1 //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
11 // This file defines the interleaved-load-combine pass. The pass searches for
12 // ShuffleVectorInstruction that execute interleaving loads. If a matching
13 // pattern is found, it adds a combined load and further instructions in a
14 // pattern that is detectable by InterleavedAccesPass. The old instructions are
15 // left dead to be removed later. The pass is specifically designed to be
16 // executed just before InterleavedAccesPass to find any left-over instances
17 // that are not detected within former passes.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/MemoryLocation.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/LegacyPassManager.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include "llvm/Target/TargetMachine.h"
49 #define DEBUG_TYPE "interleaved-load-combine"
54 STATISTIC(NumInterleavedLoadCombine
, "Number of combined loads");
56 /// Option to disable the pass
57 static cl::opt
<bool> DisableInterleavedLoadCombine(
58 "disable-" DEBUG_TYPE
, cl::init(false), cl::Hidden
,
59 cl::desc("Disable combining of interleaved loads"));
63 struct InterleavedLoadCombineImpl
{
65 InterleavedLoadCombineImpl(Function
&F
, DominatorTree
&DT
, MemorySSA
&MSSA
,
67 : F(F
), DT(DT
), MSSA(MSSA
),
68 TLI(*TM
.getSubtargetImpl(F
)->getTargetLowering()),
69 TTI(TM
.getTargetTransformInfo(F
)) {}
71 /// Scan the function for interleaved load candidates and execute the
72 /// replacement if applicable.
76 /// Function this pass is working on
79 /// Dominator Tree Analysis
82 /// Memory Alias Analyses
85 /// Target Lowering Information
86 const TargetLowering
&TLI
;
88 /// Target Transform Information
89 const TargetTransformInfo TTI
;
91 /// Find the instruction in sets LIs that dominates all others, return nullptr
93 LoadInst
*findFirstLoad(const std::set
<LoadInst
*> &LIs
);
95 /// Replace interleaved load candidates. It does additional
96 /// analyses if this makes sense. Returns true on success and false
97 /// of nothing has been changed.
98 bool combine(std::list
<VectorInfo
> &InterleavedLoad
,
99 OptimizationRemarkEmitter
&ORE
);
101 /// Given a set of VectorInfo containing candidates for a given interleave
102 /// factor, find a set that represents a 'factor' interleaved load.
103 bool findPattern(std::list
<VectorInfo
> &Candidates
,
104 std::list
<VectorInfo
> &InterleavedLoad
, unsigned Factor
,
105 const DataLayout
&DL
);
106 }; // InterleavedLoadCombine
108 /// First Order Polynomial on an n-Bit Integer Value
110 /// Polynomial(Value) = Value * B + A + E*2^(n-e)
112 /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
113 /// significant bits. It is introduced if an exact computation cannot be proven
114 /// (e.q. division by 2).
116 /// As part of this optimization multiple loads will be combined. It necessary
117 /// to prove that loads are within some relative offset to each other. This
118 /// class is used to prove relative offsets of values loaded from memory.
120 /// Representing an integer in this form is sound since addition in two's
121 /// complement is associative (trivial) and multiplication distributes over the
122 /// addition (see Proof(1) in Polynomial::mul). Further, both operations
126 // declare @fn(i64 %IDX, <4 x float>* %PTR) {
127 // %Pa1 = add i64 %IDX, 2
128 // %Pa2 = lshr i64 %Pa1, 1
129 // %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
130 // %Va = load <4 x float>, <4 x float>* %Pa3
132 // %Pb1 = add i64 %IDX, 4
133 // %Pb2 = lshr i64 %Pb1, 1
134 // %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
135 // %Vb = load <4 x float>, <4 x float>* %Pb3
138 // The goal is to prove that two loads load consecutive addresses.
140 // In this case the polynomials are constructed by the following
143 // The number tag #e specifies the error bits.
146 // Pa_1 = %IDX + 2 #0 | add 2
147 // Pa_2 = %IDX/2 + 1 #1 | lshr 1
148 // Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
149 // Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
150 // Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
153 // Pb_1 = %IDX + 4 #0 | add 2
154 // Pb_2 = %IDX/2 + 2 #1 | lshr 1
155 // Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
156 // Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
157 // Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
159 // Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
161 // Remark: %PTR is not maintained within this class. So in this instance the
162 // offset of 16 can only be assumed if the pointers are equal.
173 /// Number of Error Bits e
180 SmallVector
<std::pair
<BOps
, APInt
>, 4> B
;
186 Polynomial(Value
*V
) : ErrorMSBs((unsigned)-1), V(V
), B(), A() {
187 IntegerType
*Ty
= dyn_cast
<IntegerType
>(V
->getType());
191 A
= APInt(Ty
->getBitWidth(), 0);
195 Polynomial(const APInt
&A
, unsigned ErrorMSBs
= 0)
196 : ErrorMSBs(ErrorMSBs
), V(NULL
), B(), A(A
) {}
198 Polynomial(unsigned BitWidth
, uint64_t A
, unsigned ErrorMSBs
= 0)
199 : ErrorMSBs(ErrorMSBs
), V(NULL
), B(), A(BitWidth
, A
) {}
201 Polynomial() : ErrorMSBs((unsigned)-1), V(NULL
), B(), A() {}
203 /// Increment and clamp the number of undefined bits.
