[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / CodeGen / ModuloSchedule.cpp
blob55fa2aff2933176919312cae660adeee1889a5b1
1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/CodeGen/LiveIntervals.h"
12 #include "llvm/CodeGen/MachineInstrBuilder.h"
13 #include "llvm/CodeGen/MachineRegisterInfo.h"
14 #include "llvm/CodeGen/TargetInstrInfo.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/raw_ostream.h"
20 #define DEBUG_TYPE "pipeliner"
21 using namespace llvm;
23 void ModuloSchedule::print(raw_ostream &OS) {
24 for (MachineInstr *MI : ScheduledInstrs)
25 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
28 //===----------------------------------------------------------------------===//
29 // ModuloScheduleExpander implementation
30 //===----------------------------------------------------------------------===//
32 /// Return the register values for the operands of a Phi instruction.
33 /// This function assume the instruction is a Phi.
34 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
35 unsigned &InitVal, unsigned &LoopVal) {
36 assert(Phi.isPHI() && "Expecting a Phi.");
38 InitVal = 0;
39 LoopVal = 0;
40 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
41 if (Phi.getOperand(i + 1).getMBB() != Loop)
42 InitVal = Phi.getOperand(i).getReg();
43 else
44 LoopVal = Phi.getOperand(i).getReg();
46 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
49 /// Return the Phi register value that comes from the incoming block.
50 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
51 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
52 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
53 return Phi.getOperand(i).getReg();
54 return 0;
57 /// Return the Phi register value that comes the loop block.
58 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
59 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
60 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
61 return Phi.getOperand(i).getReg();
62 return 0;
65 void ModuloScheduleExpander::expand() {
66 BB = Schedule.getLoop()->getTopBlock();
67 Preheader = *BB->pred_begin();
68 if (Preheader == BB)
69 Preheader = *std::next(BB->pred_begin());
71 // Iterate over the definitions in each instruction, and compute the
72 // stage difference for each use. Keep the maximum value.
73 for (MachineInstr *MI : Schedule.getInstructions()) {
74 int DefStage = Schedule.getStage(MI);
75 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
76 MachineOperand &Op = MI->getOperand(i);
77 if (!Op.isReg() || !Op.isDef())
78 continue;
80 Register Reg = Op.getReg();
81 unsigned MaxDiff = 0;
82 bool PhiIsSwapped = false;
83 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
84 EI = MRI.use_end();
85 UI != EI; ++UI) {
86 MachineOperand &UseOp = *UI;
87 MachineInstr *UseMI = UseOp.getParent();
88 int UseStage = Schedule.getStage(UseMI);
89 unsigned Diff = 0;
90 if (UseStage != -1 && UseStage >= DefStage)
91 Diff = UseStage - DefStage;
92 if (MI->isPHI()) {
93 if (isLoopCarried(*MI))
94 ++Diff;
95 else
96 PhiIsSwapped = true;
98 MaxDiff = std::max(Diff, MaxDiff);
100 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
104 generatePipelinedLoop();
107 void ModuloScheduleExpander::generatePipelinedLoop() {
108 // Create a new basic block for the kernel and add it to the CFG.
109 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
111 unsigned MaxStageCount = Schedule.getNumStages() - 1;
113 // Remember the registers that are used in different stages. The index is
114 // the iteration, or stage, that the instruction is scheduled in. This is
115 // a map between register names in the original block and the names created
116 // in each stage of the pipelined loop.
117 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
118 InstrMapTy InstrMap;
120 SmallVector<MachineBasicBlock *, 4> PrologBBs;
122 // Generate the prolog instructions that set up the pipeline.
123 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
124 MF.insert(BB->getIterator(), KernelBB);
126 // Rearrange the instructions to generate the new, pipelined loop,
127 // and update register names as needed.
128 for (MachineInstr *CI : Schedule.getInstructions()) {
129 if (CI->isPHI())
130 continue;
131 unsigned StageNum = Schedule.getStage(CI);
132 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
133 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
134 KernelBB->push_back(NewMI);
135 InstrMap[NewMI] = CI;
138 // Copy any terminator instructions to the new kernel, and update
139 // names as needed.
140 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
141 E = BB->instr_end();
142 I != E; ++I) {
143 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
144 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
145 KernelBB->push_back(NewMI);
146 InstrMap[NewMI] = &*I;
149 NewKernel = KernelBB;
150 KernelBB->transferSuccessors(BB);
151 KernelBB->replaceSuccessor(BB, KernelBB);
153 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
154 InstrMap, MaxStageCount, MaxStageCount, false);
155 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
156 MaxStageCount, MaxStageCount, false);
158 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
160 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
161 // Generate the epilog instructions to complete the pipeline.
162 generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
164 // We need this step because the register allocation doesn't handle some
165 // situations well, so we insert copies to help out.
166 splitLifetimes(KernelBB, EpilogBBs);
168 // Remove dead instructions due to loop induction variables.
169 removeDeadInstructions(KernelBB, EpilogBBs);
171 // Add branches between prolog and epilog blocks.
172 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
174 delete[] VRMap;
177 void ModuloScheduleExpander::cleanup() {
178 // Remove the original loop since it's no longer referenced.
179 for (auto &I : *BB)
180 LIS.RemoveMachineInstrFromMaps(I);
181 BB->clear();
182 BB->eraseFromParent();
185 /// Generate the pipeline prolog code.
186 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
187 MachineBasicBlock *KernelBB,
188 ValueMapTy *VRMap,
189 MBBVectorTy &PrologBBs) {
190 MachineBasicBlock *PredBB = Preheader;
191 InstrMapTy InstrMap;
193 // Generate a basic block for each stage, not including the last stage,
194 // which will be generated in the kernel. Each basic block may contain
195 // instructions from multiple stages/iterations.
196 for (unsigned i = 0; i < LastStage; ++i) {
197 // Create and insert the prolog basic block prior to the original loop
198 // basic block. The original loop is removed later.
199 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
200 PrologBBs.push_back(NewBB);
201 MF.insert(BB->getIterator(), NewBB);
202 NewBB->transferSuccessors(PredBB);
203 PredBB->addSuccessor(NewBB);
204 PredBB = NewBB;
206 // Generate instructions for each appropriate stage. Process instructions
207 // in original program order.
208 for (int StageNum = i; StageNum >= 0; --StageNum) {
209 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
210 BBE = BB->getFirstTerminator();
211 BBI != BBE; ++BBI) {
212 if (Schedule.getStage(&*BBI) == StageNum) {
213 if (BBI->isPHI())
214 continue;
215 MachineInstr *NewMI =
216 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
217 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
218 NewBB->push_back(NewMI);
219 InstrMap[NewMI] = &*BBI;
223 rewritePhiValues(NewBB, i, VRMap, InstrMap);
224 LLVM_DEBUG({
225 dbgs() << "prolog:\n";
226 NewBB->dump();
230 PredBB->replaceSuccessor(BB, KernelBB);
232 // Check if we need to remove the branch from the preheader to the original
233 // loop, and replace it with a branch to the new loop.
234 unsigned numBranches = TII->removeBranch(*Preheader);
235 if (numBranches) {
236 SmallVector<MachineOperand, 0> Cond;
237 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
241 /// Generate the pipeline epilog code. The epilog code finishes the iterations
242 /// that were started in either the prolog or the kernel. We create a basic
243 /// block for each stage that needs to complete.
