[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob601d42bd07c4f030e33e1c8ae3311fb303aa09b0
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
129 #define DEBUG_TYPE "isel"
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
135 static cl::opt<unsigned, true>
136 LimitFPPrecision("limit-float-precision",
137 cl::desc("Generate low-precision inline sequences "
138 "for some float libcalls"),
139 cl::location(LimitFloatPrecision), cl::Hidden,
140 cl::init(0));
142 static cl::opt<unsigned> SwitchPeelThreshold(
143 "switch-peel-threshold", cl::Hidden, cl::init(66),
144 cl::desc("Set the case probability threshold for peeling the case from a "
145 "switch statement. A value greater than 100 will void this "
146 "optimization"));
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168 if (auto *R = dyn_cast<ReturnInst>(V))
169 return R->getParent()->getParent()->getCallingConv();
171 if (auto *CI = dyn_cast<CallInst>(V)) {
172 const bool IsInlineAsm = CI->isInlineAsm();
173 const bool IsIndirectFunctionCall =
174 !IsInlineAsm && !CI->getCalledFunction();
176 // It is possible that the call instruction is an inline asm statement or an
177 // indirect function call in which case the return value of
178 // getCalledFunction() would be nullptr.
179 const bool IsInstrinsicCall =
180 !IsInlineAsm && !IsIndirectFunctionCall &&
181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
183 if (!IsInlineAsm && !IsInstrinsicCall)
184 return CI->getCallingConv();
187 return None;
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191 const SDValue *Parts, unsigned NumParts,
192 MVT PartVT, EVT ValueVT, const Value *V,
193 Optional<CallingConv::ID> CC);
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent. If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201 const SDValue *Parts, unsigned NumParts,
202 MVT PartVT, EVT ValueVT, const Value *V,
203 Optional<CallingConv::ID> CC = None,
204 Optional<ISD::NodeType> AssertOp = None) {
205 if (ValueVT.isVector())
206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207 CC);
209 assert(NumParts > 0 && "No parts to assemble!");
210 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211 SDValue Val = Parts[0];
213 if (NumParts > 1) {
214 // Assemble the value from multiple parts.
215 if (ValueVT.isInteger()) {
216 unsigned PartBits = PartVT.getSizeInBits();
217 unsigned ValueBits = ValueVT.getSizeInBits();
219 // Assemble the power of 2 part.
220 unsigned RoundParts =
221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222 unsigned RoundBits = PartBits * RoundParts;
223 EVT RoundVT = RoundBits == ValueBits ?
224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225 SDValue Lo, Hi;
227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
229 if (RoundParts > 2) {
230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231 PartVT, HalfVT, V);
232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233 RoundParts / 2, PartVT, HalfVT, V);
234 } else {
235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
239 if (DAG.getDataLayout().isBigEndian())
240 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
244 if (RoundParts < NumParts) {
245 // Assemble the trailing non-power-of-2 part.
246 unsigned OddParts = NumParts - RoundParts;
247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249 OddVT, V, CC);
251 // Combine the round and odd parts.
252 Lo = Val;
253 if (DAG.getDataLayout().isBigEndian())
254 std::swap(Lo, Hi);
255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257 Hi =
258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259 DAG.getConstant(Lo.getValueSizeInBits(), DL,
260 TLI.getPointerTy(DAG.getDataLayout())));
261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
264 } else if (PartVT.isFloatingPoint()) {
265 // FP split into multiple FP parts (for ppcf128)
266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267 "Unexpected split");
268 SDValue Lo, Hi;
269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272 std::swap(Lo, Hi);
273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274 } else {
275 // FP split into integer parts (soft fp)
276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277 !PartVT.isVector() && "Unexpected split");
278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
283 // There is now one part, held in Val. Correct it to match ValueVT.
284 // PartEVT is the type of the register class that holds the value.
285 // ValueVT is the type of the inline asm operation.
286 EVT PartEVT = Val.getValueType();
288 if (PartEVT == ValueVT)
289 return Val;
291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292 ValueVT.bitsLT(PartEVT)) {
293 // For an FP value in an integer part, we need to truncate to the right
294 // width first.
295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
299 // Handle types that have the same size.
300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
303 // Handle types with different sizes.
304 if (PartEVT.isInteger() && ValueVT.isInteger()) {
305 if (ValueVT.bitsLT(PartEVT)) {
306 // For a truncate, see if we have any information to
307 // indicate whether the truncated bits will always be
308 // zero or sign-extension.
309 if (AssertOp.hasValue())
310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311 DAG.getValueType(ValueVT));
312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318 // FP_ROUND's are always exact here.
319 if (ValueVT.bitsLT(Val.getValueType()))
320 return DAG.getNode(
321 ISD::FP_ROUND, DL, ValueVT, Val,
322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328 // then truncating.
329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330 ValueVT.bitsLT(PartEVT)) {
331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
335 report_fatal_error("Unknown mismatch in getCopyFromParts!");
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339 const Twine &ErrMsg) {
340 const Instruction *I = dyn_cast_or_null<Instruction>(V);
341 if (!V)
342 return Ctx.emitError(ErrMsg);
344 const char *AsmError = ", possible invalid constraint for vector type";
345 if (const CallInst *CI = dyn_cast<CallInst>(I))
346 if (isa<InlineAsm>(CI->getCalledValue()))
347 return Ctx.emitError(I, ErrMsg + AsmError);
349 return Ctx.emitError(I, ErrMsg);
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent. If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358 const SDValue *Parts, unsigned NumParts,
359 MVT PartVT, EVT ValueVT, const Value *V,
360 Optional<CallingConv::ID> CallConv) {
361 assert(ValueVT.isVector() && "Not a vector value");
362 assert(NumParts > 0 && "No parts to assemble!");
363 const bool IsABIRegCopy = CallConv.hasValue();
365 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366 SDValue Val = Parts[0];
368 // Handle a multi-element vector.
369 if (NumParts > 1) {
370 EVT IntermediateVT;
371 MVT RegisterVT;
372 unsigned NumIntermediates;
373 unsigned NumRegs;
375 if (IsABIRegCopy) {
376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378 NumIntermediates, RegisterVT);
379 } else {
380 NumRegs =
381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382 NumIntermediates, RegisterVT);
385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386 NumParts = NumRegs; // Silence a compiler warning.
387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388 assert(RegisterVT.getSizeInBits() ==
389 Parts[0].getSimpleValueType().getSizeInBits() &&
390 "Part type sizes don't match!");
392 // Assemble the parts into intermediate operands.
393 SmallVector<SDValue, 8> Ops(NumIntermediates);
394 if (NumIntermediates == NumParts) {
395 // If the register was not expanded, truncate or copy the value,
396 // as appropriate.
397 for (unsigned i = 0; i != NumParts; ++i)
398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399 PartVT, IntermediateVT, V);
400 } else if (NumParts > 0) {
401 // If the intermediate type was expanded, build the intermediate
402 // operands from the parts.
403 assert(NumParts % NumIntermediates == 0 &&
404 "Must expand into a divisible number of parts!");
405 unsigned Factor = NumParts / NumIntermediates;
406 for (unsigned i = 0; i != NumIntermediates; ++i)
407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408 PartVT, IntermediateVT, V);
411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412 // intermediate operands.
413 EVT BuiltVectorTy =
414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415 (IntermediateVT.isVector()
416 ? IntermediateVT.getVectorNumElements() * NumParts
417 : NumIntermediates));
418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419 : ISD::BUILD_VECTOR,
420 DL, BuiltVectorTy, Ops);
423 // There is now one part, held in Val. Correct it to match ValueVT.
424 EVT PartEVT = Val.getValueType();
426 if (PartEVT == ValueVT)
427 return Val;
429 if (PartEVT.isVector()) {
430 // If the element type of the source/dest vectors are the same, but the
431 // parts vector has more elements than the value vector, then we have a
432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
433 // elements we want.
434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436 "Cannot narrow, it would be a lossy transformation");
437 return DAG.getNode(
438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
442 // Vector/Vector bitcast.
443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447 "Cannot handle this kind of promotion");
448 // Promoted vector extract
449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
453 // Trivial bitcast if the types are the same size and the destination
454 // vector type is legal.
455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456 TLI.isTypeLegal(ValueVT))
457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
459 if (ValueVT.getVectorNumElements() != 1) {
460 // Certain ABIs require that vectors are passed as integers. For vectors
461 // are the same size, this is an obvious bitcast.
462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465 // Bitcast Val back the original type and extract the corresponding
466 // vector we want.
467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469 ValueVT.getVectorElementType(), Elts);
470 Val = DAG.getBitcast(WiderVecType, Val);
471 return DAG.getNode(
472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
476 diagnosePossiblyInvalidConstraint(
477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478 return DAG.getUNDEF(ValueVT);
481 // Handle cases such as i8 -> <1 x i1>
482 EVT ValueSVT = ValueVT.getVectorElementType();
483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
487 return DAG.getBuildVector(ValueVT, DL, Val);
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491 SDValue Val, SDValue *Parts, unsigned NumParts,
492 MVT PartVT, const Value *V,
493 Optional<CallingConv::ID> CallConv);
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts. If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499 SDValue *Parts, unsigned NumParts, MVT PartVT,
500 const Value *V,
501 Optional<CallingConv::ID> CallConv = None,
502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503 EVT ValueVT = Val.getValueType();
505 // Handle the vector case separately.
506 if (ValueVT.isVector())
507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508 CallConv);
510 unsigned PartBits = PartVT.getSizeInBits();
511 unsigned OrigNumParts = NumParts;
512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513 "Copying to an illegal type!");
515 if (NumParts == 0)
516 return;
518 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519 EVT PartEVT = PartVT;
520 if (PartEVT == ValueVT) {
521 assert(NumParts == 1 && "No-op copy with multiple parts!");
522 Parts[0] = Val;
523 return;
526 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527 // If the parts cover more bits than the value has, promote the value.
528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529 assert(NumParts == 1 && "Do not know what to promote to!");
530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531 } else {
532 if (ValueVT.isFloatingPoint()) {
533 // FP values need to be bitcast, then extended if they are being put
534 // into a larger container.
535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539 ValueVT.isInteger() &&
540 "Unknown mismatch!");
541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543 if (PartVT == MVT::x86mmx)
544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
546 } else if (PartBits == ValueVT.getSizeInBits()) {
547 // Different types of the same size.
548 assert(NumParts == 1 && PartEVT != ValueVT);
549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551 // If the parts cover less bits than value has, truncate the value.
552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553 ValueVT.isInteger() &&
554 "Unknown mismatch!");
555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557 if (PartVT == MVT::x86mmx)
558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561 // The value may have changed - recompute ValueVT.
562 ValueVT = Val.getValueType();
563 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564 "Failed to tile the value with PartVT!");
566 if (NumParts == 1) {
567 if (PartEVT != ValueVT) {
568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569 "scalar-to-vector conversion failed");
570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
573 Parts[0] = Val;
574 return;
577 // Expand the value into multiple parts.
578 if (NumParts & (NumParts - 1)) {
579 // The number of parts is not a power of 2. Split off and copy the tail.
580 assert(PartVT.isInteger() && ValueVT.isInteger() &&
581 "Do not know what to expand to!");
582 unsigned RoundParts = 1 << Log2_32(NumParts);
583 unsigned RoundBits = RoundParts * PartBits;
584 unsigned OddParts = NumParts - RoundParts;
585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589 CallConv);
591 if (DAG.getDataLayout().isBigEndian())
592 // The odd parts were reversed by getCopyToParts - unreverse them.
593 std::reverse(Parts + RoundParts, Parts + NumParts);
595 NumParts = RoundParts;
596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
600 // The number of parts is a power of 2. Repeatedly bisect the value using
601 // EXTRACT_ELEMENT.
602 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603 EVT::getIntegerVT(*DAG.getContext(),
604 ValueVT.getSizeInBits()),
605 Val);
607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608 for (unsigned i = 0; i < NumParts; i += StepSize) {
609 unsigned ThisBits = StepSize * PartBits / 2;
610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611 SDValue &Part0 = Parts[i];
612 SDValue &Part1 = Parts[i+StepSize/2];
614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
619 if (ThisBits == PartBits && ThisVT != PartVT) {
620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
626 if (DAG.getDataLayout().isBigEndian())
627 std::reverse(Parts, Parts + OrigNumParts);
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631 SDValue Val, const SDLoc &DL, EVT PartVT) {
632 if (!PartVT.isVector())
633 return SDValue();
635 EVT ValueVT = Val.getValueType();
636 unsigned PartNumElts = PartVT.getVectorNumElements();
637 unsigned ValueNumElts = ValueVT.getVectorNumElements();
638 if (PartNumElts > ValueNumElts &&
639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640 EVT ElementVT = PartVT.getVectorElementType();
641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
642 // undef elements.
643 SmallVector<SDValue, 16> Ops;
644 DAG.ExtractVectorElements(Val, Ops);
645 SDValue EltUndef = DAG.getUNDEF(ElementVT);
646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647 Ops.push_back(EltUndef);
649 // FIXME: Use CONCAT for 2x -> 4x.
650 return DAG.getBuildVector(PartVT, DL, Ops);
653 return SDValue();
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659 SDValue Val, SDValue *Parts, unsigned NumParts,
660 MVT PartVT, const Value *V,
661 Optional<CallingConv::ID> CallConv) {
662 EVT ValueVT = Val.getValueType();
663 assert(ValueVT.isVector() && "Not a vector");
664 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665 const bool IsABIRegCopy = CallConv.hasValue();
667 if (NumParts == 1) {
668 EVT PartEVT = PartVT;
669 if (PartEVT == ValueVT) {
670 // Nothing to do.
671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672 // Bitconvert vector->vector case.
673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675 Val = Widened;
676 } else if (PartVT.isVector() &&
677 PartEVT.getVectorElementType().bitsGE(
678 ValueVT.getVectorElementType()) &&
679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
681 // Promoted vector extract
682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683 } else {
684 if (ValueVT.getVectorNumElements() == 1) {
685 Val = DAG.getNode(
686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688 } else {
689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690 "lossy conversion of vector to scalar type");
691 EVT IntermediateType =
692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693 Val = DAG.getBitcast(IntermediateType, Val);
694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699 Parts[0] = Val;
700 return;
703 // Handle a multi-element vector.
704 EVT IntermediateVT;
705 MVT RegisterVT;
706 unsigned NumIntermediates;
707 unsigned NumRegs;
708 if (IsABIRegCopy) {
709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711 NumIntermediates, RegisterVT);
712 } else {
713 NumRegs =
714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715 NumIntermediates, RegisterVT);
718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719 NumParts = NumRegs; // Silence a compiler warning.
720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
722 unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723 IntermediateVT.getVectorNumElements() : 1;
725 // Convert the vector to the appropiate type if necessary.
726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
728 EVT BuiltVectorTy = EVT::getVectorVT(
729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731 if (ValueVT != BuiltVectorTy) {
732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733 Val = Widened;
735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
738 // Split the vector into intermediate operands.
739 SmallVector<SDValue, 8> Ops(NumIntermediates);
740 for (unsigned i = 0; i != NumIntermediates; ++i) {
741 if (IntermediateVT.isVector()) {
742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744 } else {
745 Ops[i] = DAG.getNode(
746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747 DAG.getConstant(i, DL, IdxVT));
751 // Split the intermediate operands into legal parts.
752 if (NumParts == NumIntermediates) {
753 // If the register was not expanded, promote or copy the value,
754 // as appropriate.
755 for (unsigned i = 0; i != NumParts; ++i)
756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757 } else if (NumParts > 0) {
758 // If the intermediate type was expanded, split each the value into
759 // legal parts.
760 assert(NumIntermediates != 0 && "division by zero");
761 assert(NumParts % NumIntermediates == 0 &&
762 "Must expand into a divisible number of parts!");
763 unsigned Factor = NumParts / NumIntermediates;
764 for (unsigned i = 0; i != NumIntermediates; ++i)
765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766 CallConv);
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771 EVT valuevt, Optional<CallingConv::ID> CC)
772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773 RegCount(1, regs.size()), CallConv(CC) {}
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776 const DataLayout &DL, unsigned Reg, Type *Ty,
777 Optional<CallingConv::ID> CC) {
778 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
780 CallConv = CC;
782 for (EVT ValueVT : ValueVTs) {
783 unsigned NumRegs =
784 isABIMangled()
785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786 : TLI.getNumRegisters(Context, ValueVT);
787 MVT RegisterVT =
788 isABIMangled()
789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790 : TLI.getRegisterType(Context, ValueVT);
791 for (unsigned i = 0; i != NumRegs; ++i)
792 Regs.push_back(Reg + i);
793 RegVTs.push_back(RegisterVT);
794 RegCount.push_back(NumRegs);
795 Reg += NumRegs;
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800 FunctionLoweringInfo &FuncInfo,
801 const SDLoc &dl, SDValue &Chain,
802 SDValue *Flag, const Value *V) const {
803 // A Value with type {} or [0 x %t] needs no registers.
804 if (ValueVTs.empty())
805 return SDValue();
807 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
809 // Assemble the legal parts into the final values.
810 SmallVector<SDValue, 4> Values(ValueVTs.size());
811 SmallVector<SDValue, 8> Parts;
812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813 // Copy the legal parts from the registers.
814 EVT ValueVT = ValueVTs[Value];
815 unsigned NumRegs = RegCount[Value];
816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817 *DAG.getContext(),
818 CallConv.getValue(), RegVTs[Value])
819 : RegVTs[Value];
821 Parts.resize(NumRegs);
822 for (unsigned i = 0; i != NumRegs; ++i) {
823 SDValue P;
824 if (!Flag) {
825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826 } else {
827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828 *Flag = P.getValue(2);
831 Chain = P.getValue(1);
832 Parts[i] = P;
834 // If the source register was virtual and if we know something about it,
835 // add an assert node.
836 if (!Register::isVirtualRegister(Regs[Part + i]) ||
837 !RegisterVT.isInteger())
838 continue;
840 const FunctionLoweringInfo::LiveOutInfo *LOI =
841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842 if (!LOI)
843 continue;
845 unsigned RegSize = RegisterVT.getScalarSizeInBits();
846 unsigned NumSignBits = LOI->NumSignBits;
847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
849 if (NumZeroBits == RegSize) {
850 // The current value is a zero.
851 // Explicitly express that as it would be easier for
852 // optimizations to kick in.
853 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854 continue;
857 // FIXME: We capture more information than the dag can represent. For
858 // now, just use the tightest assertzext/assertsext possible.
859 bool isSExt;
860 EVT FromVT(MVT::Other);
861 if (NumZeroBits) {
862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863 isSExt = false;
864 } else if (NumSignBits > 1) {
865 FromVT =
866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867 isSExt = true;
868 } else {
869 continue;
871 // Add an assertion node.