204 void incErrorMSBs(unsigned amt
) {
205 if (ErrorMSBs
== (unsigned)-1)
209 if (ErrorMSBs
> A
.getBitWidth())
210 ErrorMSBs
= A
.getBitWidth();
213 /// Decrement and clamp the number of undefined bits.
214 void decErrorMSBs(unsigned amt
) {
215 if (ErrorMSBs
== (unsigned)-1)
224 /// Apply an add on the polynomial
225 Polynomial
&add(const APInt
&C
) {
226 // Note: Addition is associative in two's complement even when in case of
229 // Error bits can only propagate into higher significant bits. As these are
230 // already regarded as undefined, there is no change.
232 // Theorem: Adding a constant to a polynomial does not change the error
237 // Since the addition is associative and commutes:
239 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
242 if (C
.getBitWidth() != A
.getBitWidth()) {
243 ErrorMSBs
= (unsigned)-1;
251 /// Apply a multiplication onto the polynomial.
252 Polynomial
&mul(const APInt
&C
) {
253 // Note: Multiplication distributes over the addition
255 // Theorem: Multiplication distributes over the addition
260 // = (B + A) + (B + A) + .. {C Times}
261 // addition is associative and commutes, hence
262 // = B + B + .. {C Times} .. + A + A + .. {C times}
264 // (see (function add) for signed values and overflows)
267 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
272 // Let B' and A' be the n-Bit inputs with some unknown errors EA,
273 // EB at e leading bits. B' and A' can be written down as:
275 // B' = B + 2^(n-e)*EB
276 // A' = A + 2^(n-e)*EA
278 // Let C' be an input with c trailing zero bits. C' can be written as
282 // Therefore we can compute the result by using distributivity and
285 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
286 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
288 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
289 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
290 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
292 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
294 // Let EC be the final error with EC = C*(EB + EA)
296 // = (B + A)*C' + EC*2^(n-e)*2^c =
297 // = (B + A)*C' + EC*2^(n-(e-c))
299 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
300 // less error bits than the input. c bits are shifted out to the left.
303 if (C
.getBitWidth() != A
.getBitWidth()) {
304 ErrorMSBs
= (unsigned)-1;
308 // Multiplying by one is a no-op.
309 if (C
.isOneValue()) {
313 // Multiplying by zero removes the coefficient B and defines all bits.
314 if (C
.isNullValue()) {
319 // See Proof(2): Trailing zero bits indicate a left shift. This removes
320 // leading bits from the result even if they are undefined.
321 decErrorMSBs(C
.countTrailingZeros());
324 pushBOperation(Mul
, C
);
328 /// Apply a logical shift right on the polynomial
329 Polynomial
&lshr(const APInt
&C
) {
330 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
333 // E is a e-bit number,
334 // E' is a e'-bit number,
335 // holds under the following precondition:
337 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
338 // where >> expresses a logical shift to the right, with adding zeros.
340 // We need to show that for every, E there is a E'
342 // B = b_h * 2^(n-1) + b_m * 2 + b_l
343 // A = a_h * 2^(n-1) + a_m * 2 (pre(1))
345 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
347 // Let X = (B + A + E*2^(n-e)) >> 1
348 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
350 // X = [B + A + E*2^(n-e)] >> 1 =
351 // = [ b_h * 2^(n-1) + b_m * 2 + b_l +
352 // + a_h * 2^(n-1) + a_m * 2 +
353 // + E * 2^(n-e) ] >> 1 =
355 // The sum is built by putting the overflow of [a_m + b+n] into the term
356 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
357 // this bit is discarded. This is expressed by % 2.
359 // The bit in position 0 cannot overflow into the term (b_m + a_m).
361 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
362 // + ((b_m + a_m) % 2^(n-2)) * 2 +
363 // + b_l + E * 2^(n-e) ] >> 1 =
365 // The shift is computed by dividing the terms by 2 and by cutting off
368 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
369 // + ((b_m + a_m) % 2^(n-2)) +
370 // + E * 2^(n-(e+1)) =
372 // by the definition in the Theorem e+1 = e'
374 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
375 // + ((b_m + a_m) % 2^(n-2)) +
378 // Compute Y by applying distributivity first
380 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
381 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
382 // + (a_h * 2^(n-1) + a_m * 2) >> 1 +
383 // + E * 2^(n-e) >> 1 =
385 // Again, the shift is computed by dividing the terms by 2 and by cutting
388 // = b_h * 2^(n-2) + b_m +
389 // + a_h * 2^(n-2) + a_m +
390 // + E * 2^(n-(e+1)) =
392 // Again, the sum is built by putting the overflow of [a_m + b+n] into
393 // the term 2^(n-1). But this time there is room for a second bit in the
394 // term 2^(n-2) we add this bit to a new term and denote it o_h in a
397 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
398 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
399 // + ((b_m + a_m) % 2^(n-2)) +
400 // + E * 2^(n-(e+1)) =
402 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
403 // Further replace e+1 by e'.
