[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / CodeGen / PHIElimination.cpp
blob2b3ce890d984d4812d9a9a85ab791f9a584f97cb
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <iterator>
43 #include <utility>
45 using namespace llvm;
47 #define DEBUG_TYPE "phi-node-elimination"
49 static cl::opt<bool>
50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51 cl::Hidden, cl::desc("Disable critical edge splitting "
52 "during PHI elimination"));
54 static cl::opt<bool>
55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56 cl::Hidden, cl::desc("Split all critical edges during "
57 "PHI elimination"));
59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
63 namespace {
65 class PHIElimination : public MachineFunctionPass {
66 MachineRegisterInfo *MRI; // Machine register information
67 LiveVariables *LV;
68 LiveIntervals *LIS;
70 public:
71 static char ID; // Pass identification, replacement for typeid
73 PHIElimination() : MachineFunctionPass(ID) {
74 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77 bool runOnMachineFunction(MachineFunction &MF) override;
78 void getAnalysisUsage(AnalysisUsage &AU) const override;
80 private:
81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82 /// in predecessor basic blocks.
83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
85 void LowerPHINode(MachineBasicBlock &MBB,
86 MachineBasicBlock::iterator LastPHIIt);
88 /// analyzePHINodes - Gather information about the PHI nodes in
89 /// here. In particular, we want to map the number of uses of a virtual
90 /// register which is used in a PHI node. We map that to the BB the
91 /// vreg is coming from. This is used later to determine when the vreg
92 /// is killed in the BB.
93 void analyzePHINodes(const MachineFunction& MF);
95 /// Split critical edges where necessary for good coalescer performance.
96 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
97 MachineLoopInfo *MLI);
99 // These functions are temporary abstractions around LiveVariables and
100 // LiveIntervals, so they can go away when LiveVariables does.
101 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
102 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
104 using BBVRegPair = std::pair<unsigned, unsigned>;
105 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107 VRegPHIUse VRegPHIUseCount;
109 // Defs of PHI sources which are implicit_def.
110 SmallPtrSet<MachineInstr*, 4> ImpDefs;
112 // Map reusable lowered PHI node -> incoming join register.
113 using LoweredPHIMap =
114 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
115 LoweredPHIMap LoweredPHIs;
118 } // end anonymous namespace
120 STATISTIC(NumLowered, "Number of phis lowered");
121 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
122 STATISTIC(NumReused, "Number of reused lowered phis");
124 char PHIElimination::ID = 0;
126 char& llvm::PHIEliminationID = PHIElimination::ID;
128 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
129 "Eliminate PHI nodes for register allocation",
130 false, false)
131 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
132 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
133 "Eliminate PHI nodes for register allocation", false, false)
135 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
136 AU.addUsedIfAvailable<LiveVariables>();
137 AU.addPreserved<LiveVariables>();
138 AU.addPreserved<SlotIndexes>();
139 AU.addPreserved<LiveIntervals>();
140 AU.addPreserved<MachineDominatorTree>();
141 AU.addPreserved<MachineLoopInfo>();
142 MachineFunctionPass::getAnalysisUsage(AU);
145 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
146 MRI = &MF.getRegInfo();
147 LV = getAnalysisIfAvailable<LiveVariables>();
148 LIS = getAnalysisIfAvailable<LiveIntervals>();
150 bool Changed = false;
152 // This pass takes the function out of SSA form.
153 MRI->leaveSSA();
155 // Split critical edges to help the coalescer.
156 if (!DisableEdgeSplitting && (LV || LIS)) {
157 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
158 for (auto &MBB : MF)
159 Changed |= SplitPHIEdges(MF, MBB, MLI);
162 // Populate VRegPHIUseCount
163 analyzePHINodes(MF);
165 // Eliminate PHI instructions by inserting copies into predecessor blocks.
166 for (auto &MBB : MF)
167 Changed |= EliminatePHINodes(MF, MBB);
169 // Remove dead IMPLICIT_DEF instructions.
170 for (MachineInstr *DefMI : ImpDefs) {
171 Register DefReg = DefMI->getOperand(0).getReg();
172 if (MRI->use_nodbg_empty(DefReg)) {
173 if (LIS)
174 LIS->RemoveMachineInstrFromMaps(*DefMI);
175 DefMI->eraseFromParent();
179 // Clean up the lowered PHI instructions.
180 for (auto &I : LoweredPHIs) {
181 if (LIS)
182 LIS->RemoveMachineInstrFromMaps(*I.first);
183 MF.DeleteMachineInstr(I.first);
186 LoweredPHIs.clear();
187 ImpDefs.clear();
188 VRegPHIUseCount.clear();
190 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
192 return Changed;
195 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
196 /// predecessor basic blocks.