244 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
245 MachineBasicBlock *KernelBB,
246 ValueMapTy *VRMap,
247 MBBVectorTy &EpilogBBs,
248 MBBVectorTy &PrologBBs) {
249 // We need to change the branch from the kernel to the first epilog block, so
250 // this call to analyze branch uses the kernel rather than the original BB.
251 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
252 SmallVector<MachineOperand, 4> Cond;
253 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
254 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
255 if (checkBranch)
256 return;
258 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
259 if (*LoopExitI == KernelBB)
260 ++LoopExitI;
261 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
262 MachineBasicBlock *LoopExitBB = *LoopExitI;
264 MachineBasicBlock *PredBB = KernelBB;
265 MachineBasicBlock *EpilogStart = LoopExitBB;
266 InstrMapTy InstrMap;
268 // Generate a basic block for each stage, not including the last stage,
269 // which was generated for the kernel. Each basic block may contain
270 // instructions from multiple stages/iterations.
271 int EpilogStage = LastStage + 1;
272 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
273 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
274 EpilogBBs.push_back(NewBB);
275 MF.insert(BB->getIterator(), NewBB);
277 PredBB->replaceSuccessor(LoopExitBB, NewBB);
278 NewBB->addSuccessor(LoopExitBB);
280 if (EpilogStart == LoopExitBB)
281 EpilogStart = NewBB;
283 // Add instructions to the epilog depending on the current block.
284 // Process instructions in original program order.
285 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
286 for (auto &BBI : *BB) {
287 if (BBI.isPHI())
288 continue;
289 MachineInstr *In = &BBI;
290 if ((unsigned)Schedule.getStage(In) == StageNum) {
291 // Instructions with memoperands in the epilog are updated with
292 // conservative values.
293 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
294 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
295 NewBB->push_back(NewMI);
296 InstrMap[NewMI] = In;
300 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
301 InstrMap, LastStage, EpilogStage, i == 1);
302 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
303 LastStage, EpilogStage, i == 1);
304 PredBB = NewBB;
306 LLVM_DEBUG({
307 dbgs() << "epilog:\n";
308 NewBB->dump();
312 // Fix any Phi nodes in the loop exit block.
313 LoopExitBB->replacePhiUsesWith(BB, PredBB);
315 // Create a branch to the new epilog from the kernel.
316 // Remove the original branch and add a new branch to the epilog.
317 TII->removeBranch(*KernelBB);
318 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
319 // Add a branch to the loop exit.
320 if (EpilogBBs.size() > 0) {
321 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
322 SmallVector<MachineOperand, 4> Cond1;
323 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
327 /// Replace all uses of FromReg that appear outside the specified
328 /// basic block with ToReg.
329 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
330 MachineBasicBlock *MBB,
331 MachineRegisterInfo &MRI,
332 LiveIntervals &LIS) {
333 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
334 E = MRI.use_end();
335 I != E;) {
336 MachineOperand &O = *I;
337 ++I;
338 if (O.getParent()->getParent() != MBB)
339 O.setReg(ToReg);
341 if (!LIS.hasInterval(ToReg))
342 LIS.createEmptyInterval(ToReg);
345 /// Return true if the register has a use that occurs outside the
346 /// specified loop.
347 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
348 MachineRegisterInfo &MRI) {
349 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
350 E = MRI.use_end();
351 I != E; ++I)
352 if (I->getParent()->getParent() != BB)
353 return true;
354 return false;
357 /// Generate Phis for the specific block in the generated pipelined code.
358 /// This function looks at the Phis from the original code to guide the
359 /// creation of new Phis.
360 void ModuloScheduleExpander::generateExistingPhis(
361 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
362 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
363 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
364 // Compute the stage number for the initial value of the Phi, which
365 // comes from the prolog. The prolog to use depends on to which kernel/
366 // epilog that we're adding the Phi.
367 unsigned PrologStage = 0;
368 unsigned PrevStage = 0;
369 bool InKernel = (LastStageNum == CurStageNum);
370 if (InKernel) {
371 PrologStage = LastStageNum - 1;
372 PrevStage = CurStageNum;
373 } else {
374 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
375 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
378 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
379 BBE = BB->getFirstNonPHI();
380 BBI != BBE; ++BBI) {
381 Register Def = BBI->getOperand(0).getReg();
383 unsigned InitVal = 0;
384 unsigned LoopVal = 0;
385 getPhiRegs(*BBI, BB, InitVal, LoopVal);
387 unsigned PhiOp1 = 0;
388 // The Phi value from the loop body typically is defined in the loop, but
389 // not always. So, we need to check if the value is defined in the loop.
390 unsigned PhiOp2 = LoopVal;
391 if (VRMap[LastStageNum].count(LoopVal))
392 PhiOp2 = VRMap[LastStageNum][LoopVal];
394 int StageScheduled = Schedule.getStage(&*BBI);
395 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
396 unsigned NumStages = getStagesForReg(Def, CurStageNum);
397 if (NumStages == 0) {
398 // We don't need to generate a Phi anymore, but we need to rename any uses
399 // of the Phi value.
400 unsigned NewReg = VRMap[PrevStage][LoopVal];
401 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
402 InitVal, NewReg);
403 if (VRMap[CurStageNum].count(LoopVal))
404 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
406 // Adjust the number of Phis needed depending on the number of prologs left,
407 // and the distance from where the Phi is first scheduled. The number of
408 // Phis cannot exceed the number of prolog stages. Each stage can
409 // potentially define two values.
410 unsigned MaxPhis = PrologStage + 2;
411 if (!InKernel && (int)PrologStage <= LoopValStage)
412 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
413 unsigned NumPhis = std::min(NumStages, MaxPhis);
415 unsigned NewReg = 0;
416 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
417 // In the epilog, we may need to look back one stage to get the correct
418 // Phi name because the epilog and prolog blocks execute the same stage.
419 // The correct name is from the previous block only when the Phi has
420 // been completely scheduled prior to the epilog, and Phi value is not
421 // needed in multiple stages.
422 int StageDiff = 0;
423 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
424 NumPhis == 1)
425 StageDiff = 1;
426 // Adjust the computations below when the phi and the loop definition
427 // are scheduled in different stages.
428 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
429 StageDiff = StageScheduled - LoopValStage;
430 for (unsigned np = 0; np < NumPhis; ++np) {
431 // If the Phi hasn't been scheduled, then use the initial Phi operand
432 // value. Otherwise, use the scheduled version of the instruction. This
433 // is a little complicated when a Phi references another Phi.
434 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
435 PhiOp1 = InitVal;
436 // Check if the Phi has already been scheduled in a prolog stage.
437 else if (PrologStage >= AccessStage + StageDiff + np &&
438 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
439 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
440 // Check if the Phi has already been scheduled, but the loop instruction
441 // is either another Phi, or doesn't occur in the loop.
442 else if (PrologStage >= AccessStage + StageDiff + np) {
443 // If the Phi references another Phi, we need to examine the other
444 // Phi to get the correct value.