872 assert(FromVT != MVT::Other);
873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874 RegisterVT, P, DAG.getValueType(FromVT));
877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878 RegisterVT, ValueVT, V, CallConv);
879 Part += NumRegs;
880 Parts.clear();
883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888 const Value *V,
889 ISD::NodeType PreferredExtendType) const {
890 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891 ISD::NodeType ExtendKind = PreferredExtendType;
893 // Get the list of the values's legal parts.
894 unsigned NumRegs = Regs.size();
895 SmallVector<SDValue, 8> Parts(NumRegs);
896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897 unsigned NumParts = RegCount[Value];
899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900 *DAG.getContext(),
901 CallConv.getValue(), RegVTs[Value])
902 : RegVTs[Value];
904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905 ExtendKind = ISD::ZERO_EXTEND;
907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908 NumParts, RegisterVT, V, CallConv, ExtendKind);
909 Part += NumParts;
912 // Copy the parts into the registers.
913 SmallVector<SDValue, 8> Chains(NumRegs);
914 for (unsigned i = 0; i != NumRegs; ++i) {
915 SDValue Part;
916 if (!Flag) {
917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918 } else {
919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920 *Flag = Part.getValue(1);
923 Chains[i] = Part.getValue(0);
926 if (NumRegs == 1 || Flag)
927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928 // flagged to it. That is the CopyToReg nodes and the user are considered
929 // a single scheduling unit. If we create a TokenFactor and return it as
930 // chain, then the TokenFactor is both a predecessor (operand) of the
931 // user as well as a successor (the TF operands are flagged to the user).
932 // c1, f1 = CopyToReg
933 // c2, f2 = CopyToReg
934 // c3 = TokenFactor c1, c2
935 // ...
936 // = op c3, ..., f2
937 Chain = Chains[NumRegs-1];
938 else
939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943 unsigned MatchingIdx, const SDLoc &dl,
944 SelectionDAG &DAG,
945 std::vector<SDValue> &Ops) const {
946 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949 if (HasMatching)
950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952 // Put the register class of the virtual registers in the flag word. That
953 // way, later passes can recompute register class constraints for inline
954 // assembly as well as normal instructions.
955 // Don't do this for tied operands that can use the regclass information
956 // from the def.
957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963 Ops.push_back(Res);
965 if (Code == InlineAsm::Kind_Clobber) {
966 // Clobbers should always have a 1:1 mapping with registers, and may
967 // reference registers that have illegal (e.g. vector) types. Hence, we
968 // shouldn't try to apply any sort of splitting logic to them.
969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970 "No 1:1 mapping from clobbers to regs?");
971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972 (void)SP;
973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975 assert(
976 (Regs[I] != SP ||
977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978 "If we clobbered the stack pointer, MFI should know about it.");
980 return;
983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985 MVT RegisterVT = RegVTs[Value];
986 for (unsigned i = 0; i != NumRegs; ++i) {
987 assert(Reg < Regs.size() && "Mismatch in # registers expected");
988 unsigned TheReg = Regs[Reg++];
989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997 unsigned I = 0;
998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999 unsigned RegCount = std::get<0>(CountAndVT);
1000 MVT RegisterVT = std::get<1>(CountAndVT);
1001 unsigned RegisterSize = RegisterVT.getSizeInBits();
1002 for (unsigned E = I + RegCount; I != E; ++I)
1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1005 return OutVec;
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009 const TargetLibraryInfo *li) {
1010 AA = aa;
1011 GFI = gfi;
1012 LibInfo = li;
1013 DL = &DAG.getDataLayout();
1014 Context = DAG.getContext();
1015 LPadToCallSiteMap.clear();
1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1019 void SelectionDAGBuilder::clear() {
1020 NodeMap.clear();
1021 UnusedArgNodeMap.clear();
1022 PendingLoads.clear();
1023 PendingExports.clear();
1024 CurInst = nullptr;
1025 HasTailCall = false;
1026 SDNodeOrder = LowestSDNodeOrder;
1027 StatepointLowering.clear();
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031 DanglingDebugInfoMap.clear();
1034 SDValue SelectionDAGBuilder::getRoot() {
1035 if (PendingLoads.empty())
1036 return DAG.getRoot();
1038 if (PendingLoads.size() == 1) {
1039 SDValue Root = PendingLoads[0];
1040 DAG.setRoot(Root);
1041 PendingLoads.clear();
1042 return Root;
1045 // Otherwise, we have to make a token factor node.
1046 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047 PendingLoads.clear();
1048 DAG.setRoot(Root);
1049 return Root;
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053 SDValue Root = DAG.getRoot();
1055 if (PendingExports.empty())
1056 return Root;
1058 // Turn all of the CopyToReg chains into one factored node.
1059 if (Root.getOpcode() != ISD::EntryToken) {
1060 unsigned i = 0, e = PendingExports.size();
1061 for (; i != e; ++i) {
1062 assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063 if (PendingExports[i].getNode()->getOperand(0) == Root)
1064 break; // Don't add the root if we already indirectly depend on it.
1067 if (i == e)
1068 PendingExports.push_back(Root);
1071 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072 PendingExports);
1073 PendingExports.clear();
1074 DAG.setRoot(Root);
1075 return Root;
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079 // Set up outgoing PHI node register values before emitting the terminator.
1080 if (I.isTerminator()) {
1081 HandlePHINodesInSuccessorBlocks(I.getParent());
1084 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085 if (!isa<DbgInfoIntrinsic>(I))
1086 ++SDNodeOrder;
1088 CurInst = &I;
1090 visit(I.getOpcode(), I);
1092 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094 // maps to this instruction.
1095 // TODO: We could handle all flags (nsw, etc) here.
1096 // TODO: If an IR instruction maps to >1 node, only the final node will have
1097 // flags set.
1098 if (SDNode *Node = getNodeForIRValue(&I)) {
1099 SDNodeFlags IncomingFlags;
1100 IncomingFlags.copyFMF(*FPMO);
1101 if (!Node->getFlags().isDefined())
1102 Node->setFlags(IncomingFlags);
1103 else
1104 Node->intersectFlagsWith(IncomingFlags);
1108 if (!I.isTerminator() && !HasTailCall &&
1109 !isStatepoint(&I)) // statepoints handle their exports internally
1110 CopyToExportRegsIfNeeded(&I);
1112 CurInst = nullptr;
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120 // Note: this doesn't use InstVisitor, because it has to work with
1121 // ConstantExpr's in addition to instructions.
1122 switch (Opcode) {
1123 default: llvm_unreachable("Unknown instruction type encountered!");
1124 // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132 const DIExpression *Expr) {
1133 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134 const DbgValueInst *DI = DDI.getDI();
1135 DIVariable *DanglingVariable = DI->getVariable();
1136 DIExpression *DanglingExpr = DI->getExpression();
1137 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139 return true;
1141 return false;
1144 for (auto &DDIMI : DanglingDebugInfoMap) {
1145 DanglingDebugInfoVector &DDIV = DDIMI.second;
1147 // If debug info is to be dropped, run it through final checks to see
1148 // whether it can be salvaged.
1149 for (auto &DDI : DDIV)
1150 if (isMatchingDbgValue(DDI))
1151 salvageUnresolvedDbgValue(DDI);
1153 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160 SDValue Val) {
1161 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163 return;
1165 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166 for (auto &DDI : DDIV) {
1167 const DbgValueInst *DI = DDI.getDI();
1168 assert(DI && "Ill-formed DanglingDebugInfo");
1169 DebugLoc dl = DDI.getdl();
1170 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172 DILocalVariable *Variable = DI->getVariable();
1173 DIExpression *Expr = DI->getExpression();
1174 assert(Variable->isValidLocationForIntrinsic(dl) &&
1175 "Expected inlined-at fields to agree");
1176 SDDbgValue *SDV;
1177 if (Val.getNode()) {
1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180 // we couldn't resolve it directly when examining the DbgValue intrinsic
1181 // in the first place we should not be more successful here). Unless we
1182 // have some test case that prove this to be correct we should avoid
1183 // calling EmitFuncArgumentDbgValue here.
1184 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189 // inserted after the definition of Val when emitting the instructions
1190 // after ISel. An alternative could be to teach
1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194 << ValSDNodeOrder << "\n");
1195 SDV = getDbgValue(Val, Variable, Expr, dl,
1196 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197 DAG.AddDbgValue(SDV, Val.getNode(), false);
1198 } else
1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200 << "in EmitFuncArgumentDbgValue\n");
1201 } else {
1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203 auto Undef =
1204 UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205 auto SDV =
1206 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207 DAG.AddDbgValue(SDV, nullptr, false);
1210 DDIV.clear();
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214 Value *V = DDI.getDI()->getValue();
1215 DILocalVariable *Var = DDI.getDI()->getVariable();
1216 DIExpression *Expr = DDI.getDI()->getExpression();
1217 DebugLoc DL = DDI.getdl();
1218 DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219 unsigned SDOrder = DDI.getSDNodeOrder();
1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222 // that DW_OP_stack_value is desired.
1223 assert(isa<DbgValueInst>(DDI.getDI()));
1224 bool StackValue = true;
1226 // Can this Value can be encoded without any further work?
1227 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228 return;
1230 // Attempt to salvage back through as many instructions as possible. Bail if
1231 // a non-instruction is seen, such as a constant expression or global
1232 // variable. FIXME: Further work could recover those too.
1233 while (isa<Instruction>(V)) {
1234 Instruction &VAsInst = *cast<Instruction>(V);
1235 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1237 // If we cannot salvage any further, and haven't yet found a suitable debug
1238 // expression, bail out.
1239 if (!NewExpr)
1240 break;
1242 // New value and expr now represent this debuginfo.
1243 V = VAsInst.getOperand(0);
1244 Expr = NewExpr;
1246 // Some kind of simplification occurred: check whether the operand of the
1247 // salvaged debug expression can be encoded in this DAG.
1248 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1250 << DDI.getDI() << "\nBy stripping back to:\n " << V);
1251 return;
1255 // This was the final opportunity to salvage this debug information, and it
1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257 // any earlier variable location.
1258 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260 DAG.AddDbgValue(SDV, nullptr, false);
1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI()
1263 << "\n");
1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0)
1265 << "\n");
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269 DIExpression *Expr, DebugLoc dl,
1270 DebugLoc InstDL, unsigned Order) {
1271 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272 SDDbgValue *SDV;
1273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274 isa<ConstantPointerNull>(V)) {
1275 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276 DAG.AddDbgValue(SDV, nullptr, false);
1277 return true;
1280 // If the Value is a frame index, we can create a FrameIndex debug value
1281 // without relying on the DAG at all.
1282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284 if (SI != FuncInfo.StaticAllocaMap.end()) {
1285 auto SDV =
1286 DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287 /*IsIndirect*/ false, dl, SDNodeOrder);
1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289 // is still available even if the SDNode gets optimized out.
1290 DAG.AddDbgValue(SDV, nullptr, false);
1291 return true;
1295 // Do not use getValue() in here; we don't want to generate code at
1296 // this point if it hasn't been done yet.
1297 SDValue N = NodeMap[V];
1298 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299 N = UnusedArgNodeMap[V];
1300 if (N.getNode()) {
1301 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302 return true;
1303 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304 DAG.AddDbgValue(SDV, N.getNode(), false);
1305 return true;
1308 // Special rules apply for the first dbg.values of parameter variables in a
1309 // function. Identify them by the fact they reference Argument Values, that
1310 // they're parameters, and they are parameters of the current function. We
1311 // need to let them dangle until they get an SDNode.
1312 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313 !InstDL.getInlinedAt();
1314 if (!IsParamOfFunc) {
1315 // The value is not used in this block yet (or it would have an SDNode).
1316 // We still want the value to appear for the user if possible -- if it has
1317 // an associated VReg, we can refer to that instead.
1318 auto VMI = FuncInfo.ValueMap.find(V);
1319 if (VMI != FuncInfo.ValueMap.end()) {
1320 unsigned Reg = VMI->second;
1321 // If this is a PHI node, it may be split up into several MI PHI nodes
1322 // (in FunctionLoweringInfo::set).
1323 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324 V->getType(), None);
1325 if (RFV.occupiesMultipleRegs()) {
1326 unsigned Offset = 0;
1327 unsigned BitsToDescribe = 0;
1328 if (auto VarSize = Var->getSizeInBits())
1329 BitsToDescribe = *VarSize;
1330 if (auto Fragment = Expr->getFragmentInfo())
1331 BitsToDescribe = Fragment->SizeInBits;
1332 for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333 unsigned RegisterSize = RegAndSize.second;
1334 // Bail out if all bits are described already.
1335 if (Offset >= BitsToDescribe)
1336 break;
1337 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338 ? BitsToDescribe - Offset
1339 : RegisterSize;
1340 auto FragmentExpr = DIExpression::createFragmentExpression(
1341 Expr, Offset, FragmentSize);
1342 if (!FragmentExpr)
1343 continue;
1344 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345 false, dl, SDNodeOrder);
1346 DAG.AddDbgValue(SDV, nullptr, false);
1347 Offset += RegisterSize;
1349 } else {
1350 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351 DAG.AddDbgValue(SDV, nullptr, false);
1353 return true;
1357 return false;
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362 for (auto &Pair : DanglingDebugInfoMap)
1363 for (auto &DDI : Pair.second)
1364 salvageUnresolvedDbgValue(DDI);
1365 clearDanglingDebugInfo();
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372 SDValue Result;
1374 if (It != FuncInfo.ValueMap.end()) {
1375 unsigned InReg = It->second;
1377 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378 DAG.getDataLayout(), InReg, Ty,
1379 None); // This is not an ABI copy.
1380 SDValue Chain = DAG.getEntryNode();
1381 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1383 resolveDanglingDebugInfo(V, Result);
1386 return Result;
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391 // If we already have an SDValue for this value, use it. It's important
1392 // to do this first, so that we don't create a CopyFromReg if we already
1393 // have a regular SDValue.
1394 SDValue &N = NodeMap[V];
1395 if (N.getNode()) return N;
1397 // If there's a virtual register allocated and initialized for this
1398 // value, use it.
1399 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400 return copyFromReg;
1402 // Otherwise create a new SDValue and remember it.
1403 SDValue Val = getValueImpl(V);
1404 NodeMap[V] = Val;
1405 resolveDanglingDebugInfo(V, Val);
1406 return Val;
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411 return (NodeMap.find(V) != NodeMap.end()) ||
1412 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418 // If we already have an SDValue for this value, use it.
1419 SDValue &N = NodeMap[V];
1420 if (N.getNode()) {
1421 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422 // Remove the debug location from the node as the node is about to be used
1423 // in a location which may differ from the original debug location. This
1424 // is relevant to Constant and ConstantFP nodes because they can appear
1425 // as constant expressions inside PHI nodes.
1426 N->setDebugLoc(DebugLoc());
1428 return N;
1431 // Otherwise create a new SDValue and remember it.
1432 SDValue Val = getValueImpl(V);
1433 NodeMap[V] = Val;
1434 resolveDanglingDebugInfo(V, Val);
1435 return Val;
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1443 if (const Constant *C = dyn_cast<Constant>(V)) {
1444 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1446 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1449 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1452 if (isa<ConstantPointerNull>(C)) {
1453 unsigned AS = V->getType()->getPointerAddressSpace();
1454 return DAG.getConstant(0, getCurSDLoc(),
1455 TLI.getPointerTy(DAG.getDataLayout(), AS));
1458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1461 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462 return DAG.getUNDEF(VT);
1464 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465 visit(CE->getOpcode(), *CE);
1466 SDValue N1 = NodeMap[V];
1467 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468 return N1;
1471 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472 SmallVector<SDValue, 4> Constants;
1473 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474 OI != OE; ++OI) {
1475 SDNode *Val = getValue(*OI).getNode();
1476 // If the operand is an empty aggregate, there are no values.
1477 if (!Val) continue;
1478 // Add each leaf value from the operand to the Constants list
1479 // to form a flattened list of all the values.
1480 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481 Constants.push_back(SDValue(Val, i));
1484 return DAG.getMergeValues(Constants, getCurSDLoc());
1487 if (const ConstantDataSequential *CDS =
1488 dyn_cast<ConstantDataSequential>(C)) {
1489 SmallVector<SDValue, 4> Ops;
1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492 // Add each leaf value from the operand to the Constants list
1493 // to form a flattened list of all the values.
1494 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495 Ops.push_back(SDValue(Val, i));
1498 if (isa<ArrayType>(CDS->getType()))
1499 return DAG.getMergeValues(Ops, getCurSDLoc());
1500 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1503 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505 "Unknown struct or array constant!");
1507 SmallVector<EVT, 4> ValueVTs;
1508 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509 unsigned NumElts = ValueVTs.size();
1510 if (NumElts == 0)
1511 return SDValue(); // empty struct
1512 SmallVector<SDValue, 4> Constants(NumElts);
1513 for (unsigned i = 0; i != NumElts; ++i) {
1514 EVT EltVT = ValueVTs[i];
1515 if (isa<UndefValue>(C))
1516 Constants[i] = DAG.getUNDEF(EltVT);
1517 else if (EltVT.isFloatingPoint())
1518 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519 else
1520 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1523 return DAG.getMergeValues(Constants, getCurSDLoc());
1526 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527 return DAG.getBlockAddress(BA, VT);
1529 VectorType *VecTy = cast<VectorType>(V->getType());
1530 unsigned NumElements = VecTy->getNumElements();
1532 // Now that we know the number and type of the elements, get that number of
1533 // elements into the Ops array based on what kind of constant it is.
1534 SmallVector<SDValue, 16> Ops;
1535 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536 for (unsigned i = 0; i != NumElements; ++i)
1537 Ops.push_back(getValue(CV->getOperand(i)));
1538 } else {
1539 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540 EVT EltVT =
1541 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1543 SDValue Op;
1544 if (EltVT.isFloatingPoint())
1545 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546 else
1547 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548 Ops.assign(NumElements, Op);
1551 // Create a BUILD_VECTOR node.
1552 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1555 // If this is a static alloca, generate it as the frameindex instead of
1556 // computation.
1557 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558 DenseMap<const AllocaInst*, int>::iterator SI =
1559 FuncInfo.StaticAllocaMap.find(AI);
1560 if (SI != FuncInfo.StaticAllocaMap.end())
1561 return DAG.getFrameIndex(SI->second,
1562 TLI.getFrameIndexTy(DAG.getDataLayout()));
1565 // If this is an instruction which fast-isel has deferred, select it now.
1566 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1569 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570 Inst->getType(), getABIRegCopyCC(V));
1571 SDValue Chain = DAG.getEntryNode();
1572 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1575 llvm_unreachable("Can't get register for value!");
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582 bool IsSEH = isAsynchronousEHPersonality(Pers);
1583 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585 if (!IsSEH)
1586 CatchPadMBB->setIsEHScopeEntry();
1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588 if (IsMSVCCXX || IsCoreCLR)
1589 CatchPadMBB->setIsEHFuncletEntry();
1590 // Wasm does not need catchpads anymore
1591 if (!IsWasmCXX)
1592 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593 getControlRoot()));
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597 // Update machine-CFG edge.
