1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/CodeGen/LiveIntervals.h"
12 #include "llvm/CodeGen/MachineInstrBuilder.h"
13 #include "llvm/CodeGen/MachineRegisterInfo.h"
14 #include "llvm/CodeGen/TargetInstrInfo.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/Support/Debug.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/raw_ostream.h"
20 #define DEBUG_TYPE "pipeliner"
23 void ModuloSchedule::print(raw_ostream
&OS
) {
24 for (MachineInstr
*MI
: ScheduledInstrs
)
25 OS
<< "[stage " << getStage(MI
) << " @" << getCycle(MI
) << "c] " << *MI
;
28 //===----------------------------------------------------------------------===//
29 // ModuloScheduleExpander implementation
30 //===----------------------------------------------------------------------===//
32 /// Return the register values for the operands of a Phi instruction.
33 /// This function assume the instruction is a Phi.
34 static void getPhiRegs(MachineInstr
&Phi
, MachineBasicBlock
*Loop
,
35 unsigned &InitVal
, unsigned &LoopVal
) {
36 assert(Phi
.isPHI() && "Expecting a Phi.");
40 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
41 if (Phi
.getOperand(i
+ 1).getMBB() != Loop
)
42 InitVal
= Phi
.getOperand(i
).getReg();
44 LoopVal
= Phi
.getOperand(i
).getReg();
46 assert(InitVal
!= 0 && LoopVal
!= 0 && "Unexpected Phi structure.");
49 /// Return the Phi register value that comes from the incoming block.
50 static unsigned getInitPhiReg(MachineInstr
&Phi
, MachineBasicBlock
*LoopBB
) {
51 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
52 if (Phi
.getOperand(i
+ 1).getMBB() != LoopBB
)
53 return Phi
.getOperand(i
).getReg();
57 /// Return the Phi register value that comes the loop block.
58 static unsigned getLoopPhiReg(MachineInstr
&Phi
, MachineBasicBlock
*LoopBB
) {
59 for (unsigned i
= 1, e
= Phi
.getNumOperands(); i
!= e
; i
+= 2)
60 if (Phi
.getOperand(i
+ 1).getMBB() == LoopBB
)
61 return Phi
.getOperand(i
).getReg();
65 void ModuloScheduleExpander::expand() {
66 BB
= Schedule
.getLoop()->getTopBlock();
67 Preheader
= *BB
->pred_begin();
69 Preheader
= *std::next(BB
->pred_begin());
71 // Iterate over the definitions in each instruction, and compute the
72 // stage difference for each use. Keep the maximum value.
73 for (MachineInstr
*MI
: Schedule
.getInstructions()) {
74 int DefStage
= Schedule
.getStage(MI
);
75 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
< e
; ++i
) {
76 MachineOperand
&Op
= MI
->getOperand(i
);
77 if (!Op
.isReg() || !Op
.isDef())
80 Register Reg
= Op
.getReg();
82 bool PhiIsSwapped
= false;
83 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(Reg
),
86 MachineOperand
&UseOp
= *UI
;
87 MachineInstr
*UseMI
= UseOp
.getParent();
88 int UseStage
= Schedule
.getStage(UseMI
);
90 if (UseStage
!= -1 && UseStage
>= DefStage
)
91 Diff
= UseStage
- DefStage
;
93 if (isLoopCarried(*MI
))
98 MaxDiff
= std::max(Diff
, MaxDiff
);
100 RegToStageDiff
[Reg
] = std::make_pair(MaxDiff
, PhiIsSwapped
);
104 generatePipelinedLoop();
107 void ModuloScheduleExpander::generatePipelinedLoop() {
108 // Create a new basic block for the kernel and add it to the CFG.
109 MachineBasicBlock
*KernelBB
= MF
.CreateMachineBasicBlock(BB
->getBasicBlock());
111 unsigned MaxStageCount
= Schedule
.getNumStages() - 1;
113 // Remember the registers that are used in different stages. The index is
114 // the iteration, or stage, that the instruction is scheduled in. This is
115 // a map between register names in the original block and the names created
116 // in each stage of the pipelined loop.
117 ValueMapTy
*VRMap
= new ValueMapTy
[(MaxStageCount
+ 1) * 2];
120 SmallVector
<MachineBasicBlock
*, 4> PrologBBs
;
122 // Generate the prolog instructions that set up the pipeline.
123 generateProlog(MaxStageCount
, KernelBB
, VRMap
, PrologBBs
);
124 MF
.insert(BB
->getIterator(), KernelBB
);
126 // Rearrange the instructions to generate the new, pipelined loop,
127 // and update register names as needed.
128 for (MachineInstr
*CI
: Schedule
.getInstructions()) {
131 unsigned StageNum
= Schedule
.getStage(CI
);
132 MachineInstr
*NewMI
= cloneInstr(CI
, MaxStageCount
, StageNum
);
133 updateInstruction(NewMI
, false, MaxStageCount
, StageNum
, VRMap
);
134 KernelBB
->push_back(NewMI
);
135 InstrMap
[NewMI
] = CI
;
138 // Copy any terminator instructions to the new kernel, and update
140 for (MachineBasicBlock::iterator I
= BB
->getFirstTerminator(),
143 MachineInstr
*NewMI
= MF
.CloneMachineInstr(&*I
);
144 updateInstruction(NewMI
, false, MaxStageCount
, 0, VRMap
);
145 KernelBB
->push_back(NewMI
);
146 InstrMap
[NewMI
] = &*I
;
149 NewKernel
= KernelBB
;
150 KernelBB
->transferSuccessors(BB
);
151 KernelBB
->replaceSuccessor(BB
, KernelBB
);
153 generateExistingPhis(KernelBB
, PrologBBs
.back(), KernelBB
, KernelBB
, VRMap
,
154 InstrMap
, MaxStageCount
, MaxStageCount
, false);
155 generatePhis(KernelBB
, PrologBBs
.back(), KernelBB
, KernelBB
, VRMap
, InstrMap
,
156 MaxStageCount
, MaxStageCount
, false);
158 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB
->dump(););
160 SmallVector
<MachineBasicBlock
*, 4> EpilogBBs
;
161 // Generate the epilog instructions to complete the pipeline.
162 generateEpilog(MaxStageCount
, KernelBB
, VRMap
, EpilogBBs
, PrologBBs
);
164 // We need this step because the register allocation doesn't handle some
165 // situations well, so we insert copies to help out.
166 splitLifetimes(KernelBB
, EpilogBBs
);
168 // Remove dead instructions due to loop induction variables.
169 removeDeadInstructions(KernelBB
, EpilogBBs
);
171 // Add branches between prolog and epilog blocks.
172 addBranches(*Preheader
, PrologBBs
, KernelBB
, EpilogBBs
, VRMap
);
177 void ModuloScheduleExpander::cleanup() {
178 // Remove the original loop since it's no longer referenced.
180 LIS
.RemoveMachineInstrFromMaps(I
);
182 BB
->eraseFromParent();
185 /// Generate the pipeline prolog code.
186 void ModuloScheduleExpander::generateProlog(unsigned LastStage
,
187 MachineBasicBlock
*KernelBB
,
189 MBBVectorTy
&PrologBBs
) {
190 MachineBasicBlock
*PredBB
= Preheader
;
193 // Generate a basic block for each stage, not including the last stage,
194 // which will be generated in the kernel. Each basic block may contain
195 // instructions from multiple stages/iterations.
196 for (unsigned i
= 0; i
< LastStage
; ++i
) {
197 // Create and insert the prolog basic block prior to the original loop
198 // basic block. The original loop is removed later.
199 MachineBasicBlock
*NewBB
= MF
.CreateMachineBasicBlock(BB
->getBasicBlock());
200 PrologBBs
.push_back(NewBB
);
201 MF
.insert(BB
->getIterator(), NewBB
);
202 NewBB
->transferSuccessors(PredBB
);
203 PredBB
->addSuccessor(NewBB
);
206 // Generate instructions for each appropriate stage. Process instructions
207 // in original program order.
208 for (int StageNum
= i
; StageNum
>= 0; --StageNum
) {
209 for (MachineBasicBlock::iterator BBI
= BB
->instr_begin(),
210 BBE
= BB
->getFirstTerminator();
212 if (Schedule
.getStage(&*BBI
) == StageNum
) {
215 MachineInstr
*NewMI
=
216 cloneAndChangeInstr(&*BBI
, i
, (unsigned)StageNum
);
217 updateInstruction(NewMI
, false, i
, (unsigned)StageNum
, VRMap
);
218 NewBB
->push_back(NewMI
);
219 InstrMap
[NewMI
] = &*BBI
;
223 rewritePhiValues(NewBB
, i
, VRMap
, InstrMap
);
225 dbgs() << "prolog:\n";
230 PredBB
->replaceSuccessor(BB
, KernelBB
);
232 // Check if we need to remove the branch from the preheader to the original
233 // loop, and replace it with a branch to the new loop.
234 unsigned numBranches
= TII
->removeBranch(*Preheader
);
236 SmallVector
<MachineOperand
, 0> Cond
;
237 TII
->insertBranch(*Preheader
, PrologBBs
[0], nullptr, Cond
, DebugLoc());
241 /// Generate the pipeline epilog code. The epilog code finishes the iterations
242 /// that were started in either the prolog or the kernel. We create a basic
243 /// block for each stage that needs to complete.
