1 //===- IfConversion.cpp - Machine code if conversion pass -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the machine instruction level if-conversion pass, which
10 // tries to convert conditional branches into predicated instructions.
12 //===----------------------------------------------------------------------===//
14 #include "BranchFolding.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LivePhysRegs.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSchedule.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "if-converter"
58 // Hidden options for help debugging.
59 static cl::opt
<int> IfCvtFnStart("ifcvt-fn-start", cl::init(-1), cl::Hidden
);
60 static cl::opt
<int> IfCvtFnStop("ifcvt-fn-stop", cl::init(-1), cl::Hidden
);
61 static cl::opt
<int> IfCvtLimit("ifcvt-limit", cl::init(-1), cl::Hidden
);
62 static cl::opt
<bool> DisableSimple("disable-ifcvt-simple",
63 cl::init(false), cl::Hidden
);
64 static cl::opt
<bool> DisableSimpleF("disable-ifcvt-simple-false",
65 cl::init(false), cl::Hidden
);
66 static cl::opt
<bool> DisableTriangle("disable-ifcvt-triangle",
67 cl::init(false), cl::Hidden
);
68 static cl::opt
<bool> DisableTriangleR("disable-ifcvt-triangle-rev",
69 cl::init(false), cl::Hidden
);
70 static cl::opt
<bool> DisableTriangleF("disable-ifcvt-triangle-false",
71 cl::init(false), cl::Hidden
);
72 static cl::opt
<bool> DisableTriangleFR("disable-ifcvt-triangle-false-rev",
73 cl::init(false), cl::Hidden
);
74 static cl::opt
<bool> DisableDiamond("disable-ifcvt-diamond",
75 cl::init(false), cl::Hidden
);
76 static cl::opt
<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond",
77 cl::init(false), cl::Hidden
);
78 static cl::opt
<bool> IfCvtBranchFold("ifcvt-branch-fold",
79 cl::init(true), cl::Hidden
);
81 STATISTIC(NumSimple
, "Number of simple if-conversions performed");
82 STATISTIC(NumSimpleFalse
, "Number of simple (F) if-conversions performed");
83 STATISTIC(NumTriangle
, "Number of triangle if-conversions performed");
84 STATISTIC(NumTriangleRev
, "Number of triangle (R) if-conversions performed");
85 STATISTIC(NumTriangleFalse
,"Number of triangle (F) if-conversions performed");
86 STATISTIC(NumTriangleFRev
, "Number of triangle (F/R) if-conversions performed");
87 STATISTIC(NumDiamonds
, "Number of diamond if-conversions performed");
88 STATISTIC(NumForkedDiamonds
, "Number of forked-diamond if-conversions performed");
89 STATISTIC(NumIfConvBBs
, "Number of if-converted blocks");
90 STATISTIC(NumDupBBs
, "Number of duplicated blocks");
91 STATISTIC(NumUnpred
, "Number of true blocks of diamonds unpredicated");
95 class IfConverter
: public MachineFunctionPass
{
97 ICNotClassfied
, // BB data valid, but not classified.
98 ICSimpleFalse
, // Same as ICSimple, but on the false path.
99 ICSimple
, // BB is entry of an one split, no rejoin sub-CFG.
100 ICTriangleFRev
, // Same as ICTriangleFalse, but false path rev condition.
101 ICTriangleRev
, // Same as ICTriangle, but true path rev condition.
102 ICTriangleFalse
, // Same as ICTriangle, but on the false path.
103 ICTriangle
, // BB is entry of a triangle sub-CFG.
104 ICDiamond
, // BB is entry of a diamond sub-CFG.
105 ICForkedDiamond
// BB is entry of an almost diamond sub-CFG, with a
106 // common tail that can be shared.
109 /// One per MachineBasicBlock, this is used to cache the result
110 /// if-conversion feasibility analysis. This includes results from
111 /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its
112 /// classification, and common tail block of its successors (if it's a
113 /// diamond shape), its size, whether it's predicable, and whether any
114 /// instruction can clobber the 'would-be' predicate.
116 /// IsDone - True if BB is not to be considered for ifcvt.
117 /// IsBeingAnalyzed - True if BB is currently being analyzed.
118 /// IsAnalyzed - True if BB has been analyzed (info is still valid).
119 /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed.
120 /// IsBrAnalyzable - True if analyzeBranch() returns false.
121 /// HasFallThrough - True if BB may fallthrough to the following BB.
122 /// IsUnpredicable - True if BB is known to be unpredicable.
123 /// ClobbersPred - True if BB could modify predicates (e.g. has
125 /// NonPredSize - Number of non-predicated instructions.
126 /// ExtraCost - Extra cost for multi-cycle instructions.
127 /// ExtraCost2 - Some instructions are slower when predicated
128 /// BB - Corresponding MachineBasicBlock.
129 /// TrueBB / FalseBB- See analyzeBranch().
130 /// BrCond - Conditions for end of block conditional branches.
131 /// Predicate - Predicate used in the BB.
134 bool IsBeingAnalyzed
: 1;
137 bool IsBrAnalyzable
: 1;
138 bool IsBrReversible
: 1;
139 bool HasFallThrough
: 1;
140 bool IsUnpredicable
: 1;
141 bool CannotBeCopied
: 1;
142 bool ClobbersPred
: 1;
143 unsigned NonPredSize
= 0;
144 unsigned ExtraCost
= 0;
145 unsigned ExtraCost2
= 0;
146 MachineBasicBlock
*BB
= nullptr;
147 MachineBasicBlock
*TrueBB
= nullptr;
148 MachineBasicBlock
*FalseBB
= nullptr;
149 SmallVector
<MachineOperand
, 4> BrCond
;
150 SmallVector
<MachineOperand
, 4> Predicate
;
152 BBInfo() : IsDone(false), IsBeingAnalyzed(false),
153 IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false),
154 IsBrReversible(false), HasFallThrough(false),
155 IsUnpredicable(false), CannotBeCopied(false),
156 ClobbersPred(false) {}
159 /// Record information about pending if-conversions to attempt:
160 /// BBI - Corresponding BBInfo.
161 /// Kind - Type of block. See IfcvtKind.
162 /// NeedSubsumption - True if the to-be-predicated BB has already been
164 /// NumDups - Number of instructions that would be duplicated due
165 /// to this if-conversion. (For diamonds, the number of
166 /// identical instructions at the beginnings of both
168 /// NumDups2 - For diamonds, the number of identical instructions
169 /// at the ends of both paths.
175 bool NeedSubsumption
: 1;
176 bool TClobbersPred
: 1;
177 bool FClobbersPred
: 1;
179 IfcvtToken(BBInfo
&b
, IfcvtKind k
, bool s
, unsigned d
, unsigned d2
= 0,
180 bool tc
= false, bool fc
= false)
181 : BBI(b
), Kind(k
), NumDups(d
), NumDups2(d2
), NeedSubsumption(s
),
182 TClobbersPred(tc
), FClobbersPred(fc
) {}
185 /// Results of if-conversion feasibility analysis indexed by basic block
187 std::vector
<BBInfo
> BBAnalysis
;
188 TargetSchedModel SchedModel
;
190 const TargetLoweringBase
*TLI
;
191 const TargetInstrInfo
*TII
;
192 const TargetRegisterInfo
*TRI
;
193 const MachineBranchProbabilityInfo
*MBPI
;
194 MachineRegisterInfo
*MRI
;
201 std::function
<bool(const MachineFunction
&)> PredicateFtor
;
206 IfConverter(std::function
<bool(const MachineFunction
&)> Ftor
= nullptr)
207 : MachineFunctionPass(ID
), PredicateFtor(std::move(Ftor
)) {
208 initializeIfConverterPass(*PassRegistry::getPassRegistry());
211 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
212 AU
.addRequired
<MachineBlockFrequencyInfo
>();
213 AU
.addRequired
<MachineBranchProbabilityInfo
>();
214 MachineFunctionPass::getAnalysisUsage(AU
);
217 bool runOnMachineFunction(MachineFunction
&MF
) override
;
219 MachineFunctionProperties
getRequiredProperties() const override
{
220 return MachineFunctionProperties().set(
221 MachineFunctionProperties::Property::NoVRegs
);
225 bool reverseBranchCondition(BBInfo
&BBI
) const;
226 bool ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
227 BranchProbability Prediction
) const;
228 bool ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
229 bool FalseBranch
, unsigned &Dups
,
230 BranchProbability Prediction
) const;
231 bool CountDuplicatedInstructions(
232 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
233 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
234 unsigned &Dups1
, unsigned &Dups2
,
235 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
236 bool SkipUnconditionalBranches
) const;
237 bool ValidDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
238 unsigned &Dups1
, unsigned &Dups2
,
239 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
240 bool ValidForkedDiamond(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
241 unsigned &Dups1
, unsigned &Dups2
,
242 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const;
243 void AnalyzeBranches(BBInfo
&BBI
);
244 void ScanInstructions(BBInfo
&BBI
,
245 MachineBasicBlock::iterator
&Begin
,
246 MachineBasicBlock::iterator
&End
,
247 bool BranchUnpredicable
= false) const;
248 bool RescanInstructions(
249 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
250 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
251 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const;
252 void AnalyzeBlock(MachineBasicBlock
&MBB
,
253 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
254 bool FeasibilityAnalysis(BBInfo
&BBI
, SmallVectorImpl
<MachineOperand
> &Pred
,
255 bool isTriangle
= false, bool RevBranch
= false,
256 bool hasCommonTail
= false);
257 void AnalyzeBlocks(MachineFunction
&MF
,
258 std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
);
259 void InvalidatePreds(MachineBasicBlock
&MBB
);
260 bool IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
);
261 bool IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
);
262 bool IfConvertDiamondCommon(BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
263 unsigned NumDups1
, unsigned NumDups2
,
264 bool TClobbersPred
, bool FClobbersPred
,
265 bool RemoveBranch
, bool MergeAddEdges
);
266 bool IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
267 unsigned NumDups1
, unsigned NumDups2
,
268 bool TClobbers
, bool FClobbers
);
269 bool IfConvertForkedDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
270 unsigned NumDups1
, unsigned NumDups2
,
271 bool TClobbers
, bool FClobbers
);
272 void PredicateBlock(BBInfo
&BBI
,
273 MachineBasicBlock::iterator E
,
274 SmallVectorImpl
<MachineOperand
> &Cond
,
275 SmallSet
<MCPhysReg
, 4> *LaterRedefs
= nullptr);
276 void CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
277 SmallVectorImpl
<MachineOperand
> &Cond
,
278 bool IgnoreBr
= false);
279 void MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
= true);
281 bool MeetIfcvtSizeLimit(MachineBasicBlock
&BB
,
282 unsigned Cycle
, unsigned Extra
,
283 BranchProbability Prediction
) const {
284 return Cycle
> 0 && TII
->isProfitableToIfCvt(BB
, Cycle
, Extra
,
288 bool MeetIfcvtSizeLimit(MachineBasicBlock
&TBB
,
289 unsigned TCycle
, unsigned TExtra
,
290 MachineBasicBlock
&FBB
,
291 unsigned FCycle
, unsigned FExtra
,
292 BranchProbability Prediction
) const {
293 return TCycle
> 0 && FCycle
> 0 &&
294 TII
->isProfitableToIfCvt(TBB
, TCycle
, TExtra
, FBB
, FCycle
, FExtra
,
298 /// Returns true if Block ends without a terminator.