1598 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599 FuncInfo.MBB->addSuccessor(TargetMBB);
1601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602 bool IsSEH = isAsynchronousEHPersonality(Pers);
1603 if (IsSEH) {
1604 // If this is not a fall-through branch or optimizations are switched off,
1605 // emit the branch.
1606 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607 TM.getOptLevel() == CodeGenOpt::None)
1608 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610 return;
1613 // Figure out the funclet membership for the catchret's successor.
1614 // This will be used by the FuncletLayout pass to determine how to order the
1615 // BB's.
1616 // A 'catchret' returns to the outer scope's color.
1617 Value *ParentPad = I.getCatchSwitchParentPad();
1618 const BasicBlock *SuccessorColor;
1619 if (isa<ConstantTokenNone>(ParentPad))
1620 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621 else
1622 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623 assert(SuccessorColor && "No parent funclet for catchret!");
1624 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1627 // Create the terminator node.
1628 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630 DAG.getBasicBlock(SuccessorColorMBB));
1631 DAG.setRoot(Ret);
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635 // Don't emit any special code for the cleanuppad instruction. It just marks
1636 // the start of an EH scope/funclet.
1637 FuncInfo.MBB->setIsEHScopeEntry();
1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639 if (Pers != EHPersonality::Wasm_CXX) {
1640 FuncInfo.MBB->setIsEHFuncletEntry();
1641 FuncInfo.MBB->setIsCleanupFuncletEntry();
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651 BranchProbability Prob,
1652 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653 &UnwindDests) {
1654 while (EHPadBB) {
1655 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656 if (isa<CleanupPadInst>(Pad)) {
1657 // Stop on cleanup pads.
1658 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659 UnwindDests.back().first->setIsEHScopeEntry();
1660 break;
1661 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662 // Add the catchpad handlers to the possible destinations. We don't
1663 // continue to the unwind destination of the catchswitch for wasm.
1664 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666 UnwindDests.back().first->setIsEHScopeEntry();
1668 break;
1669 } else {
1670 continue;
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685 BranchProbability Prob,
1686 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687 &UnwindDests) {
1688 EHPersonality Personality =
1689 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693 bool IsSEH = isAsynchronousEHPersonality(Personality);
1695 if (IsWasmCXX) {
1696 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697 assert(UnwindDests.size() <= 1 &&
1698 "There should be at most one unwind destination for wasm");
1699 return;
1702 while (EHPadBB) {
1703 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704 BasicBlock *NewEHPadBB = nullptr;
1705 if (isa<LandingPadInst>(Pad)) {
1706 // Stop on landingpads. They are not funclets.
1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708 break;
1709 } else if (isa<CleanupPadInst>(Pad)) {
1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711 // personalities.
1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713 UnwindDests.back().first->setIsEHScopeEntry();
1714 UnwindDests.back().first->setIsEHFuncletEntry();
1715 break;
1716 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717 // Add the catchpad handlers to the possible destinations.
1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721 if (IsMSVCCXX || IsCoreCLR)
1722 UnwindDests.back().first->setIsEHFuncletEntry();
1723 if (!IsSEH)
1724 UnwindDests.back().first->setIsEHScopeEntry();
1726 NewEHPadBB = CatchSwitch->getUnwindDest();
1727 } else {
1728 continue;
1731 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732 if (BPI && NewEHPadBB)
1733 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734 EHPadBB = NewEHPadBB;
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739 // Update successor info.
1740 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741 auto UnwindDest = I.getUnwindDest();
1742 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743 BranchProbability UnwindDestProb =
1744 (BPI && UnwindDest)
1745 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746 : BranchProbability::getZero();
1747 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748 for (auto &UnwindDest : UnwindDests) {
1749 UnwindDest.first->setIsEHPad();
1750 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1752 FuncInfo.MBB->normalizeSuccProbs();
1754 // Create the terminator node.
1755 SDValue Ret =
1756 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757 DAG.setRoot(Ret);
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761 report_fatal_error("visitCatchSwitch not yet implemented!");
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766 auto &DL = DAG.getDataLayout();
1767 SDValue Chain = getControlRoot();
1768 SmallVector<ISD::OutputArg, 8> Outs;
1769 SmallVector<SDValue, 8> OutVals;
1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772 // lower
1774 // %val = call <ty> @llvm.experimental.deoptimize()
1775 // ret <ty> %val
1777 // differently.
1778 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779 LowerDeoptimizingReturn();
1780 return;
1783 if (!FuncInfo.CanLowerReturn) {
1784 unsigned DemoteReg = FuncInfo.DemoteRegister;
1785 const Function *F = I.getParent()->getParent();
1787 // Emit a store of the return value through the virtual register.
1788 // Leave Outs empty so that LowerReturn won't try to load return
1789 // registers the usual way.
1790 SmallVector<EVT, 1> PtrValueVTs;
1791 ComputeValueVTs(TLI, DL,
1792 F->getReturnType()->getPointerTo(
1793 DAG.getDataLayout().getAllocaAddrSpace()),
1794 PtrValueVTs);
1796 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797 DemoteReg, PtrValueVTs[0]);
1798 SDValue RetOp = getValue(I.getOperand(0));
1800 SmallVector<EVT, 4> ValueVTs, MemVTs;
1801 SmallVector<uint64_t, 4> Offsets;
1802 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803 &Offsets);
1804 unsigned NumValues = ValueVTs.size();
1806 SmallVector<SDValue, 4> Chains(NumValues);
1807 for (unsigned i = 0; i != NumValues; ++i) {
1808 // An aggregate return value cannot wrap around the address space, so
1809 // offsets to its parts don't wrap either.
1810 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1812 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1813 if (MemVTs[i] != ValueVTs[i])
1814 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816 // FIXME: better loc info would be nice.
1817 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1820 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821 MVT::Other, Chains);
1822 } else if (I.getNumOperands() != 0) {
1823 SmallVector<EVT, 4> ValueVTs;
1824 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825 unsigned NumValues = ValueVTs.size();
1826 if (NumValues) {
1827 SDValue RetOp = getValue(I.getOperand(0));
1829 const Function *F = I.getParent()->getParent();
1831 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832 I.getOperand(0)->getType(), F->getCallingConv(),
1833 /*IsVarArg*/ false);
1835 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837 Attribute::SExt))
1838 ExtendKind = ISD::SIGN_EXTEND;
1839 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840 Attribute::ZExt))
1841 ExtendKind = ISD::ZERO_EXTEND;
1843 LLVMContext &Context = F->getContext();
1844 bool RetInReg = F->getAttributes().hasAttribute(
1845 AttributeList::ReturnIndex, Attribute::InReg);
1847 for (unsigned j = 0; j != NumValues; ++j) {
1848 EVT VT = ValueVTs[j];
1850 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1853 CallingConv::ID CC = F->getCallingConv();
1855 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857 SmallVector<SDValue, 4> Parts(NumParts);
1858 getCopyToParts(DAG, getCurSDLoc(),
1859 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1862 // 'inreg' on function refers to return value
1863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864 if (RetInReg)
1865 Flags.setInReg();
1867 if (I.getOperand(0)->getType()->isPointerTy()) {
1868 Flags.setPointer();
1869 Flags.setPointerAddrSpace(
1870 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1873 if (NeedsRegBlock) {
1874 Flags.setInConsecutiveRegs();
1875 if (j == NumValues - 1)
1876 Flags.setInConsecutiveRegsLast();
1879 // Propagate extension type if any
1880 if (ExtendKind == ISD::SIGN_EXTEND)
1881 Flags.setSExt();
1882 else if (ExtendKind == ISD::ZERO_EXTEND)
1883 Flags.setZExt();
1885 for (unsigned i = 0; i < NumParts; ++i) {
1886 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887 VT, /*isfixed=*/true, 0, 0));
1888 OutVals.push_back(Parts[i]);
1894 // Push in swifterror virtual register as the last element of Outs. This makes
1895 // sure swifterror virtual register will be returned in the swifterror
1896 // physical register.
1897 const Function *F = I.getParent()->getParent();
1898 if (TLI.supportSwiftError() &&
1899 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902 Flags.setSwiftError();
1903 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905 true /*isfixed*/, 1 /*origidx*/,
1906 0 /*partOffs*/));
1907 // Create SDNode for the swifterror virtual register.
1908 OutVals.push_back(
1909 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911 EVT(TLI.getPointerTy(DL))));
1914 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915 CallingConv::ID CallConv =
1916 DAG.getMachineFunction().getFunction().getCallingConv();
1917 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1920 // Verify that the target's LowerReturn behaved as expected.
1921 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922 "LowerReturn didn't return a valid chain!");
1924 // Update the DAG with the new chain value resulting from return lowering.
1925 DAG.setRoot(Chain);
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932 // Skip empty types
1933 if (V->getType()->isEmptyTy())
1934 return;
1936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937 if (VMI != FuncInfo.ValueMap.end()) {
1938 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939 CopyValueToVirtualRegister(V, VMI->second);
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947 // No need to export constants.
1948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1950 // Already exported?
1951 if (FuncInfo.isExportedInst(V)) return;
1953 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954 CopyValueToVirtualRegister(V, Reg);
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958 const BasicBlock *FromBB) {
1959 // The operands of the setcc have to be in this block. We don't know
1960 // how to export them from some other block.
1961 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962 // Can export from current BB.
1963 if (VI->getParent() == FromBB)
1964 return true;
1966 // Is already exported, noop.
1967 return FuncInfo.isExportedInst(V);
1970 // If this is an argument, we can export it if the BB is the entry block or
1971 // if it is already exported.
1972 if (isa<Argument>(V)) {
1973 if (FromBB == &FromBB->getParent()->getEntryBlock())
1974 return true;
1976 // Otherwise, can only export this if it is already exported.
1977 return FuncInfo.isExportedInst(V);
1980 // Otherwise, constants can always be exported.
1981 return true;
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987 const MachineBasicBlock *Dst) const {
1988 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989 const BasicBlock *SrcBB = Src->getBasicBlock();
1990 const BasicBlock *DstBB = Dst->getBasicBlock();
1991 if (!BPI) {
1992 // If BPI is not available, set the default probability as 1 / N, where N is
1993 // the number of successors.
1994 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995 return BranchProbability(1, SuccSize);
1997 return BPI->getEdgeProbability(SrcBB, DstBB);
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001 MachineBasicBlock *Dst,
2002 BranchProbability Prob) {
2003 if (!FuncInfo.BPI)
2004 Src->addSuccessorWithoutProb(Dst);
2005 else {
2006 if (Prob.isUnknown())
2007 Prob = getEdgeProbability(Src, Dst);
2008 Src->addSuccessor(Dst, Prob);
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013 if (const Instruction *I = dyn_cast<Instruction>(V))
2014 return I->getParent() == BB;
2015 return true;
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023 MachineBasicBlock *TBB,
2024 MachineBasicBlock *FBB,
2025 MachineBasicBlock *CurBB,
2026 MachineBasicBlock *SwitchBB,
2027 BranchProbability TProb,
2028 BranchProbability FProb,
2029 bool InvertCond) {
2030 const BasicBlock *BB = CurBB->getBasicBlock();
2032 // If the leaf of the tree is a comparison, merge the condition into
2033 // the caseblock.
2034 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035 // The operands of the cmp have to be in this block. We don't know
2036 // how to export them from some other block. If this is the first block
2037 // of the sequence, no exporting is needed.
2038 if (CurBB == SwitchBB ||
2039 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041 ISD::CondCode Condition;
2042 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043 ICmpInst::Predicate Pred =
2044 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045 Condition = getICmpCondCode(Pred);
2046 } else {
2047 const FCmpInst *FC = cast<FCmpInst>(Cond);
2048 FCmpInst::Predicate Pred =
2049 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050 Condition = getFCmpCondCode(Pred);
2051 if (TM.Options.NoNaNsFPMath)
2052 Condition = getFCmpCodeWithoutNaN(Condition);
2055 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057 SL->SwitchCases.push_back(CB);
2058 return;
2062 // Create a CaseBlock record representing this branch.
2063 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066 SL->SwitchCases.push_back(CB);
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070 MachineBasicBlock *TBB,
2071 MachineBasicBlock *FBB,
2072 MachineBasicBlock *CurBB,
2073 MachineBasicBlock *SwitchBB,
2074 Instruction::BinaryOps Opc,
2075 BranchProbability TProb,
2076 BranchProbability FProb,
2077 bool InvertCond) {
2078 // Skip over not part of the tree and remember to invert op and operands at
2079 // next level.
2080 Value *NotCond;
2081 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082 InBlock(NotCond, CurBB->getBasicBlock())) {
2083 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084 !InvertCond);
2085 return;
2088 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089 // Compute the effective opcode for Cond, taking into account whether it needs
2090 // to be inverted, e.g.
2091 // and (not (or A, B)), C
2092 // gets lowered as
2093 // and (and (not A, not B), C)
2094 unsigned BOpc = 0;
2095 if (BOp) {
2096 BOpc = BOp->getOpcode();
2097 if (InvertCond) {
2098 if (BOpc == Instruction::And)
2099 BOpc = Instruction::Or;
2100 else if (BOpc == Instruction::Or)
2101 BOpc = Instruction::And;
2105 // If this node is not part of the or/and tree, emit it as a branch.
2106 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108 BOp->getParent() != CurBB->getBasicBlock() ||
2109 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112 TProb, FProb, InvertCond);
2113 return;
2116 // Create TmpBB after CurBB.
2117 MachineFunction::iterator BBI(CurBB);
2118 MachineFunction &MF = DAG.getMachineFunction();
2119 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120 CurBB->getParent()->insert(++BBI, TmpBB);
2122 if (Opc == Instruction::Or) {
2123 // Codegen X | Y as:
2124 // BB1:
2125 // jmp_if_X TBB
2126 // jmp TmpBB
2127 // TmpBB:
2128 // jmp_if_Y TBB
2129 // jmp FBB
2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133 // The requirement is that
2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135 // = TrueProb for original BB.
2136 // Assuming the original probabilities are A and B, one choice is to set
2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138 // A/(1+B) and 2B/(1+B). This choice assumes that
2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141 // TmpBB, but the math is more complicated.
2143 auto NewTrueProb = TProb / 2;
2144 auto NewFalseProb = TProb / 2 + FProb;
2145 // Emit the LHS condition.
2146 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147 NewTrueProb, NewFalseProb, InvertCond);
2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152 // Emit the RHS condition into TmpBB.
2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154 Probs[0], Probs[1], InvertCond);
2155 } else {
2156 assert(Opc == Instruction::And && "Unknown merge op!");
2157 // Codegen X & Y as:
2158 // BB1:
2159 // jmp_if_X TmpBB
2160 // jmp FBB
2161 // TmpBB:
2162 // jmp_if_Y TBB
2163 // jmp FBB
2165 // This requires creation of TmpBB after CurBB.
2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168 // The requirement is that
2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170 // = FalseProb for original BB.
2171 // Assuming the original probabilities are A and B, one choice is to set
2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174 // TrueProb for BB1 * FalseProb for TmpBB.
2176 auto NewTrueProb = TProb + FProb / 2;
2177 auto NewFalseProb = FProb / 2;
2178 // Emit the LHS condition.
2179 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180 NewTrueProb, NewFalseProb, InvertCond);
2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185 // Emit the RHS condition into TmpBB.
2186 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187 Probs[0], Probs[1], InvertCond);
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196 if (Cases.size() != 2) return true;
2198 // If this is two comparisons of the same values or'd or and'd together, they
2199 // will get folded into a single comparison, so don't emit two blocks.
2200 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204 return false;
2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210 Cases[0].CC == Cases[1].CC &&
2211 isa<Constant>(Cases[0].CmpRHS) &&
2212 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214 return false;
2215 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216 return false;
2219 return true;
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2225 // Update machine-CFG edges.
2226 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2228 if (I.isUnconditional()) {
2229 // Update machine-CFG edges.
2230 BrMBB->addSuccessor(Succ0MBB);
2232 // If this is not a fall-through branch or optimizations are switched off,
2233 // emit the branch.
2234 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236 MVT::Other, getControlRoot(),
2237 DAG.getBasicBlock(Succ0MBB)));
2239 return;
2242 // If this condition is one of the special cases we handle, do special stuff
2243 // now.
2244 const Value *CondVal = I.getCondition();
2245 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2247 // If this is a series of conditions that are or'd or and'd together, emit
2248 // this as a sequence of branches instead of setcc's with and/or operations.
2249 // As long as jumps are not expensive, this should improve performance.
2250 // For example, instead of something like:
2251 // cmp A, B
2252 // C = seteq
2253 // cmp D, E
2254 // F = setle
2255 // or C, F
2256 // jnz foo
2257 // Emit:
2258 // cmp A, B
2259 // je foo
2260 // cmp D, E
2261 // jle foo
2262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263 Instruction::BinaryOps Opcode = BOp->getOpcode();
2264 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265 !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2266 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268 Opcode,
2269 getEdgeProbability(BrMBB, Succ0MBB),
2270 getEdgeProbability(BrMBB, Succ1MBB),
2271 /*InvertCond=*/false);
2272 // If the compares in later blocks need to use values not currently
2273 // exported from this block, export them now. This block should always
2274 // be the first entry.
2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2277 // Allow some cases to be rejected.
2278 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2284 // Emit the branch for this block.
2285 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286 SL->SwitchCases.erase(SL->SwitchCases.begin());
2287 return;
2290 // Okay, we decided not to do this, remove any inserted MBB's and clear
2291 // SwitchCases.
2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2295 SL->SwitchCases.clear();
2299 // Create a CaseBlock record representing this branch.
2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2303 // Use visitSwitchCase to actually insert the fast branch sequence for this
2304 // cond branch.
2305 visitSwitchCase(CB, BrMBB);
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311 MachineBasicBlock *SwitchBB) {
2312 SDValue Cond;
2313 SDValue CondLHS = getValue(CB.CmpLHS);
2314 SDLoc dl = CB.DL;
2316 if (CB.CC == ISD::SETTRUE) {
2317 // Branch or fall through to TrueBB.
2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319 SwitchBB->normalizeSuccProbs();
2320 if (CB.TrueBB != NextBlock(SwitchBB)) {
2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322 DAG.getBasicBlock(CB.TrueBB)));
2324 return;
2327 auto &TLI = DAG.getTargetLoweringInfo();
2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2330 // Build the setcc now.
2331 if (!CB.CmpMHS) {
2332 // Fold "(X == true)" to X and "(X == false)" to !X to
2333 // handle common cases produced by branch lowering.
2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335 CB.CC == ISD::SETEQ)
2336 Cond = CondLHS;
2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338 CB.CC == ISD::SETEQ) {
2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341 } else {
2342 SDValue CondRHS = getValue(CB.CmpRHS);
2344 // If a pointer's DAG type is larger than its memory type then the DAG
2345 // values are zero-extended. This breaks signed comparisons so truncate
2346 // back to the underlying type before doing the compare.