244 void ModuloScheduleExpander::generateEpilog(unsigned LastStage
,
245 MachineBasicBlock
*KernelBB
,
247 MBBVectorTy
&EpilogBBs
,
248 MBBVectorTy
&PrologBBs
) {
249 // We need to change the branch from the kernel to the first epilog block, so
250 // this call to analyze branch uses the kernel rather than the original BB.
251 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
252 SmallVector
<MachineOperand
, 4> Cond
;
253 bool checkBranch
= TII
->analyzeBranch(*KernelBB
, TBB
, FBB
, Cond
);
254 assert(!checkBranch
&& "generateEpilog must be able to analyze the branch");
258 MachineBasicBlock::succ_iterator LoopExitI
= KernelBB
->succ_begin();
259 if (*LoopExitI
== KernelBB
)
261 assert(LoopExitI
!= KernelBB
->succ_end() && "Expecting a successor");
262 MachineBasicBlock
*LoopExitBB
= *LoopExitI
;
264 MachineBasicBlock
*PredBB
= KernelBB
;
265 MachineBasicBlock
*EpilogStart
= LoopExitBB
;
268 // Generate a basic block for each stage, not including the last stage,
269 // which was generated for the kernel. Each basic block may contain
270 // instructions from multiple stages/iterations.
271 int EpilogStage
= LastStage
+ 1;
272 for (unsigned i
= LastStage
; i
>= 1; --i
, ++EpilogStage
) {
273 MachineBasicBlock
*NewBB
= MF
.CreateMachineBasicBlock();
274 EpilogBBs
.push_back(NewBB
);
275 MF
.insert(BB
->getIterator(), NewBB
);
277 PredBB
->replaceSuccessor(LoopExitBB
, NewBB
);
278 NewBB
->addSuccessor(LoopExitBB
);
280 if (EpilogStart
== LoopExitBB
)
283 // Add instructions to the epilog depending on the current block.
284 // Process instructions in original program order.
285 for (unsigned StageNum
= i
; StageNum
<= LastStage
; ++StageNum
) {
286 for (auto &BBI
: *BB
) {
289 MachineInstr
*In
= &BBI
;
290 if ((unsigned)Schedule
.getStage(In
) == StageNum
) {
291 // Instructions with memoperands in the epilog are updated with
292 // conservative values.
293 MachineInstr
*NewMI
= cloneInstr(In
, UINT_MAX
, 0);
294 updateInstruction(NewMI
, i
== 1, EpilogStage
, 0, VRMap
);
295 NewBB
->push_back(NewMI
);
296 InstrMap
[NewMI
] = In
;
300 generateExistingPhis(NewBB
, PrologBBs
[i
- 1], PredBB
, KernelBB
, VRMap
,
301 InstrMap
, LastStage
, EpilogStage
, i
== 1);
302 generatePhis(NewBB
, PrologBBs
[i
- 1], PredBB
, KernelBB
, VRMap
, InstrMap
,
303 LastStage
, EpilogStage
, i
== 1);
307 dbgs() << "epilog:\n";
312 // Fix any Phi nodes in the loop exit block.
313 LoopExitBB
->replacePhiUsesWith(BB
, PredBB
);
315 // Create a branch to the new epilog from the kernel.
316 // Remove the original branch and add a new branch to the epilog.
317 TII
->removeBranch(*KernelBB
);
318 TII
->insertBranch(*KernelBB
, KernelBB
, EpilogStart
, Cond
, DebugLoc());
319 // Add a branch to the loop exit.
320 if (EpilogBBs
.size() > 0) {
321 MachineBasicBlock
*LastEpilogBB
= EpilogBBs
.back();
322 SmallVector
<MachineOperand
, 4> Cond1
;
323 TII
->insertBranch(*LastEpilogBB
, LoopExitBB
, nullptr, Cond1
, DebugLoc());
327 /// Replace all uses of FromReg that appear outside the specified
328 /// basic block with ToReg.
329 static void replaceRegUsesAfterLoop(unsigned FromReg
, unsigned ToReg
,
330 MachineBasicBlock
*MBB
,
331 MachineRegisterInfo
&MRI
,
332 LiveIntervals
&LIS
) {
333 for (MachineRegisterInfo::use_iterator I
= MRI
.use_begin(FromReg
),
336 MachineOperand
&O
= *I
;
338 if (O
.getParent()->getParent() != MBB
)
341 if (!LIS
.hasInterval(ToReg
))
342 LIS
.createEmptyInterval(ToReg
);
345 /// Return true if the register has a use that occurs outside the
347 static bool hasUseAfterLoop(unsigned Reg
, MachineBasicBlock
*BB
,
348 MachineRegisterInfo
&MRI
) {
349 for (MachineRegisterInfo::use_iterator I
= MRI
.use_begin(Reg
),
352 if (I
->getParent()->getParent() != BB
)
357 /// Generate Phis for the specific block in the generated pipelined code.
358 /// This function looks at the Phis from the original code to guide the
359 /// creation of new Phis.
360 void ModuloScheduleExpander::generateExistingPhis(
361 MachineBasicBlock
*NewBB
, MachineBasicBlock
*BB1
, MachineBasicBlock
*BB2
,
362 MachineBasicBlock
*KernelBB
, ValueMapTy
*VRMap
, InstrMapTy
&InstrMap
,
363 unsigned LastStageNum
, unsigned CurStageNum
, bool IsLast
) {
364 // Compute the stage number for the initial value of the Phi, which
365 // comes from the prolog. The prolog to use depends on to which kernel/
366 // epilog that we're adding the Phi.
367 unsigned PrologStage
= 0;
368 unsigned PrevStage
= 0;
369 bool InKernel
= (LastStageNum
== CurStageNum
);
371 PrologStage
= LastStageNum
- 1;
372 PrevStage
= CurStageNum
;
374 PrologStage
= LastStageNum
- (CurStageNum
- LastStageNum
);
375 PrevStage
= LastStageNum
+ (CurStageNum
- LastStageNum
) - 1;
378 for (MachineBasicBlock::iterator BBI
= BB
->instr_begin(),
379 BBE
= BB
->getFirstNonPHI();
381 Register Def
= BBI
->getOperand(0).getReg();
383 unsigned InitVal
= 0;
384 unsigned LoopVal
= 0;
385 getPhiRegs(*BBI
, BB
, InitVal
, LoopVal
);
388 // The Phi value from the loop body typically is defined in the loop, but
389 // not always. So, we need to check if the value is defined in the loop.
390 unsigned PhiOp2
= LoopVal
;
391 if (VRMap
[LastStageNum
].count(LoopVal
))
392 PhiOp2
= VRMap
[LastStageNum
][LoopVal
];
394 int StageScheduled
= Schedule
.getStage(&*BBI
);
395 int LoopValStage
= Schedule
.getStage(MRI
.getVRegDef(LoopVal
));
396 unsigned NumStages
= getStagesForReg(Def
, CurStageNum
);
397 if (NumStages
== 0) {
398 // We don't need to generate a Phi anymore, but we need to rename any uses
400 unsigned NewReg
= VRMap
[PrevStage
][LoopVal
];
401 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, 0, &*BBI
, Def
,
403 if (VRMap
[CurStageNum
].count(LoopVal
))
404 VRMap
[CurStageNum
][Def
] = VRMap
[CurStageNum
][LoopVal
];
406 // Adjust the number of Phis needed depending on the number of prologs left,
407 // and the distance from where the Phi is first scheduled. The number of
408 // Phis cannot exceed the number of prolog stages. Each stage can
409 // potentially define two values.
410 unsigned MaxPhis
= PrologStage
+ 2;
411 if (!InKernel
&& (int)PrologStage
<= LoopValStage
)
412 MaxPhis
= std::max((int)MaxPhis
- (int)LoopValStage
, 1);
413 unsigned NumPhis
= std::min(NumStages
, MaxPhis
);
416 unsigned AccessStage
= (LoopValStage
!= -1) ? LoopValStage
: StageScheduled
;
417 // In the epilog, we may need to look back one stage to get the correct
418 // Phi name because the epilog and prolog blocks execute the same stage.
419 // The correct name is from the previous block only when the Phi has
420 // been completely scheduled prior to the epilog, and Phi value is not
421 // needed in multiple stages.
423 if (!InKernel
&& StageScheduled
>= LoopValStage
&& AccessStage
== 0 &&
426 // Adjust the computations below when the phi and the loop definition
427 // are scheduled in different stages.
428 if (InKernel
&& LoopValStage
!= -1 && StageScheduled
> LoopValStage
)
429 StageDiff
= StageScheduled
- LoopValStage
;
430 for (unsigned np
= 0; np
< NumPhis
; ++np
) {
431 // If the Phi hasn't been scheduled, then use the initial Phi operand
432 // value. Otherwise, use the scheduled version of the instruction. This
433 // is a little complicated when a Phi references another Phi.
434 if (np
> PrologStage
|| StageScheduled
>= (int)LastStageNum
)
436 // Check if the Phi has already been scheduled in a prolog stage.
437 else if (PrologStage
>= AccessStage
+ StageDiff
+ np
&&
438 VRMap
[PrologStage
- StageDiff
- np
].count(LoopVal
) != 0)
439 PhiOp1
= VRMap
[PrologStage
- StageDiff
- np
][LoopVal
];
440 // Check if the Phi has already been scheduled, but the loop instruction
441 // is either another Phi, or doesn't occur in the loop.
442 else if (PrologStage
>= AccessStage
+ StageDiff
+ np
) {
443 // If the Phi references another Phi, we need to examine the other
444 // Phi to get the correct value.