445 PhiOp1 = LoopVal;
446 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
447 int Indirects = 1;
448 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
449 int PhiStage = Schedule.getStage(InstOp1);
450 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
451 PhiOp1 = getInitPhiReg(*InstOp1, BB);
452 else
453 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
454 InstOp1 = MRI.getVRegDef(PhiOp1);
455 int PhiOpStage = Schedule.getStage(InstOp1);
456 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
457 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
458 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
459 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
460 break;
462 ++Indirects;
464 } else
465 PhiOp1 = InitVal;
466 // If this references a generated Phi in the kernel, get the Phi operand
467 // from the incoming block.
468 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
469 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
470 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
472 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
473 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
474 // In the epilog, a map lookup is needed to get the value from the kernel,
475 // or previous epilog block. How is does this depends on if the
476 // instruction is scheduled in the previous block.
477 if (!InKernel) {
478 int StageDiffAdj = 0;
479 if (LoopValStage != -1 && StageScheduled > LoopValStage)
480 StageDiffAdj = StageScheduled - LoopValStage;
481 // Use the loop value defined in the kernel, unless the kernel
482 // contains the last definition of the Phi.
483 if (np == 0 && PrevStage == LastStageNum &&
484 (StageScheduled != 0 || LoopValStage != 0) &&
485 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
486 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
487 // Use the value defined by the Phi. We add one because we switch
488 // from looking at the loop value to the Phi definition.
489 else if (np > 0 && PrevStage == LastStageNum &&
490 VRMap[PrevStage - np + 1].count(Def))
491 PhiOp2 = VRMap[PrevStage - np + 1][Def];
492 // Use the loop value defined in the kernel.
493 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
494 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
495 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
496 // Use the value defined by the Phi, unless we're generating the first
497 // epilog and the Phi refers to a Phi in a different stage.
498 else if (VRMap[PrevStage - np].count(Def) &&
499 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
500 (LoopValStage == StageScheduled)))
501 PhiOp2 = VRMap[PrevStage - np][Def];
504 // Check if we can reuse an existing Phi. This occurs when a Phi
505 // references another Phi, and the other Phi is scheduled in an
506 // earlier stage. We can try to reuse an existing Phi up until the last
507 // stage of the current Phi.
508 if (LoopDefIsPhi) {
509 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
510 int LVNumStages = getStagesForPhi(LoopVal);
511 int StageDiff = (StageScheduled - LoopValStage);
512 LVNumStages -= StageDiff;
513 // Make sure the loop value Phi has been processed already.
514 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
515 NewReg = PhiOp2;
516 unsigned ReuseStage = CurStageNum;
517 if (isLoopCarried(*PhiInst))
518 ReuseStage -= LVNumStages;
519 // Check if the Phi to reuse has been generated yet. If not, then
520 // there is nothing to reuse.
521 if (VRMap[ReuseStage - np].count(LoopVal)) {
522 NewReg = VRMap[ReuseStage - np][LoopVal];
524 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
525 Def, NewReg);
526 // Update the map with the new Phi name.
527 VRMap[CurStageNum - np][Def] = NewReg;
528 PhiOp2 = NewReg;
529 if (VRMap[LastStageNum - np - 1].count(LoopVal))
530 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
532 if (IsLast && np == NumPhis - 1)
533 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
534 continue;
538 if (InKernel && StageDiff > 0 &&
539 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
540 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
543 const TargetRegisterClass *RC = MRI.getRegClass(Def);
544 NewReg = MRI.createVirtualRegister(RC);
546 MachineInstrBuilder NewPhi =
547 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
548 TII->get(TargetOpcode::PHI), NewReg);
549 NewPhi.addReg(PhiOp1).addMBB(BB1);
550 NewPhi.addReg(PhiOp2).addMBB(BB2);
551 if (np == 0)
552 InstrMap[NewPhi] = &*BBI;
554 // We define the Phis after creating the new pipelined code, so
555 // we need to rename the Phi values in scheduled instructions.
557 unsigned PrevReg = 0;
558 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
559 PrevReg = VRMap[PrevStage - np][LoopVal];
560 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
561 NewReg, PrevReg);
562 // If the Phi has been scheduled, use the new name for rewriting.
563 if (VRMap[CurStageNum - np].count(Def)) {
564 unsigned R = VRMap[CurStageNum - np][Def];
565 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
566 NewReg);
569 // Check if we need to rename any uses that occurs after the loop. The
570 // register to replace depends on whether the Phi is scheduled in the
571 // epilog.
572 if (IsLast && np == NumPhis - 1)
573 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
575 // In the kernel, a dependent Phi uses the value from this Phi.
576 if (InKernel)
577 PhiOp2 = NewReg;
579 // Update the map with the new Phi name.
580 VRMap[CurStageNum - np][Def] = NewReg;
583 while (NumPhis++ < NumStages) {
584 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
585 NewReg, 0);
588 // Check if we need to rename a Phi that has been eliminated due to
589 // scheduling.
590 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
591 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
595 /// Generate Phis for the specified block in the generated pipelined code.
596 /// These are new Phis needed because the definition is scheduled after the
597 /// use in the pipelined sequence.
598 void ModuloScheduleExpander::generatePhis(
599 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
600 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
601 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
602 // Compute the stage number that contains the initial Phi value, and
603 // the Phi from the previous stage.
604 unsigned PrologStage = 0;
605 unsigned PrevStage = 0;
606 unsigned StageDiff = CurStageNum - LastStageNum;
607 bool InKernel = (StageDiff == 0);
608 if (InKernel) {
609 PrologStage = LastStageNum - 1;
610 PrevStage = CurStageNum;
611 } else {
612 PrologStage = LastStageNum - StageDiff;
613 PrevStage = LastStageNum + StageDiff - 1;
616 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
617 BBE = BB->instr_end();
618 BBI != BBE; ++BBI) {
619 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
620 MachineOperand &MO = BBI->getOperand(i);
621 if (!MO.isReg() || !MO.isDef() ||
622 !Register::isVirtualRegister(MO.getReg()))
623 continue;
625 int StageScheduled = Schedule.getStage(&*BBI);
626 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
627 Register Def = MO.getReg();
628 unsigned NumPhis = getStagesForReg(Def, CurStageNum);
629 // An instruction scheduled in stage 0 and is used after the loop
630 // requires a phi in the epilog for the last definition from either
631 // the kernel or prolog.
632 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
633 hasUseAfterLoop(Def, BB, MRI))
634 NumPhis = 1;
635 if (!InKernel && (unsigned)StageScheduled > PrologStage)
636 continue;
638 unsigned PhiOp2 = VRMap[PrevStage][Def];
639 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
640 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
641 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
642 // The number of Phis can't exceed the number of prolog stages. The
643 // prolog stage number is zero based.
644 if (NumPhis > PrologStage + 1 - StageScheduled)
645 NumPhis = PrologStage + 1 - StageScheduled;
646 for (unsigned np = 0; np < NumPhis; ++np) {
647 unsigned PhiOp1 = VRMap[PrologStage][Def];
648 if (np <= PrologStage)
649 PhiOp1 = VRMap[PrologStage - np][Def];
650 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
651 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
652 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
653 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
654 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
656 if (!InKernel)
657 PhiOp2 = VRMap[PrevStage - np][Def];
659 const TargetRegisterClass *RC = MRI.getRegClass(Def);
660 Register NewReg = MRI.createVirtualRegister(RC);
662 MachineInstrBuilder NewPhi =
663 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
664 TII->get(TargetOpcode::PHI), NewReg);
665 NewPhi.addReg(PhiOp1).addMBB(BB1);
666 NewPhi.addReg(PhiOp2).addMBB(BB2);
667 if (np == 0)
668 InstrMap[NewPhi] = &*BBI;
670 // Rewrite uses and update the map. The actions depend upon whether
671 // we generating code for the kernel or epilog blocks.
