1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSchedule.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
56 #define DEBUG_TYPE "machinelicm"
59 AvoidSpeculation("avoid-speculation",
60 cl::desc("MachineLICM should avoid speculation"),
61 cl::init(true), cl::Hidden
);
64 HoistCheapInsts("hoist-cheap-insts",
65 cl::desc("MachineLICM should hoist even cheap instructions"),
66 cl::init(false), cl::Hidden
);
69 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
70 cl::desc("MachineLICM should sink instructions into "
71 "loops to avoid register spills"),
72 cl::init(false), cl::Hidden
);
74 HoistConstStores("hoist-const-stores",
75 cl::desc("Hoist invariant stores"),
76 cl::init(true), cl::Hidden
);
79 "Number of machine instructions hoisted out of loops");
81 "Number of instructions hoisted in low reg pressure situation");
82 STATISTIC(NumHighLatency
,
83 "Number of high latency instructions hoisted");
85 "Number of hoisted machine instructions CSEed");
86 STATISTIC(NumPostRAHoisted
,
87 "Number of machine instructions hoisted out of loops post regalloc");
88 STATISTIC(NumStoreConst
,
89 "Number of stores of const phys reg hoisted out of loops");
93 class MachineLICMBase
: public MachineFunctionPass
{
94 const TargetInstrInfo
*TII
;
95 const TargetLoweringBase
*TLI
;
96 const TargetRegisterInfo
*TRI
;
97 const MachineFrameInfo
*MFI
;
98 MachineRegisterInfo
*MRI
;
99 TargetSchedModel SchedModel
;
102 // Various analyses that we use...
103 AliasAnalysis
*AA
; // Alias analysis info.
104 MachineLoopInfo
*MLI
; // Current MachineLoopInfo
105 MachineDominatorTree
*DT
; // Machine dominator tree for the cur loop
107 // State that is updated as we process loops
108 bool Changed
; // True if a loop is changed.
109 bool FirstInLoop
; // True if it's the first LICM in the loop.
110 MachineLoop
*CurLoop
; // The current loop we are working on.
111 MachineBasicBlock
*CurPreheader
; // The preheader for CurLoop.
113 // Exit blocks for CurLoop.
114 SmallVector
<MachineBasicBlock
*, 8> ExitBlocks
;
116 bool isExitBlock(const MachineBasicBlock
*MBB
) const {
117 return is_contained(ExitBlocks
, MBB
);
120 // Track 'estimated' register pressure.
121 SmallSet
<unsigned, 32> RegSeen
;
122 SmallVector
<unsigned, 8> RegPressure
;
124 // Register pressure "limit" per register pressure set. If the pressure
125 // is higher than the limit, then it's considered high.
126 SmallVector
<unsigned, 8> RegLimit
;
128 // Register pressure on path leading from loop preheader to current BB.
129 SmallVector
<SmallVector
<unsigned, 8>, 16> BackTrace
;
131 // For each opcode, keep a list of potential CSE instructions.
132 DenseMap
<unsigned, std::vector
<const MachineInstr
*>> CSEMap
;
140 // If a MBB does not dominate loop exiting blocks then it may not safe
141 // to hoist loads from this block.
142 // Tri-state: 0 - false, 1 - true, 2 - unknown
143 unsigned SpeculationState
;
146 MachineLICMBase(char &PassID
, bool PreRegAlloc
)
147 : MachineFunctionPass(PassID
), PreRegAlloc(PreRegAlloc
) {}
149 bool runOnMachineFunction(MachineFunction
&MF
) override
;
151 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
152 AU
.addRequired
<MachineLoopInfo
>();
153 AU
.addRequired
<MachineDominatorTree
>();
154 AU
.addRequired
<AAResultsWrapperPass
>();
155 AU
.addPreserved
<MachineLoopInfo
>();
156 AU
.addPreserved
<MachineDominatorTree
>();
157 MachineFunctionPass::getAnalysisUsage(AU
);
160 void releaseMemory() override
{
169 /// Keep track of information about hoisting candidates.
170 struct CandidateInfo
{
175 CandidateInfo(MachineInstr
*mi
, unsigned def
, int fi
)
176 : MI(mi
), Def(def
), FI(fi
) {}
179 void HoistRegionPostRA();
181 void HoistPostRA(MachineInstr
*MI
, unsigned Def
);
183 void ProcessMI(MachineInstr
*MI
, BitVector
&PhysRegDefs
,
184 BitVector
&PhysRegClobbers
, SmallSet
<int, 32> &StoredFIs
,
185 SmallVectorImpl
<CandidateInfo
> &Candidates
);
187 void AddToLiveIns(unsigned Reg
);
189 bool IsLICMCandidate(MachineInstr
&I
);
191 bool IsLoopInvariantInst(MachineInstr
&I
);
193 bool HasLoopPHIUse(const MachineInstr
*MI
) const;
195 bool HasHighOperandLatency(MachineInstr
&MI
, unsigned DefIdx
,
198 bool IsCheapInstruction(MachineInstr
&MI
) const;
200 bool CanCauseHighRegPressure(const DenseMap
<unsigned, int> &Cost
,
203 void UpdateBackTraceRegPressure(const MachineInstr
*MI
);
205 bool IsProfitableToHoist(MachineInstr
&MI
);
207 bool IsGuaranteedToExecute(MachineBasicBlock
*BB
);
209 void EnterScope(MachineBasicBlock
*MBB
);
211 void ExitScope(MachineBasicBlock
*MBB
);
213 void ExitScopeIfDone(
214 MachineDomTreeNode
*Node
,
215 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
216 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
);
218 void HoistOutOfLoop(MachineDomTreeNode
*HeaderN
);
220 void HoistRegion(MachineDomTreeNode
*N
, bool IsHeader
);
224 void InitRegPressure(MachineBasicBlock
*BB
);
226 DenseMap
<unsigned, int> calcRegisterCost(const MachineInstr
*MI
,
228 bool ConsiderUnseenAsDef
);
230 void UpdateRegPressure(const MachineInstr
*MI
,
231 bool ConsiderUnseenAsDef
= false);
233 MachineInstr
*ExtractHoistableLoad(MachineInstr
*MI
);
236 LookForDuplicate(const MachineInstr
*MI
,
237 std::vector
<const MachineInstr
*> &PrevMIs
);
241 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
&CI
);
243 bool MayCSE(MachineInstr
*MI
);
245 bool Hoist(MachineInstr
*MI
, MachineBasicBlock
*Preheader
);
247 void InitCSEMap(MachineBasicBlock
*BB
);
249 MachineBasicBlock
*getCurPreheader();
252 class MachineLICM
: public MachineLICMBase
{
255 MachineLICM() : MachineLICMBase(ID
, false) {
256 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
260 class EarlyMachineLICM
: public MachineLICMBase
{
263 EarlyMachineLICM() : MachineLICMBase(ID
, true) {
264 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
268 } // end anonymous namespace
270 char MachineLICM::ID
;
271 char EarlyMachineLICM::ID
;
273 char &llvm::MachineLICMID
= MachineLICM::ID
;
274 char &llvm::EarlyMachineLICMID
= EarlyMachineLICM::ID
;
276 INITIALIZE_PASS_BEGIN(MachineLICM
, DEBUG_TYPE
,
277 "Machine Loop Invariant Code Motion", false, false)
278 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
279 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
280 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
281 INITIALIZE_PASS_END(MachineLICM
, DEBUG_TYPE
,
282 "Machine Loop Invariant Code Motion", false, false)
284 INITIALIZE_PASS_BEGIN(EarlyMachineLICM
, "early-machinelicm",
285 "Early Machine Loop Invariant Code Motion", false, false)
286 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
287 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
288 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
289 INITIALIZE_PASS_END(EarlyMachineLICM
, "early-machinelicm",
290 "Early Machine Loop Invariant Code Motion", false, false)
292 /// Test if the given loop is the outer-most loop that has a unique predecessor.