197 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
198 MachineBasicBlock &MBB) {
199 if (MBB.empty() || !MBB.front().isPHI())
200 return false; // Quick exit for basic blocks without PHIs.
202 // Get an iterator to the last PHI node.
203 MachineBasicBlock::iterator LastPHIIt =
204 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
206 while (MBB.front().isPHI())
207 LowerPHINode(MBB, LastPHIIt);
209 return true;
212 /// Return true if all defs of VirtReg are implicit-defs.
213 /// This includes registers with no defs.
214 static bool isImplicitlyDefined(unsigned VirtReg,
215 const MachineRegisterInfo &MRI) {
216 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
217 if (!DI.isImplicitDef())
218 return false;
219 return true;
222 /// Return true if all sources of the phi node are implicit_def's, or undef's.
223 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
224 const MachineRegisterInfo &MRI) {
225 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
226 const MachineOperand &MO = MPhi.getOperand(I);
227 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
228 return false;
230 return true;
232 /// LowerPHINode - Lower the PHI node at the top of the specified block.
233 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
234 MachineBasicBlock::iterator LastPHIIt) {
235 ++NumLowered;
237 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
239 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
240 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
242 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
243 Register DestReg = MPhi->getOperand(0).getReg();
244 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
245 bool isDead = MPhi->getOperand(0).isDead();
247 // Create a new register for the incoming PHI arguments.
248 MachineFunction &MF = *MBB.getParent();
249 unsigned IncomingReg = 0;
250 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
252 // Insert a register to register copy at the top of the current block (but
253 // after any remaining phi nodes) which copies the new incoming register
254 // into the phi node destination.
255 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
256 if (allPhiOperandsUndefined(*MPhi, *MRI))
257 // If all sources of a PHI node are implicit_def or undef uses, just emit an
258 // implicit_def instead of a copy.
259 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
260 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
261 else {
262 // Can we reuse an earlier PHI node? This only happens for critical edges,
263 // typically those created by tail duplication.
264 unsigned &entry = LoweredPHIs[MPhi];
265 if (entry) {
266 // An identical PHI node was already lowered. Reuse the incoming register.
267 IncomingReg = entry;
268 reusedIncoming = true;
269 ++NumReused;
270 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
271 << *MPhi);
272 } else {
273 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
274 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
276 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
277 TII->get(TargetOpcode::COPY), DestReg)
278 .addReg(IncomingReg);
281 // Update live variable information if there is any.
282 if (LV) {
283 MachineInstr &PHICopy = *std::prev(AfterPHIsIt);
285 if (IncomingReg) {
286 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
288 // Increment use count of the newly created virtual register.
289 LV->setPHIJoin(IncomingReg);
291 // When we are reusing the incoming register, it may already have been
292 // killed in this block. The old kill will also have been inserted at
293 // AfterPHIsIt, so it appears before the current PHICopy.
294 if (reusedIncoming)
295 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
296 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
297 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
298 LLVM_DEBUG(MBB.dump());
301 // Add information to LiveVariables to know that the incoming value is
302 // killed. Note that because the value is defined in several places (once
303 // each for each incoming block), the "def" block and instruction fields
304 // for the VarInfo is not filled in.
305 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
308 // Since we are going to be deleting the PHI node, if it is the last use of
309 // any registers, or if the value itself is dead, we need to move this
310 // information over to the new copy we just inserted.
311 LV->removeVirtualRegistersKilled(*MPhi);
313 // If the result is dead, update LV.
314 if (isDead) {
315 LV->addVirtualRegisterDead(DestReg, PHICopy);
316 LV->removeVirtualRegisterDead(DestReg, *MPhi);
320 // Update LiveIntervals for the new copy or implicit def.
321 if (LIS) {
322 SlotIndex DestCopyIndex =
323 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt));
325 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
326 if (IncomingReg) {
327 // Add the region from the beginning of MBB to the copy instruction to
328 // IncomingReg's live interval.
329 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
330 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
331 if (!IncomingVNI)
332 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
333 LIS->getVNInfoAllocator());
334 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
335 DestCopyIndex.getRegSlot(),
336 IncomingVNI));
339 LiveInterval &DestLI = LIS->getInterval(DestReg);
340 assert(DestLI.begin() != DestLI.end() &&
341 "PHIs should have nonempty LiveIntervals.");
342 if (DestLI.endIndex().isDead()) {
343 // A dead PHI's live range begins and ends at the start of the MBB, but
344 // the lowered copy, which will still be dead, needs to begin and end at
345 // the copy instruction.