672 if (InKernel) {
673 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
674 NewReg);
675 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
676 NewReg);
678 PhiOp2 = NewReg;
679 VRMap[PrevStage - np - 1][Def] = NewReg;
680 } else {
681 VRMap[CurStageNum - np][Def] = NewReg;
682 if (np == NumPhis - 1)
683 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
684 NewReg);
686 if (IsLast && np == NumPhis - 1)
687 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
693 /// Remove instructions that generate values with no uses.
694 /// Typically, these are induction variable operations that generate values
695 /// used in the loop itself. A dead instruction has a definition with
696 /// no uses, or uses that occur in the original loop only.
697 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
698 MBBVectorTy &EpilogBBs) {
699 // For each epilog block, check that the value defined by each instruction
700 // is used. If not, delete it.
701 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
702 MBE = EpilogBBs.rend();
703 MBB != MBE; ++MBB)
704 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
705 ME = (*MBB)->instr_rend();
706 MI != ME;) {
707 // From DeadMachineInstructionElem. Don't delete inline assembly.
708 if (MI->isInlineAsm()) {
709 ++MI;
710 continue;
712 bool SawStore = false;
713 // Check if it's safe to remove the instruction due to side effects.
714 // We can, and want to, remove Phis here.
715 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
716 ++MI;
717 continue;
719 bool used = true;
720 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
721 MOE = MI->operands_end();
722 MOI != MOE; ++MOI) {
723 if (!MOI->isReg() || !MOI->isDef())
724 continue;
725 Register reg = MOI->getReg();
726 // Assume physical registers are used, unless they are marked dead.
727 if (Register::isPhysicalRegister(reg)) {
728 used = !MOI->isDead();
729 if (used)
730 break;
731 continue;
733 unsigned realUses = 0;
734 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
735 EI = MRI.use_end();
736 UI != EI; ++UI) {
737 // Check if there are any uses that occur only in the original
738 // loop. If so, that's not a real use.
739 if (UI->getParent()->getParent() != BB) {
740 realUses++;
741 used = true;
742 break;
745 if (realUses > 0)
746 break;
747 used = false;
749 if (!used) {
750 LIS.RemoveMachineInstrFromMaps(*MI);
751 MI++->eraseFromParent();
752 continue;
754 ++MI;
756 // In the kernel block, check if we can remove a Phi that generates a value
757 // used in an instruction removed in the epilog block.
758 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
759 BBE = KernelBB->getFirstNonPHI();
760 BBI != BBE;) {
761 MachineInstr *MI = &*BBI;
762 ++BBI;
763 Register reg = MI->getOperand(0).getReg();
764 if (MRI.use_begin(reg) == MRI.use_end()) {
765 LIS.RemoveMachineInstrFromMaps(*MI);
766 MI->eraseFromParent();
771 /// For loop carried definitions, we split the lifetime of a virtual register
772 /// that has uses past the definition in the next iteration. A copy with a new
773 /// virtual register is inserted before the definition, which helps with
774 /// generating a better register assignment.
776 /// v1 = phi(a, v2) v1 = phi(a, v2)
777 /// v2 = phi(b, v3) v2 = phi(b, v3)
778 /// v3 = .. v4 = copy v1
779 /// .. = V1 v3 = ..
780 /// .. = v4
781 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
782 MBBVectorTy &EpilogBBs) {
783 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
784 for (auto &PHI : KernelBB->phis()) {
785 Register Def = PHI.getOperand(0).getReg();
786 // Check for any Phi definition that used as an operand of another Phi
787 // in the same block.
788 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
789 E = MRI.use_instr_end();
790 I != E; ++I) {
791 if (I->isPHI() && I->getParent() == KernelBB) {
792 // Get the loop carried definition.
793 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
794 if (!LCDef)
795 continue;
796 MachineInstr *MI = MRI.getVRegDef(LCDef);
797 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
798 continue;
799 // Search through the rest of the block looking for uses of the Phi
800 // definition. If one occurs, then split the lifetime.
801 unsigned SplitReg = 0;
802 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
803 KernelBB->instr_end()))
804 if (BBJ.readsRegister(Def)) {
805 // We split the lifetime when we find the first use.
806 if (SplitReg == 0) {
807 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
808 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
809 TII->get(TargetOpcode::COPY), SplitReg)
810 .addReg(Def);
812 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
814 if (!SplitReg)
815 continue;
816 // Search through each of the epilog blocks for any uses to be renamed.
817 for (auto &Epilog : EpilogBBs)
818 for (auto &I : *Epilog)
819 if (I.readsRegister(Def))
820 I.substituteRegister(Def, SplitReg, 0, *TRI);
821 break;
827 /// Remove the incoming block from the Phis in a basic block.
828 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
829 for (MachineInstr &MI : *BB) {
830 if (!MI.isPHI())
831 break;
832 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
833 if (MI.getOperand(i + 1).getMBB() == Incoming) {
834 MI.RemoveOperand(i + 1);
835 MI.RemoveOperand(i);
836 break;
841 /// Create branches from each prolog basic block to the appropriate epilog
842 /// block. These edges are needed if the loop ends before reaching the
843 /// kernel.
844 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
845 MBBVectorTy &PrologBBs,
846 MachineBasicBlock *KernelBB,
847 MBBVectorTy &EpilogBBs,
848 ValueMapTy *VRMap) {
849 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
850 MachineInstr *IndVar;
851 MachineInstr *Cmp;
852 if (TII->analyzeLoop(*Schedule.getLoop(), IndVar, Cmp))
853 llvm_unreachable("Must be able to analyze loop!");
854 MachineBasicBlock *LastPro = KernelBB;
855 MachineBasicBlock *LastEpi = KernelBB;
857 // Start from the blocks connected to the kernel and work "out"
858 // to the first prolog and the last epilog blocks.
859 SmallVector<MachineInstr *, 4> PrevInsts;
860 unsigned MaxIter = PrologBBs.size() - 1;
861 unsigned LC = UINT_MAX;
862 unsigned LCMin = UINT_MAX;
863 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
864 // Add branches to the prolog that go to the corresponding
865 // epilog, and the fall-thru prolog/kernel block.
866 MachineBasicBlock *Prolog = PrologBBs[j];
867 MachineBasicBlock *Epilog = EpilogBBs[i];
868 // We've executed one iteration, so decrement the loop count and check for
869 // the loop end.
870 SmallVector<MachineOperand, 4> Cond;
871 // Check if the LOOP0 has already been removed. If so, then there is no need
872 // to reduce the trip count.
873 if (LC != 0)
874 LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond,
875 PrevInsts, j, MaxIter);
877 // Record the value of the first trip count, which is used to determine if
878 // branches and blocks can be removed for constant trip counts.