406 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
407 // + ((b_m + a_m) % 2^(n-2)) +
410 // Move o_h into the error term and construct E'. To ensure that there is
411 // no 2^x with negative x, this step requires pre(2) (e < n).
413 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
414 // + ((b_m + a_m) % 2^(n-2)) +
415 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
416 // | out of the old exponent
418 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
419 // + ((b_m + a_m) % 2^(n-2)) +
420 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
421 // | the old exponent
423 // Let E' = o_h * 2^(e'-1) + E
425 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
426 // + ((b_m + a_m) % 2^(n-2)) +
429 // Because X and Y are distinct only in there error terms and E' can be
430 // constructed as shown the theorem holds.
433 // For completeness in case of the case e=n it is also required to show that
434 // distributivity can be applied.
436 // In this case Theorem(1) transforms to (the pre-condition on A can also be
439 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
441 // A, B, E, E' are two's complement numbers with the same bit
445 // Let (B >> 1) + (A >> 1) = Y
447 // Therefore we need to show that for every X and Y there is an E' which
448 // makes the equation
452 // hold. This is trivially the case for E' = X - Y.
456 // Remark: Distributing lshr with and arbitrary number n can be expressed as
457 // ((((B + A) lshr 1) lshr 1) ... ) {n times}.
458 // This construction induces n additional error bits at the left.
460 if (C
.getBitWidth() != A
.getBitWidth()) {
461 ErrorMSBs
= (unsigned)-1;
468 // Test if the result will be zero
469 unsigned shiftAmt
= C
.getZExtValue();
470 if (shiftAmt
>= C
.getBitWidth())
471 return mul(APInt(C
.getBitWidth(), 0));
473 // The proof that shiftAmt LSBs are zero for at least one summand is only
474 // possible for the constant number.
476 // If this can be proven add shiftAmt to the error counter
477 // `ErrorMSBs`. Otherwise set all bits as undefined.
478 if (A
.countTrailingZeros() < shiftAmt
)
479 ErrorMSBs
= A
.getBitWidth();
481 incErrorMSBs(shiftAmt
);
483 // Apply the operation.
484 pushBOperation(LShr
, C
);
485 A
= A
.lshr(shiftAmt
);
490 /// Apply a sign-extend or truncate operation on the polynomial.
491 Polynomial
&sextOrTrunc(unsigned n
) {
492 if (n
< A
.getBitWidth()) {
493 // Truncate: Clearly undefined Bits on the MSB side are removed
495 decErrorMSBs(A
.getBitWidth() - n
);
497 pushBOperation(Trunc
, APInt(sizeof(n
) * 8, n
));
499 if (n
> A
.getBitWidth()) {
500 // Extend: Clearly extending first and adding later is different
501 // to adding first and extending later in all extended bits.
502 incErrorMSBs(n
- A
.getBitWidth());
504 pushBOperation(SExt
, APInt(sizeof(n
) * 8, n
));
510 /// Test if there is a coefficient B.
511 bool isFirstOrder() const { return V
!= nullptr; }
513 /// Test coefficient B of two Polynomials are equal.
514 bool isCompatibleTo(const Polynomial
&o
) const {
515 // The polynomial use different bit width.
516 if (A
.getBitWidth() != o
.A
.getBitWidth())
519 // If neither Polynomial has the Coefficient B.
520 if (!isFirstOrder() && !o
.isFirstOrder())
523 // The index variable is different.
527 // Check the operations.
528 if (B
.size() != o
.B
.size())
531 auto ob
= o
.B
.begin();
541 /// Subtract two polynomials, return an undefined polynomial if
542 /// subtraction is not possible.
543 Polynomial
operator-(const Polynomial
&o
) const {
544 // Return an undefined polynomial if incompatible.
545 if (!isCompatibleTo(o
))
548 // If the polynomials are compatible (meaning they have the same
549 // coefficient on B), B is eliminated. Thus a polynomial solely
550 // containing A is returned
551 return Polynomial(A
- o
.A
, std::max(ErrorMSBs
, o
.ErrorMSBs
));
554 /// Subtract a constant from a polynomial,
555 Polynomial
operator-(uint64_t C
) const {
556 Polynomial
Result(*this);
561 /// Add a constant to a polynomial,
562 Polynomial
operator+(uint64_t C
) const {
563 Polynomial
Result(*this);
568 /// Returns true if it can be proven that two Polynomials are equal.
569 bool isProvenEqualTo(const Polynomial
&o
) {
570 // Subtract both polynomials and test if it is fully defined and zero.
571 Polynomial r
= *this - o
;
572 return (r
.ErrorMSBs
== 0) && (!r
.isFirstOrder()) && (r
.A
.isNullValue());
575 /// Print the polynomial into a stream.
