[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / CodeGen / MachineFunction.cpp
blobd136ebd437fd97d5137619a3f98d098b6a93fac1
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
77 using namespace llvm;
79 #define DEBUG_TYPE "codegen"
81 static cl::opt<unsigned> AlignAllFunctions(
82 "align-all-functions",
83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
84 "means align on 16B boundaries)."),
85 cl::init(0), cl::Hidden);
87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
88 using P = MachineFunctionProperties::Property;
90 switch(Prop) {
91 case P::FailedISel: return "FailedISel";
92 case P::IsSSA: return "IsSSA";
93 case P::Legalized: return "Legalized";
94 case P::NoPHIs: return "NoPHIs";
95 case P::NoVRegs: return "NoVRegs";
96 case P::RegBankSelected: return "RegBankSelected";
97 case P::Selected: return "Selected";
98 case P::TracksLiveness: return "TracksLiveness";
100 llvm_unreachable("Invalid machine function property");
103 // Pin the vtable to this file.
104 void MachineFunction::Delegate::anchor() {}
106 void MachineFunctionProperties::print(raw_ostream &OS) const {
107 const char *Separator = "";
108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
109 if (!Properties[I])
110 continue;
111 OS << Separator << getPropertyName(static_cast<Property>(I));
112 Separator = ", ";
116 //===----------------------------------------------------------------------===//
117 // MachineFunction implementation
118 //===----------------------------------------------------------------------===//
120 // Out-of-line virtual method.
121 MachineFunctionInfo::~MachineFunctionInfo() = default;
123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
124 MBB->getParent()->DeleteMachineBasicBlock(MBB);
127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
128 const Function &F) {
129 if (F.hasFnAttribute(Attribute::StackAlignment))
130 return F.getFnStackAlignment();
131 return STI->getFrameLowering()->getStackAlignment();
134 MachineFunction::MachineFunction(const Function &F,
135 const LLVMTargetMachine &Target,
136 const TargetSubtargetInfo &STI,
137 unsigned FunctionNum, MachineModuleInfo &mmi)
138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
139 FunctionNumber = FunctionNum;
140 init();
143 void MachineFunction::handleInsertion(MachineInstr &MI) {
144 if (TheDelegate)
145 TheDelegate->MF_HandleInsertion(MI);
148 void MachineFunction::handleRemoval(MachineInstr &MI) {
149 if (TheDelegate)
150 TheDelegate->MF_HandleRemoval(MI);
153 void MachineFunction::init() {
154 // Assume the function starts in SSA form with correct liveness.
155 Properties.set(MachineFunctionProperties::Property::IsSSA);
156 Properties.set(MachineFunctionProperties::Property::TracksLiveness);
157 if (STI->getRegisterInfo())
158 RegInfo = new (Allocator) MachineRegisterInfo(this);
159 else
160 RegInfo = nullptr;
162 MFInfo = nullptr;
163 // We can realign the stack if the target supports it and the user hasn't
164 // explicitly asked us not to.
165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
166 !F.hasFnAttribute("no-realign-stack");
167 FrameInfo = new (Allocator) MachineFrameInfo(
168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
169 /*ForcedRealign=*/CanRealignSP &&
170 F.hasFnAttribute(Attribute::StackAlignment));
172 if (F.hasFnAttribute(Attribute::StackAlignment))
173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
176 LogAlignment = STI->getTargetLowering()->getMinFunctionLogAlignment();
178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
179 // FIXME: Use Function::hasOptSize().
180 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
181 LogAlignment = std::max(
182 LogAlignment, STI->getTargetLowering()->getPrefFunctionLogAlignment());
184 if (AlignAllFunctions)
185 LogAlignment = AlignAllFunctions;
187 JumpTableInfo = nullptr;
189 if (isFuncletEHPersonality(classifyEHPersonality(
190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
191 WinEHInfo = new (Allocator) WinEHFuncInfo();
194 if (isScopedEHPersonality(classifyEHPersonality(
195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
196 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
199 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
200 "Can't create a MachineFunction using a Module with a "
201 "Target-incompatible DataLayout attached\n");
203 PSVManager =
204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
205 getInstrInfo()));
208 MachineFunction::~MachineFunction() {
209 clear();
212 void MachineFunction::clear() {
213 Properties.reset();
214 // Don't call destructors on MachineInstr and MachineOperand. All of their
215 // memory comes from the BumpPtrAllocator which is about to be purged.