293 static bool LoopIsOuterMostWithPredecessor(MachineLoop
*CurLoop
) {
294 // Check whether this loop even has a unique predecessor.
295 if (!CurLoop
->getLoopPredecessor())
297 // Ok, now check to see if any of its outer loops do.
298 for (MachineLoop
*L
= CurLoop
->getParentLoop(); L
; L
= L
->getParentLoop())
299 if (L
->getLoopPredecessor())
301 // None of them did, so this is the outermost with a unique predecessor.
305 bool MachineLICMBase::runOnMachineFunction(MachineFunction
&MF
) {
306 if (skipFunction(MF
.getFunction()))
309 Changed
= FirstInLoop
= false;
310 const TargetSubtargetInfo
&ST
= MF
.getSubtarget();
311 TII
= ST
.getInstrInfo();
312 TLI
= ST
.getTargetLowering();
313 TRI
= ST
.getRegisterInfo();
314 MFI
= &MF
.getFrameInfo();
315 MRI
= &MF
.getRegInfo();
316 SchedModel
.init(&ST
);
318 PreRegAlloc
= MRI
->isSSA();
321 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
323 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
324 LLVM_DEBUG(dbgs() << MF
.getName() << " ********\n");
327 // Estimate register pressure during pre-regalloc pass.
328 unsigned NumRPS
= TRI
->getNumRegPressureSets();
329 RegPressure
.resize(NumRPS
);
330 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
331 RegLimit
.resize(NumRPS
);
332 for (unsigned i
= 0, e
= NumRPS
; i
!= e
; ++i
)
333 RegLimit
[i
] = TRI
->getRegPressureSetLimit(MF
, i
);
336 // Get our Loop information...
337 MLI
= &getAnalysis
<MachineLoopInfo
>();
338 DT
= &getAnalysis
<MachineDominatorTree
>();
339 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
341 SmallVector
<MachineLoop
*, 8> Worklist(MLI
->begin(), MLI
->end());
342 while (!Worklist
.empty()) {
343 CurLoop
= Worklist
.pop_back_val();
344 CurPreheader
= nullptr;
347 // If this is done before regalloc, only visit outer-most preheader-sporting
349 if (PreRegAlloc
&& !LoopIsOuterMostWithPredecessor(CurLoop
)) {
350 Worklist
.append(CurLoop
->begin(), CurLoop
->end());
354 CurLoop
->getExitBlocks(ExitBlocks
);
359 // CSEMap is initialized for loop header when the first instruction is
361 MachineDomTreeNode
*N
= DT
->getNode(CurLoop
->getHeader());
366 if (SinkInstsToAvoidSpills
)
374 /// Return true if instruction stores to the specified frame.
375 static bool InstructionStoresToFI(const MachineInstr
*MI
, int FI
) {
376 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
377 // true since they have no memory operands.
380 // If we lost memory operands, conservatively assume that the instruction
381 // writes to all slots.
382 if (MI
->memoperands_empty())
384 for (const MachineMemOperand
*MemOp
: MI
->memoperands()) {
385 if (!MemOp
->isStore() || !MemOp
->getPseudoValue())
387 if (const FixedStackPseudoSourceValue
*Value
=
388 dyn_cast
<FixedStackPseudoSourceValue
>(MemOp
->getPseudoValue())) {
389 if (Value
->getFrameIndex() == FI
)
396 /// Examine the instruction for potentai LICM candidate. Also
397 /// gather register def and frame object update information.
398 void MachineLICMBase::ProcessMI(MachineInstr
*MI
,
399 BitVector
&PhysRegDefs
,
400 BitVector
&PhysRegClobbers
,
401 SmallSet
<int, 32> &StoredFIs
,
402 SmallVectorImpl
<CandidateInfo
> &Candidates
) {
403 bool RuledOut
= false;
404 bool HasNonInvariantUse
= false;
406 for (const MachineOperand
&MO
: MI
->operands()) {
408 // Remember if the instruction stores to the frame index.
409 int FI
= MO
.getIndex();
410 if (!StoredFIs
.count(FI
) &&
411 MFI
->isSpillSlotObjectIndex(FI
) &&
412 InstructionStoresToFI(MI
, FI
))
413 StoredFIs
.insert(FI
);
414 HasNonInvariantUse
= true;
418 // We can't hoist an instruction defining a physreg that is clobbered in
420 if (MO
.isRegMask()) {
421 PhysRegClobbers
.setBitsNotInMask(MO
.getRegMask());
427 Register Reg
= MO
.getReg();
430 assert(Register::isPhysicalRegister(Reg
) &&
431 "Not expecting virtual register!");
434 if (Reg
&& (PhysRegDefs
.test(Reg
) || PhysRegClobbers
.test(Reg
)))
435 // If it's using a non-loop-invariant register, then it's obviously not
437 HasNonInvariantUse
= true;
441 if (MO
.isImplicit()) {
442 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
443 PhysRegClobbers
.set(*AI
);
445 // Non-dead implicit def? This cannot be hoisted.
447 // No need to check if a dead implicit def is also defined by
448 // another instruction.
452 // FIXME: For now, avoid instructions with multiple defs, unless
453 // it's a dead implicit def.