879 if (LCMin == UINT_MAX)
880 LCMin = LC;
882 unsigned numAdded = 0;
883 if (Register::isVirtualRegister(LC)) {
884 Prolog->addSuccessor(Epilog);
885 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
886 } else if (j >= LCMin) {
887 Prolog->addSuccessor(Epilog);
888 Prolog->removeSuccessor(LastPro);
889 LastEpi->removeSuccessor(Epilog);
890 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
891 removePhis(Epilog, LastEpi);
892 // Remove the blocks that are no longer referenced.
893 if (LastPro != LastEpi) {
894 LastEpi->clear();
895 LastEpi->eraseFromParent();
897 LastPro->clear();
898 LastPro->eraseFromParent();
899 if (LastPro == KernelBB)
900 NewKernel = nullptr;
901 } else {
902 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
903 removePhis(Epilog, Prolog);
905 LastPro = Prolog;
906 LastEpi = Epilog;
907 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
908 E = Prolog->instr_rend();
909 I != E && numAdded > 0; ++I, --numAdded)
910 updateInstruction(&*I, false, j, 0, VRMap);
914 /// Return true if we can compute the amount the instruction changes
915 /// during each iteration. Set Delta to the amount of the change.
916 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
917 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
918 const MachineOperand *BaseOp;
919 int64_t Offset;
920 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
921 return false;
923 if (!BaseOp->isReg())
924 return false;
926 Register BaseReg = BaseOp->getReg();
928 MachineRegisterInfo &MRI = MF.getRegInfo();
929 // Check if there is a Phi. If so, get the definition in the loop.
930 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
931 if (BaseDef && BaseDef->isPHI()) {
932 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
933 BaseDef = MRI.getVRegDef(BaseReg);
935 if (!BaseDef)
936 return false;
938 int D = 0;
939 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
940 return false;
942 Delta = D;
943 return true;
946 /// Update the memory operand with a new offset when the pipeliner
947 /// generates a new copy of the instruction that refers to a
948 /// different memory location.
949 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
950 MachineInstr &OldMI,
951 unsigned Num) {
952 if (Num == 0)
953 return;
954 // If the instruction has memory operands, then adjust the offset
955 // when the instruction appears in different stages.
956 if (NewMI.memoperands_empty())
957 return;
958 SmallVector<MachineMemOperand *, 2> NewMMOs;
959 for (MachineMemOperand *MMO : NewMI.memoperands()) {
960 // TODO: Figure out whether isAtomic is really necessary (see D57601).
961 if (MMO->isVolatile() || MMO->isAtomic() ||
962 (MMO->isInvariant() && MMO->isDereferenceable()) ||
963 (!MMO->getValue())) {
964 NewMMOs.push_back(MMO);
965 continue;
967 unsigned Delta;
968 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
969 int64_t AdjOffset = Delta * Num;
970 NewMMOs.push_back(
971 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
972 } else {
973 NewMMOs.push_back(
974 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
977 NewMI.setMemRefs(MF, NewMMOs);
980 /// Clone the instruction for the new pipelined loop and update the
981 /// memory operands, if needed.
982 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
983 unsigned CurStageNum,
984 unsigned InstStageNum) {
985 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
986 // Check for tied operands in inline asm instructions. This should be handled
987 // elsewhere, but I'm not sure of the best solution.
988 if (OldMI->isInlineAsm())
989 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
990 const auto &MO = OldMI->getOperand(i);
991 if (MO.isReg() && MO.isUse())
992 break;
993 unsigned UseIdx;
994 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
995 NewMI->tieOperands(i, UseIdx);
997 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
998 return NewMI;
1001 /// Clone the instruction for the new pipelined loop. If needed, this
1002 /// function updates the instruction using the values saved in the
1003 /// InstrChanges structure.
1004 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1005 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1006 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1007 auto It = InstrChanges.find(OldMI);
1008 if (It != InstrChanges.end()) {
1009 std::pair<unsigned, int64_t> RegAndOffset = It->second;
1010 unsigned BasePos, OffsetPos;
1011 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1012 return nullptr;
1013 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1014 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1015 if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1016 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1017 NewMI->getOperand(OffsetPos).setImm(NewOffset);
1019 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1020 return NewMI;
1023 /// Update the machine instruction with new virtual registers. This
1024 /// function may change the defintions and/or uses.
1025 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1026 bool LastDef,
1027 unsigned CurStageNum,
1028 unsigned InstrStageNum,
1029 ValueMapTy *VRMap) {
1030 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1031 MachineOperand &MO = NewMI->getOperand(i);
1032 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1033 continue;
1034 Register reg = MO.getReg();
1035 if (MO.isDef()) {
1036 // Create a new virtual register for the definition.
1037 const TargetRegisterClass *RC = MRI.getRegClass(reg);
1038 Register NewReg = MRI.createVirtualRegister(RC);
1039 MO.setReg(NewReg);
1040 VRMap[CurStageNum][reg] = NewReg;
1041 if (LastDef)
1042 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1043 } else if (MO.isUse()) {
1044 MachineInstr *Def = MRI.getVRegDef(reg);
1045 // Compute the stage that contains the last definition for instruction.
1046 int DefStageNum = Schedule.getStage(Def);
1047 unsigned StageNum = CurStageNum;
1048 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1049 // Compute the difference in stages between the defintion and the use.
1050 unsigned StageDiff = (InstrStageNum - DefStageNum);
1051 // Make an adjustment to get the last definition.
1052 StageNum -= StageDiff;
1054 if (VRMap[StageNum].count(reg))
1055 MO.setReg(VRMap[StageNum][reg]);
1060 /// Return the instruction in the loop that defines the register.
1061 /// If the definition is a Phi, then follow the Phi operand to
1062 /// the instruction in the loop.
1063 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1064 SmallPtrSet<MachineInstr *, 8> Visited;
1065 MachineInstr *Def = MRI.getVRegDef(Reg);
1066 while (Def->isPHI()) {
1067 if (!Visited.insert(Def).second)
1068 break;
1069 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1070 if (Def->getOperand(i + 1).getMBB() == BB) {
1071 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1072 break;
1075 return Def;
1078 /// Return the new name for the value from the previous stage.
1079 unsigned ModuloScheduleExpander::getPrevMapVal(
1080 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1081 ValueMapTy *VRMap, MachineBasicBlock *BB) {
1082 unsigned PrevVal = 0;
1083 if (StageNum > PhiStage) {
1084 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1085 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1086 // The name is defined in the previous stage.
1087 PrevVal = VRMap[StageNum - 1][LoopVal];
1088 else if (VRMap[StageNum].count(LoopVal))
1089 // The previous name is defined in the current stage when the instruction
1090 // order is swapped.
1091 PrevVal = VRMap[StageNum][LoopVal];
1092 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1093 // The loop value hasn't yet been scheduled.
1094 PrevVal = LoopVal;
1095 else if (StageNum == PhiStage + 1)
1096 // The loop value is another phi, which has not been scheduled.
1097 PrevVal = getInitPhiReg(*LoopInst, BB);
1098 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1099 // The loop value is another phi, which has been scheduled.
1100 PrevVal =
1101 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1102 LoopStage, VRMap, BB);
1104 return PrevVal;
1107 /// Rewrite the Phi values in the specified block to use the mappings
1108 /// from the initial operand. Once the Phi is scheduled, we switch
1109 /// to using the loop value instead of the Phi value, so those names
1110 /// do not need to be rewritten.