576 void print(raw_ostream
&OS
) const {
577 OS
<< "[{#ErrBits:" << ErrorMSBs
<< "} ";
582 OS
<< "(" << *V
<< ") ";
600 OS
<< b
.second
<< ") ";
604 OS
<< "+ " << A
<< "]";
613 void pushBOperation(const BOps Op
, const APInt
&C
) {
614 if (isFirstOrder()) {
615 B
.push_back(std::make_pair(Op
, C
));
622 static raw_ostream
&operator<<(raw_ostream
&OS
, const Polynomial
&S
) {
628 /// VectorInfo stores abstract the following information for each vector
631 /// 1) The the memory address loaded into the element as Polynomial
632 /// 2) a set of load instruction necessary to construct the vector,
633 /// 3) a set of all other instructions that are necessary to create the vector and
634 /// 4) a pointer value that can be used as relative base for all elements.
637 VectorInfo(const VectorInfo
&c
) : VTy(c
.VTy
) {
639 "Copying VectorInfo is neither implemented nor necessary,");
643 /// Information of a Vector Element
645 /// Offset Polynomial.
648 /// The Load Instruction used to Load the entry. LI is null if the pointer
649 /// of the load instruction does not point on to the entry
652 ElementInfo(Polynomial Offset
= Polynomial(), LoadInst
*LI
= nullptr)
653 : Ofs(Offset
), LI(LI
) {}
656 /// Basic-block the load instructions are within
659 /// Pointer value of all participation load instructions
662 /// Participating load instructions
663 std::set
<LoadInst
*> LIs
;
665 /// Participating instructions
666 std::set
<Instruction
*> Is
;
668 /// Final shuffle-vector instruction
669 ShuffleVectorInst
*SVI
;
671 /// Information of the offset for each vector element
675 VectorType
*const VTy
;
677 VectorInfo(VectorType
*VTy
)
678 : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy
) {
679 EI
= new ElementInfo
[VTy
->getNumElements()];
682 virtual ~VectorInfo() { delete[] EI
; }
684 unsigned getDimension() const { return VTy
->getNumElements(); }
686 /// Test if the VectorInfo can be part of an interleaved load with the
687 /// specified factor.
689 /// \param Factor of the interleave
690 /// \param DL Targets Datalayout
692 /// \returns true if this is possible and false if not
693 bool isInterleaved(unsigned Factor
, const DataLayout
&DL
) const {
694 unsigned Size
= DL
.getTypeAllocSize(VTy
->getElementType());
695 for (unsigned i
= 1; i
< getDimension(); i
++) {
696 if (!EI
[i
].Ofs
.isProvenEqualTo(EI
[0].Ofs
+ i
* Factor
* Size
)) {
703 /// Recursively computes the vector information stored in V.
705 /// This function delegates the work to specialized implementations
707 /// \param V Value to operate on
708 /// \param Result Result of the computation
710 /// \returns false if no sensible information can be gathered.
711 static bool compute(Value
*V
, VectorInfo
&Result
, const DataLayout
&DL
) {
712 ShuffleVectorInst
*SVI
= dyn_cast
<ShuffleVectorInst
>(V
);
714 return computeFromSVI(SVI
, Result
, DL
);
715 LoadInst
*LI
= dyn_cast
<LoadInst
>(V
);
717 return computeFromLI(LI
, Result
, DL
);
718 BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(V
);
720 return computeFromBCI(BCI
, Result
, DL
);
724 /// BitCastInst specialization to compute the vector information.
726 /// \param BCI BitCastInst to operate on
727 /// \param Result Result of the computation
729 /// \returns false if no sensible information can be gathered.
730 static bool computeFromBCI(BitCastInst
*BCI
, VectorInfo
&Result
,
731 const DataLayout
&DL
) {
732 Instruction
*Op
= dyn_cast
<Instruction
>(BCI
->getOperand(0));
737 VectorType
*VTy
= dyn_cast
<VectorType
>(Op
->getType());
741 // We can only cast from large to smaller vectors
742 if (Result
.VTy
->getNumElements() % VTy
->getNumElements())
745 unsigned Factor
= Result
.VTy
->getNumElements() / VTy
->getNumElements();
746 unsigned NewSize
= DL
.getTypeAllocSize(Result
.VTy
->getElementType());
747 unsigned OldSize
= DL
.getTypeAllocSize(VTy
->getElementType());
749 if (NewSize
* Factor
!= OldSize
)
753 if (!compute(Op
, Old
, DL
))
756 for (unsigned i
= 0; i
< Result
.VTy
->getNumElements(); i
+= Factor
) {
757 for (unsigned j
= 0; j
< Factor
; j
++) {
759 ElementInfo(Old
.EI
[i
/ Factor
].Ofs
+ j
* NewSize
,
760 j
== 0 ? Old
.EI
[i
/ Factor
].LI
: nullptr);
766 Result
.LIs
.insert(Old
.LIs
.begin(), Old
.LIs
.end());
767 Result
.Is
.insert(Old
.Is
.begin(), Old
.Is
.end());
768 Result
.Is
.insert(BCI
);
769 Result
.SVI
= nullptr;
774 /// ShuffleVectorInst specialization to compute vector information.