217 // Do call MachineBasicBlock destructors, it contains std::vectors.
218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
219 I->Insts.clearAndLeakNodesUnsafely();
220 MBBNumbering.clear();
222 InstructionRecycler.clear(Allocator);
223 OperandRecycler.clear(Allocator);
224 BasicBlockRecycler.clear(Allocator);
225 CodeViewAnnotations.clear();
226 VariableDbgInfos.clear();
227 if (RegInfo) {
228 RegInfo->~MachineRegisterInfo();
229 Allocator.Deallocate(RegInfo);
231 if (MFInfo) {
232 MFInfo->~MachineFunctionInfo();
233 Allocator.Deallocate(MFInfo);
236 FrameInfo->~MachineFrameInfo();
237 Allocator.Deallocate(FrameInfo);
239 ConstantPool->~MachineConstantPool();
240 Allocator.Deallocate(ConstantPool);
242 if (JumpTableInfo) {
243 JumpTableInfo->~MachineJumpTableInfo();
244 Allocator.Deallocate(JumpTableInfo);
247 if (WinEHInfo) {
248 WinEHInfo->~WinEHFuncInfo();
249 Allocator.Deallocate(WinEHInfo);
252 if (WasmEHInfo) {
253 WasmEHInfo->~WasmEHFuncInfo();
254 Allocator.Deallocate(WasmEHInfo);
258 const DataLayout &MachineFunction::getDataLayout() const {
259 return F.getParent()->getDataLayout();
262 /// Get the JumpTableInfo for this function.
263 /// If it does not already exist, allocate one.
264 MachineJumpTableInfo *MachineFunction::
265 getOrCreateJumpTableInfo(unsigned EntryKind) {
266 if (JumpTableInfo) return JumpTableInfo;
268 JumpTableInfo = new (Allocator)
269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
270 return JumpTableInfo;
273 /// Should we be emitting segmented stack stuff for the function
274 bool MachineFunction::shouldSplitStack() const {
275 return getFunction().hasFnAttribute("split-stack");
278 LLVM_NODISCARD unsigned
279 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
280 FrameInstructions.push_back(Inst);
281 return FrameInstructions.size() - 1;
284 /// This discards all of the MachineBasicBlock numbers and recomputes them.
285 /// This guarantees that the MBB numbers are sequential, dense, and match the
286 /// ordering of the blocks within the function. If a specific MachineBasicBlock
287 /// is specified, only that block and those after it are renumbered.
288 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
289 if (empty()) { MBBNumbering.clear(); return; }
290 MachineFunction::iterator MBBI, E = end();
291 if (MBB == nullptr)
292 MBBI = begin();
293 else
294 MBBI = MBB->getIterator();
296 // Figure out the block number this should have.
297 unsigned BlockNo = 0;
298 if (MBBI != begin())
299 BlockNo = std::prev(MBBI)->getNumber() + 1;
301 for (; MBBI != E; ++MBBI, ++BlockNo) {
302 if (MBBI->getNumber() != (int)BlockNo) {
303 // Remove use of the old number.
304 if (MBBI->getNumber() != -1) {
305 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
306 "MBB number mismatch!");
307 MBBNumbering[MBBI->getNumber()] = nullptr;
310 // If BlockNo is already taken, set that block's number to -1.
311 if (MBBNumbering[BlockNo])
312 MBBNumbering[BlockNo]->setNumber(-1);
314 MBBNumbering[BlockNo] = &*MBBI;
315 MBBI->setNumber(BlockNo);
319 // Okay, all the blocks are renumbered. If we have compactified the block
320 // numbering, shrink MBBNumbering now.
321 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
322 MBBNumbering.resize(BlockNo);
325 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
326 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
327 const DebugLoc &DL,
328 bool NoImp) {
329 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
330 MachineInstr(*this, MCID, DL, NoImp);
333 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
334 /// identical in all ways except the instruction has no parent, prev, or next.