1111 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1112 unsigned StageNum,
1113 ValueMapTy *VRMap,
1114 InstrMapTy &InstrMap) {
1115 for (auto &PHI : BB->phis()) {
1116 unsigned InitVal = 0;
1117 unsigned LoopVal = 0;
1118 getPhiRegs(PHI, BB, InitVal, LoopVal);
1119 Register PhiDef = PHI.getOperand(0).getReg();
1121 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1122 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1123 unsigned NumPhis = getStagesForPhi(PhiDef);
1124 if (NumPhis > StageNum)
1125 NumPhis = StageNum;
1126 for (unsigned np = 0; np <= NumPhis; ++np) {
1127 unsigned NewVal =
1128 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1129 if (!NewVal)
1130 NewVal = InitVal;
1131 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1132 NewVal);
1137 /// Rewrite a previously scheduled instruction to use the register value
1138 /// from the new instruction. Make sure the instruction occurs in the
1139 /// basic block, and we don't change the uses in the new instruction.
1140 void ModuloScheduleExpander::rewriteScheduledInstr(
1141 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1142 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1143 unsigned PrevReg) {
1144 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1145 int StagePhi = Schedule.getStage(Phi) + PhiNum;
1146 // Rewrite uses that have been scheduled already to use the new
1147 // Phi register.
1148 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1149 EI = MRI.use_end();
1150 UI != EI;) {
1151 MachineOperand &UseOp = *UI;
1152 MachineInstr *UseMI = UseOp.getParent();
1153 ++UI;
1154 if (UseMI->getParent() != BB)
1155 continue;
1156 if (UseMI->isPHI()) {
1157 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1158 continue;
1159 if (getLoopPhiReg(*UseMI, BB) != OldReg)
1160 continue;
1162 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1163 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1164 MachineInstr *OrigMI = OrigInstr->second;
1165 int StageSched = Schedule.getStage(OrigMI);
1166 int CycleSched = Schedule.getCycle(OrigMI);
1167 unsigned ReplaceReg = 0;
1168 // This is the stage for the scheduled instruction.
1169 if (StagePhi == StageSched && Phi->isPHI()) {
1170 int CyclePhi = Schedule.getCycle(Phi);
1171 if (PrevReg && InProlog)
1172 ReplaceReg = PrevReg;
1173 else if (PrevReg && !isLoopCarried(*Phi) &&
1174 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1175 ReplaceReg = PrevReg;
1176 else
1177 ReplaceReg = NewReg;
1179 // The scheduled instruction occurs before the scheduled Phi, and the
1180 // Phi is not loop carried.
1181 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1182 ReplaceReg = NewReg;
1183 if (StagePhi > StageSched && Phi->isPHI())
1184 ReplaceReg = NewReg;
1185 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1186 ReplaceReg = NewReg;
1187 if (ReplaceReg) {
1188 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1189 UseOp.setReg(ReplaceReg);
1194 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1195 if (!Phi.isPHI())
1196 return false;
1197 unsigned DefCycle = Schedule.getCycle(&Phi);
1198 int DefStage = Schedule.getStage(&Phi);
1200 unsigned InitVal = 0;
1201 unsigned LoopVal = 0;
1202 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1203 MachineInstr *Use = MRI.getVRegDef(LoopVal);
1204 if (!Use || Use->isPHI())
1205 return true;
1206 unsigned LoopCycle = Schedule.getCycle(Use);
1207 int LoopStage = Schedule.getStage(Use);
1208 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1211 //===----------------------------------------------------------------------===//
1212 // PeelingModuloScheduleExpander implementation
1213 //===----------------------------------------------------------------------===//
1214 // This is a reimplementation of ModuloScheduleExpander that works by creating
1215 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1216 //===----------------------------------------------------------------------===//
1218 namespace {
1219 // Remove any dead phis in MBB. Dead phis either have only one block as input
1220 // (in which case they are the identity) or have no uses.
1221 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1222 LiveIntervals *LIS) {
1223 bool Changed = true;
1224 while (Changed) {
1225 Changed = false;
1226 for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1227 MachineInstr &MI = *I++;
1228 assert(MI.isPHI());
1229 if (MRI.use_empty(MI.getOperand(0).getReg())) {
1230 if (LIS)
1231 LIS->RemoveMachineInstrFromMaps(MI);
1232 MI.eraseFromParent();
1233 Changed = true;
1234 } else if (MI.getNumExplicitOperands() == 3) {
1235 MRI.constrainRegClass(MI.getOperand(1).getReg(),
1236 MRI.getRegClass(MI.getOperand(0).getReg()));
1237 MRI.replaceRegWith(MI.getOperand(0).getReg(),
1238 MI.getOperand(1).getReg());
1239 if (LIS)
1240 LIS->RemoveMachineInstrFromMaps(MI);
1241 MI.eraseFromParent();
1242 Changed = true;
1248 /// Rewrites the kernel block in-place to adhere to the given schedule.
1249 /// KernelRewriter holds all of the state required to perform the rewriting.
1250 class KernelRewriter {
1251 ModuloSchedule &S;
1252 MachineBasicBlock *BB;
1253 MachineBasicBlock *PreheaderBB, *ExitBB;
1254 MachineRegisterInfo &MRI;
1255 const TargetInstrInfo *TII;
1256 LiveIntervals *LIS;
1258 // Map from register class to canonical undef register for that class.
1259 DenseMap<const TargetRegisterClass *, Register> Undefs;
1260 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1261 // this map is only used when InitReg is non-undef.
1262 DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1263 // Map from LoopReg to phi register where the InitReg is undef.
1264 DenseMap<Register, Register> UndefPhis;
1266 // Reg is used by MI. Return the new register MI should use to adhere to the
1267 // schedule. Insert phis as necessary.
1268 Register remapUse(Register Reg, MachineInstr &MI);
1269 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1270 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1271 // or will be chosen so as to share another phi.
1272 Register phi(Register LoopReg, Optional<Register> InitReg = {},
1273 const TargetRegisterClass *RC = nullptr);
1274 // Create an undef register of the given register class.
1275 Register undef(const TargetRegisterClass *RC);
1277 public:
1278 KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1279 LiveIntervals *LIS = nullptr);
1280 void rewrite();
1282 } // namespace
1284 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1285 LiveIntervals *LIS)
1286 : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
1287 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1288 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1289 PreheaderBB = *BB->pred_begin();
1290 if (PreheaderBB == BB)
1291 PreheaderBB = *std::next(BB->pred_begin());
1294 void KernelRewriter::rewrite() {
1295 // Rearrange the loop to be in schedule order. Note that the schedule may
1296 // contain instructions that are not owned by the loop block (InstrChanges and
1297 // friends), so we gracefully handle unowned instructions and delete any
1298 // instructions that weren't in the schedule.
1299 auto InsertPt = BB->getFirstTerminator();
1300 MachineInstr *FirstMI = nullptr;
1301 for (MachineInstr *MI : S.getInstructions()) {
1302 if (MI->isPHI())
1303 continue;
1304 if (MI->getParent())
1305 MI->removeFromParent();
1306 BB->insert(InsertPt, MI);
1307 if (!FirstMI)
1308 FirstMI = MI;
1311 // At this point all of the scheduled instructions are between FirstMI
1312 // and the end of the block. Kill from the first non-phi to FirstMI.