776 /// \param SVI ShuffleVectorInst to operate on
777 /// \param Result Result of the computation
779 /// Compute the left and the right side vector information and merge them by
780 /// applying the shuffle operation. This function also ensures that the left
781 /// and right side have compatible loads. This means that all loads are with
782 /// in the same basic block and are based on the same pointer.
784 /// \returns false if no sensible information can be gathered.
785 static bool computeFromSVI(ShuffleVectorInst
*SVI
, VectorInfo
&Result
,
786 const DataLayout
&DL
) {
787 VectorType
*ArgTy
= dyn_cast
<VectorType
>(SVI
->getOperand(0)->getType());
788 assert(ArgTy
&& "ShuffleVector Operand is not a VectorType");
790 // Compute the left hand vector information.
791 VectorInfo
LHS(ArgTy
);
792 if (!compute(SVI
->getOperand(0), LHS
, DL
))
795 // Compute the right hand vector information.
796 VectorInfo
RHS(ArgTy
);
797 if (!compute(SVI
->getOperand(1), RHS
, DL
))
800 // Neither operand produced sensible results?
801 if (!LHS
.BB
&& !RHS
.BB
)
803 // Only RHS produced sensible results?
808 // Only LHS produced sensible results?
813 // Both operands produced sensible results?
814 else if ((LHS
.BB
== RHS
.BB
) && (LHS
.PV
== RHS
.PV
)) {
818 // Both operands produced sensible results but they are incompatible.
823 // Merge and apply the operation on the offset information.
825 Result
.LIs
.insert(LHS
.LIs
.begin(), LHS
.LIs
.end());
826 Result
.Is
.insert(LHS
.Is
.begin(), LHS
.Is
.end());
829 Result
.LIs
.insert(RHS
.LIs
.begin(), RHS
.LIs
.end());
830 Result
.Is
.insert(RHS
.Is
.begin(), RHS
.Is
.end());
832 Result
.Is
.insert(SVI
);
836 for (int i
: SVI
->getShuffleMask()) {
837 assert((i
< 2 * (signed)ArgTy
->getNumElements()) &&
838 "Invalid ShuffleVectorInst (index out of bounds)");
841 Result
.EI
[j
] = ElementInfo();
842 else if (i
< (signed)ArgTy
->getNumElements()) {
844 Result
.EI
[j
] = LHS
.EI
[i
];
846 Result
.EI
[j
] = ElementInfo();
849 Result
.EI
[j
] = RHS
.EI
[i
- ArgTy
->getNumElements()];
851 Result
.EI
[j
] = ElementInfo();
859 /// LoadInst specialization to compute vector information.
861 /// This function also acts as abort condition to the recursion.
863 /// \param LI LoadInst to operate on
864 /// \param Result Result of the computation
866 /// \returns false if no sensible information can be gathered.
867 static bool computeFromLI(LoadInst
*LI
, VectorInfo
&Result
,
868 const DataLayout
&DL
) {
872 if (LI
->isVolatile())
878 // Get the base polynomial
879 computePolynomialFromPointer(*LI
->getPointerOperand(), Offset
, BasePtr
, DL
);
881 Result
.BB
= LI
->getParent();
883 Result
.LIs
.insert(LI
);
884 Result
.Is
.insert(LI
);
886 for (unsigned i
= 0; i
< Result
.getDimension(); i
++) {
888 ConstantInt::get(Type::getInt32Ty(LI
->getContext()), 0),
889 ConstantInt::get(Type::getInt32Ty(LI
->getContext()), i
),
891 int64_t Ofs
= DL
.getIndexedOffsetInType(Result
.VTy
, makeArrayRef(Idx
, 2));
892 Result
.EI
[i
] = ElementInfo(Offset
+ Ofs
, i
== 0 ? LI
: nullptr);
898 /// Recursively compute polynomial of a value.
900 /// \param BO Input binary operation
901 /// \param Result Result polynomial
902 static void computePolynomialBinOp(BinaryOperator
&BO
, Polynomial
&Result
) {
903 Value
*LHS
= BO
.getOperand(0);
904 Value
*RHS
= BO
.getOperand(1);
906 // Find the RHS Constant if any
907 ConstantInt
*C
= dyn_cast
<ConstantInt
>(RHS
);
908 if ((!C
) && BO
.isCommutative()) {
909 C
= dyn_cast
<ConstantInt
>(LHS
);
914 switch (BO
.getOpcode()) {
915 case Instruction::Add
:
919 computePolynomial(*LHS
, Result
);
920 Result
.add(C
->getValue());
923 case Instruction::LShr
:
927 computePolynomial(*LHS
, Result
);
928 Result
.lshr(C
->getValue());
935 Result
= Polynomial(&BO
);
938 /// Recursively compute polynomial of a value
940 /// \param V input value
941 /// \param Result result polynomial
942 static void computePolynomial(Value
&V
, Polynomial
&Result
) {
943 if (isa
<BinaryOperator
>(&V
))
944 computePolynomialBinOp(*dyn_cast
<BinaryOperator
>(&V
), Result
);
946 Result
= Polynomial(&V
);
949 /// Compute the Polynomial representation of a Pointer type.