335 MachineInstr *
336 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
337 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
338 MachineInstr(*this, *Orig);
341 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
342 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
343 MachineInstr *FirstClone = nullptr;
344 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
345 while (true) {
346 MachineInstr *Cloned = CloneMachineInstr(&*I);
347 MBB.insert(InsertBefore, Cloned);
348 if (FirstClone == nullptr) {
349 FirstClone = Cloned;
350 } else {
351 Cloned->bundleWithPred();
354 if (!I->isBundledWithSucc())
355 break;
356 ++I;
358 return *FirstClone;
361 /// Delete the given MachineInstr.
363 /// This function also serves as the MachineInstr destructor - the real
364 /// ~MachineInstr() destructor must be empty.
365 void
366 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
367 // Verify that a call site info is at valid state. This assertion should
368 // be triggered during the implementation of support for the
369 // call site info of a new architecture. If the assertion is triggered,
370 // back trace will tell where to insert a call to updateCallSiteInfo().
371 assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
372 CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
373 "Call site info was not updated!");
374 // Strip it for parts. The operand array and the MI object itself are
375 // independently recyclable.
376 if (MI->Operands)
377 deallocateOperandArray(MI->CapOperands, MI->Operands);
378 // Don't call ~MachineInstr() which must be trivial anyway because
379 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
380 // destructors.
381 InstructionRecycler.Deallocate(Allocator, MI);
384 /// Allocate a new MachineBasicBlock. Use this instead of
385 /// `new MachineBasicBlock'.
386 MachineBasicBlock *
387 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
388 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
389 MachineBasicBlock(*this, bb);
392 /// Delete the given MachineBasicBlock.
393 void
394 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
395 assert(MBB->getParent() == this && "MBB parent mismatch!");
396 MBB->~MachineBasicBlock();
397 BasicBlockRecycler.Deallocate(Allocator, MBB);
400 MachineMemOperand *MachineFunction::getMachineMemOperand(
401 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
402 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
403 SyncScope::ID SSID, AtomicOrdering Ordering,
404 AtomicOrdering FailureOrdering) {
405 return new (Allocator)
406 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
407 SSID, Ordering, FailureOrdering);
410 MachineMemOperand *
411 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
412 int64_t Offset, uint64_t Size) {
413 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
415 // If there is no pointer value, the offset isn't tracked so we need to adjust
416 // the base alignment.
417 unsigned Align = PtrInfo.V.isNull()
418 ? MinAlign(MMO->getBaseAlignment(), Offset)
419 : MMO->getBaseAlignment();
421 return new (Allocator)
422 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
423 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
424 MMO->getOrdering(), MMO->getFailureOrdering());
427 MachineMemOperand *
428 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
429 const AAMDNodes &AAInfo) {
430 MachinePointerInfo MPI = MMO->getValue() ?
431 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
432 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
434 return new (Allocator)
435 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
436 MMO->getBaseAlignment(), AAInfo,
437 MMO->getRanges(), MMO->getSyncScopeID(),
438 MMO->getOrdering(), MMO->getFailureOrdering());
441 MachineMemOperand *
442 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
443 MachineMemOperand::Flags Flags) {
444 return new (Allocator) MachineMemOperand(
445 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
446 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
447 MMO->getOrdering(), MMO->getFailureOrdering());
450 MachineInstr::ExtraInfo *
451 MachineFunction::createMIExtraInfo(ArrayRef<MachineMemOperand *> MMOs,
452 MCSymbol *PreInstrSymbol,
453 MCSymbol *PostInstrSymbol) {
454 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
455 PostInstrSymbol);
458 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
459 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
460 llvm::copy(Name, Dest);
461 Dest[Name.size()] = 0;
462 return Dest;
465 uint32_t *MachineFunction::allocateRegMask() {
466 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
467 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
468 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
469 memset(Mask, 0, Size * sizeof(Mask[0]));
470 return Mask;
473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
474 LLVM_DUMP_METHOD void MachineFunction::dump() const {
475 print(dbgs());
477 #endif
479 StringRef MachineFunction::getName() const {
480 return getFunction().getName();
483 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
484 OS << "# Machine code for function " << getName() << ": ";
485 getProperties().print(OS);
486 OS << '\n';
488 // Print Frame Information
489 FrameInfo->print(*this, OS);
491 // Print JumpTable Information
492 if (JumpTableInfo)
493 JumpTableInfo->print(OS);
495 // Print Constant Pool
496 ConstantPool->print(OS);
498 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
500 if (RegInfo && !RegInfo->livein_empty()) {
501 OS << "Function Live Ins: ";
502 for (MachineRegisterInfo::livein_iterator
503 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
504 OS << printReg(I->first, TRI);
505 if (I->second)
506 OS << " in " << printReg(I->second, TRI);
507 if (std::next(I) != E)
508 OS << ", ";
510 OS << '\n';
513 ModuleSlotTracker MST(getFunction().getParent());
514 MST.incorporateFunction(getFunction());
515 for (const auto &BB : *this) {
516 OS << '\n';
517 // If we print the whole function, print it at its most verbose level.