299 bool blockAlwaysFallThrough(BBInfo
&BBI
) const {
300 return BBI
.IsBrAnalyzable
&& BBI
.TrueBB
== nullptr;
303 /// Used to sort if-conversion candidates.
304 static bool IfcvtTokenCmp(const std::unique_ptr
<IfcvtToken
> &C1
,
305 const std::unique_ptr
<IfcvtToken
> &C2
) {
306 int Incr1
= (C1
->Kind
== ICDiamond
)
307 ? -(int)(C1
->NumDups
+ C1
->NumDups2
) : (int)C1
->NumDups
;
308 int Incr2
= (C2
->Kind
== ICDiamond
)
309 ? -(int)(C2
->NumDups
+ C2
->NumDups2
) : (int)C2
->NumDups
;
312 else if (Incr1
== Incr2
) {
313 // Favors subsumption.
314 if (!C1
->NeedSubsumption
&& C2
->NeedSubsumption
)
316 else if (C1
->NeedSubsumption
== C2
->NeedSubsumption
) {
317 // Favors diamond over triangle, etc.
318 if ((unsigned)C1
->Kind
< (unsigned)C2
->Kind
)
320 else if (C1
->Kind
== C2
->Kind
)
321 return C1
->BBI
.BB
->getNumber() < C2
->BBI
.BB
->getNumber();
328 } // end anonymous namespace
330 char IfConverter::ID
= 0;
332 char &llvm::IfConverterID
= IfConverter::ID
;
334 INITIALIZE_PASS_BEGIN(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
335 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
336 INITIALIZE_PASS_END(IfConverter
, DEBUG_TYPE
, "If Converter", false, false)
338 bool IfConverter::runOnMachineFunction(MachineFunction
&MF
) {
339 if (skipFunction(MF
.getFunction()) || (PredicateFtor
&& !PredicateFtor(MF
)))
342 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
343 TLI
= ST
.getTargetLowering();
344 TII
= ST
.getInstrInfo();
345 TRI
= ST
.getRegisterInfo();
346 BranchFolder::MBFIWrapper
MBFI(getAnalysis
<MachineBlockFrequencyInfo
>());
347 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
348 MRI
= &MF
.getRegInfo();
349 SchedModel
.init(&ST
);
351 if (!TII
) return false;
353 PreRegAlloc
= MRI
->isSSA();
355 bool BFChange
= false;
357 // Tail merge tend to expose more if-conversion opportunities.
358 BranchFolder
BF(true, false, MBFI
, *MBPI
);
359 BFChange
= BF
.OptimizeFunction(MF
, TII
, ST
.getRegisterInfo(),
360 getAnalysisIfAvailable
<MachineModuleInfo
>());
363 LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum
<< ") \'"
364 << MF
.getName() << "\'");
366 if (FnNum
< IfCvtFnStart
|| (IfCvtFnStop
!= -1 && FnNum
> IfCvtFnStop
)) {
367 LLVM_DEBUG(dbgs() << " skipped\n");
370 LLVM_DEBUG(dbgs() << "\n");
373 BBAnalysis
.resize(MF
.getNumBlockIDs());
375 std::vector
<std::unique_ptr
<IfcvtToken
>> Tokens
;
377 unsigned NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+
378 NumTriangleRev
+ NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
379 while (IfCvtLimit
== -1 || (int)NumIfCvts
< IfCvtLimit
) {
380 // Do an initial analysis for each basic block and find all the potential
381 // candidates to perform if-conversion.
383 AnalyzeBlocks(MF
, Tokens
);
384 while (!Tokens
.empty()) {
385 std::unique_ptr
<IfcvtToken
> Token
= std::move(Tokens
.back());
387 BBInfo
&BBI
= Token
->BBI
;
388 IfcvtKind Kind
= Token
->Kind
;
389 unsigned NumDups
= Token
->NumDups
;
390 unsigned NumDups2
= Token
->NumDups2
;
392 // If the block has been evicted out of the queue or it has already been
393 // marked dead (due to it being predicated), then skip it.
395 BBI
.IsEnqueued
= false;
399 BBI
.IsEnqueued
= false;
403 default: llvm_unreachable("Unexpected!");
405 case ICSimpleFalse
: {
406 bool isFalse
= Kind
== ICSimpleFalse
;
407 if ((isFalse
&& DisableSimpleF
) || (!isFalse
&& DisableSimple
)) break;
408 LLVM_DEBUG(dbgs() << "Ifcvt (Simple"
409 << (Kind
== ICSimpleFalse
? " false" : "")
410 << "): " << printMBBReference(*BBI
.BB
) << " ("
411 << ((Kind
== ICSimpleFalse
) ? BBI
.FalseBB
->getNumber()
412 : BBI
.TrueBB
->getNumber())
414 RetVal
= IfConvertSimple(BBI
, Kind
);
415 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
417 if (isFalse
) ++NumSimpleFalse
;
424 case ICTriangleFalse
:
425 case ICTriangleFRev
: {
426 bool isFalse
= Kind
== ICTriangleFalse
;
427 bool isRev
= (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
);
428 if (DisableTriangle
&& !isFalse
&& !isRev
) break;
429 if (DisableTriangleR
&& !isFalse
&& isRev
) break;
430 if (DisableTriangleF
&& isFalse
&& !isRev
) break;
431 if (DisableTriangleFR
&& isFalse
&& isRev
) break;
432 LLVM_DEBUG(dbgs() << "Ifcvt (Triangle");
434 LLVM_DEBUG(dbgs() << " false");
436 LLVM_DEBUG(dbgs() << " rev");
437 LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI
.BB
)
438 << " (T:" << BBI
.TrueBB
->getNumber()
439 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
440 RetVal
= IfConvertTriangle(BBI
, Kind
);
441 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
444 if (isRev
) ++NumTriangleFRev
;
445 else ++NumTriangleFalse
;
447 if (isRev
) ++NumTriangleRev
;
454 if (DisableDiamond
) break;
455 LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI
.BB
)
456 << " (T:" << BBI
.TrueBB
->getNumber()
457 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
458 RetVal
= IfConvertDiamond(BBI
, Kind
, NumDups
, NumDups2
,
459 Token
->TClobbersPred
,
460 Token
->FClobbersPred
);
461 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
462 if (RetVal
) ++NumDiamonds
;
464 case ICForkedDiamond
:
465 if (DisableForkedDiamond
) break;
466 LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): "
467 << printMBBReference(*BBI
.BB
)
468 << " (T:" << BBI
.TrueBB
->getNumber()
469 << ",F:" << BBI
.FalseBB
->getNumber() << ") ");
470 RetVal
= IfConvertForkedDiamond(BBI
, Kind
, NumDups
, NumDups2
,
471 Token
->TClobbersPred
,
472 Token
->FClobbersPred
);
473 LLVM_DEBUG(dbgs() << (RetVal
? "succeeded!" : "failed!") << "\n");
474 if (RetVal
) ++NumForkedDiamonds
;
478 if (RetVal
&& MRI
->tracksLiveness())
479 recomputeLivenessFlags(*BBI
.BB
);
483 NumIfCvts
= NumSimple
+ NumSimpleFalse
+ NumTriangle
+ NumTriangleRev
+
484 NumTriangleFalse
+ NumTriangleFRev
+ NumDiamonds
;
485 if (IfCvtLimit
!= -1 && (int)NumIfCvts
>= IfCvtLimit
)
491 MadeChange
|= Change
;
497 if (MadeChange
&& IfCvtBranchFold
) {
498 BranchFolder
BF(false, false, MBFI
, *MBPI
);
499 BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
500 getAnalysisIfAvailable
<MachineModuleInfo
>());
503 MadeChange
|= BFChange
;
507 /// BB has a fallthrough. Find its 'false' successor given its 'true' successor.
508 static MachineBasicBlock
*findFalseBlock(MachineBasicBlock
*BB
,
509 MachineBasicBlock
*TrueBB
) {
510 for (MachineBasicBlock
*SuccBB
: BB
->successors()) {
511 if (SuccBB
!= TrueBB
)
517 /// Reverse the condition of the end of the block branch. Swap block's 'true'
518 /// and 'false' successors.
519 bool IfConverter::reverseBranchCondition(BBInfo
&BBI
) const {
520 DebugLoc dl
; // FIXME: this is nowhere
521 if (!TII
->reverseBranchCondition(BBI
.BrCond
)) {
522 TII
->removeBranch(*BBI
.BB
);
523 TII
->insertBranch(*BBI
.BB
, BBI
.FalseBB
, BBI
.TrueBB
, BBI
.BrCond
, dl
);
524 std::swap(BBI
.TrueBB
, BBI
.FalseBB
);
530 /// Returns the next block in the function blocks ordering. If it is the end,
532 static inline MachineBasicBlock
*getNextBlock(MachineBasicBlock
&MBB
) {
533 MachineFunction::iterator I
= MBB
.getIterator();
534 MachineFunction::iterator E
= MBB
.getParent()->end();
540 /// Returns true if the 'true' block (along with its predecessor) forms a valid
541 /// simple shape for ifcvt. It also returns the number of instructions that the
542 /// ifcvt would need to duplicate if performed in Dups.
543 bool IfConverter::ValidSimple(BBInfo
&TrueBBI
, unsigned &Dups
,
544 BranchProbability Prediction
) const {
546 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
549 if (TrueBBI
.IsBrAnalyzable
)
552 if (TrueBBI
.BB
->pred_size() > 1) {
553 if (TrueBBI
.CannotBeCopied
||
554 !TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, TrueBBI
.NonPredSize
,
557 Dups
= TrueBBI
.NonPredSize
;
563 /// Returns true if the 'true' and 'false' blocks (along with their common
564 /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is
565 /// true, it checks if 'true' block's false branch branches to the 'false' block
566 /// rather than the other way around. It also returns the number of instructions
567 /// that the ifcvt would need to duplicate if performed in 'Dups'.
568 bool IfConverter::ValidTriangle(BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
569 bool FalseBranch
, unsigned &Dups
,
570 BranchProbability Prediction
) const {
572 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
)
575 if (TrueBBI
.BB
->pred_size() > 1) {
576 if (TrueBBI
.CannotBeCopied
)
579 unsigned Size
= TrueBBI
.NonPredSize
;
580 if (TrueBBI
.IsBrAnalyzable
) {
581 if (TrueBBI
.TrueBB
&& TrueBBI
.BrCond
.empty())
582 // Ends with an unconditional branch. It will be removed.