459 // If we have already seen another instruction that defines the same
460 // register, then this is not safe. Two defs is indicated by setting a
461 // PhysRegClobbers bit.
462 for (MCRegAliasIterator
AS(Reg
, TRI
, true); AS
.isValid(); ++AS
) {
463 if (PhysRegDefs
.test(*AS
))
464 PhysRegClobbers
.set(*AS
);
466 // Need a second loop because MCRegAliasIterator can visit the same
468 for (MCRegAliasIterator
AS(Reg
, TRI
, true); AS
.isValid(); ++AS
)
469 PhysRegDefs
.set(*AS
);
471 if (PhysRegClobbers
.test(Reg
))
472 // MI defined register is seen defined by another instruction in
473 // the loop, it cannot be a LICM candidate.
477 // Only consider reloads for now and remats which do not have register
478 // operands. FIXME: Consider unfold load folding instructions.
479 if (Def
&& !RuledOut
) {
480 int FI
= std::numeric_limits
<int>::min();
481 if ((!HasNonInvariantUse
&& IsLICMCandidate(*MI
)) ||
482 (TII
->isLoadFromStackSlot(*MI
, FI
) && MFI
->isSpillSlotObjectIndex(FI
)))
483 Candidates
.push_back(CandidateInfo(MI
, Def
, FI
));
487 /// Walk the specified region of the CFG and hoist loop invariants out to the
489 void MachineLICMBase::HoistRegionPostRA() {
490 MachineBasicBlock
*Preheader
= getCurPreheader();
494 unsigned NumRegs
= TRI
->getNumRegs();
495 BitVector
PhysRegDefs(NumRegs
); // Regs defined once in the loop.
496 BitVector
PhysRegClobbers(NumRegs
); // Regs defined more than once.
498 SmallVector
<CandidateInfo
, 32> Candidates
;
499 SmallSet
<int, 32> StoredFIs
;
501 // Walk the entire region, count number of defs for each register, and
502 // collect potential LICM candidates.
503 for (MachineBasicBlock
*BB
: CurLoop
->getBlocks()) {
504 // If the header of the loop containing this basic block is a landing pad,
505 // then don't try to hoist instructions out of this loop.
506 const MachineLoop
*ML
= MLI
->getLoopFor(BB
);
507 if (ML
&& ML
->getHeader()->isEHPad()) continue;
509 // Conservatively treat live-in's as an external def.
510 // FIXME: That means a reload that're reused in successor block(s) will not
512 for (const auto &LI
: BB
->liveins()) {
513 for (MCRegAliasIterator
AI(LI
.PhysReg
, TRI
, true); AI
.isValid(); ++AI
)
514 PhysRegDefs
.set(*AI
);
517 SpeculationState
= SpeculateUnknown
;
518 for (MachineInstr
&MI
: *BB
)
519 ProcessMI(&MI
, PhysRegDefs
, PhysRegClobbers
, StoredFIs
, Candidates
);
522 // Gather the registers read / clobbered by the terminator.
523 BitVector
TermRegs(NumRegs
);
524 MachineBasicBlock::iterator TI
= Preheader
->getFirstTerminator();
525 if (TI
!= Preheader
->end()) {
526 for (const MachineOperand
&MO
: TI
->operands()) {
529 Register Reg
= MO
.getReg();
532 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
537 // Now evaluate whether the potential candidates qualify.
538 // 1. Check if the candidate defined register is defined by another
539 // instruction in the loop.
540 // 2. If the candidate is a load from stack slot (always true for now),
541 // check if the slot is stored anywhere in the loop.
542 // 3. Make sure candidate def should not clobber
543 // registers read by the terminator. Similarly its def should not be
544 // clobbered by the terminator.
545 for (CandidateInfo
&Candidate
: Candidates
) {
546 if (Candidate
.FI
!= std::numeric_limits
<int>::min() &&
547 StoredFIs
.count(Candidate
.FI
))
550 unsigned Def
= Candidate
.Def
;
551 if (!PhysRegClobbers
.test(Def
) && !TermRegs
.test(Def
)) {
553 MachineInstr
*MI
= Candidate
.MI
;
554 for (const MachineOperand
&MO
: MI
->operands()) {
555 if (!MO
.isReg() || MO
.isDef() || !MO
.getReg())
557 Register Reg
= MO
.getReg();
558 if (PhysRegDefs
.test(Reg
) ||
559 PhysRegClobbers
.test(Reg
)) {
560 // If it's using a non-loop-invariant register, then it's obviously
561 // not safe to hoist.
567 HoistPostRA(MI
, Candidate
.Def
);
572 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
573 /// sure it is not killed by any instructions in the loop.
574 void MachineLICMBase::AddToLiveIns(unsigned Reg
) {
575 for (MachineBasicBlock
*BB
: CurLoop
->getBlocks()) {
576 if (!BB
->isLiveIn(Reg
))
578 for (MachineInstr
&MI
: *BB
) {
579 for (MachineOperand
&MO
: MI
.operands()) {
580 if (!MO
.isReg() || !MO
.getReg() || MO
.isDef()) continue;
581 if (MO
.getReg() == Reg
|| TRI
->isSuperRegister(Reg
, MO
.getReg()))
588 /// When an instruction is found to only use loop invariant operands that is
589 /// safe to hoist, this instruction is called to do the dirty work.
590 void MachineLICMBase::HoistPostRA(MachineInstr
*MI
, unsigned Def
) {
591 MachineBasicBlock
*Preheader
= getCurPreheader();
593 // Now move the instructions to the predecessor, inserting it before any
594 // terminator instructions.
595 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader
)
596 << " from " << printMBBReference(*MI
->getParent()) << ": "
599 // Splice the instruction to the preheader.
600 MachineBasicBlock
*MBB
= MI
->getParent();
601 Preheader
->splice(Preheader
->getFirstTerminator(), MBB
, MI
);
603 // Add register to livein list to all the BBs in the current loop since a
604 // loop invariant must be kept live throughout the whole loop. This is
605 // important to ensure later passes do not scavenge the def register.
612 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
613 /// may not be safe to hoist.
614 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock
*BB
) {
615 if (SpeculationState
!= SpeculateUnknown
)
616 return SpeculationState
== SpeculateFalse
;
618 if (BB
!= CurLoop
->getHeader()) {
619 // Check loop exiting blocks.