2347 if (CondLHS.getValueType() != MemVT) {
2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2353 } else {
2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2359 SDValue CmpOp = getValue(CB.CmpMHS);
2360 EVT VT = CmpOp.getValueType();
2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364 ISD::SETLE);
2365 } else {
2366 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2373 // Update successor info
2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375 // TrueBB and FalseBB are always different unless the incoming IR is
2376 // degenerate. This only happens when running llc on weird IR.
2377 if (CB.TrueBB != CB.FalseBB)
2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379 SwitchBB->normalizeSuccProbs();
2381 // If the lhs block is the next block, invert the condition so that we can
2382 // fall through to the lhs instead of the rhs block.
2383 if (CB.TrueBB == NextBlock(SwitchBB)) {
2384 std::swap(CB.TrueBB, CB.FalseBB);
2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390 MVT::Other, getControlRoot(), Cond,
2391 DAG.getBasicBlock(CB.TrueBB));
2393 // Insert the false branch. Do this even if it's a fall through branch,
2394 // this makes it easier to do DAG optimizations which require inverting
2395 // the branch condition.
2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397 DAG.getBasicBlock(CB.FalseBB));
2399 DAG.setRoot(BrCond);
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404 // Emit the code for the jump table
2405 assert(JT.Reg != -1U && "Should lower JT Header first!");
2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408 JT.Reg, PTy);
2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411 MVT::Other, Index.getValue(1),
2412 Table, Index);
2413 DAG.setRoot(BrJumpTable);
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419 JumpTableHeader &JTH,
2420 MachineBasicBlock *SwitchBB) {
2421 SDLoc dl = getCurSDLoc();
2423 // Subtract the lowest switch case value from the value being switched on.
2424 SDValue SwitchOp = getValue(JTH.SValue);
2425 EVT VT = SwitchOp.getValueType();
2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427 DAG.getConstant(JTH.First, dl, VT));
2429 // The SDNode we just created, which holds the value being switched on minus
2430 // the smallest case value, needs to be copied to a virtual register so it
2431 // can be used as an index into the jump table in a subsequent basic block.
2432 // This value may be smaller or larger than the target's pointer type, and
2433 // therefore require extension or truncating.
2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2437 unsigned JumpTableReg =
2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440 JumpTableReg, SwitchOp);
2441 JT.Reg = JumpTableReg;
2443 if (!JTH.OmitRangeCheck) {
2444 // Emit the range check for the jump table, and branch to the default block
2445 // for the switch statement if the value being switched on exceeds the
2446 // largest case in the switch.
2447 SDValue CMP = DAG.getSetCC(
2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449 Sub.getValueType()),
2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453 MVT::Other, CopyTo, CMP,
2454 DAG.getBasicBlock(JT.Default));
2456 // Avoid emitting unnecessary branches to the next block.
2457 if (JT.MBB != NextBlock(SwitchBB))
2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459 DAG.getBasicBlock(JT.MBB));
2461 DAG.setRoot(BrCond);
2462 } else {
2463 // Avoid emitting unnecessary branches to the next block.
2464 if (JT.MBB != NextBlock(SwitchBB))
2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466 DAG.getBasicBlock(JT.MBB)));
2467 else
2468 DAG.setRoot(CopyTo);
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475 SDValue &Chain) {
2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479 MachineFunction &MF = DAG.getMachineFunction();
2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481 MachineSDNode *Node =
2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483 if (Global) {
2484 MachinePointerInfo MPInfo(Global);
2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486 MachineMemOperand::MODereferenceable;
2487 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489 DAG.setNodeMemRefs(Node, {MemRef});
2491 if (PtrTy != PtrMemTy)
2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493 return SDValue(Node, 0);
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503 MachineBasicBlock *ParentBB) {
2505 // First create the loads to the guard/stack slot for the comparison.
2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511 int FI = MFI.getStackProtectorIndex();
2513 SDValue Guard;
2514 SDLoc dl = getCurSDLoc();
2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2519 // Generate code to load the content of the guard slot.
2520 SDValue GuardVal = DAG.getLoad(
2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523 MachineMemOperand::MOVolatile);
2525 if (TLI.useStackGuardXorFP())
2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2528 // Retrieve guard check function, nullptr if instrumentation is inlined.
2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530 // The target provides a guard check function to validate the guard value.
2531 // Generate a call to that function with the content of the guard slot as
2532 // argument.
2533 FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2536 TargetLowering::ArgListTy Args;
2537 TargetLowering::ArgListEntry Entry;
2538 Entry.Node = GuardVal;
2539 Entry.Ty = FnTy->getParamType(0);
2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541 Entry.IsInReg = true;
2542 Args.push_back(Entry);
2544 TargetLowering::CallLoweringInfo CLI(DAG);
2545 CLI.setDebugLoc(getCurSDLoc())
2546 .setChain(DAG.getEntryNode())
2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548 getValue(GuardCheckFn), std::move(Args));
2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551 DAG.setRoot(Result.second);
2552 return;
2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556 // Otherwise, emit a volatile load to retrieve the stack guard value.
2557 SDValue Chain = DAG.getEntryNode();
2558 if (TLI.useLoadStackGuardNode()) {
2559 Guard = getLoadStackGuard(DAG, dl, Chain);
2560 } else {
2561 const Value *IRGuard = TLI.getSDagStackGuard(M);
2562 SDValue GuardPtr = getValue(IRGuard);
2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565 MachinePointerInfo(IRGuard, 0), Align,
2566 MachineMemOperand::MOVolatile);
2569 // Perform the comparison via a subtract/getsetcc.
2570 EVT VT = Guard.getValueType();
2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2573 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574 *DAG.getContext(),
2575 Sub.getValueType()),
2576 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579 // branch to failure MBB.
2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581 MVT::Other, GuardVal.getOperand(0),
2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583 // Otherwise branch to success MBB.
2584 SDValue Br = DAG.getNode(ISD::BR, dl,
2585 MVT::Other, BrCond,
2586 DAG.getBasicBlock(SPD.getSuccessMBB()));
2588 DAG.setRoot(Br);
2591 /// Codegen the failure basic block for a stack protector check.
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602 TargetLowering::MakeLibCallOptions CallOptions;
2603 CallOptions.setDiscardResult(true);
2604 SDValue Chain =
2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2606 None, CallOptions, getCurSDLoc()).second;
2607 // On PS4, the "return address" must still be within the calling function,
2608 // even if it's at the very end, so emit an explicit TRAP here.
2609 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2610 if (TM.getTargetTriple().isPS4CPU())
2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2613 DAG.setRoot(Chain);
2616 /// visitBitTestHeader - This function emits necessary code to produce value
2617 /// suitable for "bit tests"
2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2619 MachineBasicBlock *SwitchBB) {
2620 SDLoc dl = getCurSDLoc();
2622 // Subtract the minimum value
2623 SDValue SwitchOp = getValue(B.SValue);
2624 EVT VT = SwitchOp.getValueType();
2625 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2626 DAG.getConstant(B.First, dl, VT));
2628 // Check range
2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2630 SDValue RangeCmp = DAG.getSetCC(
2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2632 Sub.getValueType()),
2633 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2635 // Determine the type of the test operands.
2636 bool UsePtrType = false;
2637 if (!TLI.isTypeLegal(VT))
2638 UsePtrType = true;
2639 else {
2640 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2641 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2642 // Switch table case range are encoded into series of masks.
2643 // Just use pointer type, it's guaranteed to fit.
2644 UsePtrType = true;
2645 break;
2648 if (UsePtrType) {
2649 VT = TLI.getPointerTy(DAG.getDataLayout());
2650 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2653 B.RegVT = VT.getSimpleVT();
2654 B.Reg = FuncInfo.CreateReg(B.RegVT);
2655 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2657 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2661 SwitchBB->normalizeSuccProbs();
2663 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2664 MVT::Other, CopyTo, RangeCmp,
2665 DAG.getBasicBlock(B.Default));
2667 // Avoid emitting unnecessary branches to the next block.
2668 if (MBB != NextBlock(SwitchBB))
2669 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2670 DAG.getBasicBlock(MBB));
2672 DAG.setRoot(BrRange);
2675 /// visitBitTestCase - this function produces one "bit test"
2676 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2677 MachineBasicBlock* NextMBB,
2678 BranchProbability BranchProbToNext,
2679 unsigned Reg,
2680 BitTestCase &B,
2681 MachineBasicBlock *SwitchBB) {
2682 SDLoc dl = getCurSDLoc();
2683 MVT VT = BB.RegVT;
2684 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2685 SDValue Cmp;
2686 unsigned PopCount = countPopulation(B.Mask);
2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2688 if (PopCount == 1) {
2689 // Testing for a single bit; just compare the shift count with what it
2690 // would need to be to shift a 1 bit in that position.
2691 Cmp = DAG.getSetCC(
2692 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2693 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2694 ISD::SETEQ);
2695 } else if (PopCount == BB.Range) {
2696 // There is only one zero bit in the range, test for it directly.
2697 Cmp = DAG.getSetCC(
2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2699 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2700 ISD::SETNE);
2701 } else {
2702 // Make desired shift
2703 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2704 DAG.getConstant(1, dl, VT), ShiftOp);
2706 // Emit bit tests and jumps
2707 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2708 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2709 Cmp = DAG.getSetCC(
2710 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2711 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2714 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2715 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2716 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2717 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2718 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2719 // one as they are relative probabilities (and thus work more like weights),
2720 // and hence we need to normalize them to let the sum of them become one.
2721 SwitchBB->normalizeSuccProbs();
2723 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2724 MVT::Other, getControlRoot(),
2725 Cmp, DAG.getBasicBlock(B.TargetBB));
2727 // Avoid emitting unnecessary branches to the next block.
2728 if (NextMBB != NextBlock(SwitchBB))
2729 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2730 DAG.getBasicBlock(NextMBB));
2732 DAG.setRoot(BrAnd);
2735 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2736 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2738 // Retrieve successors. Look through artificial IR level blocks like
2739 // catchswitch for successors.
2740 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2741 const BasicBlock *EHPadBB = I.getSuccessor(1);
2743 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2744 // have to do anything here to lower funclet bundles.
2745 assert(!I.hasOperandBundlesOtherThan(
2746 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2747 "Cannot lower invokes with arbitrary operand bundles yet!");
2749 const Value *Callee(I.getCalledValue());
2750 const Function *Fn = dyn_cast<Function>(Callee);
2751 if (isa<InlineAsm>(Callee))
2752 visitInlineAsm(&I);
2753 else if (Fn && Fn->isIntrinsic()) {
2754 switch (Fn->getIntrinsicID()) {
2755 default:
2756 llvm_unreachable("Cannot invoke this intrinsic");
2757 case Intrinsic::donothing:
2758 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2759 break;
2760 case Intrinsic::experimental_patchpoint_void:
2761 case Intrinsic::experimental_patchpoint_i64:
2762 visitPatchpoint(&I, EHPadBB);
2763 break;
2764 case Intrinsic::experimental_gc_statepoint:
2765 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2766 break;
2767 case Intrinsic::wasm_rethrow_in_catch: {
2768 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2769 // special because it can be invoked, so we manually lower it to a DAG
2770 // node here.
2771 SmallVector<SDValue, 8> Ops;
2772 Ops.push_back(getRoot()); // inchain
2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2774 Ops.push_back(
2775 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2776 TLI.getPointerTy(DAG.getDataLayout())));
2777 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2778 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2779 break;
2782 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2783 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2784 // Eventually we will support lowering the @llvm.experimental.deoptimize
2785 // intrinsic, and right now there are no plans to support other intrinsics
2786 // with deopt state.
2787 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2788 } else {
2789 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2792 // If the value of the invoke is used outside of its defining block, make it
2793 // available as a virtual register.
2794 // We already took care of the exported value for the statepoint instruction
2795 // during call to the LowerStatepoint.
2796 if (!isStatepoint(I)) {
2797 CopyToExportRegsIfNeeded(&I);
2800 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2801 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2802 BranchProbability EHPadBBProb =
2803 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2804 : BranchProbability::getZero();
2805 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2807 // Update successor info.
2808 addSuccessorWithProb(InvokeMBB, Return);
2809 for (auto &UnwindDest : UnwindDests) {
2810 UnwindDest.first->setIsEHPad();
2811 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2813 InvokeMBB->normalizeSuccProbs();
2815 // Drop into normal successor.
2816 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2817 DAG.getBasicBlock(Return)));
2820 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2821 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2823 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2824 // have to do anything here to lower funclet bundles.
2825 assert(!I.hasOperandBundlesOtherThan(
2826 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2827 "Cannot lower callbrs with arbitrary operand bundles yet!");
2829 assert(isa<InlineAsm>(I.getCalledValue()) &&
2830 "Only know how to handle inlineasm callbr");
2831 visitInlineAsm(&I);
2833 // Retrieve successors.
2834 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2836 // Update successor info.
2837 addSuccessorWithProb(CallBrMBB, Return);
2838 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2839 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2840 addSuccessorWithProb(CallBrMBB, Target);
2842 CallBrMBB->normalizeSuccProbs();
2844 // Drop into default successor.
2845 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2846 MVT::Other, getControlRoot(),
2847 DAG.getBasicBlock(Return)));
2850 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2851 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2855 assert(FuncInfo.MBB->isEHPad() &&
2856 "Call to landingpad not in landing pad!");
2858 // If there aren't registers to copy the values into (e.g., during SjLj
2859 // exceptions), then don't bother to create these DAG nodes.
2860 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2861 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2862 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2863 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2864 return;
2866 // If landingpad's return type is token type, we don't create DAG nodes
2867 // for its exception pointer and selector value. The extraction of exception
2868 // pointer or selector value from token type landingpads is not currently
2869 // supported.
2870 if (LP.getType()->isTokenTy())
2871 return;
2873 SmallVector<EVT, 2> ValueVTs;
2874 SDLoc dl = getCurSDLoc();
2875 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2876 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2878 // Get the two live-in registers as SDValues. The physregs have already been
2879 // copied into virtual registers.
2880 SDValue Ops[2];
2881 if (FuncInfo.ExceptionPointerVirtReg) {
2882 Ops[0] = DAG.getZExtOrTrunc(
2883 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2884 FuncInfo.ExceptionPointerVirtReg,
2885 TLI.getPointerTy(DAG.getDataLayout())),
2886 dl, ValueVTs[0]);
2887 } else {
2888 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2890 Ops[1] = DAG.getZExtOrTrunc(
2891 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2892 FuncInfo.ExceptionSelectorVirtReg,
2893 TLI.getPointerTy(DAG.getDataLayout())),
2894 dl, ValueVTs[1]);
2896 // Merge into one.
2897 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2898 DAG.getVTList(ValueVTs), Ops);
2899 setValue(&LP, Res);
2902 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2903 MachineBasicBlock *Last) {
2904 // Update JTCases.
2905 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2906 if (SL->JTCases[i].first.HeaderBB == First)
2907 SL->JTCases[i].first.HeaderBB = Last;
2909 // Update BitTestCases.
2910 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2911 if (SL->BitTestCases[i].Parent == First)
2912 SL->BitTestCases[i].Parent = Last;
2915 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2916 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2918 // Update machine-CFG edges with unique successors.
2919 SmallSet<BasicBlock*, 32> Done;
2920 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2921 BasicBlock *BB = I.getSuccessor(i);
2922 bool Inserted = Done.insert(BB).second;
2923 if (!Inserted)
2924 continue;
2926 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2927 addSuccessorWithProb(IndirectBrMBB, Succ);
2929 IndirectBrMBB->normalizeSuccProbs();
2931 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2932 MVT::Other, getControlRoot(),
2933 getValue(I.getAddress())));
2936 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2937 if (!DAG.getTarget().Options.TrapUnreachable)
2938 return;
2940 // We may be able to ignore unreachable behind a noreturn call.
2941 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2942 const BasicBlock &BB = *I.getParent();
2943 if (&I != &BB.front()) {
2944 BasicBlock::const_iterator PredI =
2945 std::prev(BasicBlock::const_iterator(&I));
2946 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2947 if (Call->doesNotReturn())
2948 return;
2953 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2956 void SelectionDAGBuilder::visitFSub(const User &I) {
2957 // -0.0 - X --> fneg
2958 Type *Ty = I.getType();
2959 if (isa<Constant>(I.getOperand(0)) &&
2960 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2961 SDValue Op2 = getValue(I.getOperand(1));
2962 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2963 Op2.getValueType(), Op2));
2964 return;
2967 visitBinary(I, ISD::FSUB);
2970 /// Checks if the given instruction performs a vector reduction, in which case
2971 /// we have the freedom to alter the elements in the result as long as the
2972 /// reduction of them stays unchanged.
2973 static bool isVectorReductionOp(const User *I) {
2974 const Instruction *Inst = dyn_cast<Instruction>(I);
2975 if (!Inst || !Inst->getType()->isVectorTy())
2976 return false;
2978 auto OpCode = Inst->getOpcode();
2979 switch (OpCode) {
2980 case Instruction::Add:
2981 case Instruction::Mul:
2982 case Instruction::And:
2983 case Instruction::Or:
2984 case Instruction::Xor:
2985 break;
2986 case Instruction::FAdd:
2987 case Instruction::FMul:
2988 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2989 if (FPOp->getFastMathFlags().isFast())
2990 break;
2991 LLVM_FALLTHROUGH;
2992 default:
2993 return false;
2996 unsigned ElemNum = Inst->getType()->getVectorNumElements();
2997 // Ensure the reduction size is a power of 2.
2998 if (!isPowerOf2_32(ElemNum))
2999 return false;
3001 unsigned ElemNumToReduce = ElemNum;
3003 // Do DFS search on the def-use chain from the given instruction. We only
3004 // allow four kinds of operations during the search until we reach the
3005 // instruction that extracts the first element from the vector:
3007 // 1. The reduction operation of the same opcode as the given instruction.
3009 // 2. PHI node.
3011 // 3. ShuffleVector instruction together with a reduction operation that
3012 // does a partial reduction.
3014 // 4. ExtractElement that extracts the first element from the vector, and we
3015 // stop searching the def-use chain here.
3017 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3018 // from 1-3 to the stack to continue the DFS. The given instruction is not
3019 // a reduction operation if we meet any other instructions other than those
3020 // listed above.
3022 SmallVector<const User *, 16> UsersToVisit{Inst};
3023 SmallPtrSet<const User *, 16> Visited;
3024 bool ReduxExtracted = false;
3026 while (!UsersToVisit.empty()) {
3027 auto User = UsersToVisit.back();
3028 UsersToVisit.pop_back();
3029 if (!Visited.insert(User).second)
3030 continue;
3032 for (const auto &U : User->users()) {
3033 auto Inst = dyn_cast<Instruction>(U);
3034 if (!Inst)
3035 return false;
3037 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3038 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3039 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3040 return false;
3041 UsersToVisit.push_back(U);
3042 } else if (const ShuffleVectorInst *ShufInst =
3043 dyn_cast<ShuffleVectorInst>(U)) {
3044 // Detect the following pattern: A ShuffleVector instruction together
3045 // with a reduction that do partial reduction on the first and second
3046 // ElemNumToReduce / 2 elements, and store the result in
3047 // ElemNumToReduce / 2 elements in another vector.