585 MachineBasicBlock
*FExit
= FalseBranch
586 ? TrueBBI
.TrueBB
: TrueBBI
.FalseBB
;
588 // Require a conditional branch
592 if (!TII
->isProfitableToDupForIfCvt(*TrueBBI
.BB
, Size
, Prediction
))
597 MachineBasicBlock
*TExit
= FalseBranch
? TrueBBI
.FalseBB
: TrueBBI
.TrueBB
;
598 if (!TExit
&& blockAlwaysFallThrough(TrueBBI
)) {
599 MachineFunction::iterator I
= TrueBBI
.BB
->getIterator();
600 if (++I
== TrueBBI
.BB
->getParent()->end())
604 return TExit
&& TExit
== FalseBBI
.BB
;
607 /// Count duplicated instructions and move the iterators to show where they
609 /// @param TIB True Iterator Begin
610 /// @param FIB False Iterator Begin
611 /// These two iterators initially point to the first instruction of the two
612 /// blocks, and finally point to the first non-shared instruction.
613 /// @param TIE True Iterator End
614 /// @param FIE False Iterator End
615 /// These two iterators initially point to End() for the two blocks() and
616 /// finally point to the first shared instruction in the tail.
617 /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of
619 /// @param Dups1 count of duplicated instructions at the beginning of the 2
621 /// @param Dups2 count of duplicated instructions at the end of the 2 blocks.
622 /// @param SkipUnconditionalBranches if true, Don't make sure that
623 /// unconditional branches at the end of the blocks are the same. True is
624 /// passed when the blocks are analyzable to allow for fallthrough to be
626 /// @return false if the shared portion prevents if conversion.
627 bool IfConverter::CountDuplicatedInstructions(
628 MachineBasicBlock::iterator
&TIB
,
629 MachineBasicBlock::iterator
&FIB
,
630 MachineBasicBlock::iterator
&TIE
,
631 MachineBasicBlock::iterator
&FIE
,
632 unsigned &Dups1
, unsigned &Dups2
,
633 MachineBasicBlock
&TBB
, MachineBasicBlock
&FBB
,
634 bool SkipUnconditionalBranches
) const {
635 while (TIB
!= TIE
&& FIB
!= FIE
) {
636 // Skip dbg_value instructions. These do not count.
637 TIB
= skipDebugInstructionsForward(TIB
, TIE
);
638 FIB
= skipDebugInstructionsForward(FIB
, FIE
);
639 if (TIB
== TIE
|| FIB
== FIE
)
641 if (!TIB
->isIdenticalTo(*FIB
))
643 // A pred-clobbering instruction in the shared portion prevents
645 std::vector
<MachineOperand
> PredDefs
;
646 if (TII
->DefinesPredicate(*TIB
, PredDefs
))
648 // If we get all the way to the branch instructions, don't count them.
649 if (!TIB
->isBranch())
655 // Check for already containing all of the block.
656 if (TIB
== TIE
|| FIB
== FIE
)
658 // Now, in preparation for counting duplicate instructions at the ends of the
659 // blocks, switch to reverse_iterators. Note that getReverse() returns an
660 // iterator that points to the same instruction, unlike std::reverse_iterator.
661 // We have to do our own shifting so that we get the same range.
662 MachineBasicBlock::reverse_iterator RTIE
= std::next(TIE
.getReverse());
663 MachineBasicBlock::reverse_iterator RFIE
= std::next(FIE
.getReverse());
664 const MachineBasicBlock::reverse_iterator RTIB
= std::next(TIB
.getReverse());
665 const MachineBasicBlock::reverse_iterator RFIB
= std::next(FIB
.getReverse());
667 if (!TBB
.succ_empty() || !FBB
.succ_empty()) {
668 if (SkipUnconditionalBranches
) {
669 while (RTIE
!= RTIB
&& RTIE
->isUnconditionalBranch())
671 while (RFIE
!= RFIB
&& RFIE
->isUnconditionalBranch())
676 // Count duplicate instructions at the ends of the blocks.
677 while (RTIE
!= RTIB
&& RFIE
!= RFIB
) {
678 // Skip dbg_value instructions. These do not count.
679 // Note that these are reverse iterators going forward.
680 RTIE
= skipDebugInstructionsForward(RTIE
, RTIB
);
681 RFIE
= skipDebugInstructionsForward(RFIE
, RFIB
);
682 if (RTIE
== RTIB
|| RFIE
== RFIB
)
684 if (!RTIE
->isIdenticalTo(*RFIE
))
686 // We have to verify that any branch instructions are the same, and then we
687 // don't count them toward the # of duplicate instructions.
688 if (!RTIE
->isBranch())
693 TIE
= std::next(RTIE
.getReverse());
694 FIE
= std::next(RFIE
.getReverse());
698 /// RescanInstructions - Run ScanInstructions on a pair of blocks.
699 /// @param TIB - True Iterator Begin, points to first non-shared instruction
700 /// @param FIB - False Iterator Begin, points to first non-shared instruction
701 /// @param TIE - True Iterator End, points past last non-shared instruction
702 /// @param FIE - False Iterator End, points past last non-shared instruction
703 /// @param TrueBBI - BBInfo to update for the true block.
704 /// @param FalseBBI - BBInfo to update for the false block.
705 /// @returns - false if either block cannot be predicated or if both blocks end
706 /// with a predicate-clobbering instruction.
707 bool IfConverter::RescanInstructions(
708 MachineBasicBlock::iterator
&TIB
, MachineBasicBlock::iterator
&FIB
,
709 MachineBasicBlock::iterator
&TIE
, MachineBasicBlock::iterator
&FIE
,
710 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
) const {
711 bool BranchUnpredicable
= true;
712 TrueBBI
.IsUnpredicable
= FalseBBI
.IsUnpredicable
= false;
713 ScanInstructions(TrueBBI
, TIB
, TIE
, BranchUnpredicable
);
714 if (TrueBBI
.IsUnpredicable
)
716 ScanInstructions(FalseBBI
, FIB
, FIE
, BranchUnpredicable
);
717 if (FalseBBI
.IsUnpredicable
)
719 if (TrueBBI
.ClobbersPred
&& FalseBBI
.ClobbersPred
)
725 static void verifySameBranchInstructions(
726 MachineBasicBlock
*MBB1
,
727 MachineBasicBlock
*MBB2
) {
728 const MachineBasicBlock::reverse_iterator B1
= MBB1
->rend();
729 const MachineBasicBlock::reverse_iterator B2
= MBB2
->rend();
730 MachineBasicBlock::reverse_iterator E1
= MBB1
->rbegin();
731 MachineBasicBlock::reverse_iterator E2
= MBB2
->rbegin();
732 while (E1
!= B1
&& E2
!= B2
) {
733 skipDebugInstructionsForward(E1
, B1
);
734 skipDebugInstructionsForward(E2
, B2
);
735 if (E1
== B1
&& E2
== B2
)
739 assert(!E2
->isBranch() && "Branch mis-match, one block is empty.");
743 assert(!E1
->isBranch() && "Branch mis-match, one block is empty.");
747 if (E1
->isBranch() || E2
->isBranch())
748 assert(E1
->isIdenticalTo(*E2
) &&
749 "Branch mis-match, branch instructions don't match.");
758 /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along
759 /// with their common predecessor) form a diamond if a common tail block is
761 /// While not strictly a diamond, this pattern would form a diamond if
762 /// tail-merging had merged the shared tails.
768 /// FalseBB TrueBB FalseBB
769 /// Currently only handles analyzable branches.
770 /// Specifically excludes actual diamonds to avoid overlap.
771 bool IfConverter::ValidForkedDiamond(
772 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
773 unsigned &Dups1
, unsigned &Dups2
,
774 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
776 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
777 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
780 if (!TrueBBI
.IsBrAnalyzable
|| !FalseBBI
.IsBrAnalyzable
)
782 // Don't IfConvert blocks that can't be folded into their predecessor.
783 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
786 // This function is specifically looking for conditional tails, as
787 // unconditional tails are already handled by the standard diamond case.
788 if (TrueBBI
.BrCond
.size() == 0 ||
789 FalseBBI
.BrCond
.size() == 0)
792 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
793 MachineBasicBlock
*TF
= TrueBBI
.FalseBB
;
794 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
795 MachineBasicBlock
*FF
= FalseBBI
.FalseBB
;
798 TT
= getNextBlock(*TrueBBI
.BB
);
800 TF
= getNextBlock(*TrueBBI
.BB
);
802 FT
= getNextBlock(*FalseBBI
.BB
);
804 FF
= getNextBlock(*FalseBBI
.BB
);
809 // Check successors. If they don't match, bail.
810 if (!((TT
== FT
&& TF
== FF
) || (TF
== FT
&& TT
== FF
)))
813 bool FalseReversed
= false;
814 if (TF
== FT
&& TT
== FF
) {
815 // If the branches are opposing, but we can't reverse, don't do it.
816 if (!FalseBBI
.IsBrReversible
)
818 FalseReversed
= true;
819 reverseBranchCondition(FalseBBI
);
821 auto UnReverseOnExit
= make_scope_exit([&]() {
823 reverseBranchCondition(FalseBBI
);
826 // Count duplicate instructions at the beginning of the true and false blocks.
827 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
828 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
829 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
830 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
831 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
832 *TrueBBI
.BB
, *FalseBBI
.BB
,
833 /* SkipUnconditionalBranches */ true))
836 TrueBBICalc
.BB
= TrueBBI
.BB
;
837 FalseBBICalc
.BB
= FalseBBI
.BB
;
838 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
841 // The size is used to decide whether to if-convert, and the shared portions
842 // are subtracted off. Because of the subtraction, we just use the size that
843 // was calculated by the original ScanInstructions, as it is correct.
844 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
845 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
849 /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along
850 /// with their common predecessor) forms a valid diamond shape for ifcvt.
851 bool IfConverter::ValidDiamond(
852 BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
853 unsigned &Dups1
, unsigned &Dups2
,
854 BBInfo
&TrueBBICalc
, BBInfo
&FalseBBICalc
) const {
856 if (TrueBBI
.IsBeingAnalyzed
|| TrueBBI
.IsDone
||
857 FalseBBI
.IsBeingAnalyzed
|| FalseBBI
.IsDone
)
860 MachineBasicBlock
*TT
= TrueBBI
.TrueBB
;
861 MachineBasicBlock
*FT
= FalseBBI
.TrueBB
;
863 if (!TT
&& blockAlwaysFallThrough(TrueBBI
))
864 TT
= getNextBlock(*TrueBBI
.BB
);
865 if (!FT
&& blockAlwaysFallThrough(FalseBBI
))
866 FT
= getNextBlock(*FalseBBI
.BB
);
869 if (!TT
&& (TrueBBI
.IsBrAnalyzable
|| FalseBBI
.IsBrAnalyzable
))
871 if (TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1)
874 // FIXME: Allow true block to have an early exit?