346 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
347 assert(OrigDestVNI && "PHI destination should be live at block entry.");
348 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
349 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
350 LIS->getVNInfoAllocator());
351 DestLI.removeValNo(OrigDestVNI);
352 } else {
353 // Otherwise, remove the region from the beginning of MBB to the copy
354 // instruction from DestReg's live interval.
355 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
356 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
357 assert(DestVNI && "PHI destination should be live at its definition.");
358 DestVNI->def = DestCopyIndex.getRegSlot();
362 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
363 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
364 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
365 MPhi->getOperand(i).getReg())];
367 // Now loop over all of the incoming arguments, changing them to copy into the
368 // IncomingReg register in the corresponding predecessor basic block.
369 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
370 for (int i = NumSrcs - 1; i >= 0; --i) {
371 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
372 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
373 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
374 isImplicitlyDefined(SrcReg, *MRI);
375 assert(Register::isVirtualRegister(SrcReg) &&
376 "Machine PHI Operands must all be virtual registers!");
378 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
379 // path the PHI.
380 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
382 // Check to make sure we haven't already emitted the copy for this block.
383 // This can happen because PHI nodes may have multiple entries for the same
384 // basic block.
385 if (!MBBsInsertedInto.insert(&opBlock).second)
386 continue; // If the copy has already been emitted, we're done.
388 // Find a safe location to insert the copy, this may be the first terminator
389 // in the block (or end()).
390 MachineBasicBlock::iterator InsertPos =
391 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
393 // Insert the copy.
394 MachineInstr *NewSrcInstr = nullptr;
395 if (!reusedIncoming && IncomingReg) {
396 if (SrcUndef) {
397 // The source register is undefined, so there is no need for a real
398 // COPY, but we still need to ensure joint dominance by defs.
399 // Insert an IMPLICIT_DEF instruction.
400 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
401 TII->get(TargetOpcode::IMPLICIT_DEF),
402 IncomingReg);
404 // Clean up the old implicit-def, if there even was one.
405 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
406 if (DefMI->isImplicitDef())
407 ImpDefs.insert(DefMI);
408 } else {
409 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
410 TII->get(TargetOpcode::COPY), IncomingReg)
411 .addReg(SrcReg, 0, SrcSubReg);
415 // We only need to update the LiveVariables kill of SrcReg if this was the
416 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
417 // out of the predecessor. We can also ignore undef sources.
418 if (LV && !SrcUndef &&
419 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
420 !LV->isLiveOut(SrcReg, opBlock)) {
421 // We want to be able to insert a kill of the register if this PHI (aka,
422 // the copy we just inserted) is the last use of the source value. Live
423 // variable analysis conservatively handles this by saying that the value
424 // is live until the end of the block the PHI entry lives in. If the value
425 // really is dead at the PHI copy, there will be no successor blocks which
426 // have the value live-in.
428 // Okay, if we now know that the value is not live out of the block, we
429 // can add a kill marker in this block saying that it kills the incoming
430 // value!
432 // In our final twist, we have to decide which instruction kills the
433 // register. In most cases this is the copy, however, terminator
434 // instructions at the end of the block may also use the value. In this
435 // case, we should mark the last such terminator as being the killing
436 // block, not the copy.
437 MachineBasicBlock::iterator KillInst = opBlock.end();
438 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
439 for (MachineBasicBlock::iterator Term = FirstTerm;
440 Term != opBlock.end(); ++Term) {
441 if (Term->readsRegister(SrcReg))
442 KillInst = Term;
445 if (KillInst == opBlock.end()) {
446 // No terminator uses the register.
448 if (reusedIncoming || !IncomingReg) {
449 // We may have to rewind a bit if we didn't insert a copy this time.
450 KillInst = FirstTerm;
451 while (KillInst != opBlock.begin()) {
452 --KillInst;
453 if (KillInst->isDebugInstr())
454 continue;
455 if (KillInst->readsRegister(SrcReg))
456 break;
458 } else {
459 // We just inserted this copy.
460 KillInst = std::prev(InsertPos);
463 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
465 // Finally, mark it killed.
466 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
468 // This vreg no longer lives all of the way through opBlock.
469 unsigned opBlockNum = opBlock.getNumber();
470 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
473 if (LIS) {
474 if (NewSrcInstr) {
475 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
476 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
479 if (!SrcUndef &&
480 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
481 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
483 bool isLiveOut = false;
484 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
485 SE = opBlock.succ_end(); SI != SE; ++SI) {
486 SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
487 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
489 // Definitions by other PHIs are not truly live-in for our purposes.
