok::kw_flags);
8729 Lex.Lex();
8731 if (ParseToken(lltok::colon, "expected ':' here") ||
8732 ParseToken(lltok::lparen, "expected '(' here"))
8733 return true;
8735 do {
8736 unsigned Flag = 0;
8737 switch (Lex.getKind()) {
8738 case lltok::kw_linkage:
8739 Lex.Lex();
8740 if (ParseToken(lltok::colon, "expected ':'"))
8741 return true;
8742 bool HasLinkage;
8743 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8744 assert(HasLinkage && "Linkage not optional in summary entry");
8745 Lex.Lex();
8746 break;
8747 case lltok::kw_notEligibleToImport:
8748 Lex.Lex();
8749 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8750 return true;
8751 GVFlags.NotEligibleToImport = Flag;
8752 break;
8753 case lltok::kw_live:
8754 Lex.Lex();
8755 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8756 return true;
8757 GVFlags.Live = Flag;
8758 break;
8759 case lltok::kw_dsoLocal:
8760 Lex.Lex();
8761 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8762 return true;
8763 GVFlags.DSOLocal = Flag;
8764 break;
8765 case lltok::kw_canAutoHide:
8766 Lex.Lex();
8767 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8768 return true;
8769 GVFlags.CanAutoHide = Flag;
8770 break;
8771 default:
8772 return Error(Lex.getLoc(), "expected gv flag type");
8774 } while (EatIfPresent(lltok::comma));
8776 if (ParseToken(lltok::rparen, "expected ')' here"))
8777 return true;
8779 return false;
8782 /// GVarFlags
8783 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8784 /// ',' 'writeonly' ':' Flag ')'
8785 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8786 assert(Lex.getKind() == lltok::kw_varFlags);
8787 Lex.Lex();
8789 if (ParseToken(lltok::colon, "expected ':' here") ||
8790 ParseToken(lltok::lparen, "expected '(' here"))
8791 return true;
8793 auto ParseRest = [this](unsigned int &Val) {
8794 Lex.Lex();
8795 if (ParseToken(lltok::colon, "expected ':'"))
8796 return true;
8797 return ParseFlag(Val);
8800 do {
8801 unsigned Flag = 0;
8802 switch (Lex.getKind()) {
8803 case lltok::kw_readonly:
8804 if (ParseRest(Flag))
8805 return true;
8806 GVarFlags.MaybeReadOnly = Flag;
8807 break;
8808 case lltok::kw_writeonly:
8809 if (ParseRest(Flag))
8810 return true;
8811 GVarFlags.MaybeWriteOnly = Flag;
8812 break;
8813 default:
8814 return Error(Lex.getLoc(), "expected gvar flag type");
8816 } while (EatIfPresent(lltok::comma));
8817 return ParseToken(lltok::rparen, "expected ')' here");
8820 /// ModuleReference
8821 /// ::= 'module' ':' UInt
8822 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8823 // Parse module id.
8824 if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8825 ParseToken(lltok::colon, "expected ':' here") ||
8826 ParseToken(lltok::SummaryID, "expected module ID"))
8827 return true;
8829 unsigned ModuleID = Lex.getUIntVal();
8830 auto I = ModuleIdMap.find(ModuleID);
8831 // We should have already parsed all module IDs
8832 assert(I != ModuleIdMap.end());
8833 ModulePath = I->second;
8834 return false;
8837 /// GVReference
8838 /// ::= SummaryID
8839 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8840 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8841 if (!ReadOnly)
8842 WriteOnly = EatIfPresent(lltok::kw_writeonly);
8843 if (ParseToken(lltok::SummaryID, "expected GV ID"))
8844 return true;
8846 GVId = Lex.getUIntVal();
8847 // Check if we already have a VI for this GV
8848 if (GVId < NumberedValueInfos.size()) {
8849 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8850 VI = NumberedValueInfos[GVId];
8851 } else
8852 // We will create a forward reference to the stored location.
8853 VI = ValueInfo(false, FwdVIRef);
8855 if (ReadOnly)
8856 VI.setReadOnly();
8857 if (WriteOnly)
8858 VI.setWriteOnly();
8859 return false;