875 if (TrueBBI
.FalseBB
|| FalseBBI
.FalseBB
)
878 // Count duplicate instructions at the beginning and end of the true and
880 // Skip unconditional branches only if we are considering an analyzable
881 // diamond. Otherwise the branches must be the same.
882 bool SkipUnconditionalBranches
=
883 TrueBBI
.IsBrAnalyzable
&& FalseBBI
.IsBrAnalyzable
;
884 MachineBasicBlock::iterator TIB
= TrueBBI
.BB
->begin();
885 MachineBasicBlock::iterator FIB
= FalseBBI
.BB
->begin();
886 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->end();
887 MachineBasicBlock::iterator FIE
= FalseBBI
.BB
->end();
888 if(!CountDuplicatedInstructions(TIB
, FIB
, TIE
, FIE
, Dups1
, Dups2
,
889 *TrueBBI
.BB
, *FalseBBI
.BB
,
890 SkipUnconditionalBranches
))
893 TrueBBICalc
.BB
= TrueBBI
.BB
;
894 FalseBBICalc
.BB
= FalseBBI
.BB
;
895 if (!RescanInstructions(TIB
, FIB
, TIE
, FIE
, TrueBBICalc
, FalseBBICalc
))
897 // The size is used to decide whether to if-convert, and the shared portions
898 // are subtracted off. Because of the subtraction, we just use the size that
899 // was calculated by the original ScanInstructions, as it is correct.
900 TrueBBICalc
.NonPredSize
= TrueBBI
.NonPredSize
;
901 FalseBBICalc
.NonPredSize
= FalseBBI
.NonPredSize
;
905 /// AnalyzeBranches - Look at the branches at the end of a block to determine if
906 /// the block is predicable.
907 void IfConverter::AnalyzeBranches(BBInfo
&BBI
) {
911 BBI
.TrueBB
= BBI
.FalseBB
= nullptr;
914 !TII
->analyzeBranch(*BBI
.BB
, BBI
.TrueBB
, BBI
.FalseBB
, BBI
.BrCond
);
915 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
916 BBI
.IsBrReversible
= (RevCond
.size() == 0) ||
917 !TII
->reverseBranchCondition(RevCond
);
918 BBI
.HasFallThrough
= BBI
.IsBrAnalyzable
&& BBI
.FalseBB
== nullptr;
920 if (BBI
.BrCond
.size()) {
921 // No false branch. This BB must end with a conditional branch and a
924 BBI
.FalseBB
= findFalseBlock(BBI
.BB
, BBI
.TrueBB
);
926 // Malformed bcc? True and false blocks are the same?
927 BBI
.IsUnpredicable
= true;
932 /// ScanInstructions - Scan all the instructions in the block to determine if
933 /// the block is predicable. In most cases, that means all the instructions
934 /// in the block are isPredicable(). Also checks if the block contains any
935 /// instruction which can clobber a predicate (e.g. condition code register).
936 /// If so, the block is not predicable unless it's the last instruction.
937 void IfConverter::ScanInstructions(BBInfo
&BBI
,
938 MachineBasicBlock::iterator
&Begin
,
939 MachineBasicBlock::iterator
&End
,
940 bool BranchUnpredicable
) const {
941 if (BBI
.IsDone
|| BBI
.IsUnpredicable
)
944 bool AlreadyPredicated
= !BBI
.Predicate
.empty();
949 BBI
.ClobbersPred
= false;
950 for (MachineInstr
&MI
: make_range(Begin
, End
)) {
951 if (MI
.isDebugInstr())
954 // It's unsafe to duplicate convergent instructions in this context, so set
955 // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the
956 // following CFG, which is subject to our "simple" transformation.
958 // BB0 // if (c1) goto BB1; else goto BB2;
961 // | BB2 // if (c2) goto TBB; else goto FBB;
970 // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd
971 // be unconditional, and in BB2, they'd be predicated upon c2), and suppose
972 // TBB contains a convergent instruction. This is safe iff doing so does
973 // not add a control-flow dependency to the convergent instruction -- i.e.,
974 // it's safe iff the set of control flows that leads us to the convergent
975 // instruction does not get smaller after the transformation.
977 // Originally we executed TBB if c1 || c2. After the transformation, there
978 // are two copies of TBB's instructions. We get to the first if c1, and we
979 // get to the second if !c1 && c2.
981 // There are clearly fewer ways to satisfy the condition "c1" than
982 // "c1 || c2". Since we've shrunk the set of control flows which lead to
983 // our convergent instruction, the transformation is unsafe.
984 if (MI
.isNotDuplicable() || MI
.isConvergent())
985 BBI
.CannotBeCopied
= true;
987 bool isPredicated
= TII
->isPredicated(MI
);
988 bool isCondBr
= BBI
.IsBrAnalyzable
&& MI
.isConditionalBranch();
990 if (BranchUnpredicable
&& MI
.isBranch()) {
991 BBI
.IsUnpredicable
= true;
995 // A conditional branch is not predicable, but it may be eliminated.
1001 unsigned ExtraPredCost
= TII
->getPredicationCost(MI
);
1002 unsigned NumCycles
= SchedModel
.computeInstrLatency(&MI
, false);
1004 BBI
.ExtraCost
+= NumCycles
-1;
1005 BBI
.ExtraCost2
+= ExtraPredCost
;
1006 } else if (!AlreadyPredicated
) {
1007 // FIXME: This instruction is already predicated before the
1008 // if-conversion pass. It's probably something like a conditional move.
1009 // Mark this block unpredicable for now.
1010 BBI
.IsUnpredicable
= true;
1014 if (BBI
.ClobbersPred
&& !isPredicated
) {
1015 // Predicate modification instruction should end the block (except for
1016 // already predicated instructions and end of block branches).
1017 // Predicate may have been modified, the subsequent (currently)
1018 // unpredicated instructions cannot be correctly predicated.
1019 BBI
.IsUnpredicable
= true;
1023 // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are
1024 // still potentially predicable.
1025 std::vector
<MachineOperand
> PredDefs
;
1026 if (TII
->DefinesPredicate(MI
, PredDefs
))
1027 BBI
.ClobbersPred
= true;
1029 if (!TII
->isPredicable(MI
)) {
1030 BBI
.IsUnpredicable
= true;
1036 /// Determine if the block is a suitable candidate to be predicated by the
1037 /// specified predicate.
1038 /// @param BBI BBInfo for the block to check
1039 /// @param Pred Predicate array for the branch that leads to BBI
1040 /// @param isTriangle true if the Analysis is for a triangle
1041 /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false
1043 /// @param hasCommonTail true if BBI shares a tail with a sibling block that
1044 /// contains any instruction that would make the block unpredicable.
1045 bool IfConverter::FeasibilityAnalysis(BBInfo
&BBI
,
1046 SmallVectorImpl
<MachineOperand
> &Pred
,
1047 bool isTriangle
, bool RevBranch
,
1048 bool hasCommonTail
) {
1049 // If the block is dead or unpredicable, then it cannot be predicated.
1050 // Two blocks may share a common unpredicable tail, but this doesn't prevent
1051 // them from being if-converted. The non-shared portion is assumed to have
1053 if (BBI
.IsDone
|| (BBI
.IsUnpredicable
&& !hasCommonTail
))
1056 // If it is already predicated but we couldn't analyze its terminator, the
1057 // latter might fallthrough, but we can't determine where to.
1058 // Conservatively avoid if-converting again.
1059 if (BBI
.Predicate
.size() && !BBI
.IsBrAnalyzable
)
1062 // If it is already predicated, check if the new predicate subsumes
1064 if (BBI
.Predicate
.size() && !TII
->SubsumesPredicate(Pred
, BBI
.Predicate
))
1067 if (!hasCommonTail
&& BBI
.BrCond
.size()) {
1071 // Test predicate subsumption.
1072 SmallVector
<MachineOperand
, 4> RevPred(Pred
.begin(), Pred
.end());
1073 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1075 if (TII
->reverseBranchCondition(Cond
))
1078 if (TII
->reverseBranchCondition(RevPred
) ||
1079 !TII
->SubsumesPredicate(Cond
, RevPred
))
1086 /// Analyze the structure of the sub-CFG starting from the specified block.
1087 /// Record its successors and whether it looks like an if-conversion candidate.
1088 void IfConverter::AnalyzeBlock(
1089 MachineBasicBlock
&MBB
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1091 BBState(MachineBasicBlock
&MBB
) : MBB(&MBB
), SuccsAnalyzed(false) {}
1092 MachineBasicBlock
*MBB
;
1094 /// This flag is true if MBB's successors have been analyzed.
1098 // Push MBB to the stack.
1099 SmallVector
<BBState
, 16> BBStack(1, MBB
);
1101 while (!BBStack
.empty()) {
1102 BBState
&State
= BBStack
.back();
1103 MachineBasicBlock
*BB
= State
.MBB
;
1104 BBInfo
&BBI
= BBAnalysis
[BB
->getNumber()];
1106 if (!State
.SuccsAnalyzed
) {
1107 if (BBI
.IsAnalyzed
|| BBI
.IsBeingAnalyzed
) {
1113 BBI
.IsBeingAnalyzed
= true;
1115 AnalyzeBranches(BBI
);
1116 MachineBasicBlock::iterator Begin
= BBI
.BB
->begin();
1117 MachineBasicBlock::iterator End
= BBI
.BB
->end();
1118 ScanInstructions(BBI
, Begin
, End
);
1120 // Unanalyzable or ends with fallthrough or unconditional branch, or if is
1121 // not considered for ifcvt anymore.
1122 if (!BBI
.IsBrAnalyzable
|| BBI
.BrCond
.empty() || BBI
.IsDone
) {
1123 BBI
.IsBeingAnalyzed
= false;
1124 BBI
.IsAnalyzed
= true;
1129 // Do not ifcvt if either path is a back edge to the entry block.
1130 if (BBI
.TrueBB
== BB
|| BBI
.FalseBB
== BB
) {
1131 BBI
.IsBeingAnalyzed
= false;
1132 BBI
.IsAnalyzed
= true;
1137 // Do not ifcvt if true and false fallthrough blocks are the same.
1139 BBI
.IsBeingAnalyzed
= false;
1140 BBI
.IsAnalyzed
= true;
1145 // Push the False and True blocks to the stack.