518 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
521 OS << "\n# End machine code for function " << getName() << ".\n\n";
524 namespace llvm {
526 template<>
527 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
528 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
530 static std::string getGraphName(const MachineFunction *F) {
531 return ("CFG for '" + F->getName() + "' function").str();
534 std::string getNodeLabel(const MachineBasicBlock *Node,
535 const MachineFunction *Graph) {
536 std::string OutStr;
538 raw_string_ostream OSS(OutStr);
540 if (isSimple()) {
541 OSS << printMBBReference(*Node);
542 if (const BasicBlock *BB = Node->getBasicBlock())
543 OSS << ": " << BB->getName();
544 } else
545 Node->print(OSS);
548 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
550 // Process string output to make it nicer...
551 for (unsigned i = 0; i != OutStr.length(); ++i)
552 if (OutStr[i] == '\n') { // Left justify
553 OutStr[i] = '\\';
554 OutStr.insert(OutStr.begin()+i+1, 'l');
556 return OutStr;
560 } // end namespace llvm
562 void MachineFunction::viewCFG() const
564 #ifndef NDEBUG
565 ViewGraph(this, "mf" + getName());
566 #else
567 errs() << "MachineFunction::viewCFG is only available in debug builds on "
568 << "systems with Graphviz or gv!\n";
569 #endif // NDEBUG
572 void MachineFunction::viewCFGOnly() const
574 #ifndef NDEBUG
575 ViewGraph(this, "mf" + getName(), true);
576 #else
577 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
578 << "systems with Graphviz or gv!\n";
579 #endif // NDEBUG
582 /// Add the specified physical register as a live-in value and
583 /// create a corresponding virtual register for it.
584 unsigned MachineFunction::addLiveIn(unsigned PReg,
585 const TargetRegisterClass *RC) {
586 MachineRegisterInfo &MRI = getRegInfo();
587 unsigned VReg = MRI.getLiveInVirtReg(PReg);
588 if (VReg) {
589 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
590 (void)VRegRC;
591 // A physical register can be added several times.
592 // Between two calls, the register class of the related virtual register
593 // may have been constrained to match some operation constraints.
594 // In that case, check that the current register class includes the
595 // physical register and is a sub class of the specified RC.
596 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
597 RC->hasSubClassEq(VRegRC))) &&
598 "Register class mismatch!");
599 return VReg;
601 VReg = MRI.createVirtualRegister(RC);
602 MRI.addLiveIn(PReg, VReg);
603 return VReg;
606 /// Return the MCSymbol for the specified non-empty jump table.
607 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
608 /// normal 'L' label is returned.
609 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
610 bool isLinkerPrivate) const {
611 const DataLayout &DL = getDataLayout();
612 assert(JumpTableInfo && "No jump tables");
613 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
615 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
616 : DL.getPrivateGlobalPrefix();
617 SmallString<60> Name;
618 raw_svector_ostream(Name)
619 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
620 return Ctx.getOrCreateSymbol(Name);
623 /// Return a function-local symbol to represent the PIC base.
624 MCSymbol *MachineFunction::getPICBaseSymbol() const {
625 const DataLayout &DL = getDataLayout();
626 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
627 Twine(getFunctionNumber()) + "$pb");
630 /// \name Exception Handling
631 /// \{
633 LandingPadInfo &
634 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
635 unsigned N = LandingPads.size();
636 for (unsigned i = 0; i < N; ++i) {
637 LandingPadInfo &LP = LandingPads[i];
638 if (LP.LandingPadBlock == LandingPad)
639 return LP;
642 LandingPads.push_back(LandingPadInfo(LandingPad));
643 return LandingPads[N];
646 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
647 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
648 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
649 LP.BeginLabels.push_back(BeginLabel);
650 LP.EndLabels.push_back(EndLabel);
653 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
654 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
655 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
656 LP.LandingPadLabel = LandingPadLabel;
658 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
659 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
660 if (const auto *PF =
661 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
662 getMMI().addPersonality(PF);
664 if (LPI->isCleanup())
665 addCleanup(LandingPad);
667 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
668 // correct, but we need to do it this way because of how the DWARF EH
669 // emitter processes the clauses.