446 MachineInstr
*InstOp1
= MRI
.getVRegDef(PhiOp1
);
448 while (InstOp1
&& InstOp1
->isPHI() && InstOp1
->getParent() == BB
) {
449 int PhiStage
= Schedule
.getStage(InstOp1
);
450 if ((int)(PrologStage
- StageDiff
- np
) < PhiStage
+ Indirects
)
451 PhiOp1
= getInitPhiReg(*InstOp1
, BB
);
453 PhiOp1
= getLoopPhiReg(*InstOp1
, BB
);
454 InstOp1
= MRI
.getVRegDef(PhiOp1
);
455 int PhiOpStage
= Schedule
.getStage(InstOp1
);
456 int StageAdj
= (PhiOpStage
!= -1 ? PhiStage
- PhiOpStage
: 0);
457 if (PhiOpStage
!= -1 && PrologStage
- StageAdj
>= Indirects
+ np
&&
458 VRMap
[PrologStage
- StageAdj
- Indirects
- np
].count(PhiOp1
)) {
459 PhiOp1
= VRMap
[PrologStage
- StageAdj
- Indirects
- np
][PhiOp1
];
466 // If this references a generated Phi in the kernel, get the Phi operand
467 // from the incoming block.
468 if (MachineInstr
*InstOp1
= MRI
.getVRegDef(PhiOp1
))
469 if (InstOp1
->isPHI() && InstOp1
->getParent() == KernelBB
)
470 PhiOp1
= getInitPhiReg(*InstOp1
, KernelBB
);
472 MachineInstr
*PhiInst
= MRI
.getVRegDef(LoopVal
);
473 bool LoopDefIsPhi
= PhiInst
&& PhiInst
->isPHI();
474 // In the epilog, a map lookup is needed to get the value from the kernel,
475 // or previous epilog block. How is does this depends on if the
476 // instruction is scheduled in the previous block.
478 int StageDiffAdj
= 0;
479 if (LoopValStage
!= -1 && StageScheduled
> LoopValStage
)
480 StageDiffAdj
= StageScheduled
- LoopValStage
;
481 // Use the loop value defined in the kernel, unless the kernel
482 // contains the last definition of the Phi.
483 if (np
== 0 && PrevStage
== LastStageNum
&&
484 (StageScheduled
!= 0 || LoopValStage
!= 0) &&
485 VRMap
[PrevStage
- StageDiffAdj
].count(LoopVal
))
486 PhiOp2
= VRMap
[PrevStage
- StageDiffAdj
][LoopVal
];
487 // Use the value defined by the Phi. We add one because we switch
488 // from looking at the loop value to the Phi definition.
489 else if (np
> 0 && PrevStage
== LastStageNum
&&
490 VRMap
[PrevStage
- np
+ 1].count(Def
))
491 PhiOp2
= VRMap
[PrevStage
- np
+ 1][Def
];
492 // Use the loop value defined in the kernel.
493 else if (static_cast<unsigned>(LoopValStage
) > PrologStage
+ 1 &&
494 VRMap
[PrevStage
- StageDiffAdj
- np
].count(LoopVal
))
495 PhiOp2
= VRMap
[PrevStage
- StageDiffAdj
- np
][LoopVal
];
496 // Use the value defined by the Phi, unless we're generating the first
497 // epilog and the Phi refers to a Phi in a different stage.
498 else if (VRMap
[PrevStage
- np
].count(Def
) &&
499 (!LoopDefIsPhi
|| (PrevStage
!= LastStageNum
) ||
500 (LoopValStage
== StageScheduled
)))
501 PhiOp2
= VRMap
[PrevStage
- np
][Def
];
504 // Check if we can reuse an existing Phi. This occurs when a Phi
505 // references another Phi, and the other Phi is scheduled in an
506 // earlier stage. We can try to reuse an existing Phi up until the last
507 // stage of the current Phi.
509 if (static_cast<int>(PrologStage
- np
) >= StageScheduled
) {
510 int LVNumStages
= getStagesForPhi(LoopVal
);
511 int StageDiff
= (StageScheduled
- LoopValStage
);
512 LVNumStages
-= StageDiff
;
513 // Make sure the loop value Phi has been processed already.
514 if (LVNumStages
> (int)np
&& VRMap
[CurStageNum
].count(LoopVal
)) {
516 unsigned ReuseStage
= CurStageNum
;
517 if (isLoopCarried(*PhiInst
))
518 ReuseStage
-= LVNumStages
;
519 // Check if the Phi to reuse has been generated yet. If not, then
520 // there is nothing to reuse.
521 if (VRMap
[ReuseStage
- np
].count(LoopVal
)) {
522 NewReg
= VRMap
[ReuseStage
- np
][LoopVal
];
524 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
,
526 // Update the map with the new Phi name.
527 VRMap
[CurStageNum
- np
][Def
] = NewReg
;
529 if (VRMap
[LastStageNum
- np
- 1].count(LoopVal
))
530 PhiOp2
= VRMap
[LastStageNum
- np
- 1][LoopVal
];
532 if (IsLast
&& np
== NumPhis
- 1)
533 replaceRegUsesAfterLoop(Def
, NewReg
, BB
, MRI
, LIS
);
538 if (InKernel
&& StageDiff
> 0 &&
539 VRMap
[CurStageNum
- StageDiff
- np
].count(LoopVal
))
540 PhiOp2
= VRMap
[CurStageNum
- StageDiff
- np
][LoopVal
];
543 const TargetRegisterClass
*RC
= MRI
.getRegClass(Def
);
544 NewReg
= MRI
.createVirtualRegister(RC
);
546 MachineInstrBuilder NewPhi
=
547 BuildMI(*NewBB
, NewBB
->getFirstNonPHI(), DebugLoc(),
548 TII
->get(TargetOpcode::PHI
), NewReg
);
549 NewPhi
.addReg(PhiOp1
).addMBB(BB1
);
550 NewPhi
.addReg(PhiOp2
).addMBB(BB2
);
552 InstrMap
[NewPhi
] = &*BBI
;
554 // We define the Phis after creating the new pipelined code, so
555 // we need to rename the Phi values in scheduled instructions.
557 unsigned PrevReg
= 0;
558 if (InKernel
&& VRMap
[PrevStage
- np
].count(LoopVal
))
559 PrevReg
= VRMap
[PrevStage
- np
][LoopVal
];
560 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, Def
,
562 // If the Phi has been scheduled, use the new name for rewriting.
563 if (VRMap
[CurStageNum
- np
].count(Def
)) {
564 unsigned R
= VRMap
[CurStageNum
- np
][Def
];
565 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, R
,
569 // Check if we need to rename any uses that occurs after the loop. The
570 // register to replace depends on whether the Phi is scheduled in the
572 if (IsLast
&& np
== NumPhis
- 1)
573 replaceRegUsesAfterLoop(Def
, NewReg
, BB
, MRI
, LIS
);
575 // In the kernel, a dependent Phi uses the value from this Phi.
579 // Update the map with the new Phi name.
580 VRMap
[CurStageNum
- np
][Def
] = NewReg
;
583 while (NumPhis
++ < NumStages
) {
584 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, NumPhis
, &*BBI
, Def
,
588 // Check if we need to rename a Phi that has been eliminated due to
590 if (NumStages
== 0 && IsLast
&& VRMap
[CurStageNum
].count(LoopVal
))
591 replaceRegUsesAfterLoop(Def
, VRMap
[CurStageNum
][LoopVal
], BB
, MRI
, LIS
);
595 /// Generate Phis for the specified block in the generated pipelined code.
596 /// These are new Phis needed because the definition is scheduled after the
597 /// use in the pipelined sequence.
598 void ModuloScheduleExpander::generatePhis(
599 MachineBasicBlock
*NewBB
, MachineBasicBlock
*BB1
, MachineBasicBlock
*BB2
,
600 MachineBasicBlock
*KernelBB
, ValueMapTy
*VRMap
, InstrMapTy
&InstrMap
,
601 unsigned LastStageNum
, unsigned CurStageNum
, bool IsLast
) {
602 // Compute the stage number that contains the initial Phi value, and
603 // the Phi from the previous stage.
604 unsigned PrologStage
= 0;
605 unsigned PrevStage
= 0;
606 unsigned StageDiff
= CurStageNum
- LastStageNum
;
607 bool InKernel
= (StageDiff
== 0);
609 PrologStage
= LastStageNum
- 1;
610 PrevStage
= CurStageNum
;
612 PrologStage
= LastStageNum
- StageDiff
;
613 PrevStage
= LastStageNum
+ StageDiff
- 1;
616 for (MachineBasicBlock::iterator BBI
= BB
->getFirstNonPHI(),
617 BBE
= BB
->instr_end();
619 for (unsigned i
= 0, e
= BBI
->getNumOperands(); i
!= e
; ++i
) {
620 MachineOperand
&MO
= BBI
->getOperand(i
);
621 if (!MO
.isReg() || !MO
.isDef() ||
622 !Register::isVirtualRegister(MO
.getReg()))
625 int StageScheduled
= Schedule
.getStage(&*BBI
);
626 assert(StageScheduled
!= -1 && "Expecting scheduled instruction.");
627 Register Def
= MO
.getReg();
628 unsigned NumPhis
= getStagesForReg(Def
, CurStageNum
);
629 // An instruction scheduled in stage 0 and is used after the loop
630 // requires a phi in the epilog for the last definition from either
631 // the kernel or prolog.