3049 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3050 if (ResultElements < ElemNum)
3051 return false;
3053 if (ElemNumToReduce == 1)
3054 return false;
3055 if (!isa<UndefValue>(U->getOperand(1)))
3056 return false;
3057 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3058 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3059 return false;
3060 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3061 if (ShufInst->getMaskValue(i) != -1)
3062 return false;
3064 // There is only one user of this ShuffleVector instruction, which
3065 // must be a reduction operation.
3066 if (!U->hasOneUse())
3067 return false;
3069 auto U2 = dyn_cast<Instruction>(*U->user_begin());
3070 if (!U2 || U2->getOpcode() != OpCode)
3071 return false;
3073 // Check operands of the reduction operation.
3074 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3075 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3076 UsersToVisit.push_back(U2);
3077 ElemNumToReduce /= 2;
3078 } else
3079 return false;
3080 } else if (isa<ExtractElementInst>(U)) {
3081 // At this moment we should have reduced all elements in the vector.
3082 if (ElemNumToReduce != 1)
3083 return false;
3085 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3086 if (!Val || !Val->isZero())
3087 return false;
3089 ReduxExtracted = true;
3090 } else
3091 return false;
3094 return ReduxExtracted;
3097 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3098 SDNodeFlags Flags;
3100 SDValue Op = getValue(I.getOperand(0));
3101 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3102 Op, Flags);
3103 setValue(&I, UnNodeValue);
3106 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3107 SDNodeFlags Flags;
3108 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3109 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3110 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3112 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3113 Flags.setExact(ExactOp->isExact());
3115 if (isVectorReductionOp(&I)) {
3116 Flags.setVectorReduction(true);
3117 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3120 SDValue Op1 = getValue(I.getOperand(0));
3121 SDValue Op2 = getValue(I.getOperand(1));
3122 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3123 Op1, Op2, Flags);
3124 setValue(&I, BinNodeValue);
3127 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3128 SDValue Op1 = getValue(I.getOperand(0));
3129 SDValue Op2 = getValue(I.getOperand(1));
3131 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3132 Op1.getValueType(), DAG.getDataLayout());
3134 // Coerce the shift amount to the right type if we can.
3135 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3136 unsigned ShiftSize = ShiftTy.getSizeInBits();
3137 unsigned Op2Size = Op2.getValueSizeInBits();
3138 SDLoc DL = getCurSDLoc();
3140 // If the operand is smaller than the shift count type, promote it.
3141 if (ShiftSize > Op2Size)
3142 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3144 // If the operand is larger than the shift count type but the shift
3145 // count type has enough bits to represent any shift value, truncate
3146 // it now. This is a common case and it exposes the truncate to
3147 // optimization early.
3148 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3149 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3150 // Otherwise we'll need to temporarily settle for some other convenient
3151 // type. Type legalization will make adjustments once the shiftee is split.
3152 else
3153 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3156 bool nuw = false;
3157 bool nsw = false;
3158 bool exact = false;
3160 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3162 if (const OverflowingBinaryOperator *OFBinOp =
3163 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3164 nuw = OFBinOp->hasNoUnsignedWrap();
3165 nsw = OFBinOp->hasNoSignedWrap();
3167 if (const PossiblyExactOperator *ExactOp =
3168 dyn_cast<const PossiblyExactOperator>(&I))
3169 exact = ExactOp->isExact();
3171 SDNodeFlags Flags;
3172 Flags.setExact(exact);
3173 Flags.setNoSignedWrap(nsw);
3174 Flags.setNoUnsignedWrap(nuw);
3175 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3176 Flags);
3177 setValue(&I, Res);
3180 void SelectionDAGBuilder::visitSDiv(const User &I) {
3181 SDValue Op1 = getValue(I.getOperand(0));
3182 SDValue Op2 = getValue(I.getOperand(1));
3184 SDNodeFlags Flags;
3185 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3186 cast<PossiblyExactOperator>(&I)->isExact());
3187 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3188 Op2, Flags));
3191 void SelectionDAGBuilder::visitICmp(const User &I) {
3192 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3193 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3194 predicate = IC->getPredicate();
3195 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3196 predicate = ICmpInst::Predicate(IC->getPredicate());
3197 SDValue Op1 = getValue(I.getOperand(0));
3198 SDValue Op2 = getValue(I.getOperand(1));
3199 ISD::CondCode Opcode = getICmpCondCode(predicate);
3201 auto &TLI = DAG.getTargetLoweringInfo();
3202 EVT MemVT =
3203 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3205 // If a pointer's DAG type is larger than its memory type then the DAG values
3206 // are zero-extended. This breaks signed comparisons so truncate back to the
3207 // underlying type before doing the compare.
3208 if (Op1.getValueType() != MemVT) {
3209 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3210 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3213 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3214 I.getType());
3215 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3218 void SelectionDAGBuilder::visitFCmp(const User &I) {
3219 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3220 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3221 predicate = FC->getPredicate();
3222 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3223 predicate = FCmpInst::Predicate(FC->getPredicate());
3224 SDValue Op1 = getValue(I.getOperand(0));
3225 SDValue Op2 = getValue(I.getOperand(1));
3227 ISD::CondCode Condition = getFCmpCondCode(predicate);
3228 auto *FPMO = dyn_cast<FPMathOperator>(&I);
3229 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3230 Condition = getFCmpCodeWithoutNaN(Condition);
3232 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3233 I.getType());
3234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3237 // Check if the condition of the select has one use or two users that are both
3238 // selects with the same condition.
3239 static bool hasOnlySelectUsers(const Value *Cond) {
3240 return llvm::all_of(Cond->users(), [](const Value *V) {
3241 return isa<SelectInst>(V);
3245 void SelectionDAGBuilder::visitSelect(const User &I) {
3246 SmallVector<EVT, 4> ValueVTs;
3247 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3248 ValueVTs);
3249 unsigned NumValues = ValueVTs.size();
3250 if (NumValues == 0) return;
3252 SmallVector<SDValue, 4> Values(NumValues);
3253 SDValue Cond = getValue(I.getOperand(0));
3254 SDValue LHSVal = getValue(I.getOperand(1));
3255 SDValue RHSVal = getValue(I.getOperand(2));
3256 auto BaseOps = {Cond};
3257 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3258 ISD::VSELECT : ISD::SELECT;
3260 bool IsUnaryAbs = false;
3262 // Min/max matching is only viable if all output VTs are the same.
3263 if (is_splat(ValueVTs)) {
3264 EVT VT = ValueVTs[0];
3265 LLVMContext &Ctx = *DAG.getContext();
3266 auto &TLI = DAG.getTargetLoweringInfo();
3268 // We care about the legality of the operation after it has been type
3269 // legalized.
3270 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3271 VT != TLI.getTypeToTransformTo(Ctx, VT))
3272 VT = TLI.getTypeToTransformTo(Ctx, VT);
3274 // If the vselect is legal, assume we want to leave this as a vector setcc +
3275 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3276 // min/max is legal on the scalar type.
3277 bool UseScalarMinMax = VT.isVector() &&
3278 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3280 Value *LHS, *RHS;
3281 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3282 ISD::NodeType Opc = ISD::DELETED_NODE;
3283 switch (SPR.Flavor) {
3284 case SPF_UMAX: Opc = ISD::UMAX; break;
3285 case SPF_UMIN: Opc = ISD::UMIN; break;
3286 case SPF_SMAX: Opc = ISD::SMAX; break;
3287 case SPF_SMIN: Opc = ISD::SMIN; break;
3288 case SPF_FMINNUM:
3289 switch (SPR.NaNBehavior) {
3290 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3291 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
3292 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3293 case SPNB_RETURNS_ANY: {
3294 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3295 Opc = ISD::FMINNUM;
3296 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3297 Opc = ISD::FMINIMUM;
3298 else if (UseScalarMinMax)
3299 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3300 ISD::FMINNUM : ISD::FMINIMUM;
3301 break;
3304 break;
3305 case SPF_FMAXNUM:
3306 switch (SPR.NaNBehavior) {
3307 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3308 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3309 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3310 case SPNB_RETURNS_ANY:
3312 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3313 Opc = ISD::FMAXNUM;
3314 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3315 Opc = ISD::FMAXIMUM;
3316 else if (UseScalarMinMax)
3317 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3318 ISD::FMAXNUM : ISD::FMAXIMUM;
3319 break;
3321 break;
3322 case SPF_ABS:
3323 IsUnaryAbs = true;
3324 Opc = ISD::ABS;
3325 break;
3326 case SPF_NABS:
3327 // TODO: we need to produce sub(0, abs(X)).
3328 default: break;
3331 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3332 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3333 (UseScalarMinMax &&
3334 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3335 // If the underlying comparison instruction is used by any other
3336 // instruction, the consumed instructions won't be destroyed, so it is
3337 // not profitable to convert to a min/max.
3338 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3339 OpCode = Opc;
3340 LHSVal = getValue(LHS);
3341 RHSVal = getValue(RHS);
3342 BaseOps = {};
3345 if (IsUnaryAbs) {
3346 OpCode = Opc;
3347 LHSVal = getValue(LHS);
3348 BaseOps = {};
3352 if (IsUnaryAbs) {
3353 for (unsigned i = 0; i != NumValues; ++i) {
3354 Values[i] =
3355 DAG.getNode(OpCode, getCurSDLoc(),
3356 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3357 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3359 } else {
3360 for (unsigned i = 0; i != NumValues; ++i) {
3361 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3362 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3363 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3364 Values[i] = DAG.getNode(
3365 OpCode, getCurSDLoc(),
3366 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3370 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3371 DAG.getVTList(ValueVTs), Values));
3374 void SelectionDAGBuilder::visitTrunc(const User &I) {
3375 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3376 SDValue N = getValue(I.getOperand(0));
3377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3378 I.getType());
3379 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3382 void SelectionDAGBuilder::visitZExt(const User &I) {
3383 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3384 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3385 SDValue N = getValue(I.getOperand(0));
3386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3387 I.getType());
3388 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3391 void SelectionDAGBuilder::visitSExt(const User &I) {
3392 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3393 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3394 SDValue N = getValue(I.getOperand(0));
3395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3396 I.getType());
3397 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3400 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3401 // FPTrunc is never a no-op cast, no need to check
3402 SDValue N = getValue(I.getOperand(0));
3403 SDLoc dl = getCurSDLoc();
3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3406 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3407 DAG.getTargetConstant(
3408 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3411 void SelectionDAGBuilder::visitFPExt(const User &I) {
3412 // FPExt is never a no-op cast, no need to check
3413 SDValue N = getValue(I.getOperand(0));
3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415 I.getType());
3416 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3419 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3420 // FPToUI is never a no-op cast, no need to check
3421 SDValue N = getValue(I.getOperand(0));
3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3423 I.getType());
3424 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3427 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3428 // FPToSI is never a no-op cast, no need to check
3429 SDValue N = getValue(I.getOperand(0));
3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431 I.getType());
3432 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3435 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3436 // UIToFP is never a no-op cast, no need to check
3437 SDValue N = getValue(I.getOperand(0));
3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439 I.getType());
3440 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3443 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3444 // SIToFP is never a no-op cast, no need to check
3445 SDValue N = getValue(I.getOperand(0));
3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447 I.getType());
3448 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3451 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3452 // What to do depends on the size of the integer and the size of the pointer.
3453 // We can either truncate, zero extend, or no-op, accordingly.
3454 SDValue N = getValue(I.getOperand(0));
3455 auto &TLI = DAG.getTargetLoweringInfo();
3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3457 I.getType());
3458 EVT PtrMemVT =
3459 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3460 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3461 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3462 setValue(&I, N);
3465 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3466 // What to do depends on the size of the integer and the size of the pointer.
3467 // We can either truncate, zero extend, or no-op, accordingly.
3468 SDValue N = getValue(I.getOperand(0));
3469 auto &TLI = DAG.getTargetLoweringInfo();
3470 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3471 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3472 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3473 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3474 setValue(&I, N);
3477 void SelectionDAGBuilder::visitBitCast(const User &I) {
3478 SDValue N = getValue(I.getOperand(0));
3479 SDLoc dl = getCurSDLoc();
3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3481 I.getType());
3483 // BitCast assures us that source and destination are the same size so this is
3484 // either a BITCAST or a no-op.
3485 if (DestVT != N.getValueType())
3486 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3487 DestVT, N)); // convert types.
3488 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3489 // might fold any kind of constant expression to an integer constant and that
3490 // is not what we are looking for. Only recognize a bitcast of a genuine
3491 // constant integer as an opaque constant.
3492 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3493 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3494 /*isOpaque*/true));
3495 else
3496 setValue(&I, N); // noop cast.
3499 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3501 const Value *SV = I.getOperand(0);
3502 SDValue N = getValue(SV);
3503 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3505 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3506 unsigned DestAS = I.getType()->getPointerAddressSpace();
3508 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3509 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3511 setValue(&I, N);
3514 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516 SDValue InVec = getValue(I.getOperand(0));
3517 SDValue InVal = getValue(I.getOperand(1));
3518 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3519 TLI.getVectorIdxTy(DAG.getDataLayout()));
3520 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3521 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3522 InVec, InVal, InIdx));
3525 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3526 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3527 SDValue InVec = getValue(I.getOperand(0));
3528 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3529 TLI.getVectorIdxTy(DAG.getDataLayout()));
3530 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3531 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3532 InVec, InIdx));
3535 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3536 SDValue Src1 = getValue(I.getOperand(0));
3537 SDValue Src2 = getValue(I.getOperand(1));
3538 SDLoc DL = getCurSDLoc();
3540 SmallVector<int, 8> Mask;
3541 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3542 unsigned MaskNumElts = Mask.size();
3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3545 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3546 EVT SrcVT = Src1.getValueType();
3547 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3549 if (SrcNumElts == MaskNumElts) {
3550 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3551 return;
3554 // Normalize the shuffle vector since mask and vector length don't match.
3555 if (SrcNumElts < MaskNumElts) {
3556 // Mask is longer than the source vectors. We can use concatenate vector to
3557 // make the mask and vectors lengths match.
3559 if (MaskNumElts % SrcNumElts == 0) {
3560 // Mask length is a multiple of the source vector length.
3561 // Check if the shuffle is some kind of concatenation of the input
3562 // vectors.
3563 unsigned NumConcat = MaskNumElts / SrcNumElts;
3564 bool IsConcat = true;
3565 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3566 for (unsigned i = 0; i != MaskNumElts; ++i) {
3567 int Idx = Mask[i];
3568 if (Idx < 0)
3569 continue;
3570 // Ensure the indices in each SrcVT sized piece are sequential and that
3571 // the same source is used for the whole piece.
3572 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3573 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3574 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3575 IsConcat = false;
3576 break;
3578 // Remember which source this index came from.
3579 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3582 // The shuffle is concatenating multiple vectors together. Just emit
3583 // a CONCAT_VECTORS operation.
3584 if (IsConcat) {
3585 SmallVector<SDValue, 8> ConcatOps;
3586 for (auto Src : ConcatSrcs) {
3587 if (Src < 0)
3588 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3589 else if (Src == 0)
3590 ConcatOps.push_back(Src1);
3591 else
3592 ConcatOps.push_back(Src2);
3594 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3595 return;
3599 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3600 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3601 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3602 PaddedMaskNumElts);
3604 // Pad both vectors with undefs to make them the same length as the mask.
3605 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3607 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3608 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3609 MOps1[0] = Src1;
3610 MOps2[0] = Src2;
3612 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3613 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3615 // Readjust mask for new input vector length.
3616 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3617 for (unsigned i = 0; i != MaskNumElts; ++i) {
3618 int Idx = Mask[i];
3619 if (Idx >= (int)SrcNumElts)
3620 Idx -= SrcNumElts - PaddedMaskNumElts;
3621 MappedOps[i] = Idx;
3624 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3626 // If the concatenated vector was padded, extract a subvector with the
3627 // correct number of elements.
3628 if (MaskNumElts != PaddedMaskNumElts)
3629 Result = DAG.getNode(
3630 ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3631 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3633 setValue(&I, Result);
3634 return;
3637 if (SrcNumElts > MaskNumElts) {
3638 // Analyze the access pattern of the vector to see if we can extract
3639 // two subvectors and do the shuffle.
3640 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3641 bool CanExtract = true;
3642 for (int Idx : Mask) {
3643 unsigned Input = 0;
3644 if (Idx < 0)
3645 continue;
3647 if (Idx >= (int)SrcNumElts) {
3648 Input = 1;
3649 Idx -= SrcNumElts;
3652 // If all the indices come from the same MaskNumElts sized portion of
3653 // the sources we can use extract. Also make sure the extract wouldn't
3654 // extract past the end of the source.
3655 int NewStartIdx = alignDown(Idx, MaskNumElts);
3656 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3657 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3658 CanExtract = false;
3659 // Make sure we always update StartIdx as we use it to track if all
3660 // elements are undef.
3661 StartIdx[Input] = NewStartIdx;
3664 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3665 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3666 return;
3668 if (CanExtract) {
3669 // Extract appropriate subvector and generate a vector shuffle
3670 for (unsigned Input = 0; Input < 2; ++Input) {
3671 SDValue &Src = Input == 0 ? Src1 : Src2;
3672 if (StartIdx[Input] < 0)
3673 Src = DAG.getUNDEF(VT);
3674 else {
3675 Src = DAG.getNode(
3676 ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3677 DAG.getConstant(StartIdx[Input], DL,
3678 TLI.getVectorIdxTy(DAG.getDataLayout())));
3682 // Calculate new mask.
3683 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3684 for (int &Idx : MappedOps) {
3685 if (Idx >= (int)SrcNumElts)
3686 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3687 else if (Idx >= 0)
3688 Idx -= StartIdx[0];
3691 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3692 return;
3696 // We can't use either concat vectors or extract subvectors so fall back to
3697 // replacing the shuffle with extract and build vector.
3698 // to insert and build vector.
3699 EVT EltVT = VT.getVectorElementType();
3700 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3701 SmallVector<SDValue,8> Ops;
3702 for (int Idx : Mask) {
3703 SDValue Res;
3705 if (Idx < 0) {
3706 Res = DAG.getUNDEF(EltVT);
3707 } else {
3708 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3709 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3711 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3712 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3715 Ops.push_back(Res);
3718 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3721 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3722 ArrayRef<unsigned> Indices;
3723 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3724 Indices = IV->getIndices();
3725 else
3726 Indices = cast<ConstantExpr>(&I)->getIndices();
3728 const Value *Op0 = I.getOperand(0);
3729 const Value *Op1 = I.getOperand(1);
3730 Type *AggTy = I.getType();
3731 Type *ValTy = Op1->getType();
3732 bool IntoUndef = isa<UndefValue>(Op0);
3733 bool FromUndef = isa<UndefValue>(Op1);
3735 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3737 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3738 SmallVector<EVT, 4> AggValueVTs;
3739 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3740 SmallVector<EVT, 4> ValValueVTs;
3741 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3743 unsigned NumAggValues = AggValueVTs.size();
3744 unsigned NumValValues = ValValueVTs.size();
3745 SmallVector<SDValue, 4> Values(NumAggValues);
3747 // Ignore an insertvalue that produces an empty object
3748 if (!NumAggValues) {
3749 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3750 return;
3753 SDValue Agg = getValue(Op0);
3754 unsigned i = 0;
3755 // Copy the beginning value(s) from the original aggregate.