670 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
671 Value *Val = LPI->getClause(I - 1);
672 if (LPI->isCatch(I - 1)) {
673 addCatchTypeInfo(LandingPad,
674 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
675 } else {
676 // Add filters in a list.
677 auto *CVal = cast<Constant>(Val);
678 SmallVector<const GlobalValue *, 4> FilterList;
679 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
680 II != IE; ++II)
681 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
683 addFilterTypeInfo(LandingPad, FilterList);
687 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
688 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
689 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
690 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
693 } else {
694 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
697 return LandingPadLabel;
700 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
701 ArrayRef<const GlobalValue *> TyInfo) {
702 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
703 for (unsigned N = TyInfo.size(); N; --N)
704 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
707 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
708 ArrayRef<const GlobalValue *> TyInfo) {
709 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
710 std::vector<unsigned> IdsInFilter(TyInfo.size());
711 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
712 IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
713 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
716 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
717 bool TidyIfNoBeginLabels) {
718 for (unsigned i = 0; i != LandingPads.size(); ) {
719 LandingPadInfo &LandingPad = LandingPads[i];
720 if (LandingPad.LandingPadLabel &&
721 !LandingPad.LandingPadLabel->isDefined() &&
722 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
723 LandingPad.LandingPadLabel = nullptr;
725 // Special case: we *should* emit LPs with null LP MBB. This indicates
726 // "nounwind" case.
727 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
728 LandingPads.erase(LandingPads.begin() + i);
729 continue;
732 if (TidyIfNoBeginLabels) {
733 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
734 MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
735 MCSymbol *EndLabel = LandingPad.EndLabels[j];
736 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
737 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
738 continue;
740 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
741 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
742 --j;
743 --e;
746 // Remove landing pads with no try-ranges.
747 if (LandingPads[i].BeginLabels.empty()) {
748 LandingPads.erase(LandingPads.begin() + i);
749 continue;
753 // If there is no landing pad, ensure that the list of typeids is empty.
754 // If the only typeid is a cleanup, this is the same as having no typeids.
755 if (!LandingPad.LandingPadBlock ||
756 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
757 LandingPad.TypeIds.clear();
758 ++i;
762 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
763 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
764 LP.TypeIds.push_back(0);
767 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
768 const Function *Filter,
769 const BlockAddress *RecoverBA) {
770 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
771 SEHHandler Handler;
772 Handler.FilterOrFinally = Filter;
773 Handler.RecoverBA = RecoverBA;
774 LP.SEHHandlers.push_back(Handler);
777 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
778 const Function *Cleanup) {
779 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
780 SEHHandler Handler;
781 Handler.FilterOrFinally = Cleanup;
782 Handler.RecoverBA = nullptr;
783 LP.SEHHandlers.push_back(Handler);
786 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
787 ArrayRef<unsigned> Sites) {
788 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
791 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
792 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
793 if (TypeInfos[i] == TI) return i + 1;
795 TypeInfos.push_back(TI);
796 return TypeInfos.size();
799 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
800 // If the new filter coincides with the tail of an existing filter, then
801 // re-use the existing filter. Folding filters more than this requires
802 // re-ordering filters and/or their elements - probably not worth it.
803 for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
804 E = FilterEnds.end(); I != E; ++I) {
805 unsigned i = *I, j = TyIds.size();
807 while (i && j)
808 if (FilterIds[--i] != TyIds[--j])
809 goto try_next;
811 if (!j)
812 // The new filter coincides with range [i, end) of the existing filter.
813 return -(1 + i);
815 try_next:;
818 // Add the new filter.