632 if (!InKernel
&& NumPhis
== 0 && StageScheduled
== 0 &&
633 hasUseAfterLoop(Def
, BB
, MRI
))
635 if (!InKernel
&& (unsigned)StageScheduled
> PrologStage
)
638 unsigned PhiOp2
= VRMap
[PrevStage
][Def
];
639 if (MachineInstr
*InstOp2
= MRI
.getVRegDef(PhiOp2
))
640 if (InstOp2
->isPHI() && InstOp2
->getParent() == NewBB
)
641 PhiOp2
= getLoopPhiReg(*InstOp2
, BB2
);
642 // The number of Phis can't exceed the number of prolog stages. The
643 // prolog stage number is zero based.
644 if (NumPhis
> PrologStage
+ 1 - StageScheduled
)
645 NumPhis
= PrologStage
+ 1 - StageScheduled
;
646 for (unsigned np
= 0; np
< NumPhis
; ++np
) {
647 unsigned PhiOp1
= VRMap
[PrologStage
][Def
];
648 if (np
<= PrologStage
)
649 PhiOp1
= VRMap
[PrologStage
- np
][Def
];
650 if (MachineInstr
*InstOp1
= MRI
.getVRegDef(PhiOp1
)) {
651 if (InstOp1
->isPHI() && InstOp1
->getParent() == KernelBB
)
652 PhiOp1
= getInitPhiReg(*InstOp1
, KernelBB
);
653 if (InstOp1
->isPHI() && InstOp1
->getParent() == NewBB
)
654 PhiOp1
= getInitPhiReg(*InstOp1
, NewBB
);
657 PhiOp2
= VRMap
[PrevStage
- np
][Def
];
659 const TargetRegisterClass
*RC
= MRI
.getRegClass(Def
);
660 Register NewReg
= MRI
.createVirtualRegister(RC
);
662 MachineInstrBuilder NewPhi
=
663 BuildMI(*NewBB
, NewBB
->getFirstNonPHI(), DebugLoc(),
664 TII
->get(TargetOpcode::PHI
), NewReg
);
665 NewPhi
.addReg(PhiOp1
).addMBB(BB1
);
666 NewPhi
.addReg(PhiOp2
).addMBB(BB2
);
668 InstrMap
[NewPhi
] = &*BBI
;
670 // Rewrite uses and update the map. The actions depend upon whether
671 // we generating code for the kernel or epilog blocks.
673 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, PhiOp1
,
675 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, PhiOp2
,
679 VRMap
[PrevStage
- np
- 1][Def
] = NewReg
;
681 VRMap
[CurStageNum
- np
][Def
] = NewReg
;
682 if (np
== NumPhis
- 1)
683 rewriteScheduledInstr(NewBB
, InstrMap
, CurStageNum
, np
, &*BBI
, Def
,
686 if (IsLast
&& np
== NumPhis
- 1)
687 replaceRegUsesAfterLoop(Def
, NewReg
, BB
, MRI
, LIS
);
693 /// Remove instructions that generate values with no uses.
694 /// Typically, these are induction variable operations that generate values
695 /// used in the loop itself. A dead instruction has a definition with
696 /// no uses, or uses that occur in the original loop only.
697 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock
*KernelBB
,
698 MBBVectorTy
&EpilogBBs
) {
699 // For each epilog block, check that the value defined by each instruction
700 // is used. If not, delete it.
701 for (MBBVectorTy::reverse_iterator MBB
= EpilogBBs
.rbegin(),
702 MBE
= EpilogBBs
.rend();
704 for (MachineBasicBlock::reverse_instr_iterator MI
= (*MBB
)->instr_rbegin(),
705 ME
= (*MBB
)->instr_rend();
707 // From DeadMachineInstructionElem. Don't delete inline assembly.
708 if (MI
->isInlineAsm()) {
712 bool SawStore
= false;
713 // Check if it's safe to remove the instruction due to side effects.
714 // We can, and want to, remove Phis here.
715 if (!MI
->isSafeToMove(nullptr, SawStore
) && !MI
->isPHI()) {
720 for (MachineInstr::mop_iterator MOI
= MI
->operands_begin(),
721 MOE
= MI
->operands_end();
723 if (!MOI
->isReg() || !MOI
->isDef())
725 Register reg
= MOI
->getReg();
726 // Assume physical registers are used, unless they are marked dead.
727 if (Register::isPhysicalRegister(reg
)) {
728 used
= !MOI
->isDead();
733 unsigned realUses
= 0;
734 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(reg
),
737 // Check if there are any uses that occur only in the original
738 // loop. If so, that's not a real use.
739 if (UI
->getParent()->getParent() != BB
) {
750 LIS
.RemoveMachineInstrFromMaps(*MI
);
751 MI
++->eraseFromParent();
756 // In the kernel block, check if we can remove a Phi that generates a value
757 // used in an instruction removed in the epilog block.
758 for (MachineBasicBlock::iterator BBI
= KernelBB
->instr_begin(),
759 BBE
= KernelBB
->getFirstNonPHI();
761 MachineInstr
*MI
= &*BBI
;
763 Register reg
= MI
->getOperand(0).getReg();
764 if (MRI
.use_begin(reg
) == MRI
.use_end()) {
765 LIS
.RemoveMachineInstrFromMaps(*MI
);
766 MI
->eraseFromParent();
771 /// For loop carried definitions, we split the lifetime of a virtual register
772 /// that has uses past the definition in the next iteration. A copy with a new
773 /// virtual register is inserted before the definition, which helps with
774 /// generating a better register assignment.
776 /// v1 = phi(a, v2) v1 = phi(a, v2)
777 /// v2 = phi(b, v3) v2 = phi(b, v3)
778 /// v3 = .. v4 = copy v1
781 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock
*KernelBB
,
782 MBBVectorTy
&EpilogBBs
) {
783 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
784 for (auto &PHI
: KernelBB
->phis()) {
785 Register Def
= PHI
.getOperand(0).getReg();
786 // Check for any Phi definition that used as an operand of another Phi
787 // in the same block.
788 for (MachineRegisterInfo::use_instr_iterator I
= MRI
.use_instr_begin(Def
),
789 E
= MRI
.use_instr_end();
791 if (I
->isPHI() && I
->getParent() == KernelBB
) {
792 // Get the loop carried definition.
793 unsigned LCDef
= getLoopPhiReg(PHI
, KernelBB
);
796 MachineInstr
*MI
= MRI
.getVRegDef(LCDef
);
797 if (!MI
|| MI
->getParent() != KernelBB
|| MI
->isPHI())
799 // Search through the rest of the block looking for uses of the Phi
800 // definition. If one occurs, then split the lifetime.
801 unsigned SplitReg
= 0;
802 for (auto &BBJ
: make_range(MachineBasicBlock::instr_iterator(MI
),
803 KernelBB
->instr_end()))
804 if (BBJ
.readsRegister(Def
)) {
805 // We split the lifetime when we find the first use.
807 SplitReg
= MRI
.createVirtualRegister(MRI
.getRegClass(Def
));
808 BuildMI(*KernelBB
, MI
, MI
->getDebugLoc(),
809 TII
->get(TargetOpcode::COPY
), SplitReg
)
812 BBJ
.substituteRegister(Def
, SplitReg
, 0, *TRI
);
816 // Search through each of the epilog blocks for any uses to be renamed.
817 for (auto &Epilog
: EpilogBBs
)
818 for (auto &I
: *Epilog
)
819 if (I
.readsRegister(Def
))
820 I
.substituteRegister(Def
, SplitReg
, 0, *TRI
);
827 /// Remove the incoming block from the Phis in a basic block.
828 static void removePhis(MachineBasicBlock
*BB
, MachineBasicBlock
*Incoming
) {
829 for (MachineInstr
&MI
: *BB
) {
832 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
!= e
; i
+= 2)
833 if (MI
.getOperand(i
+ 1).getMBB() == Incoming
) {
834 MI
.RemoveOperand(i
+ 1);
841 /// Create branches from each prolog basic block to the appropriate epilog
842 /// block. These edges are needed if the loop ends before reaching the
844 void ModuloScheduleExpander::addBranches(MachineBasicBlock
&PreheaderBB
,
845 MBBVectorTy
&PrologBBs
,
846 MachineBasicBlock
*KernelBB
,
847 MBBVectorTy
&EpilogBBs
,
849 assert(PrologBBs
.size() == EpilogBBs
.size() && "Prolog/Epilog mismatch");
850 MachineInstr
*IndVar
;
852 if (TII
->analyzeLoop(*Schedule
.getLoop(), IndVar
, Cmp
))
853 llvm_unreachable("Must be able to analyze loop!");
854 MachineBasicBlock
*LastPro
= KernelBB
;
855 MachineBasicBlock
*LastEpi
= KernelBB
;
857 // Start from the blocks connected to the kernel and work "out"
858 // to the first prolog and the last epilog blocks.
859 SmallVector
<MachineInstr
*, 4> PrevInsts
;
860 unsigned MaxIter
= PrologBBs
.size() - 1;
861 unsigned LC
= UINT_MAX
;
862 unsigned LCMin
= UINT_MAX
;
863 for (unsigned i
= 0, j
= MaxIter
; i
<= MaxIter
; ++i
, --j
) {
864 // Add branches to the prolog that go to the corresponding
865 // epilog, and the fall-thru prolog/kernel block.
866 MachineBasicBlock
*Prolog
= PrologBBs
[j
];
867 MachineBasicBlock
*Epilog
= EpilogBBs
[i
];
868 // We've executed one iteration, so decrement the loop count and check for
870 SmallVector
<MachineOperand
, 4> Cond
;
871 // Check if the LOOP0 has already been removed. If so, then there is no need
872 // to reduce the trip count.