1146 State
.SuccsAnalyzed
= true;
1147 BBStack
.push_back(*BBI
.FalseBB
);
1148 BBStack
.push_back(*BBI
.TrueBB
);
1152 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1153 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1155 if (TrueBBI
.IsDone
&& FalseBBI
.IsDone
) {
1156 BBI
.IsBeingAnalyzed
= false;
1157 BBI
.IsAnalyzed
= true;
1162 SmallVector
<MachineOperand
, 4>
1163 RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1164 bool CanRevCond
= !TII
->reverseBranchCondition(RevCond
);
1168 bool TNeedSub
= !TrueBBI
.Predicate
.empty();
1169 bool FNeedSub
= !FalseBBI
.Predicate
.empty();
1170 bool Enqueued
= false;
1172 BranchProbability Prediction
= MBPI
->getEdgeProbability(BB
, TrueBBI
.BB
);
1175 BBInfo TrueBBICalc
, FalseBBICalc
;
1176 auto feasibleDiamond
= [&]() {
1177 bool MeetsSize
= MeetIfcvtSizeLimit(
1178 *TrueBBI
.BB
, (TrueBBICalc
.NonPredSize
- (Dups
+ Dups2
) +
1179 TrueBBICalc
.ExtraCost
), TrueBBICalc
.ExtraCost2
,
1180 *FalseBBI
.BB
, (FalseBBICalc
.NonPredSize
- (Dups
+ Dups2
) +
1181 FalseBBICalc
.ExtraCost
), FalseBBICalc
.ExtraCost2
,
1183 bool TrueFeasible
= FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
,
1184 /* IsTriangle */ false, /* RevCond */ false,
1185 /* hasCommonTail */ true);
1186 bool FalseFeasible
= FeasibilityAnalysis(FalseBBI
, RevCond
,
1187 /* IsTriangle */ false, /* RevCond */ false,
1188 /* hasCommonTail */ true);
1189 return MeetsSize
&& TrueFeasible
&& FalseFeasible
;
1192 if (ValidDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1193 TrueBBICalc
, FalseBBICalc
)) {
1194 if (feasibleDiamond()) {
1202 // Note TailBB can be empty.
1203 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1204 BBI
, ICDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1205 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1208 } else if (ValidForkedDiamond(TrueBBI
, FalseBBI
, Dups
, Dups2
,
1209 TrueBBICalc
, FalseBBICalc
)) {
1210 if (feasibleDiamond()) {
1212 // if TBB and FBB have a common tail that includes their conditional
1213 // branch instructions, then we can If Convert this pattern.
1219 // FalseBB TrueBB FalseBB
1221 Tokens
.push_back(std::make_unique
<IfcvtToken
>(
1222 BBI
, ICForkedDiamond
, TNeedSub
| FNeedSub
, Dups
, Dups2
,
1223 (bool) TrueBBICalc
.ClobbersPred
, (bool) FalseBBICalc
.ClobbersPred
));
1229 if (ValidTriangle(TrueBBI
, FalseBBI
, false, Dups
, Prediction
) &&
1230 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1231 TrueBBI
.ExtraCost2
, Prediction
) &&
1232 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true)) {
1241 std::make_unique
<IfcvtToken
>(BBI
, ICTriangle
, TNeedSub
, Dups
));
1245 if (ValidTriangle(TrueBBI
, FalseBBI
, true, Dups
, Prediction
) &&
1246 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1247 TrueBBI
.ExtraCost2
, Prediction
) &&
1248 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
, true, true)) {
1250 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleRev
, TNeedSub
, Dups
));
1254 if (ValidSimple(TrueBBI
, Dups
, Prediction
) &&
1255 MeetIfcvtSizeLimit(*TrueBBI
.BB
, TrueBBI
.NonPredSize
+ TrueBBI
.ExtraCost
,
1256 TrueBBI
.ExtraCost2
, Prediction
) &&
1257 FeasibilityAnalysis(TrueBBI
, BBI
.BrCond
)) {
1258 // Simple (split, no rejoin):
1266 std::make_unique
<IfcvtToken
>(BBI
, ICSimple
, TNeedSub
, Dups
));
1271 // Try the other path...
1272 if (ValidTriangle(FalseBBI
, TrueBBI
, false, Dups
,
1273 Prediction
.getCompl()) &&
1274 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1275 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1276 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1277 FeasibilityAnalysis(FalseBBI
, RevCond
, true)) {
1278 Tokens
.push_back(std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFalse
,
1283 if (ValidTriangle(FalseBBI
, TrueBBI
, true, Dups
,
1284 Prediction
.getCompl()) &&
1285 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1286 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1287 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1288 FeasibilityAnalysis(FalseBBI
, RevCond
, true, true)) {
1290 std::make_unique
<IfcvtToken
>(BBI
, ICTriangleFRev
, FNeedSub
, Dups
));
1294 if (ValidSimple(FalseBBI
, Dups
, Prediction
.getCompl()) &&
1295 MeetIfcvtSizeLimit(*FalseBBI
.BB
,
1296 FalseBBI
.NonPredSize
+ FalseBBI
.ExtraCost
,
1297 FalseBBI
.ExtraCost2
, Prediction
.getCompl()) &&
1298 FeasibilityAnalysis(FalseBBI
, RevCond
)) {
1300 std::make_unique
<IfcvtToken
>(BBI
, ICSimpleFalse
, FNeedSub
, Dups
));
1305 BBI
.IsEnqueued
= Enqueued
;
1306 BBI
.IsBeingAnalyzed
= false;
1307 BBI
.IsAnalyzed
= true;
1312 /// Analyze all blocks and find entries for all if-conversion candidates.
1313 void IfConverter::AnalyzeBlocks(
1314 MachineFunction
&MF
, std::vector
<std::unique_ptr
<IfcvtToken
>> &Tokens
) {
1315 for (MachineBasicBlock
&MBB
: MF
)
1316 AnalyzeBlock(MBB
, Tokens
);
1318 // Sort to favor more complex ifcvt scheme.
1319 llvm::stable_sort(Tokens
, IfcvtTokenCmp
);
1322 /// Returns true either if ToMBB is the next block after MBB or that all the
1323 /// intervening blocks are empty (given MBB can fall through to its next block).
1324 static bool canFallThroughTo(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
) {
1325 MachineFunction::iterator PI
= MBB
.getIterator();
1326 MachineFunction::iterator I
= std::next(PI
);
1327 MachineFunction::iterator TI
= ToMBB
.getIterator();
1328 MachineFunction::iterator E
= MBB
.getParent()->end();
1330 // Check isSuccessor to avoid case where the next block is empty, but
1331 // it's not a successor.
1332 if (I
== E
|| !I
->empty() || !PI
->isSuccessor(&*I
))
1336 // Finally see if the last I is indeed a successor to PI.
1337 return PI
->isSuccessor(&*I
);
1340 /// Invalidate predecessor BB info so it would be re-analyzed to determine if it
1341 /// can be if-converted. If predecessor is already enqueued, dequeue it!
1342 void IfConverter::InvalidatePreds(MachineBasicBlock
&MBB
) {
1343 for (const MachineBasicBlock
*Predecessor
: MBB
.predecessors()) {
1344 BBInfo
&PBBI
= BBAnalysis
[Predecessor
->getNumber()];
1345 if (PBBI
.IsDone
|| PBBI
.BB
== &MBB
)
1347 PBBI
.IsAnalyzed
= false;
1348 PBBI
.IsEnqueued
= false;
1352 /// Inserts an unconditional branch from \p MBB to \p ToMBB.
1353 static void InsertUncondBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
&ToMBB
,
1354 const TargetInstrInfo
*TII
) {
1355 DebugLoc dl
; // FIXME: this is nowhere
1356 SmallVector
<MachineOperand
, 0> NoCond
;
1357 TII
->insertBranch(MBB
, &ToMBB
, nullptr, NoCond
, dl
);
1360 /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all
1361 /// values defined in MI which are also live/used by MI.
1362 static void UpdatePredRedefs(MachineInstr
&MI
, LivePhysRegs
&Redefs
) {
1363 const TargetRegisterInfo
*TRI
= MI
.getMF()->getSubtarget().getRegisterInfo();
1365 // Before stepping forward past MI, remember which regs were live
1366 // before MI. This is needed to set the Undef flag only when reg is
1368 SparseSet
<MCPhysReg
, identity
<MCPhysReg
>> LiveBeforeMI
;
1369 LiveBeforeMI
.setUniverse(TRI
->getNumRegs());
1370 for (unsigned Reg
: Redefs
)
1371 LiveBeforeMI
.insert(Reg
);
1373 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Clobbers
;
1374 Redefs
.stepForward(MI
, Clobbers
);
1376 // Now add the implicit uses for each of the clobbered values.
1377 for (auto Clobber
: Clobbers
) {
1378 // FIXME: Const cast here is nasty, but better than making StepForward
1379 // take a mutable instruction instead of const.
1380 unsigned Reg
= Clobber
.first
;
1381 MachineOperand
&Op
= const_cast<MachineOperand
&>(*Clobber
.second
);
1382 MachineInstr
*OpMI
= Op
.getParent();
1383 MachineInstrBuilder
MIB(*OpMI
->getMF(), OpMI
);
1384 if (Op
.isRegMask()) {
1385 // First handle regmasks. They clobber any entries in the mask which
1386 // means that we need a def for those registers.
1387 if (LiveBeforeMI
.count(Reg
))
1388 MIB
.addReg(Reg
, RegState::Implicit
);
1390 // We also need to add an implicit def of this register for the later
1391 // use to read from.
1392 // For the register allocator to have allocated a register clobbered
1393 // by the call which is used later, it must be the case that
1394 // the call doesn't return.
1395 MIB
.addReg(Reg
, RegState::Implicit
| RegState::Define
);
1398 if (LiveBeforeMI
.count(Reg
))
1399 MIB
.addReg(Reg
, RegState::Implicit
);
1401 bool HasLiveSubReg
= false;
1402 for (MCSubRegIterator
S(Reg
, TRI
); S
.isValid(); ++S
) {
1403 if (!LiveBeforeMI
.count(*S
))
1405 HasLiveSubReg
= true;
1409 MIB
.addReg(Reg
, RegState::Implicit
);
1414 /// If convert a simple (split, no rejoin) sub-CFG.
1415 bool IfConverter::IfConvertSimple(BBInfo
&BBI
, IfcvtKind Kind
) {
1416 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1417 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1418 BBInfo
*CvtBBI
= &TrueBBI
;
1419 BBInfo
*NextBBI
= &FalseBBI
;
1421 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1422 if (Kind
== ICSimpleFalse
)
1423 std::swap(CvtBBI
, NextBBI
);
1425 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1426 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1427 if (CvtBBI
->IsDone
||
1428 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1429 // Something has changed. It's no longer safe to predicate this block.
1430 BBI
.IsAnalyzed
= false;
1431 CvtBBI
->IsAnalyzed
= false;
1435 if (CvtMBB
.hasAddressTaken())
1436 // Conservatively abort if-conversion if BB's address is taken.
1439 if (Kind
== ICSimpleFalse
)
1440 if (TII
->reverseBranchCondition(Cond
))
1441 llvm_unreachable("Unable to reverse branch condition!");
1445 if (MRI
->tracksLiveness()) {
1446 // Initialize liveins to the first BB. These are potentially redefined by
1447 // predicated instructions.