620 SmallVector
<MachineBasicBlock
*, 8> CurrentLoopExitingBlocks
;
621 CurLoop
->getExitingBlocks(CurrentLoopExitingBlocks
);
622 for (MachineBasicBlock
*CurrentLoopExitingBlock
: CurrentLoopExitingBlocks
)
623 if (!DT
->dominates(BB
, CurrentLoopExitingBlock
)) {
624 SpeculationState
= SpeculateTrue
;
629 SpeculationState
= SpeculateFalse
;
633 void MachineLICMBase::EnterScope(MachineBasicBlock
*MBB
) {
634 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB
) << '\n');
636 // Remember livein register pressure.
637 BackTrace
.push_back(RegPressure
);
640 void MachineLICMBase::ExitScope(MachineBasicBlock
*MBB
) {
641 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB
) << '\n');
642 BackTrace
.pop_back();
645 /// Destroy scope for the MBB that corresponds to the given dominator tree node
646 /// if its a leaf or all of its children are done. Walk up the dominator tree to
647 /// destroy ancestors which are now done.
648 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode
*Node
,
649 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
,
650 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> &ParentMap
) {
651 if (OpenChildren
[Node
])
655 ExitScope(Node
->getBlock());
657 // Now traverse upwards to pop ancestors whose offsprings are all done.
658 while (MachineDomTreeNode
*Parent
= ParentMap
[Node
]) {
659 unsigned Left
= --OpenChildren
[Parent
];
662 ExitScope(Parent
->getBlock());
667 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
668 /// specified header block, and that are in the current loop) in depth first
669 /// order w.r.t the DominatorTree. This allows us to visit definitions before
670 /// uses, allowing us to hoist a loop body in one pass without iteration.
671 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode
*HeaderN
) {
672 MachineBasicBlock
*Preheader
= getCurPreheader();
676 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
677 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
678 DenseMap
<MachineDomTreeNode
*, MachineDomTreeNode
*> ParentMap
;
679 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
681 // Perform a DFS walk to determine the order of visit.
682 WorkList
.push_back(HeaderN
);
683 while (!WorkList
.empty()) {
684 MachineDomTreeNode
*Node
= WorkList
.pop_back_val();
685 assert(Node
&& "Null dominator tree node?");
686 MachineBasicBlock
*BB
= Node
->getBlock();
688 // If the header of the loop containing this basic block is a landing pad,
689 // then don't try to hoist instructions out of this loop.
690 const MachineLoop
*ML
= MLI
->getLoopFor(BB
);
691 if (ML
&& ML
->getHeader()->isEHPad())
694 // If this subregion is not in the top level loop at all, exit.
695 if (!CurLoop
->contains(BB
))
698 Scopes
.push_back(Node
);
699 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
700 unsigned NumChildren
= Children
.size();
702 // Don't hoist things out of a large switch statement. This often causes
703 // code to be hoisted that wasn't going to be executed, and increases
704 // register pressure in a situation where it's likely to matter.
705 if (BB
->succ_size() >= 25)
708 OpenChildren
[Node
] = NumChildren
;
709 // Add children in reverse order as then the next popped worklist node is
710 // the first child of this node. This means we ultimately traverse the
711 // DOM tree in exactly the same order as if we'd recursed.
712 for (int i
= (int)NumChildren
-1; i
>= 0; --i
) {
713 MachineDomTreeNode
*Child
= Children
[i
];
714 ParentMap
[Child
] = Node
;
715 WorkList
.push_back(Child
);
719 if (Scopes
.size() == 0)
722 // Compute registers which are livein into the loop headers.
725 InitRegPressure(Preheader
);
728 for (MachineDomTreeNode
*Node
: Scopes
) {
729 MachineBasicBlock
*MBB
= Node
->getBlock();
734 SpeculationState
= SpeculateUnknown
;
735 for (MachineBasicBlock::iterator
736 MII
= MBB
->begin(), E
= MBB
->end(); MII
!= E
; ) {
737 MachineBasicBlock::iterator NextMII
= MII
; ++NextMII
;
738 MachineInstr
*MI
= &*MII
;
739 if (!Hoist(MI
, Preheader
))
740 UpdateRegPressure(MI
);
741 // If we have hoisted an instruction that may store, it can only be a
746 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
747 ExitScopeIfDone(Node
, OpenChildren
, ParentMap
);
751 /// Sink instructions into loops if profitable. This especially tries to prevent
752 /// register spills caused by register pressure if there is little to no
753 /// overhead moving instructions into loops.
754 void MachineLICMBase::SinkIntoLoop() {
755 MachineBasicBlock
*Preheader
= getCurPreheader();
759 SmallVector
<MachineInstr
*, 8> Candidates
;
760 for (MachineBasicBlock::instr_iterator I
= Preheader
->instr_begin();
761 I
!= Preheader
->instr_end(); ++I
) {
762 // We need to ensure that we can safely move this instruction into the loop.
763 // As such, it must not have side-effects, e.g. such as a call has.
764 if (IsLoopInvariantInst(*I
) && !HasLoopPHIUse(&*I
))
765 Candidates
.push_back(&*I
);
768 for (MachineInstr
*I
: Candidates
) {
769 const MachineOperand
&MO
= I
->getOperand(0);
770 if (!MO
.isDef() || !MO
.isReg() || !MO
.getReg())
772 if (!MRI
->hasOneDef(MO
.getReg()))
775 MachineBasicBlock
*B
= nullptr;
776 for (MachineInstr
&MI
: MRI
->use_instructions(MO
.getReg())) {
777 // FIXME: Come up with a proper cost model that estimates whether sinking
778 // the instruction (and thus possibly executing it on every loop
779 // iteration) is more expensive than a register.
780 // For now assumes that copies are cheap and thus almost always worth it.
789 B
= DT
->findNearestCommonDominator(B
, MI
.getParent());
795 if (!CanSink
|| !B
|| B
== Preheader
)
797 B
->splice(B
->getFirstNonPHI(), Preheader
, I
);
801 static bool isOperandKill(const MachineOperand
&MO
, MachineRegisterInfo
*MRI
) {
802 return MO
.isKill() || MRI
->hasOneNonDBGUse(MO
.getReg());
805 /// Find all virtual register references that are liveout of the preheader to
806 /// initialize the starting "register pressure". Note this does not count live
807 /// through (livein but not used) registers.
808 void MachineLICMBase::InitRegPressure(MachineBasicBlock
*BB
) {
809 std::fill(RegPressure
.begin(), RegPressure
.end(), 0);
811 // If the preheader has only a single predecessor and it ends with a
812 // fallthrough or an unconditional branch, then scan its predecessor for live
813 // defs as well. This happens whenever the preheader is created by splitting
814 // the critical edge from the loop predecessor to the loop header.