874 LC
= TII
->reduceLoopCount(*Prolog
, PreheaderBB
, IndVar
, *Cmp
, Cond
,
875 PrevInsts
, j
, MaxIter
);
877 // Record the value of the first trip count, which is used to determine if
878 // branches and blocks can be removed for constant trip counts.
879 if (LCMin
== UINT_MAX
)
882 unsigned numAdded
= 0;
883 if (Register::isVirtualRegister(LC
)) {
884 Prolog
->addSuccessor(Epilog
);
885 numAdded
= TII
->insertBranch(*Prolog
, Epilog
, LastPro
, Cond
, DebugLoc());
886 } else if (j
>= LCMin
) {
887 Prolog
->addSuccessor(Epilog
);
888 Prolog
->removeSuccessor(LastPro
);
889 LastEpi
->removeSuccessor(Epilog
);
890 numAdded
= TII
->insertBranch(*Prolog
, Epilog
, nullptr, Cond
, DebugLoc());
891 removePhis(Epilog
, LastEpi
);
892 // Remove the blocks that are no longer referenced.
893 if (LastPro
!= LastEpi
) {
895 LastEpi
->eraseFromParent();
898 LastPro
->eraseFromParent();
899 if (LastPro
== KernelBB
)
902 numAdded
= TII
->insertBranch(*Prolog
, LastPro
, nullptr, Cond
, DebugLoc());
903 removePhis(Epilog
, Prolog
);
907 for (MachineBasicBlock::reverse_instr_iterator I
= Prolog
->instr_rbegin(),
908 E
= Prolog
->instr_rend();
909 I
!= E
&& numAdded
> 0; ++I
, --numAdded
)
910 updateInstruction(&*I
, false, j
, 0, VRMap
);
914 /// Return true if we can compute the amount the instruction changes
915 /// during each iteration. Set Delta to the amount of the change.
916 bool ModuloScheduleExpander::computeDelta(MachineInstr
&MI
, unsigned &Delta
) {
917 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
918 const MachineOperand
*BaseOp
;
920 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, TRI
))
923 if (!BaseOp
->isReg())
926 Register BaseReg
= BaseOp
->getReg();
928 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
929 // Check if there is a Phi. If so, get the definition in the loop.
930 MachineInstr
*BaseDef
= MRI
.getVRegDef(BaseReg
);
931 if (BaseDef
&& BaseDef
->isPHI()) {
932 BaseReg
= getLoopPhiReg(*BaseDef
, MI
.getParent());
933 BaseDef
= MRI
.getVRegDef(BaseReg
);
939 if (!TII
->getIncrementValue(*BaseDef
, D
) && D
>= 0)
946 /// Update the memory operand with a new offset when the pipeliner
947 /// generates a new copy of the instruction that refers to a
948 /// different memory location.
949 void ModuloScheduleExpander::updateMemOperands(MachineInstr
&NewMI
,
954 // If the instruction has memory operands, then adjust the offset
955 // when the instruction appears in different stages.
956 if (NewMI
.memoperands_empty())
958 SmallVector
<MachineMemOperand
*, 2> NewMMOs
;
959 for (MachineMemOperand
*MMO
: NewMI
.memoperands()) {
960 // TODO: Figure out whether isAtomic is really necessary (see D57601).
961 if (MMO
->isVolatile() || MMO
->isAtomic() ||
962 (MMO
->isInvariant() && MMO
->isDereferenceable()) ||
963 (!MMO
->getValue())) {
964 NewMMOs
.push_back(MMO
);
968 if (Num
!= UINT_MAX
&& computeDelta(OldMI
, Delta
)) {
969 int64_t AdjOffset
= Delta
* Num
;
971 MF
.getMachineMemOperand(MMO
, AdjOffset
, MMO
->getSize()));
974 MF
.getMachineMemOperand(MMO
, 0, MemoryLocation::UnknownSize
));
977 NewMI
.setMemRefs(MF
, NewMMOs
);
980 /// Clone the instruction for the new pipelined loop and update the
981 /// memory operands, if needed.
982 MachineInstr
*ModuloScheduleExpander::cloneInstr(MachineInstr
*OldMI
,
983 unsigned CurStageNum
,
984 unsigned InstStageNum
) {
985 MachineInstr
*NewMI
= MF
.CloneMachineInstr(OldMI
);
986 // Check for tied operands in inline asm instructions. This should be handled
987 // elsewhere, but I'm not sure of the best solution.
988 if (OldMI
->isInlineAsm())
989 for (unsigned i
= 0, e
= OldMI
->getNumOperands(); i
!= e
; ++i
) {
990 const auto &MO
= OldMI
->getOperand(i
);
991 if (MO
.isReg() && MO
.isUse())
994 if (OldMI
->isRegTiedToUseOperand(i
, &UseIdx
))
995 NewMI
->tieOperands(i
, UseIdx
);
997 updateMemOperands(*NewMI
, *OldMI
, CurStageNum
- InstStageNum
);
1001 /// Clone the instruction for the new pipelined loop. If needed, this
1002 /// function updates the instruction using the values saved in the
1003 /// InstrChanges structure.
1004 MachineInstr
*ModuloScheduleExpander::cloneAndChangeInstr(
1005 MachineInstr
*OldMI
, unsigned CurStageNum
, unsigned InstStageNum
) {
1006 MachineInstr
*NewMI
= MF
.CloneMachineInstr(OldMI
);
1007 auto It
= InstrChanges
.find(OldMI
);
1008 if (It
!= InstrChanges
.end()) {
1009 std::pair
<unsigned, int64_t> RegAndOffset
= It
->second
;
1010 unsigned BasePos
, OffsetPos
;
1011 if (!TII
->getBaseAndOffsetPosition(*OldMI
, BasePos
, OffsetPos
))
1013 int64_t NewOffset
= OldMI
->getOperand(OffsetPos
).getImm();
1014 MachineInstr
*LoopDef
= findDefInLoop(RegAndOffset
.first
);
1015 if (Schedule
.getStage(LoopDef
) > (signed)InstStageNum
)
1016 NewOffset
+= RegAndOffset
.second
* (CurStageNum
- InstStageNum
);
1017 NewMI
->getOperand(OffsetPos
).setImm(NewOffset
);
1019 updateMemOperands(*NewMI
, *OldMI
, CurStageNum
- InstStageNum
);
1023 /// Update the machine instruction with new virtual registers. This
1024 /// function may change the defintions and/or uses.
1025 void ModuloScheduleExpander::updateInstruction(MachineInstr
*NewMI
,
1027 unsigned CurStageNum
,
1028 unsigned InstrStageNum
,
1029 ValueMapTy
*VRMap
) {
1030 for (unsigned i
= 0, e
= NewMI
->getNumOperands(); i
!= e
; ++i
) {
1031 MachineOperand
&MO
= NewMI
->getOperand(i
);
1032 if (!MO
.isReg() || !Register::isVirtualRegister(MO
.getReg()))
1034 Register reg
= MO
.getReg();
1036 // Create a new virtual register for the definition.
1037 const TargetRegisterClass
*RC
= MRI
.getRegClass(reg
);
1038 Register NewReg
= MRI
.createVirtualRegister(RC
);
1040 VRMap
[CurStageNum
][reg
] = NewReg
;
1042 replaceRegUsesAfterLoop(reg
, NewReg
, BB
, MRI
, LIS
);
1043 } else if (MO
.isUse()) {
1044 MachineInstr
*Def
= MRI
.getVRegDef(reg
);
1045 // Compute the stage that contains the last definition for instruction.
1046 int DefStageNum
= Schedule
.getStage(Def
);
1047 unsigned StageNum
= CurStageNum
;
1048 if (DefStageNum
!= -1 && (int)InstrStageNum
> DefStageNum
) {
1049 // Compute the difference in stages between the defintion and the use.
1050 unsigned StageDiff
= (InstrStageNum
- DefStageNum
);
1051 // Make an adjustment to get the last definition.
1052 StageNum
-= StageDiff
;
1054 if (VRMap
[StageNum
].count(reg
))
1055 MO
.setReg(VRMap
[StageNum
][reg
]);
1060 /// Return the instruction in the loop that defines the register.
1061 /// If the definition is a Phi, then follow the Phi operand to
1062 /// the instruction in the loop.
1063 MachineInstr
*ModuloScheduleExpander::findDefInLoop(unsigned Reg
) {
1064 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1065 MachineInstr
*Def
= MRI
.getVRegDef(Reg
);
1066 while (Def
->isPHI()) {
1067 if (!Visited
.insert(Def
).second
)
1069 for (unsigned i
= 1, e
= Def
->getNumOperands(); i
< e
; i
+= 2)
1070 if (Def
->getOperand(i
+ 1).getMBB() == BB
) {
1071 Def
= MRI
.getVRegDef(Def
->getOperand(i
).getReg());
1078 /// Return the new name for the value from the previous stage.
1079 unsigned ModuloScheduleExpander::getPrevMapVal(
1080 unsigned StageNum
, unsigned PhiStage
, unsigned LoopVal
, unsigned LoopStage
,
1081 ValueMapTy
*VRMap
, MachineBasicBlock
*BB
) {
1082 unsigned PrevVal
= 0;
1083 if (StageNum
> PhiStage
) {
1084 MachineInstr
*LoopInst
= MRI
.getVRegDef(LoopVal
);
1085 if (PhiStage
== LoopStage
&& VRMap
[StageNum
- 1].count(LoopVal
))
1086 // The name is defined in the previous stage.