951 /// \param Ptr input pointer value
952 /// \param Result result polynomial
953 /// \param BasePtr pointer the polynomial is based on
954 /// \param DL Datalayout of the target machine
955 static void computePolynomialFromPointer(Value
&Ptr
, Polynomial
&Result
,
957 const DataLayout
&DL
) {
958 // Not a pointer type? Return an undefined polynomial
959 PointerType
*PtrTy
= dyn_cast
<PointerType
>(Ptr
.getType());
961 Result
= Polynomial();
965 unsigned PointerBits
=
966 DL
.getIndexSizeInBits(PtrTy
->getPointerAddressSpace());
968 /// Skip pointer casts. Return Zero polynomial otherwise
969 if (isa
<CastInst
>(&Ptr
)) {
970 CastInst
&CI
= *cast
<CastInst
>(&Ptr
);
971 switch (CI
.getOpcode()) {
972 case Instruction::BitCast
:
973 computePolynomialFromPointer(*CI
.getOperand(0), Result
, BasePtr
, DL
);
977 Polynomial(PointerBits
, 0);
981 /// Resolve GetElementPtrInst.
982 else if (isa
<GetElementPtrInst
>(&Ptr
)) {
983 GetElementPtrInst
&GEP
= *cast
<GetElementPtrInst
>(&Ptr
);
985 APInt
BaseOffset(PointerBits
, 0);
987 // Check if we can compute the Offset with accumulateConstantOffset
988 if (GEP
.accumulateConstantOffset(DL
, BaseOffset
)) {
989 Result
= Polynomial(BaseOffset
);
990 BasePtr
= GEP
.getPointerOperand();
993 // Otherwise we allow that the last index operand of the GEP is
995 unsigned idxOperand
, e
;
996 SmallVector
<Value
*, 4> Indices
;
997 for (idxOperand
= 1, e
= GEP
.getNumOperands(); idxOperand
< e
;
999 ConstantInt
*IDX
= dyn_cast
<ConstantInt
>(GEP
.getOperand(idxOperand
));
1002 Indices
.push_back(IDX
);
1005 // It must also be the last operand.
1006 if (idxOperand
+ 1 != e
) {
1007 Result
= Polynomial();
1012 // Compute the polynomial of the index operand.
1013 computePolynomial(*GEP
.getOperand(idxOperand
), Result
);
1015 // Compute base offset from zero based index, excluding the last
1016 // variable operand.
1018 DL
.getIndexedOffsetInType(GEP
.getSourceElementType(), Indices
);
1020 // Apply the operations of GEP to the polynomial.
1021 unsigned ResultSize
= DL
.getTypeAllocSize(GEP
.getResultElementType());
1022 Result
.sextOrTrunc(PointerBits
);
1023 Result
.mul(APInt(PointerBits
, ResultSize
));
1024 Result
.add(BaseOffset
);
1025 BasePtr
= GEP
.getPointerOperand();
1028 // All other instructions are handled by using the value as base pointer and
1029 // a zero polynomial.
1032 Polynomial(DL
.getIndexSizeInBits(PtrTy
->getPointerAddressSpace()), 0);
1037 void print(raw_ostream
&OS
) const {
1043 for (unsigned i
= 0; i
< getDimension(); i
++)
1044 OS
<< ((i
== 0) ? "[" : ", ") << EI
[i
].Ofs
;
1050 } // anonymous namespace
1052 bool InterleavedLoadCombineImpl::findPattern(
1053 std::list
<VectorInfo
> &Candidates
, std::list
<VectorInfo
> &InterleavedLoad
,
1054 unsigned Factor
, const DataLayout
&DL
) {
1055 for (auto C0
= Candidates
.begin(), E0
= Candidates
.end(); C0
!= E0
; ++C0
) {
1057 // Try to find an interleaved load using the front of Worklist as first line
1058 unsigned Size
= DL
.getTypeAllocSize(C0
->VTy
->getElementType());
1060 // List containing iterators pointing to the VectorInfos of the candidates
1061 std::vector
<std::list
<VectorInfo
>::iterator
> Res(Factor
, Candidates
.end());
1063 for (auto C
= Candidates
.begin(), E
= Candidates
.end(); C
!= E
; C
++) {
1064 if (C
->VTy
!= C0
->VTy
)
1066 if (C
->BB
!= C0
->BB
)
1068 if (C
->PV
!= C0
->PV
)
1071 // Check the current value matches any of factor - 1 remaining lines
1072 for (i
= 1; i
< Factor
; i
++) {
1073 if (C
->EI
[0].Ofs
.isProvenEqualTo(C0
->EI
[0].Ofs
+ i
* Size
)) {
1078 for (i
= 1; i
< Factor
; i
++) {
1079 if (Res
[i
] == Candidates
.end())
1088 if (Res
[0] != Candidates
.end()) {
1089 // Move the result into the output
1090 for (unsigned i
= 0; i
< Factor
; i
++) {
1091 InterleavedLoad
.splice(InterleavedLoad
.end(), Candidates
, Res
[i
]);
1101 InterleavedLoadCombineImpl::findFirstLoad(const std::set
<LoadInst
*> &LIs
) {
1102 assert(!LIs
.empty() && "No load instructions given.");
1104 // All LIs are within the same BB. Select the first for a reference.