3756 for (; i != LinearIndex; ++i)
3757 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3758 SDValue(Agg.getNode(), Agg.getResNo() + i);
3759 // Copy values from the inserted value(s).
3760 if (NumValValues) {
3761 SDValue Val = getValue(Op1);
3762 for (; i != LinearIndex + NumValValues; ++i)
3763 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3764 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3766 // Copy remaining value(s) from the original aggregate.
3767 for (; i != NumAggValues; ++i)
3768 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3769 SDValue(Agg.getNode(), Agg.getResNo() + i);
3771 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3772 DAG.getVTList(AggValueVTs), Values));
3775 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3776 ArrayRef<unsigned> Indices;
3777 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3778 Indices = EV->getIndices();
3779 else
3780 Indices = cast<ConstantExpr>(&I)->getIndices();
3782 const Value *Op0 = I.getOperand(0);
3783 Type *AggTy = Op0->getType();
3784 Type *ValTy = I.getType();
3785 bool OutOfUndef = isa<UndefValue>(Op0);
3787 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3789 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790 SmallVector<EVT, 4> ValValueVTs;
3791 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3793 unsigned NumValValues = ValValueVTs.size();
3795 // Ignore a extractvalue that produces an empty object
3796 if (!NumValValues) {
3797 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3798 return;
3801 SmallVector<SDValue, 4> Values(NumValValues);
3803 SDValue Agg = getValue(Op0);
3804 // Copy out the selected value(s).
3805 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3806 Values[i - LinearIndex] =
3807 OutOfUndef ?
3808 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3809 SDValue(Agg.getNode(), Agg.getResNo() + i);
3811 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3812 DAG.getVTList(ValValueVTs), Values));
3815 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3816 Value *Op0 = I.getOperand(0);
3817 // Note that the pointer operand may be a vector of pointers. Take the scalar
3818 // element which holds a pointer.
3819 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3820 SDValue N = getValue(Op0);
3821 SDLoc dl = getCurSDLoc();
3822 auto &TLI = DAG.getTargetLoweringInfo();
3823 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3824 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3826 // Normalize Vector GEP - all scalar operands should be converted to the
3827 // splat vector.
3828 unsigned VectorWidth = I.getType()->isVectorTy() ?
3829 I.getType()->getVectorNumElements() : 0;
3831 if (VectorWidth && !N.getValueType().isVector()) {
3832 LLVMContext &Context = *DAG.getContext();
3833 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3834 N = DAG.getSplatBuildVector(VT, dl, N);
3837 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3838 GTI != E; ++GTI) {
3839 const Value *Idx = GTI.getOperand();
3840 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3841 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3842 if (Field) {
3843 // N = N + Offset
3844 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3846 // In an inbounds GEP with an offset that is nonnegative even when
3847 // interpreted as signed, assume there is no unsigned overflow.
3848 SDNodeFlags Flags;
3849 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3850 Flags.setNoUnsignedWrap(true);
3852 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3853 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3855 } else {
3856 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3857 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3858 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3860 // If this is a scalar constant or a splat vector of constants,
3861 // handle it quickly.
3862 const auto *C = dyn_cast<Constant>(Idx);
3863 if (C && isa<VectorType>(C->getType()))
3864 C = C->getSplatValue();
3866 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3867 if (CI->isZero())
3868 continue;
3869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3870 LLVMContext &Context = *DAG.getContext();
3871 SDValue OffsVal = VectorWidth ?
3872 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3873 DAG.getConstant(Offs, dl, IdxTy);
3875 // In an inbounds GEP with an offset that is nonnegative even when
3876 // interpreted as signed, assume there is no unsigned overflow.
3877 SDNodeFlags Flags;
3878 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3879 Flags.setNoUnsignedWrap(true);
3881 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3883 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3884 continue;
3887 // N = N + Idx * ElementSize;
3888 SDValue IdxN = getValue(Idx);
3890 if (!IdxN.getValueType().isVector() && VectorWidth) {
3891 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3892 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3895 // If the index is smaller or larger than intptr_t, truncate or extend
3896 // it.
3897 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3899 // If this is a multiply by a power of two, turn it into a shl
3900 // immediately. This is a very common case.
3901 if (ElementSize != 1) {
3902 if (ElementSize.isPowerOf2()) {
3903 unsigned Amt = ElementSize.logBase2();
3904 IdxN = DAG.getNode(ISD::SHL, dl,
3905 N.getValueType(), IdxN,
3906 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3907 } else {
3908 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3909 IdxN.getValueType());
3910 IdxN = DAG.getNode(ISD::MUL, dl,
3911 N.getValueType(), IdxN, Scale);
3915 N = DAG.getNode(ISD::ADD, dl,
3916 N.getValueType(), N, IdxN);
3920 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3921 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3923 setValue(&I, N);
3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3927 // If this is a fixed sized alloca in the entry block of the function,
3928 // allocate it statically on the stack.
3929 if (FuncInfo.StaticAllocaMap.count(&I))
3930 return; // getValue will auto-populate this.
3932 SDLoc dl = getCurSDLoc();
3933 Type *Ty = I.getAllocatedType();
3934 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3935 auto &DL = DAG.getDataLayout();
3936 uint64_t TySize = DL.getTypeAllocSize(Ty);
3937 unsigned Align =
3938 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3940 SDValue AllocSize = getValue(I.getArraySize());
3942 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3943 if (AllocSize.getValueType() != IntPtr)
3944 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3946 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3947 AllocSize,
3948 DAG.getConstant(TySize, dl, IntPtr));
3950 // Handle alignment. If the requested alignment is less than or equal to
3951 // the stack alignment, ignore it. If the size is greater than or equal to
3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3953 unsigned StackAlign =
3954 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3955 if (Align <= StackAlign)
3956 Align = 0;
3958 // Round the size of the allocation up to the stack alignment size
3959 // by add SA-1 to the size. This doesn't overflow because we're computing
3960 // an address inside an alloca.
3961 SDNodeFlags Flags;
3962 Flags.setNoUnsignedWrap(true);
3963 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3964 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3966 // Mask out the low bits for alignment purposes.
3967 AllocSize =
3968 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3969 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3971 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3972 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3973 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3974 setValue(&I, DSA);
3975 DAG.setRoot(DSA.getValue(1));
3977 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3980 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3981 if (I.isAtomic())
3982 return visitAtomicLoad(I);
3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3985 const Value *SV = I.getOperand(0);
3986 if (TLI.supportSwiftError()) {
3987 // Swifterror values can come from either a function parameter with
3988 // swifterror attribute or an alloca with swifterror attribute.
3989 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3990 if (Arg->hasSwiftErrorAttr())
3991 return visitLoadFromSwiftError(I);
3994 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3995 if (Alloca->isSwiftError())
3996 return visitLoadFromSwiftError(I);
4000 SDValue Ptr = getValue(SV);
4002 Type *Ty = I.getType();
4004 bool isVolatile = I.isVolatile();
4005 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4006 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4007 bool isDereferenceable =
4008 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4009 unsigned Alignment = I.getAlignment();
4011 AAMDNodes AAInfo;
4012 I.getAAMetadata(AAInfo);
4013 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4015 SmallVector<EVT, 4> ValueVTs, MemVTs;
4016 SmallVector<uint64_t, 4> Offsets;
4017 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4018 unsigned NumValues = ValueVTs.size();
4019 if (NumValues == 0)
4020 return;
4022 SDValue Root;
4023 bool ConstantMemory = false;
4024 if (isVolatile || NumValues > MaxParallelChains)
4025 // Serialize volatile loads with other side effects.
4026 Root = getRoot();
4027 else if (AA &&
4028 AA->pointsToConstantMemory(MemoryLocation(
4030 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4031 AAInfo))) {
4032 // Do not serialize (non-volatile) loads of constant memory with anything.
4033 Root = DAG.getEntryNode();
4034 ConstantMemory = true;
4035 } else {
4036 // Do not serialize non-volatile loads against each other.
4037 Root = DAG.getRoot();
4040 SDLoc dl = getCurSDLoc();
4042 if (isVolatile)
4043 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4045 // An aggregate load cannot wrap around the address space, so offsets to its
4046 // parts don't wrap either.
4047 SDNodeFlags Flags;
4048 Flags.setNoUnsignedWrap(true);
4050 SmallVector<SDValue, 4> Values(NumValues);
4051 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4052 EVT PtrVT = Ptr.getValueType();
4053 unsigned ChainI = 0;
4054 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4055 // Serializing loads here may result in excessive register pressure, and
4056 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4057 // could recover a bit by hoisting nodes upward in the chain by recognizing
4058 // they are side-effect free or do not alias. The optimizer should really
4059 // avoid this case by converting large object/array copies to llvm.memcpy
4060 // (MaxParallelChains should always remain as failsafe).
4061 if (ChainI == MaxParallelChains) {
4062 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4063 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4064 makeArrayRef(Chains.data(), ChainI));
4065 Root = Chain;
4066 ChainI = 0;
4068 SDValue A = DAG.getNode(ISD::ADD, dl,
4069 PtrVT, Ptr,
4070 DAG.getConstant(Offsets[i], dl, PtrVT),
4071 Flags);
4072 auto MMOFlags = MachineMemOperand::MONone;
4073 if (isVolatile)
4074 MMOFlags |= MachineMemOperand::MOVolatile;
4075 if (isNonTemporal)
4076 MMOFlags |= MachineMemOperand::MONonTemporal;
4077 if (isInvariant)
4078 MMOFlags |= MachineMemOperand::MOInvariant;
4079 if (isDereferenceable)
4080 MMOFlags |= MachineMemOperand::MODereferenceable;
4081 MMOFlags |= TLI.getMMOFlags(I);
4083 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4084 MachinePointerInfo(SV, Offsets[i]), Alignment,
4085 MMOFlags, AAInfo, Ranges);
4086 Chains[ChainI] = L.getValue(1);
4088 if (MemVTs[i] != ValueVTs[i])
4089 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4091 Values[i] = L;
4094 if (!ConstantMemory) {
4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4096 makeArrayRef(Chains.data(), ChainI));
4097 if (isVolatile)
4098 DAG.setRoot(Chain);
4099 else
4100 PendingLoads.push_back(Chain);
4103 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4104 DAG.getVTList(ValueVTs), Values));
4107 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4108 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4109 "call visitStoreToSwiftError when backend supports swifterror");
4111 SmallVector<EVT, 4> ValueVTs;
4112 SmallVector<uint64_t, 4> Offsets;
4113 const Value *SrcV = I.getOperand(0);
4114 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4115 SrcV->getType(), ValueVTs, &Offsets);
4116 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4117 "expect a single EVT for swifterror");
4119 SDValue Src = getValue(SrcV);
4120 // Create a virtual register, then update the virtual register.
4121 Register VReg =
4122 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4123 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4124 // Chain can be getRoot or getControlRoot.
4125 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4126 SDValue(Src.getNode(), Src.getResNo()));
4127 DAG.setRoot(CopyNode);
4130 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4132 "call visitLoadFromSwiftError when backend supports swifterror");
4134 assert(!I.isVolatile() &&
4135 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4136 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4137 "Support volatile, non temporal, invariant for load_from_swift_error");
4139 const Value *SV = I.getOperand(0);
4140 Type *Ty = I.getType();
4141 AAMDNodes AAInfo;
4142 I.getAAMetadata(AAInfo);
4143 assert(
4144 (!AA ||
4145 !AA->pointsToConstantMemory(MemoryLocation(
4146 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4147 AAInfo))) &&
4148 "load_from_swift_error should not be constant memory");
4150 SmallVector<EVT, 4> ValueVTs;
4151 SmallVector<uint64_t, 4> Offsets;
4152 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4153 ValueVTs, &Offsets);
4154 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4155 "expect a single EVT for swifterror");
4157 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4158 SDValue L = DAG.getCopyFromReg(
4159 getRoot(), getCurSDLoc(),
4160 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4162 setValue(&I, L);
4165 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4166 if (I.isAtomic())
4167 return visitAtomicStore(I);
4169 const Value *SrcV = I.getOperand(0);
4170 const Value *PtrV = I.getOperand(1);
4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4173 if (TLI.supportSwiftError()) {
4174 // Swifterror values can come from either a function parameter with
4175 // swifterror attribute or an alloca with swifterror attribute.
4176 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4177 if (Arg->hasSwiftErrorAttr())
4178 return visitStoreToSwiftError(I);
4181 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4182 if (Alloca->isSwiftError())
4183 return visitStoreToSwiftError(I);
4187 SmallVector<EVT, 4> ValueVTs, MemVTs;
4188 SmallVector<uint64_t, 4> Offsets;
4189 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4190 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4191 unsigned NumValues = ValueVTs.size();
4192 if (NumValues == 0)
4193 return;
4195 // Get the lowered operands. Note that we do this after
4196 // checking if NumResults is zero, because with zero results
4197 // the operands won't have values in the map.
4198 SDValue Src = getValue(SrcV);
4199 SDValue Ptr = getValue(PtrV);
4201 SDValue Root = getRoot();
4202 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4203 SDLoc dl = getCurSDLoc();
4204 EVT PtrVT = Ptr.getValueType();
4205 unsigned Alignment = I.getAlignment();
4206 AAMDNodes AAInfo;
4207 I.getAAMetadata(AAInfo);
4209 auto MMOFlags = MachineMemOperand::MONone;
4210 if (I.isVolatile())
4211 MMOFlags |= MachineMemOperand::MOVolatile;
4212 if (I.hasMetadata(LLVMContext::MD_nontemporal))
4213 MMOFlags |= MachineMemOperand::MONonTemporal;
4214 MMOFlags |= TLI.getMMOFlags(I);
4216 // An aggregate load cannot wrap around the address space, so offsets to its
4217 // parts don't wrap either.
4218 SDNodeFlags Flags;
4219 Flags.setNoUnsignedWrap(true);
4221 unsigned ChainI = 0;
4222 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4223 // See visitLoad comments.
4224 if (ChainI == MaxParallelChains) {
4225 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4226 makeArrayRef(Chains.data(), ChainI));
4227 Root = Chain;
4228 ChainI = 0;
4230 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4231 DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4232 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4233 if (MemVTs[i] != ValueVTs[i])
4234 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4235 SDValue St =
4236 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4237 Alignment, MMOFlags, AAInfo);
4238 Chains[ChainI] = St;
4241 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4242 makeArrayRef(Chains.data(), ChainI));
4243 DAG.setRoot(StoreNode);
4246 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4247 bool IsCompressing) {
4248 SDLoc sdl = getCurSDLoc();
4250 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4251 unsigned& Alignment) {
4252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4253 Src0 = I.getArgOperand(0);
4254 Ptr = I.getArgOperand(1);
4255 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4256 Mask = I.getArgOperand(3);
4258 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4259 unsigned& Alignment) {
4260 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4261 Src0 = I.getArgOperand(0);
4262 Ptr = I.getArgOperand(1);
4263 Mask = I.getArgOperand(2);
4264 Alignment = 0;
4267 Value *PtrOperand, *MaskOperand, *Src0Operand;
4268 unsigned Alignment;
4269 if (IsCompressing)
4270 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4271 else
4272 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4274 SDValue Ptr = getValue(PtrOperand);
4275 SDValue Src0 = getValue(Src0Operand);
4276 SDValue Mask = getValue(MaskOperand);
4278 EVT VT = Src0.getValueType();
4279 if (!Alignment)
4280 Alignment = DAG.getEVTAlignment(VT);
4282 AAMDNodes AAInfo;
4283 I.getAAMetadata(AAInfo);
4285 MachineMemOperand *MMO =
4286 DAG.getMachineFunction().
4287 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4288 MachineMemOperand::MOStore, VT.getStoreSize(),
4289 Alignment, AAInfo);
4290 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4291 MMO, false /* Truncating */,
4292 IsCompressing);
4293 DAG.setRoot(StoreNode);
4294 setValue(&I, StoreNode);
4297 // Get a uniform base for the Gather/Scatter intrinsic.
4298 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4299 // We try to represent it as a base pointer + vector of indices.
4300 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4301 // The first operand of the GEP may be a single pointer or a vector of pointers
4302 // Example:
4303 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4304 // or
4305 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4306 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4308 // When the first GEP operand is a single pointer - it is the uniform base we
4309 // are looking for. If first operand of the GEP is a splat vector - we
4310 // extract the splat value and use it as a uniform base.
4311 // In all other cases the function returns 'false'.
4312 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4313 ISD::MemIndexType &IndexType, SDValue &Scale,
4314 SelectionDAGBuilder *SDB) {
4315 SelectionDAG& DAG = SDB->DAG;
4316 LLVMContext &Context = *DAG.getContext();
4318 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4319 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4320 if (!GEP)
4321 return false;
4323 const Value *GEPPtr = GEP->getPointerOperand();
4324 if (!GEPPtr->getType()->isVectorTy())
4325 Ptr = GEPPtr;
4326 else if (!(Ptr = getSplatValue(GEPPtr)))
4327 return false;
4329 unsigned FinalIndex = GEP->getNumOperands() - 1;
4330 Value *IndexVal = GEP->getOperand(FinalIndex);
4332 // Ensure all the other indices are 0.
4333 for (unsigned i = 1; i < FinalIndex; ++i) {
4334 auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4335 if (!C)
4336 return false;
4337 if (isa<VectorType>(C->getType()))
4338 C = C->getSplatValue();
4339 auto *CI = dyn_cast_or_null<ConstantInt>(C);
4340 if (!CI || !CI->isZero())
4341 return false;
4344 // The operands of the GEP may be defined in another basic block.
4345 // In this case we'll not find nodes for the operands.
4346 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4347 return false;
4349 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4350 const DataLayout &DL = DAG.getDataLayout();
4351 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4352 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4353 Base = SDB->getValue(Ptr);
4354 Index = SDB->getValue(IndexVal);
4355 IndexType = ISD::SIGNED_SCALED;
4357 if (!Index.getValueType().isVector()) {
4358 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4359 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4360 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4362 return true;
4365 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4366 SDLoc sdl = getCurSDLoc();
4368 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4369 const Value *Ptr = I.getArgOperand(1);
4370 SDValue Src0 = getValue(I.getArgOperand(0));
4371 SDValue Mask = getValue(I.getArgOperand(3));
4372 EVT VT = Src0.getValueType();
4373 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4374 if (!Alignment)
4375 Alignment = DAG.getEVTAlignment(VT);
4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4378 AAMDNodes AAInfo;
4379 I.getAAMetadata(AAInfo);
4381 SDValue Base;
4382 SDValue Index;
4383 ISD::MemIndexType IndexType;
4384 SDValue Scale;
4385 const Value *BasePtr = Ptr;
4386 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4387 this);
4389 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4390 MachineMemOperand *MMO = DAG.getMachineFunction().