1087 PrevVal
= VRMap
[StageNum
- 1][LoopVal
];
1088 else if (VRMap
[StageNum
].count(LoopVal
))
1089 // The previous name is defined in the current stage when the instruction
1090 // order is swapped.
1091 PrevVal
= VRMap
[StageNum
][LoopVal
];
1092 else if (!LoopInst
->isPHI() || LoopInst
->getParent() != BB
)
1093 // The loop value hasn't yet been scheduled.
1095 else if (StageNum
== PhiStage
+ 1)
1096 // The loop value is another phi, which has not been scheduled.
1097 PrevVal
= getInitPhiReg(*LoopInst
, BB
);
1098 else if (StageNum
> PhiStage
+ 1 && LoopInst
->getParent() == BB
)
1099 // The loop value is another phi, which has been scheduled.
1101 getPrevMapVal(StageNum
- 1, PhiStage
, getLoopPhiReg(*LoopInst
, BB
),
1102 LoopStage
, VRMap
, BB
);
1107 /// Rewrite the Phi values in the specified block to use the mappings
1108 /// from the initial operand. Once the Phi is scheduled, we switch
1109 /// to using the loop value instead of the Phi value, so those names
1110 /// do not need to be rewritten.
1111 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock
*NewBB
,
1114 InstrMapTy
&InstrMap
) {
1115 for (auto &PHI
: BB
->phis()) {
1116 unsigned InitVal
= 0;
1117 unsigned LoopVal
= 0;
1118 getPhiRegs(PHI
, BB
, InitVal
, LoopVal
);
1119 Register PhiDef
= PHI
.getOperand(0).getReg();
1121 unsigned PhiStage
= (unsigned)Schedule
.getStage(MRI
.getVRegDef(PhiDef
));
1122 unsigned LoopStage
= (unsigned)Schedule
.getStage(MRI
.getVRegDef(LoopVal
));
1123 unsigned NumPhis
= getStagesForPhi(PhiDef
);
1124 if (NumPhis
> StageNum
)
1126 for (unsigned np
= 0; np
<= NumPhis
; ++np
) {
1128 getPrevMapVal(StageNum
- np
, PhiStage
, LoopVal
, LoopStage
, VRMap
, BB
);
1131 rewriteScheduledInstr(NewBB
, InstrMap
, StageNum
- np
, np
, &PHI
, PhiDef
,
1137 /// Rewrite a previously scheduled instruction to use the register value
1138 /// from the new instruction. Make sure the instruction occurs in the
1139 /// basic block, and we don't change the uses in the new instruction.
1140 void ModuloScheduleExpander::rewriteScheduledInstr(
1141 MachineBasicBlock
*BB
, InstrMapTy
&InstrMap
, unsigned CurStageNum
,
1142 unsigned PhiNum
, MachineInstr
*Phi
, unsigned OldReg
, unsigned NewReg
,
1144 bool InProlog
= (CurStageNum
< (unsigned)Schedule
.getNumStages() - 1);
1145 int StagePhi
= Schedule
.getStage(Phi
) + PhiNum
;
1146 // Rewrite uses that have been scheduled already to use the new
1148 for (MachineRegisterInfo::use_iterator UI
= MRI
.use_begin(OldReg
),
1151 MachineOperand
&UseOp
= *UI
;
1152 MachineInstr
*UseMI
= UseOp
.getParent();
1154 if (UseMI
->getParent() != BB
)
1156 if (UseMI
->isPHI()) {
1157 if (!Phi
->isPHI() && UseMI
->getOperand(0).getReg() == NewReg
)
1159 if (getLoopPhiReg(*UseMI
, BB
) != OldReg
)
1162 InstrMapTy::iterator OrigInstr
= InstrMap
.find(UseMI
);
1163 assert(OrigInstr
!= InstrMap
.end() && "Instruction not scheduled.");
1164 MachineInstr
*OrigMI
= OrigInstr
->second
;
1165 int StageSched
= Schedule
.getStage(OrigMI
);
1166 int CycleSched
= Schedule
.getCycle(OrigMI
);
1167 unsigned ReplaceReg
= 0;
1168 // This is the stage for the scheduled instruction.
1169 if (StagePhi
== StageSched
&& Phi
->isPHI()) {
1170 int CyclePhi
= Schedule
.getCycle(Phi
);
1171 if (PrevReg
&& InProlog
)
1172 ReplaceReg
= PrevReg
;
1173 else if (PrevReg
&& !isLoopCarried(*Phi
) &&
1174 (CyclePhi
<= CycleSched
|| OrigMI
->isPHI()))
1175 ReplaceReg
= PrevReg
;
1177 ReplaceReg
= NewReg
;
1179 // The scheduled instruction occurs before the scheduled Phi, and the
1180 // Phi is not loop carried.
1181 if (!InProlog
&& StagePhi
+ 1 == StageSched
&& !isLoopCarried(*Phi
))
1182 ReplaceReg
= NewReg
;
1183 if (StagePhi
> StageSched
&& Phi
->isPHI())
1184 ReplaceReg
= NewReg
;
1185 if (!InProlog
&& !Phi
->isPHI() && StagePhi
< StageSched
)
1186 ReplaceReg
= NewReg
;
1188 MRI
.constrainRegClass(ReplaceReg
, MRI
.getRegClass(OldReg
));
1189 UseOp
.setReg(ReplaceReg
);
1194 bool ModuloScheduleExpander::isLoopCarried(MachineInstr
&Phi
) {
1197 unsigned DefCycle
= Schedule
.getCycle(&Phi
);
1198 int DefStage
= Schedule
.getStage(&Phi
);
1200 unsigned InitVal
= 0;
1201 unsigned LoopVal
= 0;
1202 getPhiRegs(Phi
, Phi
.getParent(), InitVal
, LoopVal
);
1203 MachineInstr
*Use
= MRI
.getVRegDef(LoopVal
);
1204 if (!Use
|| Use
->isPHI())
1206 unsigned LoopCycle
= Schedule
.getCycle(Use
);
1207 int LoopStage
= Schedule
.getStage(Use
);
1208 return (LoopCycle
> DefCycle
) || (LoopStage
<= DefStage
);
1211 //===----------------------------------------------------------------------===//
1212 // PeelingModuloScheduleExpander implementation
1213 //===----------------------------------------------------------------------===//
1214 // This is a reimplementation of ModuloScheduleExpander that works by creating
1215 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1216 //===----------------------------------------------------------------------===//
1219 // Remove any dead phis in MBB. Dead phis either have only one block as input
1220 // (in which case they are the identity) or have no uses.
1221 void EliminateDeadPhis(MachineBasicBlock
*MBB
, MachineRegisterInfo
&MRI
,
1222 LiveIntervals
*LIS
) {
1223 bool Changed
= true;
1226 for (auto I
= MBB
->begin(); I
!= MBB
->getFirstNonPHI();) {
1227 MachineInstr
&MI
= *I
++;
1229 if (MRI
.use_empty(MI
.getOperand(0).getReg())) {
1231 LIS
->RemoveMachineInstrFromMaps(MI
);
1232 MI
.eraseFromParent();
1234 } else if (MI
.getNumExplicitOperands() == 3) {
1235 MRI
.constrainRegClass(MI
.getOperand(1).getReg(),
1236 MRI
.getRegClass(MI
.getOperand(0).getReg()));
1237 MRI
.replaceRegWith(MI
.getOperand(0).getReg(),
1238 MI
.getOperand(1).getReg());
1240 LIS
->RemoveMachineInstrFromMaps(MI
);
1241 MI
.eraseFromParent();
1248 /// Rewrites the kernel block in-place to adhere to the given schedule.
1249 /// KernelRewriter holds all of the state required to perform the rewriting.
1250 class KernelRewriter
{
1252 MachineBasicBlock
*BB
;
1253 MachineBasicBlock
*PreheaderBB
, *ExitBB
;
1254 MachineRegisterInfo
&MRI
;
1255 const TargetInstrInfo
*TII
;
1258 // Map from register class to canonical undef register for that class.
1259 DenseMap
<const TargetRegisterClass
*, Register
> Undefs
;
1260 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1261 // this map is only used when InitReg is non-undef.
1262 DenseMap
<std::pair
<unsigned, unsigned>, Register
> Phis
;
1263 // Map from LoopReg to phi register where the InitReg is undef.
1264 DenseMap
<Register
, Register
> UndefPhis
;
1266 // Reg is used by MI. Return the new register MI should use to adhere to the
1267 // schedule. Insert phis as necessary.
1268 Register
remapUse(Register Reg
, MachineInstr
&MI
);
1269 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1270 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1271 // or will be chosen so as to share another phi.
1272 Register
phi(Register LoopReg
, Optional
<Register
> InitReg
= {},
1273 const TargetRegisterClass
*RC
= nullptr);
1274 // Create an undef register of the given register class.