1105 BasicBlock
*BB
= (*LIs
.begin())->getParent();
1106 BasicBlock::iterator FLI
=
1107 std::find_if(BB
->begin(), BB
->end(), [&LIs
](Instruction
&I
) -> bool {
1108 return is_contained(LIs
, &I
);
1110 assert(FLI
!= BB
->end());
1112 return cast
<LoadInst
>(FLI
);
1115 bool InterleavedLoadCombineImpl::combine(std::list
<VectorInfo
> &InterleavedLoad
,
1116 OptimizationRemarkEmitter
&ORE
) {
1117 LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1119 // The insertion point is the LoadInst which loads the first values. The
1120 // following tests are used to proof that the combined load can be inserted
1121 // just before InsertionPoint.
1122 LoadInst
*InsertionPoint
= InterleavedLoad
.front().EI
[0].LI
;
1124 // Test if the offset is computed
1125 if (!InsertionPoint
)
1128 std::set
<LoadInst
*> LIs
;
1129 std::set
<Instruction
*> Is
;
1130 std::set
<Instruction
*> SVIs
;
1132 unsigned InterleavedCost
;
1133 unsigned InstructionCost
= 0;
1135 // Get the interleave factor
1136 unsigned Factor
= InterleavedLoad
.size();
1138 // Merge all input sets used in analysis
1139 for (auto &VI
: InterleavedLoad
) {
1140 // Generate a set of all load instructions to be combined
1141 LIs
.insert(VI
.LIs
.begin(), VI
.LIs
.end());
1143 // Generate a set of all instructions taking part in load
1144 // interleaved. This list excludes the instructions necessary for the
1145 // polynomial construction.
1146 Is
.insert(VI
.Is
.begin(), VI
.Is
.end());
1148 // Generate the set of the final ShuffleVectorInst.
1149 SVIs
.insert(VI
.SVI
);
1152 // There is nothing to combine.
1156 // Test if all participating instruction will be dead after the
1157 // transformation. If intermediate results are used, no performance gain can
1158 // be expected. Also sum the cost of the Instructions beeing left dead.
1159 for (auto &I
: Is
) {
1160 // Compute the old cost
1162 TTI
.getInstructionCost(I
, TargetTransformInfo::TCK_Latency
);
1164 // The final SVIs are allowed not to be dead, all uses will be replaced
1165 if (SVIs
.find(I
) != SVIs
.end())
1168 // If there are users outside the set to be eliminated, we abort the
1169 // transformation. No gain can be expected.
1170 for (const auto &U
: I
->users()) {
1171 if (Is
.find(dyn_cast
<Instruction
>(U
)) == Is
.end())
1176 // We know that all LoadInst are within the same BB. This guarantees that
1177 // either everything or nothing is loaded.
1178 LoadInst
*First
= findFirstLoad(LIs
);
1180 // To be safe that the loads can be combined, iterate over all loads and test
1181 // that the corresponding defining access dominates first LI. This guarantees
1182 // that there are no aliasing stores in between the loads.
1183 auto FMA
= MSSA
.getMemoryAccess(First
);
1184 for (auto LI
: LIs
) {
1185 auto MADef
= MSSA
.getMemoryAccess(LI
)->getDefiningAccess();
1186 if (!MSSA
.dominates(MADef
, FMA
))
1189 assert(!LIs
.empty() && "There are no LoadInst to combine");
1191 // It is necessary that insertion point dominates all final ShuffleVectorInst.
1192 for (auto &VI
: InterleavedLoad
) {
1193 if (!DT
.dominates(InsertionPoint
, VI
.SVI
))
1197 // All checks are done. Add instructions detectable by InterleavedAccessPass
1198 // The old instruction will are left dead.
1199 IRBuilder
<> Builder(InsertionPoint
);
1200 Type
*ETy
= InterleavedLoad
.front().SVI
->getType()->getElementType();
1201 unsigned ElementsPerSVI
=
1202 InterleavedLoad
.front().SVI
->getType()->getNumElements();
1203 VectorType
*ILTy
= VectorType::get(ETy
, Factor
* ElementsPerSVI
);
1205 SmallVector
<unsigned, 4> Indices
;
1206 for (unsigned i
= 0; i
< Factor
; i
++)
1207 Indices
.push_back(i
);
1208 InterleavedCost
= TTI
.getInterleavedMemoryOpCost(
1209 Instruction::Load
, ILTy
, Factor
, Indices
, InsertionPoint
->getAlignment(),
1210 InsertionPoint
->getPointerAddressSpace());
1212 if (InterleavedCost
>= InstructionCost
) {
1216 // Create a pointer cast for the wide load.