815 if (BB
->pred_size() == 1) {
816 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
817 SmallVector
<MachineOperand
, 4> Cond
;
818 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
, false) && Cond
.empty())
819 InitRegPressure(*BB
->pred_begin());
822 for (const MachineInstr
&MI
: *BB
)
823 UpdateRegPressure(&MI
, /*ConsiderUnseenAsDef=*/true);
826 /// Update estimate of register pressure after the specified instruction.
827 void MachineLICMBase::UpdateRegPressure(const MachineInstr
*MI
,
828 bool ConsiderUnseenAsDef
) {
829 auto Cost
= calcRegisterCost(MI
, /*ConsiderSeen=*/true, ConsiderUnseenAsDef
);
830 for (const auto &RPIdAndCost
: Cost
) {
831 unsigned Class
= RPIdAndCost
.first
;
832 if (static_cast<int>(RegPressure
[Class
]) < -RPIdAndCost
.second
)
833 RegPressure
[Class
] = 0;
835 RegPressure
[Class
] += RPIdAndCost
.second
;
839 /// Calculate the additional register pressure that the registers used in MI
842 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
843 /// figure out which usages are live-ins.
844 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
845 DenseMap
<unsigned, int>
846 MachineLICMBase::calcRegisterCost(const MachineInstr
*MI
, bool ConsiderSeen
,
847 bool ConsiderUnseenAsDef
) {
848 DenseMap
<unsigned, int> Cost
;
849 if (MI
->isImplicitDef())
851 for (unsigned i
= 0, e
= MI
->getDesc().getNumOperands(); i
!= e
; ++i
) {
852 const MachineOperand
&MO
= MI
->getOperand(i
);
853 if (!MO
.isReg() || MO
.isImplicit())
855 Register Reg
= MO
.getReg();
856 if (!Register::isVirtualRegister(Reg
))
859 // FIXME: It seems bad to use RegSeen only for some of these calculations.
860 bool isNew
= ConsiderSeen
? RegSeen
.insert(Reg
).second
: false;
861 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
863 RegClassWeight W
= TRI
->getRegClassWeight(RC
);
866 RCCost
= W
.RegWeight
;
868 bool isKill
= isOperandKill(MO
, MRI
);
869 if (isNew
&& !isKill
&& ConsiderUnseenAsDef
)
870 // Haven't seen this, it must be a livein.
871 RCCost
= W
.RegWeight
;
872 else if (!isNew
&& isKill
)
873 RCCost
= -W
.RegWeight
;
877 const int *PS
= TRI
->getRegClassPressureSets(RC
);
878 for (; *PS
!= -1; ++PS
) {
879 if (Cost
.find(*PS
) == Cost
.end())
888 /// Return true if this machine instruction loads from global offset table or
890 static bool mayLoadFromGOTOrConstantPool(MachineInstr
&MI
) {
891 assert(MI
.mayLoad() && "Expected MI that loads!");
893 // If we lost memory operands, conservatively assume that the instruction
894 // reads from everything..
895 if (MI
.memoperands_empty())
898 for (MachineMemOperand
*MemOp
: MI
.memoperands())
899 if (const PseudoSourceValue
*PSV
= MemOp
->getPseudoValue())
900 if (PSV
->isGOT() || PSV
->isConstantPool())
906 // This function iterates through all the operands of the input store MI and
907 // checks that each register operand statisfies isCallerPreservedPhysReg.
908 // This means, the value being stored and the address where it is being stored
909 // is constant throughout the body of the function (not including prologue and
910 // epilogue). When called with an MI that isn't a store, it returns false.
911 // A future improvement can be to check if the store registers are constant
912 // throughout the loop rather than throughout the funtion.
913 static bool isInvariantStore(const MachineInstr
&MI
,
914 const TargetRegisterInfo
*TRI
,
915 const MachineRegisterInfo
*MRI
) {
917 bool FoundCallerPresReg
= false;
918 if (!MI
.mayStore() || MI
.hasUnmodeledSideEffects() ||
919 (MI
.getNumOperands() == 0))
922 // Check that all register operands are caller-preserved physical registers.
923 for (const MachineOperand
&MO
: MI
.operands()) {
925 Register Reg
= MO
.getReg();
926 // If operand is a virtual register, check if it comes from a copy of a
927 // physical register.
928 if (Register::isVirtualRegister(Reg
))
929 Reg
= TRI
->lookThruCopyLike(MO
.getReg(), MRI
);
930 if (Register::isVirtualRegister(Reg
))
932 if (!TRI
->isCallerPreservedPhysReg(Reg
, *MI
.getMF()))
935 FoundCallerPresReg
= true;
936 } else if (!MO
.isImm()) {
940 return FoundCallerPresReg
;
943 // Return true if the input MI is a copy instruction that feeds an invariant
944 // store instruction. This means that the src of the copy has to satisfy
945 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
947 static bool isCopyFeedingInvariantStore(const MachineInstr
&MI
,
948 const MachineRegisterInfo
*MRI
,
949 const TargetRegisterInfo
*TRI
) {
951 // FIXME: If targets would like to look through instructions that aren't
952 // pure copies, this can be updated to a query.
956 const MachineFunction
*MF
= MI
.getMF();
957 // Check that we are copying a constant physical register.
958 Register CopySrcReg
= MI
.getOperand(1).getReg();
959 if (Register::isVirtualRegister(CopySrcReg
))
962 if (!TRI
->isCallerPreservedPhysReg(CopySrcReg
, *MF
))
965 Register CopyDstReg
= MI
.getOperand(0).getReg();
966 // Check if any of the uses of the copy are invariant stores.
967 assert(Register::isVirtualRegister(CopyDstReg
) &&
968 "copy dst is not a virtual reg");
970 for (MachineInstr
&UseMI
: MRI
->use_instructions(CopyDstReg
)) {
971 if (UseMI
.mayStore() && isInvariantStore(UseMI
, TRI
, MRI
))
977 /// Returns true if the instruction may be a suitable candidate for LICM.
978 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
979 bool MachineLICMBase::IsLICMCandidate(MachineInstr
&I
) {
980 // Check if it's safe to move the instruction.
981 bool DontMoveAcrossStore
= true;
982 if ((!I
.isSafeToMove(AA
, DontMoveAcrossStore
)) &&
983 !(HoistConstStores
&& isInvariantStore(I
, TRI
, MRI
))) {
987 // If it is load then check if it is guaranteed to execute by making sure that
988 // it dominates all exiting blocks. If it doesn't, then there is a path out of
989 // the loop which does not execute this load, so we can't hoist it. Loads
990 // from constant memory are not safe to speculate all the time, for example
991 // indexed load from a jump table.
992 // Stores and side effects are already checked by isSafeToMove.