1448 Redefs
.addLiveIns(CvtMBB
);
1449 Redefs
.addLiveIns(NextMBB
);
1452 // Remove the branches from the entry so we can add the contents of the true
1454 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1456 if (CvtMBB
.pred_size() > 1) {
1457 // Copy instructions in the true block, predicate them, and add them to
1459 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
);
1461 // Keep the CFG updated.
1462 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1464 // Predicate the instructions in the true block.
1465 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1467 // Merge converted block into entry block. The BB to Cvt edge is removed
1469 MergeBlocks(BBI
, *CvtBBI
);
1472 bool IterIfcvt
= true;
1473 if (!canFallThroughTo(*BBI
.BB
, NextMBB
)) {
1474 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1475 BBI
.HasFallThrough
= false;
1476 // Now ifcvt'd block will look like this:
1483 // We cannot further ifcvt this block because the unconditional branch
1484 // will have to be predicated on the new condition, that will not be
1485 // available if cmp executes.
1489 // Update block info. BB can be iteratively if-converted.
1492 InvalidatePreds(*BBI
.BB
);
1493 CvtBBI
->IsDone
= true;
1495 // FIXME: Must maintain LiveIns.
1499 /// If convert a triangle sub-CFG.
1500 bool IfConverter::IfConvertTriangle(BBInfo
&BBI
, IfcvtKind Kind
) {
1501 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1502 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1503 BBInfo
*CvtBBI
= &TrueBBI
;
1504 BBInfo
*NextBBI
= &FalseBBI
;
1505 DebugLoc dl
; // FIXME: this is nowhere
1507 SmallVector
<MachineOperand
, 4> Cond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1508 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1509 std::swap(CvtBBI
, NextBBI
);
1511 MachineBasicBlock
&CvtMBB
= *CvtBBI
->BB
;
1512 MachineBasicBlock
&NextMBB
= *NextBBI
->BB
;
1513 if (CvtBBI
->IsDone
||
1514 (CvtBBI
->CannotBeCopied
&& CvtMBB
.pred_size() > 1)) {
1515 // Something has changed. It's no longer safe to predicate this block.
1516 BBI
.IsAnalyzed
= false;
1517 CvtBBI
->IsAnalyzed
= false;
1521 if (CvtMBB
.hasAddressTaken())
1522 // Conservatively abort if-conversion if BB's address is taken.
1525 if (Kind
== ICTriangleFalse
|| Kind
== ICTriangleFRev
)
1526 if (TII
->reverseBranchCondition(Cond
))
1527 llvm_unreachable("Unable to reverse branch condition!");
1529 if (Kind
== ICTriangleRev
|| Kind
== ICTriangleFRev
) {
1530 if (reverseBranchCondition(*CvtBBI
)) {
1531 // BB has been changed, modify its predecessors (except for this
1532 // one) so they don't get ifcvt'ed based on bad intel.
1533 for (MachineBasicBlock
*PBB
: CvtMBB
.predecessors()) {
1536 BBInfo
&PBBI
= BBAnalysis
[PBB
->getNumber()];
1537 if (PBBI
.IsEnqueued
) {
1538 PBBI
.IsAnalyzed
= false;
1539 PBBI
.IsEnqueued
= false;
1545 // Initialize liveins to the first BB. These are potentially redefined by
1546 // predicated instructions.
1548 if (MRI
->tracksLiveness()) {
1549 Redefs
.addLiveIns(CvtMBB
);
1550 Redefs
.addLiveIns(NextMBB
);
1553 bool HasEarlyExit
= CvtBBI
->FalseBB
!= nullptr;
1554 BranchProbability CvtNext
, CvtFalse
, BBNext
, BBCvt
;
1557 // Get probabilities before modifying CvtMBB and BBI.BB.
1558 CvtNext
= MBPI
->getEdgeProbability(&CvtMBB
, &NextMBB
);
1559 CvtFalse
= MBPI
->getEdgeProbability(&CvtMBB
, CvtBBI
->FalseBB
);
1560 BBNext
= MBPI
->getEdgeProbability(BBI
.BB
, &NextMBB
);
1561 BBCvt
= MBPI
->getEdgeProbability(BBI
.BB
, &CvtMBB
);
1564 // Remove the branches from the entry so we can add the contents of the true
1566 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1568 if (CvtMBB
.pred_size() > 1) {
1569 // Copy instructions in the true block, predicate them, and add them to
1571 CopyAndPredicateBlock(BBI
, *CvtBBI
, Cond
, true);
1573 // Predicate the 'true' block after removing its branch.
1574 CvtBBI
->NonPredSize
-= TII
->removeBranch(CvtMBB
);
1575 PredicateBlock(*CvtBBI
, CvtMBB
.end(), Cond
);
1577 // Now merge the entry of the triangle with the true block.
1578 MergeBlocks(BBI
, *CvtBBI
, false);
1581 // Keep the CFG updated.
1582 BBI
.BB
->removeSuccessor(&CvtMBB
, true);
1584 // If 'true' block has a 'false' successor, add an exit branch to it.
1586 SmallVector
<MachineOperand
, 4> RevCond(CvtBBI
->BrCond
.begin(),
1587 CvtBBI
->BrCond
.end());
1588 if (TII
->reverseBranchCondition(RevCond
))
1589 llvm_unreachable("Unable to reverse branch condition!");
1591 // Update the edge probability for both CvtBBI->FalseBB and NextBBI.
1592 // NewNext = New_Prob(BBI.BB, NextMBB) =
1593 // Prob(BBI.BB, NextMBB) +
1594 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB)
1595 // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) =
1596 // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB)
1597 auto NewTrueBB
= getNextBlock(*BBI
.BB
);
1598 auto NewNext
= BBNext
+ BBCvt
* CvtNext
;
1599 auto NewTrueBBIter
= find(BBI
.BB
->successors(), NewTrueBB
);
1600 if (NewTrueBBIter
!= BBI
.BB
->succ_end())
1601 BBI
.BB
->setSuccProbability(NewTrueBBIter
, NewNext
);
1603 auto NewFalse
= BBCvt
* CvtFalse
;
1604 TII
->insertBranch(*BBI
.BB
, CvtBBI
->FalseBB
, nullptr, RevCond
, dl
);
1605 BBI
.BB
->addSuccessor(CvtBBI
->FalseBB
, NewFalse
);
1608 // Merge in the 'false' block if the 'false' block has no other
1609 // predecessors. Otherwise, add an unconditional branch to 'false'.
1610 bool FalseBBDead
= false;
1611 bool IterIfcvt
= true;
1612 bool isFallThrough
= canFallThroughTo(*BBI
.BB
, NextMBB
);
1613 if (!isFallThrough
) {
1614 // Only merge them if the true block does not fallthrough to the false
1615 // block. By not merging them, we make it possible to iteratively
1616 // ifcvt the blocks.
1617 if (!HasEarlyExit
&&
1618 NextMBB
.pred_size() == 1 && !NextBBI
->HasFallThrough
&&
1619 !NextMBB
.hasAddressTaken()) {
1620 MergeBlocks(BBI
, *NextBBI
);
1623 InsertUncondBranch(*BBI
.BB
, NextMBB
, TII
);
1624 BBI
.HasFallThrough
= false;
1626 // Mixed predicated and unpredicated code. This cannot be iteratively
1631 // Update block info. BB can be iteratively if-converted.
1634 InvalidatePreds(*BBI
.BB
);
1635 CvtBBI
->IsDone
= true;
1637 NextBBI
->IsDone
= true;
1639 // FIXME: Must maintain LiveIns.
1643 /// Common code shared between diamond conversions.
1644 /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape.
1645 /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI
1647 /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI
1649 /// \p RemoveBranch - Remove the common branch of the two blocks before
1650 /// predicating. Only false for unanalyzable fallthrough
1651 /// cases. The caller will replace the branch if necessary.
1652 /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for
1653 /// unanalyzable fallthrough
1654 bool IfConverter::IfConvertDiamondCommon(
1655 BBInfo
&BBI
, BBInfo
&TrueBBI
, BBInfo
&FalseBBI
,
1656 unsigned NumDups1
, unsigned NumDups2
,
1657 bool TClobbersPred
, bool FClobbersPred
,
1658 bool RemoveBranch
, bool MergeAddEdges
) {
1660 if (TrueBBI
.IsDone
|| FalseBBI
.IsDone
||
1661 TrueBBI
.BB
->pred_size() > 1 || FalseBBI
.BB
->pred_size() > 1) {
1662 // Something has changed. It's no longer safe to predicate these blocks.
1663 BBI
.IsAnalyzed
= false;
1664 TrueBBI
.IsAnalyzed
= false;
1665 FalseBBI
.IsAnalyzed
= false;
1669 if (TrueBBI
.BB
->hasAddressTaken() || FalseBBI
.BB
->hasAddressTaken())
1670 // Conservatively abort if-conversion if either BB has its address taken.
1673 // Put the predicated instructions from the 'true' block before the
1674 // instructions from the 'false' block, unless the true block would clobber
1675 // the predicate, in which case, do the opposite.
1676 BBInfo
*BBI1
= &TrueBBI
;
1677 BBInfo
*BBI2
= &FalseBBI
;
1678 SmallVector
<MachineOperand
, 4> RevCond(BBI
.BrCond
.begin(), BBI
.BrCond
.end());
1679 if (TII
->reverseBranchCondition(RevCond
))
1680 llvm_unreachable("Unable to reverse branch condition!");
1681 SmallVector
<MachineOperand
, 4> *Cond1
= &BBI
.BrCond
;
1682 SmallVector
<MachineOperand
, 4> *Cond2
= &RevCond
;
1684 // Figure out the more profitable ordering.
1685 bool DoSwap
= false;
1686 if (TClobbersPred
&& !FClobbersPred
)
1688 else if (!TClobbersPred
&& !FClobbersPred
) {
1689 if (TrueBBI
.NonPredSize
> FalseBBI
.NonPredSize
)
1691 } else if (TClobbersPred
&& FClobbersPred
)
1692 llvm_unreachable("Predicate info cannot be clobbered by both sides.");
1694 std::swap(BBI1
, BBI2
);
1695 std::swap(Cond1
, Cond2
);
1698 // Remove the conditional branch from entry to the blocks.
1699 BBI
.NonPredSize
-= TII
->removeBranch(*BBI
.BB
);
1701 MachineBasicBlock
&MBB1
= *BBI1
->BB
;
1702 MachineBasicBlock
&MBB2
= *BBI2
->BB
;
1704 // Initialize the Redefs:
1705 // - BB2 live-in regs need implicit uses before being redefined by BB1
1707 // - BB1 live-out regs need implicit uses before being redefined by BB2
1708 // instructions. We start with BB1 live-ins so we have the live-out regs
1709 // after tracking the BB1 instructions.
1711 if (MRI
->tracksLiveness()) {
1712 Redefs
.addLiveIns(MBB1
);
1713 Redefs
.addLiveIns(MBB2
);
1716 // Remove the duplicated instructions at the beginnings of both paths.