1313 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1314 if (LIS)
1315 LIS->RemoveMachineInstrFromMaps(*I);
1316 (I++)->eraseFromParent();
1319 // Now remap every instruction in the loop.
1320 for (MachineInstr &MI : *BB) {
1321 if (MI.isPHI())
1322 continue;
1323 for (MachineOperand &MO : MI.uses()) {
1324 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1325 continue;
1326 Register Reg = remapUse(MO.getReg(), MI);
1327 MO.setReg(Reg);
1330 EliminateDeadPhis(BB, MRI, LIS);
1332 // Ensure a phi exists for all instructions that are either referenced by
1333 // an illegal phi or by an instruction outside the loop. This allows us to
1334 // treat remaps of these values the same as "normal" values that come from
1335 // loop-carried phis.
1336 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1337 if (MI->isPHI()) {
1338 Register R = MI->getOperand(0).getReg();
1339 phi(R);
1340 continue;
1343 for (MachineOperand &Def : MI->defs()) {
1344 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1345 if (MI.getParent() != BB) {
1346 phi(Def.getReg());
1347 break;
1354 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1355 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1356 if (!Producer)
1357 return Reg;
1359 int ConsumerStage = S.getStage(&MI);
1360 if (!Producer->isPHI()) {
1361 // Non-phi producers are simple to remap. Insert as many phis as the
1362 // difference between the consumer and producer stages.
1363 if (Producer->getParent() != BB)
1364 // Producer was not inside the loop. Use the register as-is.
1365 return Reg;
1366 int ProducerStage = S.getStage(Producer);
1367 assert(ConsumerStage != -1 &&
1368 "In-loop consumer should always be scheduled!");
1369 assert(ConsumerStage >= ProducerStage);
1370 unsigned StageDiff = ConsumerStage - ProducerStage;
1372 for (unsigned I = 0; I < StageDiff; ++I)
1373 Reg = phi(Reg);
1374 return Reg;
1377 // First, dive through the phi chain to find the defaults for the generated
1378 // phis.
1379 SmallVector<Optional<Register>, 4> Defaults;
1380 Register LoopReg = Reg;
1381 auto LoopProducer = Producer;
1382 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1383 LoopReg = getLoopPhiReg(*LoopProducer, BB);
1384 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1385 LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1386 assert(LoopProducer);
1388 int LoopProducerStage = S.getStage(LoopProducer);
1390 Optional<Register> IllegalPhiDefault;
1392 if (LoopProducerStage == -1) {
1393 // Do nothing.
1394 } else if (LoopProducerStage > ConsumerStage) {
1395 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1396 // In addition, Consumer's cycle must be scheduled after Producer in the
1397 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1398 // functions.
1399 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1400 int LoopProducerCycle = S.getCycle(LoopProducer);
1401 int ConsumerCycle = S.getCycle(&MI);
1402 #endif
1403 assert(LoopProducerCycle <= ConsumerCycle);
1404 assert(LoopProducerStage == ConsumerStage + 1);
1405 // Peel off the first phi from Defaults and insert a phi between producer
1406 // and consumer. This phi will not be at the front of the block so we
1407 // consider it illegal. It will only exist during the rewrite process; it
1408 // needs to exist while we peel off prologs because these could take the
1409 // default value. After that we can replace all uses with the loop producer
1410 // value.
1411 IllegalPhiDefault = Defaults.front();
1412 Defaults.erase(Defaults.begin());
1413 } else {
1414 assert(ConsumerStage >= LoopProducerStage);
1415 int StageDiff = ConsumerStage - LoopProducerStage;
1416 if (StageDiff > 0) {
1417 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1418 << " to " << (Defaults.size() + StageDiff) << "\n");
1419 // If we need more phis than we have defaults for, pad out with undefs for
1420 // the earliest phis, which are at the end of the defaults chain (the
1421 // chain is in reverse order).
1422 Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1423 ? Optional<Register>()
1424 : Defaults.back());
1428 // Now we know the number of stages to jump back, insert the phi chain.
1429 auto DefaultI = Defaults.rbegin();
1430 while (DefaultI != Defaults.rend())
1431 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1433 if (IllegalPhiDefault.hasValue()) {
1434 // The consumer optionally consumes LoopProducer in the same iteration
1435 // (because the producer is scheduled at an earlier cycle than the consumer)
1436 // or the initial value. To facilitate this we create an illegal block here
1437 // by embedding a phi in the middle of the block. We will fix this up
1438 // immediately prior to pruning.
1439 auto RC = MRI.getRegClass(Reg);
1440 Register R = MRI.createVirtualRegister(RC);
1441 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1442 .addReg(IllegalPhiDefault.getValue())
1443 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1444 .addReg(LoopReg)
1445 .addMBB(BB); // Block choice is arbitrary and has no effect.
1446 return R;
1449 return LoopReg;
1452 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1453 const TargetRegisterClass *RC) {
1454 // If the init register is not undef, try and find an existing phi.
1455 if (InitReg.hasValue()) {
1456 auto I = Phis.find({LoopReg, InitReg.getValue()});
1457 if (I != Phis.end())
1458 return I->second;
1459 } else {
1460 for (auto &KV : Phis) {
1461 if (KV.first.first == LoopReg)
1462 return KV.second;
1466 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1467 // find a phi that takes undef as input.
1468 auto I = UndefPhis.find(LoopReg);
1469 if (I != UndefPhis.end()) {
1470 Register R = I->second;
1471 if (!InitReg.hasValue())
1472 // Found a phi taking undef as input, and this input is undef so return
1473 // without any more changes.
1474 return R;
1475 // Found a phi taking undef as input, so rewrite it to take InitReg.
1476 MachineInstr *MI = MRI.getVRegDef(R);
1477 MI->getOperand(1).setReg(InitReg.getValue());
1478 Phis.insert({{LoopReg, InitReg.getValue()}, R});
1479 MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1480 UndefPhis.erase(I);
1481 return R;
1484 // Failed to find any existing phi to reuse, so create a new one.
1485 if (!RC)
1486 RC = MRI.getRegClass(LoopReg);
1487 Register R = MRI.createVirtualRegister(RC);
1488 if (InitReg.hasValue())
1489 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1490 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1491 .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1492 .addMBB(PreheaderBB)
1493 .addReg(LoopReg)
1494 .addMBB(BB);
1495 if (!InitReg.hasValue())
1496 UndefPhis[LoopReg] = R;
1497 else
1498 Phis[{LoopReg, *InitReg}] = R;
1499 return R;
1502 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1503 Register &R = Undefs[RC];
1504 if (R == 0) {
1505 // Create an IMPLICIT_DEF that defines this register if we need it.
1506 // All uses of this should be removed by the time we have finished unrolling
1507 // prologs and epilogs.
1508 R = MRI.createVirtualRegister(RC);
1509 auto *InsertBB = &PreheaderBB->getParent()->front();
1510 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1511 TII->get(TargetOpcode::IMPLICIT_DEF), R);
1513 return R;
1516 namespace {
1517 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1518 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1519 /// through and defaults for these phis.