1217 auto CI
= Builder
.CreatePointerCast(InsertionPoint
->getOperand(0),
1218 ILTy
->getPointerTo(),
1219 "interleaved.wide.ptrcast");
1221 // Create the wide load and update the MemorySSA.
1222 auto LI
= Builder
.CreateAlignedLoad(ILTy
, CI
, InsertionPoint
->getAlignment(),
1223 "interleaved.wide.load");
1224 auto MSSAU
= MemorySSAUpdater(&MSSA
);
1225 MemoryUse
*MSSALoad
= cast
<MemoryUse
>(MSSAU
.createMemoryAccessBefore(
1226 LI
, nullptr, MSSA
.getMemoryAccess(InsertionPoint
)));
1227 MSSAU
.insertUse(MSSALoad
);
1229 // Create the final SVIs and replace all uses.
1231 for (auto &VI
: InterleavedLoad
) {
1232 SmallVector
<uint32_t, 4> Mask
;
1233 for (unsigned j
= 0; j
< ElementsPerSVI
; j
++)
1234 Mask
.push_back(i
+ j
* Factor
);
1236 Builder
.SetInsertPoint(VI
.SVI
);
1237 auto SVI
= Builder
.CreateShuffleVector(LI
, UndefValue::get(LI
->getType()),
1238 Mask
, "interleaved.shuffle");
1239 VI
.SVI
->replaceAllUsesWith(SVI
);
1243 NumInterleavedLoadCombine
++;
1245 return OptimizationRemark(DEBUG_TYPE
, "Combined Interleaved Load", LI
)
1246 << "Load interleaved combined with factor "
1247 << ore::NV("Factor", Factor
);
1253 bool InterleavedLoadCombineImpl::run() {
1254 OptimizationRemarkEmitter
ORE(&F
);
1255 bool changed
= false;
1256 unsigned MaxFactor
= TLI
.getMaxSupportedInterleaveFactor();
1258 auto &DL
= F
.getParent()->getDataLayout();
1260 // Start with the highest factor to avoid combining and recombining.
1261 for (unsigned Factor
= MaxFactor
; Factor
>= 2; Factor
--) {
1262 std::list
<VectorInfo
> Candidates
;
1264 for (BasicBlock
&BB
: F
) {
1265 for (Instruction
&I
: BB
) {
1266 if (auto SVI
= dyn_cast
<ShuffleVectorInst
>(&I
)) {
1268 Candidates
.emplace_back(SVI
->getType());
1270 if (!VectorInfo::computeFromSVI(SVI
, Candidates
.back(), DL
)) {
1271 Candidates
.pop_back();
1275 if (!Candidates
.back().isInterleaved(Factor
, DL
)) {
1276 Candidates
.pop_back();
1282 std::list
<VectorInfo
> InterleavedLoad
;
1283 while (findPattern(Candidates
, InterleavedLoad
, Factor
, DL
)) {
1284 if (combine(InterleavedLoad
, ORE
)) {
1287 // Remove the first element of the Interleaved Load but put the others
1288 // back on the list and continue searching
1289 Candidates
.splice(Candidates
.begin(), InterleavedLoad
,
1290 std::next(InterleavedLoad
.begin()),
1291 InterleavedLoad
.end());
1293 InterleavedLoad
.clear();
1301 /// This pass combines interleaved loads into a pattern detectable by
1302 /// InterleavedAccessPass.
1303 struct InterleavedLoadCombine
: public FunctionPass
{
1306 InterleavedLoadCombine() : FunctionPass(ID
) {
1307 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1310 StringRef
getPassName() const override
{
1311 return "Interleaved Load Combine Pass";
1314 bool runOnFunction(Function
&F
) override
{
1315 if (DisableInterleavedLoadCombine
)
1318 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
1322 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName()
1325 return InterleavedLoadCombineImpl(
1326 F
, getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
1327 getAnalysis
<MemorySSAWrapperPass
>().getMSSA(),
1328 TPC
->getTM
<TargetMachine
>())
1332 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1333 AU
.addRequired
<MemorySSAWrapperPass
>();
1334 AU
.addRequired
<DominatorTreeWrapperPass
>();
1335 FunctionPass::getAnalysisUsage(AU
);
1340 } // anonymous namespace
1342 char InterleavedLoadCombine::ID
= 0;
1344 INITIALIZE_PASS_BEGIN(
1345 InterleavedLoadCombine
, DEBUG_TYPE
,
1346 "Combine interleaved loads into wide loads and shufflevector instructions",
1348 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
1349 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
1350 INITIALIZE_PASS_END(
1351 InterleavedLoadCombine
, DEBUG_TYPE
,
1352 "Combine interleaved loads into wide loads and shufflevector instructions",
1356 llvm::createInterleavedLoadCombinePass() {
1357 auto P
= new InterleavedLoadCombine();