1717 // Skip dbg_value instructions.
1718 MachineBasicBlock::iterator DI1
= MBB1
.getFirstNonDebugInstr();
1719 MachineBasicBlock::iterator DI2
= MBB2
.getFirstNonDebugInstr();
1720 BBI1
->NonPredSize
-= NumDups1
;
1721 BBI2
->NonPredSize
-= NumDups1
;
1723 // Skip past the dups on each side separately since there may be
1724 // differing dbg_value entries. NumDups1 can include a "return"
1725 // instruction, if it's not marked as "branch".
1726 for (unsigned i
= 0; i
< NumDups1
; ++DI1
) {
1727 if (DI1
== MBB1
.end())
1729 if (!DI1
->isDebugInstr())
1732 while (NumDups1
!= 0) {
1734 if (DI2
== MBB2
.end())
1736 if (!DI2
->isDebugInstr())
1740 if (MRI
->tracksLiveness()) {
1741 for (const MachineInstr
&MI
: make_range(MBB1
.begin(), DI1
)) {
1742 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 4> Dummy
;
1743 Redefs
.stepForward(MI
, Dummy
);
1747 BBI
.BB
->splice(BBI
.BB
->end(), &MBB1
, MBB1
.begin(), DI1
);
1748 MBB2
.erase(MBB2
.begin(), DI2
);
1750 // The branches have been checked to match, so it is safe to remove the
1751 // branch in BB1 and rely on the copy in BB2. The complication is that
1752 // the blocks may end with a return instruction, which may or may not
1753 // be marked as "branch". If it's not, then it could be included in
1754 // "dups1", leaving the blocks potentially empty after moving the common
1757 // Unanalyzable branches must match exactly. Check that now.
1758 if (!BBI1
->IsBrAnalyzable
)
1759 verifySameBranchInstructions(&MBB1
, &MBB2
);
1761 // Remove duplicated instructions from the tail of MBB1: any branch
1762 // instructions, and the common instructions counted by NumDups2.
1764 while (DI1
!= MBB1
.begin()) {
1765 MachineBasicBlock::iterator Prev
= std::prev(DI1
);
1766 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1770 for (unsigned i
= 0; i
!= NumDups2
; ) {
1771 // NumDups2 only counted non-dbg_value instructions, so this won't
1772 // run off the head of the list.
1773 assert(DI1
!= MBB1
.begin());
1775 // skip dbg_value instructions
1776 if (!DI1
->isDebugInstr())
1779 MBB1
.erase(DI1
, MBB1
.end());
1781 DI2
= BBI2
->BB
->end();
1782 // The branches have been checked to match. Skip over the branch in the false
1783 // block so that we don't try to predicate it.
1785 BBI2
->NonPredSize
-= TII
->removeBranch(*BBI2
->BB
);
1787 // Make DI2 point to the end of the range where the common "tail"
1788 // instructions could be found.
1789 while (DI2
!= MBB2
.begin()) {
1790 MachineBasicBlock::iterator Prev
= std::prev(DI2
);
1791 if (!Prev
->isBranch() && !Prev
->isDebugInstr())
1796 while (NumDups2
!= 0) {
1797 // NumDups2 only counted non-dbg_value instructions, so this won't
1798 // run off the head of the list.
1799 assert(DI2
!= MBB2
.begin());
1801 // skip dbg_value instructions
1802 if (!DI2
->isDebugInstr())
1806 // Remember which registers would later be defined by the false block.
1807 // This allows us not to predicate instructions in the true block that would
1808 // later be re-defined. That is, rather than
1814 SmallSet
<MCPhysReg
, 4> RedefsByFalse
;
1815 SmallSet
<MCPhysReg
, 4> ExtUses
;
1816 if (TII
->isProfitableToUnpredicate(MBB1
, MBB2
)) {
1817 for (const MachineInstr
&FI
: make_range(MBB2
.begin(), DI2
)) {
1818 if (FI
.isDebugInstr())
1820 SmallVector
<MCPhysReg
, 4> Defs
;
1821 for (const MachineOperand
&MO
: FI
.operands()) {
1824 Register Reg
= MO
.getReg();
1828 Defs
.push_back(Reg
);
1829 } else if (!RedefsByFalse
.count(Reg
)) {
1830 // These are defined before ctrl flow reach the 'false' instructions.
1831 // They cannot be modified by the 'true' instructions.
1832 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1833 SubRegs
.isValid(); ++SubRegs
)
1834 ExtUses
.insert(*SubRegs
);
1838 for (MCPhysReg Reg
: Defs
) {
1839 if (!ExtUses
.count(Reg
)) {
1840 for (MCSubRegIterator
SubRegs(Reg
, TRI
, /*IncludeSelf=*/true);
1841 SubRegs
.isValid(); ++SubRegs
)
1842 RedefsByFalse
.insert(*SubRegs
);
1848 // Predicate the 'true' block.
1849 PredicateBlock(*BBI1
, MBB1
.end(), *Cond1
, &RedefsByFalse
);
1851 // After predicating BBI1, if there is a predicated terminator in BBI1 and
1852 // a non-predicated in BBI2, then we don't want to predicate the one from
1853 // BBI2. The reason is that if we merged these blocks, we would end up with
1854 // two predicated terminators in the same block.
1855 // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't
1856 // predicate them either. They were checked to be identical, and so the
1857 // same branch would happen regardless of which path was taken.
1858 if (!MBB2
.empty() && (DI2
== MBB2
.end())) {
1859 MachineBasicBlock::iterator BBI1T
= MBB1
.getFirstTerminator();
1860 MachineBasicBlock::iterator BBI2T
= MBB2
.getFirstTerminator();
1861 bool BB1Predicated
= BBI1T
!= MBB1
.end() && TII
->isPredicated(*BBI1T
);
1862 bool BB2NonPredicated
= BBI2T
!= MBB2
.end() && !TII
->isPredicated(*BBI2T
);
1863 if (BB2NonPredicated
&& (BB1Predicated
|| !BBI2
->IsBrAnalyzable
))
1867 // Predicate the 'false' block.
1868 PredicateBlock(*BBI2
, DI2
, *Cond2
);
1870 // Merge the true block into the entry of the diamond.
1871 MergeBlocks(BBI
, *BBI1
, MergeAddEdges
);
1872 MergeBlocks(BBI
, *BBI2
, MergeAddEdges
);
1876 /// If convert an almost-diamond sub-CFG where the true
1877 /// and false blocks share a common tail.
1878 bool IfConverter::IfConvertForkedDiamond(
1879 BBInfo
&BBI
, IfcvtKind Kind
,
1880 unsigned NumDups1
, unsigned NumDups2
,
1881 bool TClobbersPred
, bool FClobbersPred
) {
1882 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1883 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1885 // Save the debug location for later.
1887 MachineBasicBlock::iterator TIE
= TrueBBI
.BB
->getFirstTerminator();
1888 if (TIE
!= TrueBBI
.BB
->end())
1889 dl
= TIE
->getDebugLoc();
1890 // Removing branches from both blocks is safe, because we have already
1891 // determined that both blocks have the same branch instructions. The branch
1892 // will be added back at the end, unpredicated.
1893 if (!IfConvertDiamondCommon(
1894 BBI
, TrueBBI
, FalseBBI
,
1896 TClobbersPred
, FClobbersPred
,
1897 /* RemoveBranch */ true, /* MergeAddEdges */ true))
1900 // Add back the branch.
1901 // Debug location saved above when removing the branch from BBI2
1902 TII
->insertBranch(*BBI
.BB
, TrueBBI
.TrueBB
, TrueBBI
.FalseBB
,
1903 TrueBBI
.BrCond
, dl
);
1905 // Update block info.
1906 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
1907 InvalidatePreds(*BBI
.BB
);
1909 // FIXME: Must maintain LiveIns.
1913 /// If convert a diamond sub-CFG.
1914 bool IfConverter::IfConvertDiamond(BBInfo
&BBI
, IfcvtKind Kind
,
1915 unsigned NumDups1
, unsigned NumDups2
,
1916 bool TClobbersPred
, bool FClobbersPred
) {
1917 BBInfo
&TrueBBI
= BBAnalysis
[BBI
.TrueBB
->getNumber()];
1918 BBInfo
&FalseBBI
= BBAnalysis
[BBI
.FalseBB
->getNumber()];
1919 MachineBasicBlock
*TailBB
= TrueBBI
.TrueBB
;
1921 // True block must fall through or end with an unanalyzable terminator.
1923 if (blockAlwaysFallThrough(TrueBBI
))
1924 TailBB
= FalseBBI
.TrueBB
;
1925 assert((TailBB
|| !TrueBBI
.IsBrAnalyzable
) && "Unexpected!");
1928 if (!IfConvertDiamondCommon(
1929 BBI
, TrueBBI
, FalseBBI
,
1931 TClobbersPred
, FClobbersPred
,
1932 /* RemoveBranch */ TrueBBI
.IsBrAnalyzable
,
1933 /* MergeAddEdges */ TailBB
== nullptr))
1936 // If the if-converted block falls through or unconditionally branches into
1937 // the tail block, and the tail block does not have other predecessors, then
1938 // fold the tail block in as well. Otherwise, unless it falls through to the
1939 // tail, add a unconditional branch to it.
1941 // We need to remove the edges to the true and false blocks manually since
1942 // we didn't let IfConvertDiamondCommon update the CFG.
1943 BBI
.BB
->removeSuccessor(TrueBBI
.BB
);
1944 BBI
.BB
->removeSuccessor(FalseBBI
.BB
, true);
1946 BBInfo
&TailBBI
= BBAnalysis
[TailBB
->getNumber()];
1947 bool CanMergeTail
= !TailBBI
.HasFallThrough
&&
1948 !TailBBI
.BB
->hasAddressTaken();
1949 // The if-converted block can still have a predicated terminator
1950 // (e.g. a predicated return). If that is the case, we cannot merge
1951 // it with the tail block.
1952 MachineBasicBlock::const_iterator TI
= BBI
.BB
->getFirstTerminator();
1953 if (TI
!= BBI
.BB
->end() && TII
->isPredicated(*TI
))
1954 CanMergeTail
= false;
1955 // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
1956 // check if there are any other predecessors besides those.
1957 unsigned NumPreds
= TailBB
->pred_size();
1959 CanMergeTail
= false;
1960 else if (NumPreds
== 1 && CanMergeTail
) {
1961 MachineBasicBlock::pred_iterator PI
= TailBB
->pred_begin();
1962 if (*PI
!= TrueBBI
.BB
&& *PI
!= FalseBBI
.BB
)
1963 CanMergeTail
= false;
1966 MergeBlocks(BBI
, TailBBI
);
1967 TailBBI
.IsDone
= true;
1969 BBI
.BB
->addSuccessor(TailBB
, BranchProbability::getOne());
1970 InsertUncondBranch(*BBI
.BB
, *TailBB
, TII
);
1971 BBI
.HasFallThrough
= false;
1975 // Update block info.