4391 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4392 MachineMemOperand::MOStore, VT.getStoreSize(),
4393 Alignment, AAInfo);
4394 if (!UniformBase) {
4395 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4396 Index = getValue(Ptr);
4397 IndexType = ISD::SIGNED_SCALED;
4398 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4400 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4401 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4402 Ops, MMO, IndexType);
4403 DAG.setRoot(Scatter);
4404 setValue(&I, Scatter);
4407 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4408 SDLoc sdl = getCurSDLoc();
4410 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4411 unsigned& Alignment) {
4412 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4413 Ptr = I.getArgOperand(0);
4414 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4415 Mask = I.getArgOperand(2);
4416 Src0 = I.getArgOperand(3);
4418 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4419 unsigned& Alignment) {
4420 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4421 Ptr = I.getArgOperand(0);
4422 Alignment = 0;
4423 Mask = I.getArgOperand(1);
4424 Src0 = I.getArgOperand(2);
4427 Value *PtrOperand, *MaskOperand, *Src0Operand;
4428 unsigned Alignment;
4429 if (IsExpanding)
4430 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4431 else
4432 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4434 SDValue Ptr = getValue(PtrOperand);
4435 SDValue Src0 = getValue(Src0Operand);
4436 SDValue Mask = getValue(MaskOperand);
4438 EVT VT = Src0.getValueType();
4439 if (!Alignment)
4440 Alignment = DAG.getEVTAlignment(VT);
4442 AAMDNodes AAInfo;
4443 I.getAAMetadata(AAInfo);
4444 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4446 // Do not serialize masked loads of constant memory with anything.
4447 bool AddToChain =
4448 !AA || !AA->pointsToConstantMemory(MemoryLocation(
4449 PtrOperand,
4450 LocationSize::precise(
4451 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4452 AAInfo));
4453 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4455 MachineMemOperand *MMO =
4456 DAG.getMachineFunction().
4457 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4458 MachineMemOperand::MOLoad, VT.getStoreSize(),
4459 Alignment, AAInfo, Ranges);
4461 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4462 ISD::NON_EXTLOAD, IsExpanding);
4463 if (AddToChain)
4464 PendingLoads.push_back(Load.getValue(1));
4465 setValue(&I, Load);
4468 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4469 SDLoc sdl = getCurSDLoc();
4471 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4472 const Value *Ptr = I.getArgOperand(0);
4473 SDValue Src0 = getValue(I.getArgOperand(3));
4474 SDValue Mask = getValue(I.getArgOperand(2));
4476 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4477 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4478 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4479 if (!Alignment)
4480 Alignment = DAG.getEVTAlignment(VT);
4482 AAMDNodes AAInfo;
4483 I.getAAMetadata(AAInfo);
4484 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4486 SDValue Root = DAG.getRoot();
4487 SDValue Base;
4488 SDValue Index;
4489 ISD::MemIndexType IndexType;
4490 SDValue Scale;
4491 const Value *BasePtr = Ptr;
4492 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4493 this);
4494 bool ConstantMemory = false;
4495 if (UniformBase && AA &&
4496 AA->pointsToConstantMemory(
4497 MemoryLocation(BasePtr,
4498 LocationSize::precise(
4499 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4500 AAInfo))) {
4501 // Do not serialize (non-volatile) loads of constant memory with anything.
4502 Root = DAG.getEntryNode();
4503 ConstantMemory = true;
4506 MachineMemOperand *MMO =
4507 DAG.getMachineFunction().
4508 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4509 MachineMemOperand::MOLoad, VT.getStoreSize(),
4510 Alignment, AAInfo, Ranges);
4512 if (!UniformBase) {
4513 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4514 Index = getValue(Ptr);
4515 IndexType = ISD::SIGNED_SCALED;
4516 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4518 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4519 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4520 Ops, MMO, IndexType);
4522 SDValue OutChain = Gather.getValue(1);
4523 if (!ConstantMemory)
4524 PendingLoads.push_back(OutChain);
4525 setValue(&I, Gather);
4528 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4529 SDLoc dl = getCurSDLoc();
4530 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4531 AtomicOrdering FailureOrdering = I.getFailureOrdering();
4532 SyncScope::ID SSID = I.getSyncScopeID();
4534 SDValue InChain = getRoot();
4536 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4537 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4539 auto Alignment = DAG.getEVTAlignment(MemVT);
4541 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4542 if (I.isVolatile())
4543 Flags |= MachineMemOperand::MOVolatile;
4544 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4546 MachineFunction &MF = DAG.getMachineFunction();
4547 MachineMemOperand *MMO =
4548 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4549 Flags, MemVT.getStoreSize(), Alignment,
4550 AAMDNodes(), nullptr, SSID, SuccessOrdering,
4551 FailureOrdering);
4553 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4554 dl, MemVT, VTs, InChain,
4555 getValue(I.getPointerOperand()),
4556 getValue(I.getCompareOperand()),
4557 getValue(I.getNewValOperand()), MMO);
4559 SDValue OutChain = L.getValue(2);
4561 setValue(&I, L);
4562 DAG.setRoot(OutChain);
4565 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4566 SDLoc dl = getCurSDLoc();
4567 ISD::NodeType NT;
4568 switch (I.getOperation()) {
4569 default: llvm_unreachable("Unknown atomicrmw operation");
4570 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4571 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4572 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4573 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4574 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4575 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4576 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4577 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4578 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4579 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4580 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4581 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4582 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4584 AtomicOrdering Ordering = I.getOrdering();
4585 SyncScope::ID SSID = I.getSyncScopeID();
4587 SDValue InChain = getRoot();
4589 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4590 auto Alignment = DAG.getEVTAlignment(MemVT);
4592 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4593 if (I.isVolatile())
4594 Flags |= MachineMemOperand::MOVolatile;
4595 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4597 MachineFunction &MF = DAG.getMachineFunction();
4598 MachineMemOperand *MMO =
4599 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4600 MemVT.getStoreSize(), Alignment, AAMDNodes(),
4601 nullptr, SSID, Ordering);
4603 SDValue L =
4604 DAG.getAtomic(NT, dl, MemVT, InChain,
4605 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4606 MMO);
4608 SDValue OutChain = L.getValue(1);
4610 setValue(&I, L);
4611 DAG.setRoot(OutChain);
4614 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4615 SDLoc dl = getCurSDLoc();
4616 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4617 SDValue Ops[3];
4618 Ops[0] = getRoot();
4619 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4620 TLI.getFenceOperandTy(DAG.getDataLayout()));
4621 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4622 TLI.getFenceOperandTy(DAG.getDataLayout()));
4623 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4626 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4627 SDLoc dl = getCurSDLoc();
4628 AtomicOrdering Order = I.getOrdering();
4629 SyncScope::ID SSID = I.getSyncScopeID();
4631 SDValue InChain = getRoot();
4633 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4634 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4635 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4637 if (!TLI.supportsUnalignedAtomics() &&
4638 I.getAlignment() < MemVT.getSizeInBits() / 8)
4639 report_fatal_error("Cannot generate unaligned atomic load");
4641 auto Flags = MachineMemOperand::MOLoad;
4642 if (I.isVolatile())
4643 Flags |= MachineMemOperand::MOVolatile;
4644 if (I.hasMetadata(LLVMContext::MD_invariant_load))
4645 Flags |= MachineMemOperand::MOInvariant;
4646 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4647 DAG.getDataLayout()))
4648 Flags |= MachineMemOperand::MODereferenceable;
4650 Flags |= TLI.getMMOFlags(I);
4652 MachineMemOperand *MMO =
4653 DAG.getMachineFunction().
4654 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4655 Flags, MemVT.getStoreSize(),
4656 I.getAlignment() ? I.getAlignment() :
4657 DAG.getEVTAlignment(MemVT),
4658 AAMDNodes(), nullptr, SSID, Order);
4660 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4661 SDValue L =
4662 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4663 getValue(I.getPointerOperand()), MMO);
4665 SDValue OutChain = L.getValue(1);
4666 if (MemVT != VT)
4667 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4669 setValue(&I, L);
4670 DAG.setRoot(OutChain);
4673 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4674 SDLoc dl = getCurSDLoc();
4676 AtomicOrdering Ordering = I.getOrdering();
4677 SyncScope::ID SSID = I.getSyncScopeID();
4679 SDValue InChain = getRoot();
4681 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4682 EVT MemVT =
4683 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4685 if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4686 report_fatal_error("Cannot generate unaligned atomic store");
4688 auto Flags = MachineMemOperand::MOStore;
4689 if (I.isVolatile())
4690 Flags |= MachineMemOperand::MOVolatile;
4691 Flags |= TLI.getMMOFlags(I);
4693 MachineFunction &MF = DAG.getMachineFunction();
4694 MachineMemOperand *MMO =
4695 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4696 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4697 nullptr, SSID, Ordering);
4699 SDValue Val = getValue(I.getValueOperand());
4700 if (Val.getValueType() != MemVT)
4701 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4703 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4704 getValue(I.getPointerOperand()), Val, MMO);
4707 DAG.setRoot(OutChain);
4710 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4711 /// node.
4712 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4713 unsigned Intrinsic) {
4714 // Ignore the callsite's attributes. A specific call site may be marked with
4715 // readnone, but the lowering code will expect the chain based on the
4716 // definition.
4717 const Function *F = I.getCalledFunction();
4718 bool HasChain = !F->doesNotAccessMemory();
4719 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4721 // Build the operand list.
4722 SmallVector<SDValue, 8> Ops;
4723 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4724 if (OnlyLoad) {
4725 // We don't need to serialize loads against other loads.
4726 Ops.push_back(DAG.getRoot());
4727 } else {
4728 Ops.push_back(getRoot());
4732 // Info is set by getTgtMemInstrinsic
4733 TargetLowering::IntrinsicInfo Info;
4734 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4735 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4736 DAG.getMachineFunction(),
4737 Intrinsic);
4739 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4740 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4741 Info.opc == ISD::INTRINSIC_W_CHAIN)
4742 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4743 TLI.getPointerTy(DAG.getDataLayout())));
4745 // Add all operands of the call to the operand list.
4746 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4747 SDValue Op = getValue(I.getArgOperand(i));
4748 Ops.push_back(Op);
4751 SmallVector<EVT, 4> ValueVTs;
4752 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4754 if (HasChain)
4755 ValueVTs.push_back(MVT::Other);
4757 SDVTList VTs = DAG.getVTList(ValueVTs);
4759 // Create the node.
4760 SDValue Result;
4761 if (IsTgtIntrinsic) {
4762 // This is target intrinsic that touches memory
4763 AAMDNodes AAInfo;
4764 I.getAAMetadata(AAInfo);
4765 Result = DAG.getMemIntrinsicNode(
4766 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4767 MachinePointerInfo(Info.ptrVal, Info.offset),
4768 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4769 } else if (!HasChain) {
4770 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4771 } else if (!I.getType()->isVoidTy()) {
4772 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4773 } else {
4774 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4777 if (HasChain) {
4778 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4779 if (OnlyLoad)
4780 PendingLoads.push_back(Chain);
4781 else
4782 DAG.setRoot(Chain);
4785 if (!I.getType()->isVoidTy()) {
4786 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4787 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4788 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4789 } else
4790 Result = lowerRangeToAssertZExt(DAG, I, Result);
4792 setValue(&I, Result);
4796 /// GetSignificand - Get the significand and build it into a floating-point
4797 /// number with exponent of 1:
4799 /// Op = (Op & 0x007fffff) | 0x3f800000;
4801 /// where Op is the hexadecimal representation of floating point value.
4802 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4803 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4804 DAG.getConstant(0x007fffff, dl, MVT::i32));
4805 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4806 DAG.getConstant(0x3f800000, dl, MVT::i32));
4807 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4810 /// GetExponent - Get the exponent:
4812 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4814 /// where Op is the hexadecimal representation of floating point value.
4815 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4816 const TargetLowering &TLI, const SDLoc &dl) {
4817 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4818 DAG.getConstant(0x7f800000, dl, MVT::i32));
4819 SDValue t1 = DAG.getNode(
4820 ISD::SRL, dl, MVT::i32, t0,
4821 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4822 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4823 DAG.getConstant(127, dl, MVT::i32));
4824 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4827 /// getF32Constant - Get 32-bit floating point constant.
4828 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4829 const SDLoc &dl) {
4830 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4831 MVT::f32);
4834 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4835 SelectionDAG &DAG) {
4836 // TODO: What fast-math-flags should be set on the floating-point nodes?
4838 // IntegerPartOfX = ((int32_t)(t0);
4839 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4841 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4842 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4843 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4845 // IntegerPartOfX <<= 23;
4846 IntegerPartOfX = DAG.getNode(
4847 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4848 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4849 DAG.getDataLayout())));
4851 SDValue TwoToFractionalPartOfX;
4852 if (LimitFloatPrecision <= 6) {
4853 // For floating-point precision of 6:
4855 // TwoToFractionalPartOfX =
4856 // 0.997535578f +
4857 // (0.735607626f + 0.252464424f * x) * x;
4859 // error 0.0144103317, which is 6 bits
4860 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4861 getF32Constant(DAG, 0x3e814304, dl));
4862 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4863 getF32Constant(DAG, 0x3f3c50c8, dl));
4864 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4865 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4866 getF32Constant(DAG, 0x3f7f5e7e, dl));
4867 } else if (LimitFloatPrecision <= 12) {
4868 // For floating-point precision of 12:
4870 // TwoToFractionalPartOfX =
4871 // 0.999892986f +
4872 // (0.696457318f +
4873 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4875 // error 0.000107046256, which is 13 to 14 bits
4876 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4877 getF32Constant(DAG, 0x3da235e3, dl));
4878 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4879 getF32Constant(DAG, 0x3e65b8f3, dl));
4880 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4881 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4882 getF32Constant(DAG, 0x3f324b07, dl));
4883 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4884 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4885 getF32Constant(DAG, 0x3f7ff8fd, dl));
4886 } else { // LimitFloatPrecision <= 18
4887 // For floating-point precision of 18:
4889 // TwoToFractionalPartOfX =
4890 // 0.999999982f +
4891 // (0.693148872f +
4892 // (0.240227044f +
4893 // (0.554906021e-1f +
4894 // (0.961591928e-2f +
4895 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4896 // error 2.47208000*10^(-7), which is better than 18 bits
4897 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4898 getF32Constant(DAG, 0x3924b03e, dl));
4899 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4900 getF32Constant(DAG, 0x3ab24b87, dl));
4901 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4902 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4903 getF32Constant(DAG, 0x3c1d8c17, dl));
4904 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4905 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4906 getF32Constant(DAG, 0x3d634a1d, dl));
4907 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4908 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4909 getF32Constant(DAG, 0x3e75fe14, dl));
4910 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4911 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4912 getF32Constant(DAG, 0x3f317234, dl));
4913 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4914 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4915 getF32Constant(DAG, 0x3f800000, dl));
4918 // Add the exponent into the result in integer domain.
4919 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4920 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4921 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4924 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4925 /// limited-precision mode.
4926 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4927 const TargetLowering &TLI) {
4928 if (Op.getValueType() == MVT::f32 &&
4929 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4931 // Put the exponent in the right bit position for later addition to the
4932 // final result:
4934 // #define LOG2OFe 1.4426950f
4935 // t0 = Op * LOG2OFe
4937 // TODO: What fast-math-flags should be set here?
4938 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4939 getF32Constant(DAG, 0x3fb8aa3b, dl));
4940 return getLimitedPrecisionExp2(t0, dl, DAG);
4943 // No special expansion.
4944 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4947 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4948 /// limited-precision mode.
4949 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4950 const TargetLowering &TLI) {
4951 // TODO: What fast-math-flags should be set on the floating-point nodes?
4953 if (Op.getValueType() == MVT::f32 &&
4954 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4955 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4957 // Scale the exponent by log(2) [0.69314718f].
4958 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4959 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4960 getF32Constant(DAG, 0x3f317218, dl));
4962 // Get the significand and build it into a floating-point number with
4963 // exponent of 1.
4964 SDValue X = GetSignificand(DAG, Op1, dl);
4966 SDValue LogOfMantissa;
4967 if (LimitFloatPrecision <= 6) {
4968 // For floating-point precision of 6:
4970 // LogofMantissa =
4971 // -1.1609546f +
4972 // (1.4034025f - 0.23903021f * x) * x;
4974 // error 0.0034276066, which is better than 8 bits
4975 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4976 getF32Constant(DAG, 0xbe74c456, dl));
4977 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4978 getF32Constant(DAG, 0x3fb3a2b1, dl));
4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4980 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4981 getF32Constant(DAG, 0x3f949a29, dl));
4982 } else if (LimitFloatPrecision <= 12) {
4983 // For floating-point precision of 12:
4985 // LogOfMantissa =
4986 // -1.7417939f +
4987 // (2.8212026f +
4988 // (-1.4699568f +
4989 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4991 // error 0.000061011436, which is 14 bits
4992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4993 getF32Constant(DAG, 0xbd67b6d6, dl));
4994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4995 getF32Constant(DAG, 0x3ee4f4b8, dl));
4996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4997 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4998 getF32Constant(DAG, 0x3fbc278b, dl));
4999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5001 getF32Constant(DAG, 0x40348e95, dl));
5002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5003 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5004 getF32Constant(DAG, 0x3fdef31a, dl));
5005 } else { // LimitFloatPrecision <= 18
5006 // For floating-point precision of 18:
5008 // LogOfMantissa =
5009 // -2.1072184f +
5010 // (4.2372794f +
5011 // (-3.7029485f +
5012 // (2.2781945f +
5013 // (-0.87823314f +
5014 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5016 // error 0.0000023660568, which is better than 18 bits
5017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5018 getF32Constant(DAG, 0xbc91e5ac, dl));
5019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5020 getF32Constant(DAG, 0x3e4350aa, dl));
5021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5022 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5023 getF32Constant(DAG, 0x3f60d3e3, dl));
5024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5026 getF32Constant(DAG, 0x4011cdf0, dl));
5027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5028 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5029 getF32Constant(DAG, 0x406cfd1c, dl));
5030 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5031 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5032 getF32Constant(DAG, 0x408797cb, dl));
5033 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5034 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5035 getF32Constant(DAG, 0x4006dcab, dl));
5038 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5041 // No special expansion.
5042 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5045 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5046 /// limited-precision mode.
5047 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5048 const TargetLowering &TLI) {
5049 // TODO: What fast-math-flags should be set on the floating-point nodes?