993 if (I
.mayLoad() && !mayLoadFromGOTOrConstantPool(I
) &&
994 !IsGuaranteedToExecute(I
.getParent()))
1000 /// Returns true if the instruction is loop invariant.
1001 /// I.e., all virtual register operands are defined outside of the loop,
1002 /// physical registers aren't accessed explicitly, and there are no side
1003 /// effects that aren't captured by the operands or other flags.
1004 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr
&I
) {
1005 if (!IsLICMCandidate(I
))
1008 // The instruction is loop invariant if all of its operands are.
1009 for (const MachineOperand
&MO
: I
.operands()) {
1013 Register Reg
= MO
.getReg();
1014 if (Reg
== 0) continue;
1016 // Don't hoist an instruction that uses or defines a physical register.
1017 if (Register::isPhysicalRegister(Reg
)) {
1019 // If the physreg has no defs anywhere, it's just an ambient register
1020 // and we can freely move its uses. Alternatively, if it's allocatable,
1021 // it could get allocated to something with a def during allocation.
1022 // However, if the physreg is known to always be caller saved/restored
1023 // then this use is safe to hoist.
1024 if (!MRI
->isConstantPhysReg(Reg
) &&
1025 !(TRI
->isCallerPreservedPhysReg(Reg
, *I
.getMF())))
1027 // Otherwise it's safe to move.
1029 } else if (!MO
.isDead()) {
1030 // A def that isn't dead. We can't move it.
1032 } else if (CurLoop
->getHeader()->isLiveIn(Reg
)) {
1033 // If the reg is live into the loop, we can't hoist an instruction
1034 // which would clobber it.
1042 assert(MRI
->getVRegDef(Reg
) &&
1043 "Machine instr not mapped for this vreg?!");
1045 // If the loop contains the definition of an operand, then the instruction
1046 // isn't loop invariant.
1047 if (CurLoop
->contains(MRI
->getVRegDef(Reg
)))
1051 // If we got this far, the instruction is loop invariant!
1055 /// Return true if the specified instruction is used by a phi node and hoisting
1056 /// it could cause a copy to be inserted.
1057 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr
*MI
) const {
1058 SmallVector
<const MachineInstr
*, 8> Work(1, MI
);
1060 MI
= Work
.pop_back_val();
1061 for (const MachineOperand
&MO
: MI
->operands()) {
1062 if (!MO
.isReg() || !MO
.isDef())
1064 Register Reg
= MO
.getReg();
1065 if (!Register::isVirtualRegister(Reg
))
1067 for (MachineInstr
&UseMI
: MRI
->use_instructions(Reg
)) {
1068 // A PHI may cause a copy to be inserted.
1069 if (UseMI
.isPHI()) {
1070 // A PHI inside the loop causes a copy because the live range of Reg is
1071 // extended across the PHI.
1072 if (CurLoop
->contains(&UseMI
))
1074 // A PHI in an exit block can cause a copy to be inserted if the PHI
1075 // has multiple predecessors in the loop with different values.
1076 // For now, approximate by rejecting all exit blocks.
1077 if (isExitBlock(UseMI
.getParent()))
1081 // Look past copies as well.
1082 if (UseMI
.isCopy() && CurLoop
->contains(&UseMI
))
1083 Work
.push_back(&UseMI
);
1086 } while (!Work
.empty());
1090 /// Compute operand latency between a def of 'Reg' and an use in the current
1091 /// loop, return true if the target considered it high.
1092 bool MachineLICMBase::HasHighOperandLatency(MachineInstr
&MI
,
1094 unsigned Reg
) const {
1095 if (MRI
->use_nodbg_empty(Reg
))
1098 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(Reg
)) {
1099 if (UseMI
.isCopyLike())
1101 if (!CurLoop
->contains(UseMI
.getParent()))
1103 for (unsigned i
= 0, e
= UseMI
.getNumOperands(); i
!= e
; ++i
) {
1104 const MachineOperand
&MO
= UseMI
.getOperand(i
);
1105 if (!MO
.isReg() || !MO
.isUse())
1107 Register MOReg
= MO
.getReg();
1111 if (TII
->hasHighOperandLatency(SchedModel
, MRI
, MI
, DefIdx
, UseMI
, i
))
1115 // Only look at the first in loop use.
1122 /// Return true if the instruction is marked "cheap" or the operand latency
1123 /// between its def and a use is one or less.
1124 bool MachineLICMBase::IsCheapInstruction(MachineInstr
&MI
) const {
1125 if (TII
->isAsCheapAsAMove(MI
) || MI
.isCopyLike())
1128 bool isCheap
= false;
1129 unsigned NumDefs
= MI
.getDesc().getNumDefs();
1130 for (unsigned i
= 0, e
= MI
.getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
1131 MachineOperand
&DefMO
= MI
.getOperand(i
);
1132 if (!DefMO
.isReg() || !DefMO
.isDef())
1135 Register Reg
= DefMO
.getReg();
1136 if (Register::isPhysicalRegister(Reg
))
1139 if (!TII
->hasLowDefLatency(SchedModel
, MI
, i
))
1147 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1148 /// given cost matrix can cause high register pressure.
1150 MachineLICMBase::CanCauseHighRegPressure(const DenseMap
<unsigned, int>& Cost
,
1152 for (const auto &RPIdAndCost
: Cost
) {
1153 if (RPIdAndCost
.second
<= 0)
1156 unsigned Class
= RPIdAndCost
.first
;
1157 int Limit
= RegLimit
[Class
];
1159 // Don't hoist cheap instructions if they would increase register pressure,
1160 // even if we're under the limit.
1161 if (CheapInstr
&& !HoistCheapInsts
)
1164 for (const auto &RP
: BackTrace
)
1165 if (static_cast<int>(RP
[Class
]) + RPIdAndCost
.second
>= Limit
)
1172 /// Traverse the back trace from header to the current block and update their
1173 /// register pressures to reflect the effect of hoisting MI from the current
1174 /// block to the preheader.
1175 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr
*MI
) {
1176 // First compute the 'cost' of the instruction, i.e. its contribution
1177 // to register pressure.
1178 auto Cost
= calcRegisterCost(MI
, /*ConsiderSeen=*/false,
1179 /*ConsiderUnseenAsDef=*/false);
1181 // Update register pressure of blocks from loop header to current block.