819 int FilterID = -(1 + FilterIds.size());
820 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
821 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
822 FilterEnds.push_back(FilterIds.size());
823 FilterIds.push_back(0); // terminator
824 return FilterID;
827 void MachineFunction::addCodeViewHeapAllocSite(MachineInstr *I,
828 const MDNode *MD) {
829 MCSymbol *BeginLabel = Ctx.createTempSymbol("heapallocsite", true);
830 MCSymbol *EndLabel = Ctx.createTempSymbol("heapallocsite", true);
831 I->setPreInstrSymbol(*this, BeginLabel);
832 I->setPostInstrSymbol(*this, EndLabel);
834 const DIType *DI = dyn_cast<DIType>(MD);
835 CodeViewHeapAllocSites.push_back(std::make_tuple(BeginLabel, EndLabel, DI));
838 void MachineFunction::updateCallSiteInfo(const MachineInstr *Old,
839 const MachineInstr *New) {
840 if (!Target.Options.EnableDebugEntryValues || Old == New)
841 return;
843 assert(Old->isCall() && (!New || New->isCall()) &&
844 "Call site info referes only to call instructions!");
845 CallSiteInfoMap::iterator CSIt = CallSitesInfo.find(Old);
846 if (CSIt == CallSitesInfo.end())
847 return;
848 CallSiteInfo CSInfo = std::move(CSIt->second);
849 CallSitesInfo.erase(CSIt);
850 if (New)
851 CallSitesInfo[New] = CSInfo;
854 /// \}
856 //===----------------------------------------------------------------------===//
857 // MachineJumpTableInfo implementation
858 //===----------------------------------------------------------------------===//
860 /// Return the size of each entry in the jump table.
861 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
862 // The size of a jump table entry is 4 bytes unless the entry is just the
863 // address of a block, in which case it is the pointer size.
864 switch (getEntryKind()) {
865 case MachineJumpTableInfo::EK_BlockAddress:
866 return TD.getPointerSize();
867 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
868 return 8;
869 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
870 case MachineJumpTableInfo::EK_LabelDifference32:
871 case MachineJumpTableInfo::EK_Custom32:
872 return 4;
873 case MachineJumpTableInfo::EK_Inline:
874 return 0;
876 llvm_unreachable("Unknown jump table encoding!");
879 /// Return the alignment of each entry in the jump table.
880 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
881 // The alignment of a jump table entry is the alignment of int32 unless the
882 // entry is just the address of a block, in which case it is the pointer
883 // alignment.
884 switch (getEntryKind()) {
885 case MachineJumpTableInfo::EK_BlockAddress:
886 return TD.getPointerABIAlignment(0);
887 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
888 return TD.getABIIntegerTypeAlignment(64);
889 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
890 case MachineJumpTableInfo::EK_LabelDifference32:
891 case MachineJumpTableInfo::EK_Custom32:
892 return TD.getABIIntegerTypeAlignment(32);
893 case MachineJumpTableInfo::EK_Inline:
894 return 1;
896 llvm_unreachable("Unknown jump table encoding!");
899 /// Create a new jump table entry in the jump table info.
900 unsigned MachineJumpTableInfo::createJumpTableIndex(
901 const std::vector<MachineBasicBlock*> &DestBBs) {
902 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
903 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
904 return JumpTables.size()-1;
907 /// If Old is the target of any jump tables, update the jump tables to branch
908 /// to New instead.
909 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
910 MachineBasicBlock *New) {
911 assert(Old != New && "Not making a change?");
912 bool MadeChange = false;
913 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
914 ReplaceMBBInJumpTable(i, Old, New);
915 return MadeChange;
918 /// If Old is a target of the jump tables, update the jump table to branch to
919 /// New instead.