1275 Register
undef(const TargetRegisterClass
*RC
);
1278 KernelRewriter(MachineLoop
&L
, ModuloSchedule
&S
,
1279 LiveIntervals
*LIS
= nullptr);
1284 KernelRewriter::KernelRewriter(MachineLoop
&L
, ModuloSchedule
&S
,
1286 : S(S
), BB(L
.getTopBlock()), PreheaderBB(L
.getLoopPreheader()),
1287 ExitBB(L
.getExitBlock()), MRI(BB
->getParent()->getRegInfo()),
1288 TII(BB
->getParent()->getSubtarget().getInstrInfo()), LIS(LIS
) {
1289 PreheaderBB
= *BB
->pred_begin();
1290 if (PreheaderBB
== BB
)
1291 PreheaderBB
= *std::next(BB
->pred_begin());
1294 void KernelRewriter::rewrite() {
1295 // Rearrange the loop to be in schedule order. Note that the schedule may
1296 // contain instructions that are not owned by the loop block (InstrChanges and
1297 // friends), so we gracefully handle unowned instructions and delete any
1298 // instructions that weren't in the schedule.
1299 auto InsertPt
= BB
->getFirstTerminator();
1300 MachineInstr
*FirstMI
= nullptr;
1301 for (MachineInstr
*MI
: S
.getInstructions()) {
1304 if (MI
->getParent())
1305 MI
->removeFromParent();
1306 BB
->insert(InsertPt
, MI
);
1311 // At this point all of the scheduled instructions are between FirstMI
1312 // and the end of the block. Kill from the first non-phi to FirstMI.
1313 for (auto I
= BB
->getFirstNonPHI(); I
!= FirstMI
->getIterator();) {
1315 LIS
->RemoveMachineInstrFromMaps(*I
);
1316 (I
++)->eraseFromParent();
1319 // Now remap every instruction in the loop.
1320 for (MachineInstr
&MI
: *BB
) {
1323 for (MachineOperand
&MO
: MI
.uses()) {
1324 if (!MO
.isReg() || MO
.getReg().isPhysical() || MO
.isImplicit())
1326 Register Reg
= remapUse(MO
.getReg(), MI
);
1330 EliminateDeadPhis(BB
, MRI
, LIS
);
1332 // Ensure a phi exists for all instructions that are either referenced by
1333 // an illegal phi or by an instruction outside the loop. This allows us to
1334 // treat remaps of these values the same as "normal" values that come from
1335 // loop-carried phis.
1336 for (auto MI
= BB
->getFirstNonPHI(); MI
!= BB
->end(); ++MI
) {
1338 Register R
= MI
->getOperand(0).getReg();
1343 for (MachineOperand
&Def
: MI
->defs()) {
1344 for (MachineInstr
&MI
: MRI
.use_instructions(Def
.getReg())) {
1345 if (MI
.getParent() != BB
) {
1354 Register
KernelRewriter::remapUse(Register Reg
, MachineInstr
&MI
) {
1355 MachineInstr
*Producer
= MRI
.getUniqueVRegDef(Reg
);
1359 int ConsumerStage
= S
.getStage(&MI
);
1360 if (!Producer
->isPHI()) {
1361 // Non-phi producers are simple to remap. Insert as many phis as the
1362 // difference between the consumer and producer stages.
1363 if (Producer
->getParent() != BB
)
1364 // Producer was not inside the loop. Use the register as-is.
1366 int ProducerStage
= S
.getStage(Producer
);
1367 assert(ConsumerStage
!= -1 &&
1368 "In-loop consumer should always be scheduled!");
1369 assert(ConsumerStage
>= ProducerStage
);
1370 unsigned StageDiff
= ConsumerStage
- ProducerStage
;
1372 for (unsigned I
= 0; I
< StageDiff
; ++I
)
1377 // First, dive through the phi chain to find the defaults for the generated
1379 SmallVector
<Optional
<Register
>, 4> Defaults
;
1380 Register LoopReg
= Reg
;
1381 auto LoopProducer
= Producer
;
1382 while (LoopProducer
->isPHI() && LoopProducer
->getParent() == BB
) {
1383 LoopReg
= getLoopPhiReg(*LoopProducer
, BB
);
1384 Defaults
.emplace_back(getInitPhiReg(*LoopProducer
, BB
));
1385 LoopProducer
= MRI
.getUniqueVRegDef(LoopReg
);
1386 assert(LoopProducer
);
1388 int LoopProducerStage
= S
.getStage(LoopProducer
);
1390 Optional
<Register
> IllegalPhiDefault
;
1392 if (LoopProducerStage
== -1) {
1394 } else if (LoopProducerStage
> ConsumerStage
) {
1395 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1396 // In addition, Consumer's cycle must be scheduled after Producer in the
1397 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1399 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1400 int LoopProducerCycle
= S
.getCycle(LoopProducer
);
1401 int ConsumerCycle
= S
.getCycle(&MI
);
1403 assert(LoopProducerCycle
<= ConsumerCycle
);
1404 assert(LoopProducerStage
== ConsumerStage
+ 1);
1405 // Peel off the first phi from Defaults and insert a phi between producer
1406 // and consumer. This phi will not be at the front of the block so we
1407 // consider it illegal. It will only exist during the rewrite process; it
1408 // needs to exist while we peel off prologs because these could take the
1409 // default value. After that we can replace all uses with the loop producer
1411 IllegalPhiDefault
= Defaults
.front();
1412 Defaults
.erase(Defaults
.begin());
1414 assert(ConsumerStage
>= LoopProducerStage
);
1415 int StageDiff
= ConsumerStage
- LoopProducerStage
;
1416 if (StageDiff
> 0) {
1417 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults
.size()
1418 << " to " << (Defaults
.size() + StageDiff
) << "\n");
1419 // If we need more phis than we have defaults for, pad out with undefs for
1420 // the earliest phis, which are at the end of the defaults chain (the
1421 // chain is in reverse order).
1422 Defaults
.resize(Defaults
.size() + StageDiff
, Defaults
.empty()
1423 ? Optional
<Register
>()
1428 // Now we know the number of stages to jump back, insert the phi chain.
1429 auto DefaultI
= Defaults
.rbegin();
1430 while (DefaultI
!= Defaults
.rend())
1431 LoopReg
= phi(LoopReg
, *DefaultI
++, MRI
.getRegClass(Reg
));
1433 if (IllegalPhiDefault
.hasValue()) {
1434 // The consumer optionally consumes LoopProducer in the same iteration
1435 // (because the producer is scheduled at an earlier cycle than the consumer)
1436 // or the initial value. To facilitate this we create an illegal block here
1437 // by embedding a phi in the middle of the block. We will fix this up
1438 // immediately prior to pruning.
1439 auto RC
= MRI
.getRegClass(Reg
);
1440 Register R
= MRI
.createVirtualRegister(RC
);
1441 BuildMI(*BB
, MI
, DebugLoc(), TII
->get(TargetOpcode::PHI
), R
)
1442 .addReg(IllegalPhiDefault
.getValue())
1443 .addMBB(PreheaderBB
) // Block choice is arbitrary and has no effect.
1445 .addMBB(BB
); // Block choice is arbitrary and has no effect.
1452 Register
KernelRewriter::phi(Register LoopReg
, Optional
<Register
> InitReg
,
1453 const TargetRegisterClass
*RC
) {
1454 // If the init register is not undef, try and find an existing phi.
1455 if (InitReg
.hasValue()) {
1456 auto I
= Phis
.find({LoopReg
, InitReg
.getValue()});
1457 if (I
!= Phis
.end())
1460 for (auto &KV
: Phis
) {
1461 if (KV
.first
.first
== LoopReg
)
1466 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1467 // find a phi that takes undef as input.
1468 auto I
= UndefPhis
.find(LoopReg
);
1469 if (I
!= UndefPhis
.end()) {
1470 Register R
= I
->second
;
1471 if (!InitReg
.hasValue())
1472 // Found a phi taking undef as input, and this input is undef so return
1473 // without any more changes.
1475 // Found a phi taking undef as input, so rewrite it to take InitReg.
1476 MachineInstr
*MI
= MRI
.getVRegDef(R
);
1477 MI
->getOperand(1).setReg(InitReg
.getValue());
1478 Phis
.insert({{LoopReg
, InitReg
.getValue()}, R
});
1479 MRI
.constrainRegClass(R
, MRI
.getRegClass(InitReg
.getValue()));
1484 // Failed to find any existing phi to reuse, so create a new one.
1486 RC
= MRI
.getRegClass(LoopReg
);
1487 Register R
= MRI
.createVirtualRegister(RC
);
1488 if (InitReg
.hasValue())
1489 MRI
.constrainRegClass(R
, MRI
.getRegClass(*InitReg
));
1490 BuildMI(*BB
, BB
->getFirstNonPHI(), DebugLoc(), TII
->get(TargetOpcode::PHI
), R
)
1491 .addReg(InitReg
.hasValue() ? *InitReg
: undef(RC
))
1492 .addMBB(PreheaderBB
)
1495 if (!InitReg
.hasValue())
1496 UndefPhis
[LoopReg
] = R
;
1498 Phis
[{LoopReg
, *InitReg
}] = R
;
1502 Register
KernelRewriter::undef(const TargetRegisterClass
*RC
) {
1503 Register
&R
= Undefs
[RC
];
1505 // Create an IMPLICIT_DEF that defines this register if we need it.
1506 // All uses of this should be removed by the time we have finished unrolling
1507 // prologs and epilogs.
1508 R
= MRI
.createVirtualRegister(RC
);
1509 auto *InsertBB
= &PreheaderBB
->getParent()->front();
1510 BuildMI(*InsertBB
, InsertBB
->getFirstTerminator(), DebugLoc(),
1511 TII
->get(TargetOpcode::IMPLICIT_DEF
), R
);
1517 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1518 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1519 /// through and defaults for these phis.