490 if (VNI && VNI->def != startIdx) {
491 isLiveOut = true;
492 break;
496 if (!isLiveOut) {
497 MachineBasicBlock::iterator KillInst = opBlock.end();
498 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
499 for (MachineBasicBlock::iterator Term = FirstTerm;
500 Term != opBlock.end(); ++Term) {
501 if (Term->readsRegister(SrcReg))
502 KillInst = Term;
505 if (KillInst == opBlock.end()) {
506 // No terminator uses the register.
508 if (reusedIncoming || !IncomingReg) {
509 // We may have to rewind a bit if we didn't just insert a copy.
510 KillInst = FirstTerm;
511 while (KillInst != opBlock.begin()) {
512 --KillInst;
513 if (KillInst->isDebugInstr())
514 continue;
515 if (KillInst->readsRegister(SrcReg))
516 break;
518 } else {
519 // We just inserted this copy.
520 KillInst = std::prev(InsertPos);
523 assert(KillInst->readsRegister(SrcReg) &&
524 "Cannot find kill instruction");
526 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
527 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
528 LIS->getMBBEndIdx(&opBlock));
534 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
535 if (reusedIncoming || !IncomingReg) {
536 if (LIS)
537 LIS->RemoveMachineInstrFromMaps(*MPhi);
538 MF.DeleteMachineInstr(MPhi);
542 /// analyzePHINodes - Gather information about the PHI nodes in here. In
543 /// particular, we want to map the number of uses of a virtual register which is
544 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
545 /// used later to determine when the vreg is killed in the BB.
546 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
547 for (const auto &MBB : MF)
548 for (const auto &BBI : MBB) {
549 if (!BBI.isPHI())
550 break;
551 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
552 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
553 BBI.getOperand(i).getReg())];
557 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
558 MachineBasicBlock &MBB,
559 MachineLoopInfo *MLI) {
560 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
561 return false; // Quick exit for basic blocks without PHIs.
563 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
564 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
566 bool Changed = false;
567 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
568 BBI != BBE && BBI->isPHI(); ++BBI) {
569 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
570 Register Reg = BBI->getOperand(i).getReg();
571 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
572 // Is there a critical edge from PreMBB to MBB?
573 if (PreMBB->succ_size() == 1)
574 continue;
576 // Avoid splitting backedges of loops. It would introduce small
577 // out-of-line blocks into the loop which is very bad for code placement.
578 if (PreMBB == &MBB && !SplitAllCriticalEdges)
579 continue;
580 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
581 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
582 continue;
584 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
585 // when the source register is live-out for some other reason than a phi
586 // use. That means the copy we will insert in PreMBB won't be a kill, and
587 // there is a risk it may not be coalesced away.
589 // If the copy would be a kill, there is no need to split the edge.
590 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
591 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
592 continue;
593 if (ShouldSplit) {
594 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
595 << printMBBReference(*PreMBB) << " -> "
596 << printMBBReference(MBB) << ": " << *BBI);
599 // If Reg is not live-in to MBB, it means it must be live-in to some
600 // other PreMBB successor, and we can avoid the interference by splitting
601 // the edge.
603 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
604 // is likely to be left after coalescing. If we are looking at a loop
605 // exiting edge, split it so we won't insert code in the loop, otherwise
606 // don't bother.
607 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
609 // Check for a loop exiting edge.
610 if (!ShouldSplit && CurLoop != PreLoop) {
611 LLVM_DEBUG({
612 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
613 if (PreLoop)
614 dbgs() << "PreLoop: " << *PreLoop;
615 if (CurLoop)
616 dbgs() << "CurLoop: " << *CurLoop;
618 // This edge could be entering a loop, exiting a loop, or it could be
619 // both: Jumping directly form one loop to the header of a sibling
620 // loop.
621 // Split unless this edge is entering CurLoop from an outer loop.
622 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
624 if (!ShouldSplit && !SplitAllCriticalEdges)
625 continue;
626 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
627 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
628 continue;
630 Changed = true;
631 ++NumCriticalEdgesSplit;
634 return Changed;
637 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
638 assert((LV || LIS) &&
639 "isLiveIn() requires either LiveVariables or LiveIntervals");
640 if (LIS)
641 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
642 else
643 return LV->isLiveIn(Reg, *MBB);
646 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
647 const MachineBasicBlock *MBB) {
648 assert((LV || LIS) &&
649 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
650 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
651 // so that a register used only in a PHI is not live out of the block. In
652 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
653 // in the predecessor basic block, so that a register used only in a PHI is live
654 // out of the block.
655 if (LIS) {
656 const LiveInterval &LI = LIS->getInterval(Reg);
657 for (const MachineBasicBlock *SI : MBB->successors())
658 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
659 return true;
660 return false;
661 } else {
662 return LV->isLiveOut(Reg, *MBB);