1976 BBI
.IsDone
= TrueBBI
.IsDone
= FalseBBI
.IsDone
= true;
1977 InvalidatePreds(*BBI
.BB
);
1979 // FIXME: Must maintain LiveIns.
1983 static bool MaySpeculate(const MachineInstr
&MI
,
1984 SmallSet
<MCPhysReg
, 4> &LaterRedefs
) {
1985 bool SawStore
= true;
1986 if (!MI
.isSafeToMove(nullptr, SawStore
))
1989 for (const MachineOperand
&MO
: MI
.operands()) {
1992 Register Reg
= MO
.getReg();
1995 if (MO
.isDef() && !LaterRedefs
.count(Reg
))
2002 /// Predicate instructions from the start of the block to the specified end with
2003 /// the specified condition.
2004 void IfConverter::PredicateBlock(BBInfo
&BBI
,
2005 MachineBasicBlock::iterator E
,
2006 SmallVectorImpl
<MachineOperand
> &Cond
,
2007 SmallSet
<MCPhysReg
, 4> *LaterRedefs
) {
2008 bool AnyUnpred
= false;
2009 bool MaySpec
= LaterRedefs
!= nullptr;
2010 for (MachineInstr
&I
: make_range(BBI
.BB
->begin(), E
)) {
2011 if (I
.isDebugInstr() || TII
->isPredicated(I
))
2013 // It may be possible not to predicate an instruction if it's the 'true'
2014 // side of a diamond and the 'false' side may re-define the instruction's
2016 if (MaySpec
&& MaySpeculate(I
, *LaterRedefs
)) {
2020 // If any instruction is predicated, then every instruction after it must
2023 if (!TII
->PredicateInstruction(I
, Cond
)) {
2025 dbgs() << "Unable to predicate " << I
<< "!\n";
2027 llvm_unreachable(nullptr);
2030 // If the predicated instruction now redefines a register as the result of
2031 // if-conversion, add an implicit kill.
2032 UpdatePredRedefs(I
, Redefs
);
2035 BBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2037 BBI
.IsAnalyzed
= false;
2038 BBI
.NonPredSize
= 0;
2045 /// Copy and predicate instructions from source BB to the destination block.
2046 /// Skip end of block branches if IgnoreBr is true.
2047 void IfConverter::CopyAndPredicateBlock(BBInfo
&ToBBI
, BBInfo
&FromBBI
,
2048 SmallVectorImpl
<MachineOperand
> &Cond
,
2050 MachineFunction
&MF
= *ToBBI
.BB
->getParent();
2052 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2053 for (MachineInstr
&I
: FromMBB
) {
2054 // Do not copy the end of the block branches.
2055 if (IgnoreBr
&& I
.isBranch())
2058 MachineInstr
*MI
= MF
.CloneMachineInstr(&I
);
2059 ToBBI
.BB
->insert(ToBBI
.BB
->end(), MI
);
2060 ToBBI
.NonPredSize
++;
2061 unsigned ExtraPredCost
= TII
->getPredicationCost(I
);
2062 unsigned NumCycles
= SchedModel
.computeInstrLatency(&I
, false);
2064 ToBBI
.ExtraCost
+= NumCycles
-1;
2065 ToBBI
.ExtraCost2
+= ExtraPredCost
;
2067 if (!TII
->isPredicated(I
) && !MI
->isDebugInstr()) {
2068 if (!TII
->PredicateInstruction(*MI
, Cond
)) {
2070 dbgs() << "Unable to predicate " << I
<< "!\n";
2072 llvm_unreachable(nullptr);
2076 // If the predicated instruction now redefines a register as the result of
2077 // if-conversion, add an implicit kill.
2078 UpdatePredRedefs(*MI
, Redefs
);
2082 std::vector
<MachineBasicBlock
*> Succs(FromMBB
.succ_begin(),
2083 FromMBB
.succ_end());
2084 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2085 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2087 for (MachineBasicBlock
*Succ
: Succs
) {
2088 // Fallthrough edge can't be transferred.
2089 if (Succ
== FallThrough
)
2091 ToBBI
.BB
->addSuccessor(Succ
);
2095 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2096 ToBBI
.Predicate
.append(Cond
.begin(), Cond
.end());
2098 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2099 ToBBI
.IsAnalyzed
= false;
2104 /// Move all instructions from FromBB to the end of ToBB. This will leave
2105 /// FromBB as an empty block, so remove all of its successor edges except for
2106 /// the fall-through edge. If AddEdges is true, i.e., when FromBBI's branch is
2107 /// being moved, add those successor edges to ToBBI and remove the old edge
2108 /// from ToBBI to FromBBI.
2109 void IfConverter::MergeBlocks(BBInfo
&ToBBI
, BBInfo
&FromBBI
, bool AddEdges
) {
2110 MachineBasicBlock
&FromMBB
= *FromBBI
.BB
;
2111 assert(!FromMBB
.hasAddressTaken() &&
2112 "Removing a BB whose address is taken!");
2114 // In case FromMBB contains terminators (e.g. return instruction),
2115 // first move the non-terminator instructions, then the terminators.
2116 MachineBasicBlock::iterator FromTI
= FromMBB
.getFirstTerminator();
2117 MachineBasicBlock::iterator ToTI
= ToBBI
.BB
->getFirstTerminator();
2118 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromMBB
.begin(), FromTI
);
2120 // If FromBB has non-predicated terminator we should copy it at the end.
2121 if (FromTI
!= FromMBB
.end() && !TII
->isPredicated(*FromTI
))
2122 ToTI
= ToBBI
.BB
->end();
2123 ToBBI
.BB
->splice(ToTI
, &FromMBB
, FromTI
, FromMBB
.end());
2125 // Force normalizing the successors' probabilities of ToBBI.BB to convert all
2126 // unknown probabilities into known ones.
2127 // FIXME: This usage is too tricky and in the future we would like to
2128 // eliminate all unknown probabilities in MBB.
2129 if (ToBBI
.IsBrAnalyzable
)
2130 ToBBI
.BB
->normalizeSuccProbs();
2132 SmallVector
<MachineBasicBlock
*, 4> FromSuccs(FromMBB
.succ_begin(),
2133 FromMBB
.succ_end());
2134 MachineBasicBlock
*NBB
= getNextBlock(FromMBB
);
2135 MachineBasicBlock
*FallThrough
= FromBBI
.HasFallThrough
? NBB
: nullptr;
2136 // The edge probability from ToBBI.BB to FromMBB, which is only needed when
2137 // AddEdges is true and FromMBB is a successor of ToBBI.BB.
2138 auto To2FromProb
= BranchProbability::getZero();
2139 if (AddEdges
&& ToBBI
.BB
->isSuccessor(&FromMBB
)) {
2140 // Remove the old edge but remember the edge probability so we can calculate
2141 // the correct weights on the new edges being added further down.
2142 To2FromProb
= MBPI
->getEdgeProbability(ToBBI
.BB
, &FromMBB
);
2143 ToBBI
.BB
->removeSuccessor(&FromMBB
);
2146 for (MachineBasicBlock
*Succ
: FromSuccs
) {
2147 // Fallthrough edge can't be transferred.
2148 if (Succ
== FallThrough
)
2151 auto NewProb
= BranchProbability::getZero();
2153 // Calculate the edge probability for the edge from ToBBI.BB to Succ,
2154 // which is a portion of the edge probability from FromMBB to Succ. The
2155 // portion ratio is the edge probability from ToBBI.BB to FromMBB (if
2156 // FromBBI is a successor of ToBBI.BB. See comment below for exception).
2157 NewProb
= MBPI
->getEdgeProbability(&FromMBB
, Succ
);
2159 // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This
2160 // only happens when if-converting a diamond CFG and FromMBB is the
2161 // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we
2162 // could just use the probabilities on FromMBB's out-edges when adding
2164 if (!To2FromProb
.isZero())
2165 NewProb
*= To2FromProb
;
2168 FromMBB
.removeSuccessor(Succ
);
2171 // If the edge from ToBBI.BB to Succ already exists, update the
2172 // probability of this edge by adding NewProb to it. An example is shown
2173 // below, in which A is ToBBI.BB and B is FromMBB. In this case we
2174 // don't have to set C as A's successor as it already is. We only need to
2175 // update the edge probability on A->C. Note that B will not be
2176 // immediately removed from A's successors. It is possible that B->D is
2177 // not removed either if D is a fallthrough of B. Later the edge A->D
2178 // (generated here) and B->D will be combined into one edge. To maintain
2179 // correct edge probability of this combined edge, we need to set the edge
2180 // probability of A->B to zero, which is already done above. The edge
2181 // probability on A->D is calculated by scaling the original probability
2182 // on A->B by the probability of B->D.
2184 // Before ifcvt: After ifcvt (assume B->D is kept):
2193 if (ToBBI
.BB
->isSuccessor(Succ
))
2194 ToBBI
.BB
->setSuccProbability(
2195 find(ToBBI
.BB
->successors(), Succ
),
2196 MBPI
->getEdgeProbability(ToBBI
.BB
, Succ
) + NewProb
);
2198 ToBBI
.BB
->addSuccessor(Succ
, NewProb
);
2202 // Move the now empty FromMBB out of the way to the end of the function so
2203 // it doesn't interfere with fallthrough checks done by canFallThroughTo().
2204 MachineBasicBlock
*Last
= &*FromMBB
.getParent()->rbegin();
2205 if (Last
!= &FromMBB
)
2206 FromMBB
.moveAfter(Last
);
2208 // Normalize the probabilities of ToBBI.BB's successors with all adjustment
2209 // we've done above.
2210 if (ToBBI
.IsBrAnalyzable
&& FromBBI
.IsBrAnalyzable
)
2211 ToBBI
.BB
->normalizeSuccProbs();
2213 ToBBI
.Predicate
.append(FromBBI
.Predicate
.begin(), FromBBI
.Predicate
.end());
2214 FromBBI
.Predicate
.clear();
2216 ToBBI
.NonPredSize
+= FromBBI
.NonPredSize
;
2217 ToBBI
.ExtraCost
+= FromBBI
.ExtraCost
;
2218 ToBBI
.ExtraCost2
+= FromBBI
.ExtraCost2
;
2219 FromBBI
.NonPredSize
= 0;
2220 FromBBI
.ExtraCost
= 0;
2221 FromBBI
.ExtraCost2
= 0;
2223 ToBBI
.ClobbersPred
|= FromBBI
.ClobbersPred
;
2224 ToBBI
.HasFallThrough
= FromBBI
.HasFallThrough
;
2225 ToBBI
.IsAnalyzed
= false;
2226 FromBBI
.IsAnalyzed
= false;
2230 llvm::createIfConverter(std::function
<bool(const MachineFunction
&)> Ftor
) {
2231 return new IfConverter(std::move(Ftor
));