1182 for (auto &RP
: BackTrace
)
1183 for (const auto &RPIdAndCost
: Cost
)
1184 RP
[RPIdAndCost
.first
] += RPIdAndCost
.second
;
1187 /// Return true if it is potentially profitable to hoist the given loop
1189 bool MachineLICMBase::IsProfitableToHoist(MachineInstr
&MI
) {
1190 if (MI
.isImplicitDef())
1193 // Besides removing computation from the loop, hoisting an instruction has
1196 // - The value defined by the instruction becomes live across the entire
1197 // loop. This increases register pressure in the loop.
1199 // - If the value is used by a PHI in the loop, a copy will be required for
1200 // lowering the PHI after extending the live range.
1202 // - When hoisting the last use of a value in the loop, that value no longer
1203 // needs to be live in the loop. This lowers register pressure in the loop.
1205 if (HoistConstStores
&& isCopyFeedingInvariantStore(MI
, MRI
, TRI
))
1208 bool CheapInstr
= IsCheapInstruction(MI
);
1209 bool CreatesCopy
= HasLoopPHIUse(&MI
);
1211 // Don't hoist a cheap instruction if it would create a copy in the loop.
1212 if (CheapInstr
&& CreatesCopy
) {
1213 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI
);
1217 // Rematerializable instructions should always be hoisted since the register
1218 // allocator can just pull them down again when needed.
1219 if (TII
->isTriviallyReMaterializable(MI
, AA
))
1222 // FIXME: If there are long latency loop-invariant instructions inside the
1223 // loop at this point, why didn't the optimizer's LICM hoist them?
1224 for (unsigned i
= 0, e
= MI
.getDesc().getNumOperands(); i
!= e
; ++i
) {
1225 const MachineOperand
&MO
= MI
.getOperand(i
);
1226 if (!MO
.isReg() || MO
.isImplicit())
1228 Register Reg
= MO
.getReg();
1229 if (!Register::isVirtualRegister(Reg
))
1231 if (MO
.isDef() && HasHighOperandLatency(MI
, i
, Reg
)) {
1232 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI
);
1238 // Estimate register pressure to determine whether to LICM the instruction.
1239 // In low register pressure situation, we can be more aggressive about
1240 // hoisting. Also, favors hoisting long latency instructions even in
1241 // moderately high pressure situation.
1242 // Cheap instructions will only be hoisted if they don't increase register
1244 auto Cost
= calcRegisterCost(&MI
, /*ConsiderSeen=*/false,
1245 /*ConsiderUnseenAsDef=*/false);
1247 // Visit BBs from header to current BB, if hoisting this doesn't cause
1248 // high register pressure, then it's safe to proceed.
1249 if (!CanCauseHighRegPressure(Cost
, CheapInstr
)) {
1250 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI
);
1255 // Don't risk increasing register pressure if it would create copies.
1257 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI
);
1261 // Do not "speculate" in high register pressure situation. If an
1262 // instruction is not guaranteed to be executed in the loop, it's best to be
1264 if (AvoidSpeculation
&&
1265 (!IsGuaranteedToExecute(MI
.getParent()) && !MayCSE(&MI
))) {
1266 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI
);
1270 // High register pressure situation, only hoist if the instruction is going
1272 if (!TII
->isTriviallyReMaterializable(MI
, AA
) &&
1273 !MI
.isDereferenceableInvariantLoad(AA
)) {
1274 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI
);
1281 /// Unfold a load from the given machineinstr if the load itself could be
1282 /// hoisted. Return the unfolded and hoistable load, or null if the load
1283 /// couldn't be unfolded or if it wouldn't be hoistable.
1284 MachineInstr
*MachineLICMBase::ExtractHoistableLoad(MachineInstr
*MI
) {
1285 // Don't unfold simple loads.
1286 if (MI
->canFoldAsLoad())
1289 // If not, we may be able to unfold a load and hoist that.
1290 // First test whether the instruction is loading from an amenable
1292 if (!MI
->isDereferenceableInvariantLoad(AA
))
1295 // Next determine the register class for a temporary register.
1296 unsigned LoadRegIndex
;
1298 TII
->getOpcodeAfterMemoryUnfold(MI
->getOpcode(),
1299 /*UnfoldLoad=*/true,
1300 /*UnfoldStore=*/false,
1302 if (NewOpc
== 0) return nullptr;
1303 const MCInstrDesc
&MID
= TII
->get(NewOpc
);
1304 MachineFunction
&MF
= *MI
->getMF();
1305 const TargetRegisterClass
*RC
= TII
->getRegClass(MID
, LoadRegIndex
, TRI
, MF
);
1306 // Ok, we're unfolding. Create a temporary register and do the unfold.
1307 Register Reg
= MRI
->createVirtualRegister(RC
);
1309 SmallVector
<MachineInstr
*, 2> NewMIs
;
1310 bool Success
= TII
->unfoldMemoryOperand(MF
, *MI
, Reg
,
1311 /*UnfoldLoad=*/true,
1312 /*UnfoldStore=*/false, NewMIs
);
1315 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1317 assert(NewMIs
.size() == 2 &&
1318 "Unfolded a load into multiple instructions!");
1319 MachineBasicBlock
*MBB
= MI
->getParent();
1320 MachineBasicBlock::iterator Pos
= MI
;
1321 MBB
->insert(Pos
, NewMIs
[0]);
1322 MBB
->insert(Pos
, NewMIs
[1]);
1323 // If unfolding produced a load that wasn't loop-invariant or profitable to
1324 // hoist, discard the new instructions and bail.
1325 if (!IsLoopInvariantInst(*NewMIs
[0]) || !IsProfitableToHoist(*NewMIs
[0])) {
1326 NewMIs
[0]->eraseFromParent();
1327 NewMIs
[1]->eraseFromParent();
1331 // Update register pressure for the unfolded instruction.
1332 UpdateRegPressure(NewMIs
[1]);
1334 // Otherwise we successfully unfolded a load that we can hoist.
1335 MI
->eraseFromParent();
1339 /// Initialize the CSE map with instructions that are in the current loop
1340 /// preheader that may become duplicates of instructions that are hoisted
1341 /// out of the loop.
1342 void MachineLICMBase::InitCSEMap(MachineBasicBlock
*BB
) {
1343 for (MachineInstr
&MI
: *BB
)
1344 CSEMap
[MI
.getOpcode()].push_back(&MI
);
1347 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1348 /// Return this instruction if it's found.
1350 MachineLICMBase::LookForDuplicate(const MachineInstr
*MI
,
1351 std::vector
<const MachineInstr
*> &PrevMIs
) {
1352 for (const MachineInstr
*PrevMI
: PrevMIs
)
1353 if (TII
->produceSameValue(*MI
, *PrevMI
, (PreRegAlloc
? MRI
: nullptr)))
1359 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1360 /// computes the same value. If it's found, do a RAU on with the definition of
1361 /// the existing instruction rather than hoisting the instruction to the
1363 bool MachineLICMBase::EliminateCSE(MachineInstr
*MI
,
1364 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
&CI
) {
1365 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1366 // the undef property onto uses.