1520 class KernelOperandInfo
{
1521 MachineBasicBlock
*BB
;
1522 MachineRegisterInfo
&MRI
;
1523 SmallVector
<Register
, 4> PhiDefaults
;
1524 MachineOperand
*Source
;
1525 MachineOperand
*Target
;
1528 KernelOperandInfo(MachineOperand
*MO
, MachineRegisterInfo
&MRI
,
1529 const SmallPtrSetImpl
<MachineInstr
*> &IllegalPhis
)
1532 BB
= MO
->getParent()->getParent();
1533 while (isRegInLoop(MO
)) {
1534 MachineInstr
*MI
= MRI
.getVRegDef(MO
->getReg());
1535 if (MI
->isFullCopy()) {
1536 MO
= &MI
->getOperand(1);
1541 // If this is an illegal phi, don't count it in distance.
1542 if (IllegalPhis
.count(MI
)) {
1543 MO
= &MI
->getOperand(3);
1547 Register Default
= getInitPhiReg(*MI
, BB
);
1548 MO
= MI
->getOperand(2).getMBB() == BB
? &MI
->getOperand(1)
1549 : &MI
->getOperand(3);
1550 PhiDefaults
.push_back(Default
);
1555 bool operator==(const KernelOperandInfo
&Other
) const {
1556 return PhiDefaults
.size() == Other
.PhiDefaults
.size();
1559 void print(raw_ostream
&OS
) const {
1560 OS
<< "use of " << *Source
<< ": distance(" << PhiDefaults
.size() << ") in "
1561 << *Source
->getParent();
1565 bool isRegInLoop(MachineOperand
*MO
) {
1566 return MO
->isReg() && MO
->getReg().isVirtual() &&
1567 MRI
.getVRegDef(MO
->getReg())->getParent() == BB
;
1572 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
1573 BB
= Schedule
.getLoop()->getTopBlock();
1574 Preheader
= Schedule
.getLoop()->getLoopPreheader();
1576 // Dump the schedule before we invalidate and remap all its instructions.
1577 // Stash it in a string so we can print it if we found an error.
1578 std::string ScheduleDump
;
1579 raw_string_ostream
OS(ScheduleDump
);
1583 // First, run the normal ModuleScheduleExpander. We don't support any
1585 assert(LIS
&& "Requires LiveIntervals!");
1586 ModuloScheduleExpander
MSE(MF
, Schedule
, *LIS
,
1587 ModuloScheduleExpander::InstrChangesTy());
1589 MachineBasicBlock
*ExpandedKernel
= MSE
.getRewrittenKernel();
1590 if (!ExpandedKernel
) {
1591 // The expander optimized away the kernel. We can't do any useful checking.
1595 // Before running the KernelRewriter, re-add BB into the CFG.
1596 Preheader
->addSuccessor(BB
);
1598 // Now run the new expansion algorithm.
1599 KernelRewriter
KR(*Schedule
.getLoop(), Schedule
);
1602 // Collect all illegal phis that the new algorithm created. We'll give these
1603 // to KernelOperandInfo.
1604 SmallPtrSet
<MachineInstr
*, 4> IllegalPhis
;
1605 for (auto NI
= BB
->getFirstNonPHI(); NI
!= BB
->end(); ++NI
) {
1607 IllegalPhis
.insert(&*NI
);
1610 // Co-iterate across both kernels. We expect them to be identical apart from
1611 // phis and full COPYs (we look through both).
1612 SmallVector
<std::pair
<KernelOperandInfo
, KernelOperandInfo
>, 8> KOIs
;
1613 auto OI
= ExpandedKernel
->begin();
1614 auto NI
= BB
->begin();
1615 for (; !OI
->isTerminator() && !NI
->isTerminator(); ++OI
, ++NI
) {
1616 while (OI
->isPHI() || OI
->isFullCopy())
1618 while (NI
->isPHI() || NI
->isFullCopy())
1620 assert(OI
->getOpcode() == NI
->getOpcode() && "Opcodes don't match?!");
1621 // Analyze every operand separately.
1622 for (auto OOpI
= OI
->operands_begin(), NOpI
= NI
->operands_begin();
1623 OOpI
!= OI
->operands_end(); ++OOpI
, ++NOpI
)
1624 KOIs
.emplace_back(KernelOperandInfo(&*OOpI
, MRI
, IllegalPhis
),
1625 KernelOperandInfo(&*NOpI
, MRI
, IllegalPhis
));
1628 bool Failed
= false;
1629 for (auto &OldAndNew
: KOIs
) {
1630 if (OldAndNew
.first
== OldAndNew
.second
)
1633 errs() << "Modulo kernel validation error: [\n";
1634 errs() << " [golden] ";
1635 OldAndNew
.first
.print(errs());
1637 OldAndNew
.second
.print(errs());
1642 errs() << "Golden reference kernel:\n";
1643 ExpandedKernel
->print(errs());
1644 errs() << "New kernel:\n";
1646 errs() << ScheduleDump
;
1648 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
1651 // Cleanup by removing BB from the CFG again as the original
1652 // ModuloScheduleExpander intended.
1653 Preheader
->removeSuccessor(BB
);
1657 //===----------------------------------------------------------------------===//
1658 // ModuloScheduleTestPass implementation
1659 //===----------------------------------------------------------------------===//
1660 // This pass constructs a ModuloSchedule from its module and runs
1661 // ModuloScheduleExpander.
1663 // The module is expected to contain a single-block analyzable loop.
1664 // The total order of instructions is taken from the loop as-is.
1665 // Instructions are expected to be annotated with a PostInstrSymbol.
1666 // This PostInstrSymbol must have the following format:
1667 // "Stage=%d Cycle=%d".
1668 //===----------------------------------------------------------------------===//
1670 class ModuloScheduleTest
: public MachineFunctionPass
{
1674 ModuloScheduleTest() : MachineFunctionPass(ID
) {
1675 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
1678 bool runOnMachineFunction(MachineFunction
&MF
) override
;
1679 void runOnLoop(MachineFunction
&MF
, MachineLoop
&L
);
1681 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1682 AU
.addRequired
<MachineLoopInfo
>();
1683 AU
.addRequired
<LiveIntervals
>();
1684 MachineFunctionPass::getAnalysisUsage(AU
);
1688 char ModuloScheduleTest::ID
= 0;
1690 INITIALIZE_PASS_BEGIN(ModuloScheduleTest
, "modulo-schedule-test",
1691 "Modulo Schedule test pass", false, false)
1692 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
1693 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
1694 INITIALIZE_PASS_END(ModuloScheduleTest
, "modulo-schedule-test",
1695 "Modulo Schedule test pass", false, false)
1697 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction
&MF
) {
1698 MachineLoopInfo
&MLI
= getAnalysis
<MachineLoopInfo
>();
1699 for (auto *L
: MLI
) {
1700 if (L
->getTopBlock() != L
->getBottomBlock())
1708 static void parseSymbolString(StringRef S
, int &Cycle
, int &Stage
) {
1709 std::pair
<StringRef
, StringRef
> StageAndCycle
= getToken(S
, "_");
1710 std::pair
<StringRef
, StringRef
> StageTokenAndValue
=
1711 getToken(StageAndCycle
.first
, "-");
1712 std::pair
<StringRef
, StringRef
> CycleTokenAndValue
=
1713 getToken(StageAndCycle
.second
, "-");
1714 if (StageTokenAndValue
.first
!= "Stage" ||
1715 CycleTokenAndValue
.first
!= "_Cycle") {
1717 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
1721 StageTokenAndValue
.second
.drop_front().getAsInteger(10, Stage
);
1722 CycleTokenAndValue
.second
.drop_front().getAsInteger(10, Cycle
);
1724 dbgs() << " Stage=" << Stage
<< ", Cycle=" << Cycle
<< "\n";
1727 void ModuloScheduleTest::runOnLoop(MachineFunction
&MF
, MachineLoop
&L
) {
1728 LiveIntervals
&LIS
= getAnalysis
<LiveIntervals
>();
1729 MachineBasicBlock
*BB
= L
.getTopBlock();
1730 dbgs() << "--- ModuloScheduleTest running on BB#" << BB
->getNumber() << "\n";
1732 DenseMap
<MachineInstr
*, int> Cycle
, Stage
;
1733 std::vector
<MachineInstr
*> Instrs
;
1734 for (MachineInstr
&MI
: *BB
) {
1735 if (MI
.isTerminator())
1737 Instrs
.push_back(&MI
);
1738 if (MCSymbol
*Sym
= MI
.getPostInstrSymbol()) {
1739 dbgs() << "Parsing post-instr symbol for " << MI
;
1740 parseSymbolString(Sym
->getName(), Cycle
[&MI
], Stage
[&MI
]);
1744 ModuloSchedule
MS(MF
, &L
, std::move(Instrs
), std::move(Cycle
),
1746 ModuloScheduleExpander
MSE(
1747 MF
, MS
, LIS
, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
1752 //===----------------------------------------------------------------------===//
1753 // ModuloScheduleTestAnnotater implementation
1754 //===----------------------------------------------------------------------===//
1756 void ModuloScheduleTestAnnotater::annotate() {
1757 for (MachineInstr
*MI
: S
.getInstructions()) {
1758 SmallVector
<char, 16> SV
;
1759 raw_svector_ostream
OS(SV
);
1760 OS
<< "Stage-" << S
.getStage(MI
) << "_Cycle-" << S
.getCycle(MI
);
1761 MCSymbol
*Sym
= MF
.getContext().getOrCreateSymbol(OS
.str());
1762 MI
->setPostInstrSymbol(MF
, Sym
);