920 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
921 MachineBasicBlock *Old,
922 MachineBasicBlock *New) {
923 assert(Old != New && "Not making a change?");
924 bool MadeChange = false;
925 MachineJumpTableEntry &JTE = JumpTables[Idx];
926 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
927 if (JTE.MBBs[j] == Old) {
928 JTE.MBBs[j] = New;
929 MadeChange = true;
931 return MadeChange;
934 void MachineJumpTableInfo::print(raw_ostream &OS) const {
935 if (JumpTables.empty()) return;
937 OS << "Jump Tables:\n";
939 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
940 OS << printJumpTableEntryReference(i) << ':';
941 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
942 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
943 if (i != e)
944 OS << '\n';
947 OS << '\n';
950 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
951 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
952 #endif
954 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
955 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
958 //===----------------------------------------------------------------------===//
959 // MachineConstantPool implementation
960 //===----------------------------------------------------------------------===//
962 void MachineConstantPoolValue::anchor() {}
964 Type *MachineConstantPoolEntry::getType() const {
965 if (isMachineConstantPoolEntry())
966 return Val.MachineCPVal->getType();
967 return Val.ConstVal->getType();
970 bool MachineConstantPoolEntry::needsRelocation() const {
971 if (isMachineConstantPoolEntry())
972 return true;
973 return Val.ConstVal->needsRelocation();
976 SectionKind
977 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
978 if (needsRelocation())
979 return SectionKind::getReadOnlyWithRel();
980 switch (DL->getTypeAllocSize(getType())) {
981 case 4:
982 return SectionKind::getMergeableConst4();
983 case 8:
984 return SectionKind::getMergeableConst8();
985 case 16:
986 return SectionKind::getMergeableConst16();
987 case 32:
988 return SectionKind::getMergeableConst32();
989 default:
990 return SectionKind::getReadOnly();
994 MachineConstantPool::~MachineConstantPool() {
995 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
996 // so keep track of which we've deleted to avoid double deletions.
997 DenseSet<MachineConstantPoolValue*> Deleted;
998 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
999 if (Constants[i].isMachineConstantPoolEntry()) {
1000 Deleted.insert(Constants[i].Val.MachineCPVal);
1001 delete Constants[i].Val.MachineCPVal;
1003 for (DenseSet<MachineConstantPoolValue*>::iterator I =
1004 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1005 I != E; ++I) {
1006 if (Deleted.count(*I) == 0)
1007 delete *I;
1011 /// Test whether the given two constants can be allocated the same constant pool
1012 /// entry.
1013 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1014 const DataLayout &DL) {
1015 // Handle the trivial case quickly.
1016 if (A == B) return true;
1018 // If they have the same type but weren't the same constant, quickly
1019 // reject them.
1020 if (A->getType() == B->getType()) return false;
1022 // We can't handle structs or arrays.
1023 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1024 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1025 return false;
1027 // For now, only support constants with the same size.
1028 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1029 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1030 return false;
1032 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1034 // Try constant folding a bitcast of both instructions to an integer. If we
1035 // get two identical ConstantInt's, then we are good to share them. We use
1036 // the constant folding APIs to do this so that we get the benefit of
1037 // DataLayout.
1038 if (isa<PointerType>(A->getType()))
1039 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1040 const_cast<Constant *>(A), IntTy, DL);
1041 else if (A->getType() != IntTy)
1042 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1043 IntTy, DL);
1044 if (isa<PointerType>(B->getType()))
1045 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1046 const_cast<Constant *>(B), IntTy, DL);
1047 else if (B->getType() != IntTy)
1048 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1049 IntTy, DL);
1051 return A == B;
1054 /// Create a new entry in the constant pool or return an existing one.
1055 /// User must specify the log2 of the minimum required alignment for the object.
1056 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1057 unsigned Alignment) {
1058 assert(Alignment && "Alignment must be specified!");
1059 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1061 // Check to see if we already have this constant.
1063 // FIXME, this could be made much more efficient for large constant pools.
1064 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1065 if (!Constants[i].isMachineConstantPoolEntry() &&
1066 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1067 if ((unsigned)Constants[i].getAlignment() < Alignment)
1068 Constants[i].Alignment = Alignment;
1069 return i;
1072 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1073 return Constants.size()-1;
1076 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1077 unsigned Alignment) {
1078 assert(Alignment && "Alignment must be specified!");
1079 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1081 // Check to see if we already have this constant.
1083 // FIXME, this could be made much more efficient for large constant pools.
1084 int Idx = V->getExistingMachineCPValue(this, Alignment);
1085 if (Idx != -1) {
1086 MachineCPVsSharingEntries.insert(V);
1087 return (unsigned)Idx;
1090 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1091 return Constants.size()-1;
1094 void MachineConstantPool::print(raw_ostream &OS) const {
1095 if (Constants.empty()) return;
1097 OS << "Constant Pool:\n";
1098 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1099 OS << " cp#" << i << ": ";
1100 if (Constants[i].isMachineConstantPoolEntry())
1101 Constants[i].Val.MachineCPVal->print(OS);
1102 else
1103 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1104 OS << ", align=" << Constants[i].getAlignment();
1105 OS << "\n";
1109 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1110 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1111 #endif