1367 if (CI
== CSEMap
.end() || MI
->isImplicitDef())
1370 if (const MachineInstr
*Dup
= LookForDuplicate(MI
, CI
->second
)) {
1371 LLVM_DEBUG(dbgs() << "CSEing " << *MI
<< " with " << *Dup
);
1373 // Replace virtual registers defined by MI by their counterparts defined
1375 SmallVector
<unsigned, 2> Defs
;
1376 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1377 const MachineOperand
&MO
= MI
->getOperand(i
);
1379 // Physical registers may not differ here.
1380 assert((!MO
.isReg() || MO
.getReg() == 0 ||
1381 !Register::isPhysicalRegister(MO
.getReg()) ||
1382 MO
.getReg() == Dup
->getOperand(i
).getReg()) &&
1383 "Instructions with different phys regs are not identical!");
1385 if (MO
.isReg() && MO
.isDef() &&
1386 !Register::isPhysicalRegister(MO
.getReg()))
1390 SmallVector
<const TargetRegisterClass
*, 2> OrigRCs
;
1391 for (unsigned i
= 0, e
= Defs
.size(); i
!= e
; ++i
) {
1392 unsigned Idx
= Defs
[i
];
1393 Register Reg
= MI
->getOperand(Idx
).getReg();
1394 Register DupReg
= Dup
->getOperand(Idx
).getReg();
1395 OrigRCs
.push_back(MRI
->getRegClass(DupReg
));
1397 if (!MRI
->constrainRegClass(DupReg
, MRI
->getRegClass(Reg
))) {
1398 // Restore old RCs if more than one defs.
1399 for (unsigned j
= 0; j
!= i
; ++j
)
1400 MRI
->setRegClass(Dup
->getOperand(Defs
[j
]).getReg(), OrigRCs
[j
]);
1405 for (unsigned Idx
: Defs
) {
1406 Register Reg
= MI
->getOperand(Idx
).getReg();
1407 Register DupReg
= Dup
->getOperand(Idx
).getReg();
1408 MRI
->replaceRegWith(Reg
, DupReg
);
1409 MRI
->clearKillFlags(DupReg
);
1412 MI
->eraseFromParent();
1419 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1421 bool MachineLICMBase::MayCSE(MachineInstr
*MI
) {
1422 unsigned Opcode
= MI
->getOpcode();
1423 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
1424 CI
= CSEMap
.find(Opcode
);
1425 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1426 // the undef property onto uses.
1427 if (CI
== CSEMap
.end() || MI
->isImplicitDef())
1430 return LookForDuplicate(MI
, CI
->second
) != nullptr;
1433 /// When an instruction is found to use only loop invariant operands
1434 /// that are safe to hoist, this instruction is called to do the dirty work.
1435 /// It returns true if the instruction is hoisted.
1436 bool MachineLICMBase::Hoist(MachineInstr
*MI
, MachineBasicBlock
*Preheader
) {
1437 // First check whether we should hoist this instruction.
1438 if (!IsLoopInvariantInst(*MI
) || !IsProfitableToHoist(*MI
)) {
1439 // If not, try unfolding a hoistable load.
1440 MI
= ExtractHoistableLoad(MI
);
1441 if (!MI
) return false;
1444 // If we have hoisted an instruction that may store, it can only be a constant
1449 // Now move the instructions to the predecessor, inserting it before any
1450 // terminator instructions.
1452 dbgs() << "Hoisting " << *MI
;
1453 if (MI
->getParent()->getBasicBlock())
1454 dbgs() << " from " << printMBBReference(*MI
->getParent());
1455 if (Preheader
->getBasicBlock())
1456 dbgs() << " to " << printMBBReference(*Preheader
);
1460 // If this is the first instruction being hoisted to the preheader,
1461 // initialize the CSE map with potential common expressions.
1463 InitCSEMap(Preheader
);
1464 FirstInLoop
= false;
1467 // Look for opportunity to CSE the hoisted instruction.
1468 unsigned Opcode
= MI
->getOpcode();
1469 DenseMap
<unsigned, std::vector
<const MachineInstr
*>>::iterator
1470 CI
= CSEMap
.find(Opcode
);
1471 if (!EliminateCSE(MI
, CI
)) {
1472 // Otherwise, splice the instruction to the preheader.
1473 Preheader
->splice(Preheader
->getFirstTerminator(),MI
->getParent(),MI
);
1475 // Since we are moving the instruction out of its basic block, we do not
1476 // retain its debug location. Doing so would degrade the debugging
1477 // experience and adversely affect the accuracy of profiling information.
1478 MI
->setDebugLoc(DebugLoc());
1480 // Update register pressure for BBs from header to this block.
1481 UpdateBackTraceRegPressure(MI
);
1483 // Clear the kill flags of any register this instruction defines,
1484 // since they may need to be live throughout the entire loop
1485 // rather than just live for part of it.
1486 for (MachineOperand
&MO
: MI
->operands())
1487 if (MO
.isReg() && MO
.isDef() && !MO
.isDead())
1488 MRI
->clearKillFlags(MO
.getReg());
1490 // Add to the CSE map.
1491 if (CI
!= CSEMap
.end())
1492 CI
->second
.push_back(MI
);
1494 CSEMap
[Opcode
].push_back(MI
);
1503 /// Get the preheader for the current loop, splitting a critical edge if needed.
1504 MachineBasicBlock
*MachineLICMBase::getCurPreheader() {
1505 // Determine the block to which to hoist instructions. If we can't find a
1506 // suitable loop predecessor, we can't do any hoisting.
1508 // If we've tried to get a preheader and failed, don't try again.
1509 if (CurPreheader
== reinterpret_cast<MachineBasicBlock
*>(-1))
1512 if (!CurPreheader
) {
1513 CurPreheader
= CurLoop
->getLoopPreheader();
1514 if (!CurPreheader
) {
1515 MachineBasicBlock
*Pred
= CurLoop
->getLoopPredecessor();
1517 CurPreheader
= reinterpret_cast<MachineBasicBlock
*>(-1);
1521 CurPreheader
= Pred
->SplitCriticalEdge(CurLoop
->getHeader(), *this);
1522 if (!CurPreheader
) {
1523 CurPreheader
= reinterpret_cast<MachineBasicBlock
*>(-1);
1528 return CurPreheader
;