1520 class KernelOperandInfo {
1521 MachineBasicBlock *BB;
1522 MachineRegisterInfo &MRI;
1523 SmallVector<Register, 4> PhiDefaults;
1524 MachineOperand *Source;
1525 MachineOperand *Target;
1527 public:
1528 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1529 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1530 : MRI(MRI) {
1531 Source = MO;
1532 BB = MO->getParent()->getParent();
1533 while (isRegInLoop(MO)) {
1534 MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1535 if (MI->isFullCopy()) {
1536 MO = &MI->getOperand(1);
1537 continue;
1539 if (!MI->isPHI())
1540 break;
1541 // If this is an illegal phi, don't count it in distance.
1542 if (IllegalPhis.count(MI)) {
1543 MO = &MI->getOperand(3);
1544 continue;
1547 Register Default = getInitPhiReg(*MI, BB);
1548 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1549 : &MI->getOperand(3);
1550 PhiDefaults.push_back(Default);
1552 Target = MO;
1555 bool operator==(const KernelOperandInfo &Other) const {
1556 return PhiDefaults.size() == Other.PhiDefaults.size();
1559 void print(raw_ostream &OS) const {
1560 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1561 << *Source->getParent();
1564 private:
1565 bool isRegInLoop(MachineOperand *MO) {
1566 return MO->isReg() && MO->getReg().isVirtual() &&
1567 MRI.getVRegDef(MO->getReg())->getParent() == BB;
1570 } // namespace
1572 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1573 BB = Schedule.getLoop()->getTopBlock();
1574 Preheader = Schedule.getLoop()->getLoopPreheader();
1576 // Dump the schedule before we invalidate and remap all its instructions.
1577 // Stash it in a string so we can print it if we found an error.
1578 std::string ScheduleDump;
1579 raw_string_ostream OS(ScheduleDump);
1580 Schedule.print(OS);
1581 OS.flush();
1583 // First, run the normal ModuleScheduleExpander. We don't support any
1584 // InstrChanges.
1585 assert(LIS && "Requires LiveIntervals!");
1586 ModuloScheduleExpander MSE(MF, Schedule, *LIS,
1587 ModuloScheduleExpander::InstrChangesTy());
1588 MSE.expand();
1589 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
1590 if (!ExpandedKernel) {
1591 // The expander optimized away the kernel. We can't do any useful checking.
1592 MSE.cleanup();
1593 return;
1595 // Before running the KernelRewriter, re-add BB into the CFG.
1596 Preheader->addSuccessor(BB);
1598 // Now run the new expansion algorithm.
1599 KernelRewriter KR(*Schedule.getLoop(), Schedule);
1600 KR.rewrite();
1602 // Collect all illegal phis that the new algorithm created. We'll give these
1603 // to KernelOperandInfo.
1604 SmallPtrSet<MachineInstr *, 4> IllegalPhis;
1605 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
1606 if (NI->isPHI())
1607 IllegalPhis.insert(&*NI);
1610 // Co-iterate across both kernels. We expect them to be identical apart from
1611 // phis and full COPYs (we look through both).
1612 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
1613 auto OI = ExpandedKernel->begin();
1614 auto NI = BB->begin();
1615 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
1616 while (OI->isPHI() || OI->isFullCopy())
1617 ++OI;
1618 while (NI->isPHI() || NI->isFullCopy())
1619 ++NI;
1620 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
1621 // Analyze every operand separately.
1622 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
1623 OOpI != OI->operands_end(); ++OOpI, ++NOpI)
1624 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
1625 KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
1628 bool Failed = false;
1629 for (auto &OldAndNew : KOIs) {
1630 if (OldAndNew.first == OldAndNew.second)
1631 continue;
1632 Failed = true;
1633 errs() << "Modulo kernel validation error: [\n";
1634 errs() << " [golden] ";
1635 OldAndNew.first.print(errs());
1636 errs() << " ";
1637 OldAndNew.second.print(errs());
1638 errs() << "]\n";
1641 if (Failed) {
1642 errs() << "Golden reference kernel:\n";
1643 ExpandedKernel->print(errs());
1644 errs() << "New kernel:\n";
1645 BB->print(errs());
1646 errs() << ScheduleDump;
1647 report_fatal_error(
1648 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
1651 // Cleanup by removing BB from the CFG again as the original
1652 // ModuloScheduleExpander intended.
1653 Preheader->removeSuccessor(BB);
1654 MSE.cleanup();
1657 //===----------------------------------------------------------------------===//
1658 // ModuloScheduleTestPass implementation
1659 //===----------------------------------------------------------------------===//
1660 // This pass constructs a ModuloSchedule from its module and runs
1661 // ModuloScheduleExpander.
1663 // The module is expected to contain a single-block analyzable loop.
1664 // The total order of instructions is taken from the loop as-is.
1665 // Instructions are expected to be annotated with a PostInstrSymbol.
1666 // This PostInstrSymbol must have the following format:
1667 // "Stage=%d Cycle=%d".
1668 //===----------------------------------------------------------------------===//
1670 class ModuloScheduleTest : public MachineFunctionPass {
1671 public:
1672 static char ID;
1674 ModuloScheduleTest() : MachineFunctionPass(ID) {
1675 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
1678 bool runOnMachineFunction(MachineFunction &MF) override;
1679 void runOnLoop(MachineFunction &MF, MachineLoop &L);
1681 void getAnalysisUsage(AnalysisUsage &AU) const override {
1682 AU.addRequired<MachineLoopInfo>();
1683 AU.addRequired<LiveIntervals>();
1684 MachineFunctionPass::getAnalysisUsage(AU);
1688 char ModuloScheduleTest::ID = 0;
1690 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
1691 "Modulo Schedule test pass", false, false)
1692 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
1693 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1694 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
1695 "Modulo Schedule test pass", false, false)
1697 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
1698 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
1699 for (auto *L : MLI) {
1700 if (L->getTopBlock() != L->getBottomBlock())
1701 continue;
1702 runOnLoop(MF, *L);
1703 return false;
1705 return false;
1708 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
1709 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
1710 std::pair<StringRef, StringRef> StageTokenAndValue =
1711 getToken(StageAndCycle.first, "-");
1712 std::pair<StringRef, StringRef> CycleTokenAndValue =
1713 getToken(StageAndCycle.second, "-");
1714 if (StageTokenAndValue.first != "Stage" ||
1715 CycleTokenAndValue.first != "_Cycle") {
1716 llvm_unreachable(
1717 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
1718 return;
1721 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
1722 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
1724 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
1727 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
1728 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
1729 MachineBasicBlock *BB = L.getTopBlock();
1730 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
1732 DenseMap<MachineInstr *, int> Cycle, Stage;
1733 std::vector<MachineInstr *> Instrs;
1734 for (MachineInstr &MI : *BB) {
1735 if (MI.isTerminator())
1736 continue;
1737 Instrs.push_back(&MI);
1738 if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
1739 dbgs() << "Parsing post-instr symbol for " << MI;
1740 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
1744 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
1745 std::move(Stage));
1746 ModuloScheduleExpander MSE(
1747 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
1748 MSE.expand();
1749 MSE.cleanup();
1752 //===----------------------------------------------------------------------===//
1753 // ModuloScheduleTestAnnotater implementation
1754 //===----------------------------------------------------------------------===//
1756 void ModuloScheduleTestAnnotater::annotate() {
1757 for (MachineInstr *MI : S.getInstructions()) {
1758 SmallVector<char, 16> SV;
1759 raw_svector_ostream OS(SV);
1760 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
1761 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
1762 MI->setPostInstrSymbol(MF, Sym);