5051 if (Op.getValueType() == MVT::f32 &&
5052 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5053 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5055 // Get the exponent.
5056 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5058 // Get the significand and build it into a floating-point number with
5059 // exponent of 1.
5060 SDValue X = GetSignificand(DAG, Op1, dl);
5062 // Different possible minimax approximations of significand in
5063 // floating-point for various degrees of accuracy over [1,2].
5064 SDValue Log2ofMantissa;
5065 if (LimitFloatPrecision <= 6) {
5066 // For floating-point precision of 6:
5068 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5070 // error 0.0049451742, which is more than 7 bits
5071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5072 getF32Constant(DAG, 0xbeb08fe0, dl));
5073 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5074 getF32Constant(DAG, 0x40019463, dl));
5075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5076 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5077 getF32Constant(DAG, 0x3fd6633d, dl));
5078 } else if (LimitFloatPrecision <= 12) {
5079 // For floating-point precision of 12:
5081 // Log2ofMantissa =
5082 // -2.51285454f +
5083 // (4.07009056f +
5084 // (-2.12067489f +
5085 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5087 // error 0.0000876136000, which is better than 13 bits
5088 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5089 getF32Constant(DAG, 0xbda7262e, dl));
5090 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5091 getF32Constant(DAG, 0x3f25280b, dl));
5092 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5093 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5094 getF32Constant(DAG, 0x4007b923, dl));
5095 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5096 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5097 getF32Constant(DAG, 0x40823e2f, dl));
5098 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5099 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5100 getF32Constant(DAG, 0x4020d29c, dl));
5101 } else { // LimitFloatPrecision <= 18
5102 // For floating-point precision of 18:
5104 // Log2ofMantissa =
5105 // -3.0400495f +
5106 // (6.1129976f +
5107 // (-5.3420409f +
5108 // (3.2865683f +
5109 // (-1.2669343f +
5110 // (0.27515199f -
5111 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5113 // error 0.0000018516, which is better than 18 bits
5114 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5115 getF32Constant(DAG, 0xbcd2769e, dl));
5116 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5117 getF32Constant(DAG, 0x3e8ce0b9, dl));
5118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5119 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5120 getF32Constant(DAG, 0x3fa22ae7, dl));
5121 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5122 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5123 getF32Constant(DAG, 0x40525723, dl));
5124 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5125 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5126 getF32Constant(DAG, 0x40aaf200, dl));
5127 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5128 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5129 getF32Constant(DAG, 0x40c39dad, dl));
5130 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5131 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5132 getF32Constant(DAG, 0x4042902c, dl));
5135 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5138 // No special expansion.
5139 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5142 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5143 /// limited-precision mode.
5144 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5145 const TargetLowering &TLI) {
5146 // TODO: What fast-math-flags should be set on the floating-point nodes?
5148 if (Op.getValueType() == MVT::f32 &&
5149 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5150 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5152 // Scale the exponent by log10(2) [0.30102999f].
5153 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5154 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5155 getF32Constant(DAG, 0x3e9a209a, dl));
5157 // Get the significand and build it into a floating-point number with
5158 // exponent of 1.
5159 SDValue X = GetSignificand(DAG, Op1, dl);
5161 SDValue Log10ofMantissa;
5162 if (LimitFloatPrecision <= 6) {
5163 // For floating-point precision of 6:
5165 // Log10ofMantissa =
5166 // -0.50419619f +
5167 // (0.60948995f - 0.10380950f * x) * x;
5169 // error 0.0014886165, which is 6 bits
5170 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5171 getF32Constant(DAG, 0xbdd49a13, dl));
5172 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5173 getF32Constant(DAG, 0x3f1c0789, dl));
5174 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5175 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5176 getF32Constant(DAG, 0x3f011300, dl));
5177 } else if (LimitFloatPrecision <= 12) {
5178 // For floating-point precision of 12:
5180 // Log10ofMantissa =
5181 // -0.64831180f +
5182 // (0.91751397f +
5183 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5185 // error 0.00019228036, which is better than 12 bits
5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5187 getF32Constant(DAG, 0x3d431f31, dl));
5188 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5189 getF32Constant(DAG, 0x3ea21fb2, dl));
5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5191 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5192 getF32Constant(DAG, 0x3f6ae232, dl));
5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5194 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5195 getF32Constant(DAG, 0x3f25f7c3, dl));
5196 } else { // LimitFloatPrecision <= 18
5197 // For floating-point precision of 18:
5199 // Log10ofMantissa =
5200 // -0.84299375f +
5201 // (1.5327582f +
5202 // (-1.0688956f +
5203 // (0.49102474f +
5204 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5206 // error 0.0000037995730, which is better than 18 bits
5207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5208 getF32Constant(DAG, 0x3c5d51ce, dl));
5209 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5210 getF32Constant(DAG, 0x3e00685a, dl));
5211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5212 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5213 getF32Constant(DAG, 0x3efb6798, dl));
5214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5215 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5216 getF32Constant(DAG, 0x3f88d192, dl));
5217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5218 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5219 getF32Constant(DAG, 0x3fc4316c, dl));
5220 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5221 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5222 getF32Constant(DAG, 0x3f57ce70, dl));
5225 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5228 // No special expansion.
5229 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5232 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5233 /// limited-precision mode.
5234 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5235 const TargetLowering &TLI) {
5236 if (Op.getValueType() == MVT::f32 &&
5237 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5238 return getLimitedPrecisionExp2(Op, dl, DAG);
5240 // No special expansion.
5241 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5244 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5245 /// limited-precision mode with x == 10.0f.
5246 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5247 SelectionDAG &DAG, const TargetLowering &TLI) {
5248 bool IsExp10 = false;
5249 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5251 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5252 APFloat Ten(10.0f);
5253 IsExp10 = LHSC->isExactlyValue(Ten);
5257 // TODO: What fast-math-flags should be set on the FMUL node?
5258 if (IsExp10) {
5259 // Put the exponent in the right bit position for later addition to the
5260 // final result:
5262 // #define LOG2OF10 3.3219281f
5263 // t0 = Op * LOG2OF10;
5264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5265 getF32Constant(DAG, 0x40549a78, dl));
5266 return getLimitedPrecisionExp2(t0, dl, DAG);
5269 // No special expansion.
5270 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5273 /// ExpandPowI - Expand a llvm.powi intrinsic.
5274 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5275 SelectionDAG &DAG) {
5276 // If RHS is a constant, we can expand this out to a multiplication tree,
5277 // otherwise we end up lowering to a call to __powidf2 (for example). When
5278 // optimizing for size, we only want to do this if the expansion would produce
5279 // a small number of multiplies, otherwise we do the full expansion.
5280 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5281 // Get the exponent as a positive value.
5282 unsigned Val = RHSC->getSExtValue();
5283 if ((int)Val < 0) Val = -Val;
5285 // powi(x, 0) -> 1.0
5286 if (Val == 0)
5287 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5289 const Function &F = DAG.getMachineFunction().getFunction();
5290 if (!F.hasOptSize() ||
5291 // If optimizing for size, don't insert too many multiplies.
5292 // This inserts up to 5 multiplies.
5293 countPopulation(Val) + Log2_32(Val) < 7) {
5294 // We use the simple binary decomposition method to generate the multiply
5295 // sequence. There are more optimal ways to do this (for example,
5296 // powi(x,15) generates one more multiply than it should), but this has
5297 // the benefit of being both really simple and much better than a libcall.
5298 SDValue Res; // Logically starts equal to 1.0
5299 SDValue CurSquare = LHS;
5300 // TODO: Intrinsics should have fast-math-flags that propagate to these
5301 // nodes.
5302 while (Val) {
5303 if (Val & 1) {
5304 if (Res.getNode())
5305 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5306 else
5307 Res = CurSquare; // 1.0*CurSquare.
5310 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5311 CurSquare, CurSquare);
5312 Val >>= 1;
5315 // If the original was negative, invert the result, producing 1/(x*x*x).
5316 if (RHSC->getSExtValue() < 0)
5317 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5318 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5319 return Res;
5323 // Otherwise, expand to a libcall.
5324 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5327 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5328 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5329 static void
5330 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5331 const SDValue &N) {
5332 switch (N.getOpcode()) {
5333 case ISD::CopyFromReg: {
5334 SDValue Op = N.getOperand(1);
5335 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5336 Op.getValueType().getSizeInBits());
5337 return;
5339 case ISD::BITCAST:
5340 case ISD::AssertZext:
5341 case ISD::AssertSext:
5342 case ISD::TRUNCATE:
5343 getUnderlyingArgRegs(Regs, N.getOperand(0));
5344 return;
5345 case ISD::BUILD_PAIR:
5346 case ISD::BUILD_VECTOR:
5347 case ISD::CONCAT_VECTORS:
5348 for (SDValue Op : N->op_values())
5349 getUnderlyingArgRegs(Regs, Op);
5350 return;
5351 default:
5352 return;
5356 /// If the DbgValueInst is a dbg_value of a function argument, create the
5357 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5358 /// instruction selection, they will be inserted to the entry BB.
5359 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5360 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5361 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5362 const Argument *Arg = dyn_cast<Argument>(V);
5363 if (!Arg)
5364 return false;
5366 if (!IsDbgDeclare) {
5367 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5368 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5369 // the entry block.
5370 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5371 if (!IsInEntryBlock)
5372 return false;
5374 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5375 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5376 // variable that also is a param.
5378 // Although, if we are at the top of the entry block already, we can still
5379 // emit using ArgDbgValue. This might catch some situations when the
5380 // dbg.value refers to an argument that isn't used in the entry block, so
5381 // any CopyToReg node would be optimized out and the only way to express
5382 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5383 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5384 // we should only emit as ArgDbgValue if the Variable is an argument to the
5385 // current function, and the dbg.value intrinsic is found in the entry
5386 // block.
5387 bool VariableIsFunctionInputArg = Variable->isParameter() &&
5388 !DL->getInlinedAt();
5389 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5390 if (!IsInPrologue && !VariableIsFunctionInputArg)
5391 return false;
5393 // Here we assume that a function argument on IR level only can be used to
5394 // describe one input parameter on source level. If we for example have
5395 // source code like this
5397 // struct A { long x, y; };
5398 // void foo(struct A a, long b) {
5399 // ...
5400 // b = a.x;
5401 // ...
5402 // }
5404 // and IR like this
5406 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5407 // entry:
5408 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5409 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5410 // call void @llvm.dbg.value(metadata i32 %b, "b",
5411 // ...
5412 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5413 // ...
5415 // then the last dbg.value is describing a parameter "b" using a value that
5416 // is an argument. But since we already has used %a1 to describe a parameter
5417 // we should not handle that last dbg.value here (that would result in an
5418 // incorrect hoisting of the DBG_VALUE to the function entry).
5419 // Notice that we allow one dbg.value per IR level argument, to accomodate
5420 // for the situation with fragments above.
5421 if (VariableIsFunctionInputArg) {
5422 unsigned ArgNo = Arg->getArgNo();
5423 if (ArgNo >= FuncInfo.DescribedArgs.size())
5424 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5425 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5426 return false;
5427 FuncInfo.DescribedArgs.set(ArgNo);
5431 MachineFunction &MF = DAG.getMachineFunction();
5432 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5434 bool IsIndirect = false;
5435 Optional<MachineOperand> Op;
5436 // Some arguments' frame index is recorded during argument lowering.
5437 int FI = FuncInfo.getArgumentFrameIndex(Arg);
5438 if (FI != std::numeric_limits<int>::max())
5439 Op = MachineOperand::CreateFI(FI);
5441 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5442 if (!Op && N.getNode()) {
5443 getUnderlyingArgRegs(ArgRegsAndSizes, N);
5444 Register Reg;
5445 if (ArgRegsAndSizes.size() == 1)
5446 Reg = ArgRegsAndSizes.front().first;
5448 if (Reg && Reg.isVirtual()) {
5449 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5450 Register PR = RegInfo.getLiveInPhysReg(Reg);
5451 if (PR)
5452 Reg = PR;
5454 if (Reg) {
5455 Op = MachineOperand::CreateReg(Reg, false);
5456 IsIndirect = IsDbgDeclare;
5460 if (!Op && N.getNode()) {
5461 // Check if frame index is available.
5462 SDValue LCandidate = peekThroughBitcasts(N);
5463 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5464 if (FrameIndexSDNode *FINode =
5465 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5466 Op = MachineOperand::CreateFI(FINode->getIndex());
5469 if (!Op) {
5470 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5471 auto splitMultiRegDbgValue
5472 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5473 unsigned Offset = 0;
5474 for (auto RegAndSize : SplitRegs) {
5475 auto FragmentExpr = DIExpression::createFragmentExpression(
5476 Expr, Offset, RegAndSize.second);
5477 if (!FragmentExpr)
5478 continue;
5479 FuncInfo.ArgDbgValues.push_back(
5480 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5481 RegAndSize.first, Variable, *FragmentExpr));
5482 Offset += RegAndSize.second;
5486 // Check if ValueMap has reg number.
5487 DenseMap<const Value *, unsigned>::const_iterator
5488 VMI = FuncInfo.ValueMap.find(V);
5489 if (VMI != FuncInfo.ValueMap.end()) {
5490 const auto &TLI = DAG.getTargetLoweringInfo();
5491 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5492 V->getType(), getABIRegCopyCC(V));
5493 if (RFV.occupiesMultipleRegs()) {
5494 splitMultiRegDbgValue(RFV.getRegsAndSizes());
5495 return true;
5498 Op = MachineOperand::CreateReg(VMI->second, false);
5499 IsIndirect = IsDbgDeclare;
5500 } else if (ArgRegsAndSizes.size() > 1) {
5501 // This was split due to the calling convention, and no virtual register
5502 // mapping exists for the value.
5503 splitMultiRegDbgValue(ArgRegsAndSizes);
5504 return true;
5508 if (!Op)
5509 return false;
5511 assert(Variable->isValidLocationForIntrinsic(DL) &&
5512 "Expected inlined-at fields to agree");
5513 IsIndirect = (Op->isReg()) ? IsIndirect : true;
5514 FuncInfo.ArgDbgValues.push_back(
5515 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5516 *Op, Variable, Expr));
5518 return true;
5521 /// Return the appropriate SDDbgValue based on N.
5522 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5523 DILocalVariable *Variable,
5524 DIExpression *Expr,
5525 const DebugLoc &dl,
5526 unsigned DbgSDNodeOrder) {
5527 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5528 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5529 // stack slot locations.
5531 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5532 // debug values here after optimization:
5534 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5535 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5537 // Both describe the direct values of their associated variables.
5538 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5539 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5541 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5542 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5545 // VisualStudio defines setjmp as _setjmp
5546 #if defined(_MSC_VER) && defined(setjmp) && \
5547 !defined(setjmp_undefined_for_msvc)
5548 # pragma push_macro("setjmp")
5549 # undef setjmp
5550 # define setjmp_undefined_for_msvc
5551 #endif
5553 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5554 switch (Intrinsic) {
5555 case Intrinsic::smul_fix:
5556 return ISD::SMULFIX;
5557 case Intrinsic::umul_fix:
5558 return ISD::UMULFIX;
5559 default:
5560 llvm_unreachable("Unhandled fixed point intrinsic");
5564 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5565 const char *FunctionName) {
5566 assert(FunctionName && "FunctionName must not be nullptr");
5567 SDValue Callee = DAG.getExternalSymbol(
5568 FunctionName,
5569 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5570 LowerCallTo(&I, Callee, I.isTailCall());
5573 /// Lower the call to the specified intrinsic function.
5574 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5575 unsigned Intrinsic) {
5576 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5577 SDLoc sdl = getCurSDLoc();
5578 DebugLoc dl = getCurDebugLoc();
5579 SDValue Res;
5581 switch (Intrinsic) {
5582 default:
5583 // By default, turn this into a target intrinsic node.
5584 visitTargetIntrinsic(I, Intrinsic);
5585 return;
5586 case Intrinsic::vastart: visitVAStart(I); return;
5587 case Intrinsic::vaend: visitVAEnd(I); return;
5588 case Intrinsic::vacopy: visitVACopy(I); return;
5589 case Intrinsic::returnaddress:
5590 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5591 TLI.getPointerTy(DAG.getDataLayout()),
5592 getValue(I.getArgOperand(0))));
5593 return;
5594 case Intrinsic::addressofreturnaddress:
5595 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5596 TLI.getPointerTy(DAG.getDataLayout())));
5597 return;
5598 case Intrinsic::sponentry:
5599 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5600 TLI.getFrameIndexTy(DAG.getDataLayout())));
5601 return;
5602 case Intrinsic::frameaddress:
5603 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5604 TLI.getFrameIndexTy(DAG.getDataLayout()),
5605 getValue(I.getArgOperand(0))));
5606 return;
5607 case Intrinsic::read_register: {
5608 Value *Reg = I.getArgOperand(0);
5609 SDValue Chain = getRoot();
5610 SDValue RegName =
5611 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5612 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5613 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5614 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5615 setValue(&I, Res);
5616 DAG.setRoot(Res.getValue(1));
5617 return;
5619 case Intrinsic::write_register: {
5620 Value *Reg = I.getArgOperand(0);
5621 Value *RegValue = I.getArgOperand(1);
5622 SDValue Chain = getRoot();
5623 SDValue RegName =
5624 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5625 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5626 RegName, getValue(RegValue)));
5627 return;
5629 case Intrinsic::setjmp:
5630 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5631 return;
5632 case Intrinsic::longjmp:
5633 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5634 return;
5635 case Intrinsic::memcpy: {
5636 const auto &MCI = cast<MemCpyInst>(I);
5637 SDValue Op1 = getValue(I.getArgOperand(0));
5638 SDValue Op2 = getValue(I.getArgOperand(1));
5639 SDValue Op3 = getValue(I.getArgOperand(2));
5640 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5641 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5642 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5643 unsigned Align = MinAlign(DstAlign, SrcAlign);
5644 bool isVol = MCI.isVolatile();
5645 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5646 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5647 // node.
5648 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5649 false, isTC,
5650 MachinePointerInfo(I.getArgOperand(0)),
5651 MachinePointerInfo(I.getArgOperand(1)));
5652 updateDAGForMaybeTailCall(MC);
5653 return;
5655 case Intrinsic::memset: {
5656 const auto &MSI = cast<MemSetInst>(I);
5657 SDValue Op1 = getValue(I.getArgOperand(0));
5658 SDValue Op2 = getValue(I.getArgOperand(1));
5659 SDValue Op3 = getValue(I.getArgOperand(2));
5660 // @llvm.memset defines 0 and 1 to both mean no alignment.
5661 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5662 bool isVol = MSI.isVolatile();
5663 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5664 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5665 isTC, MachinePointerInfo(I.getArgOperand(0)));
5666 updateDAGForMaybeTailCall(MS);
5667 return;
5669 case Intrinsic::memmove: {
5670 const auto &MMI = cast<MemMoveInst>(I);
5671 SDValue Op1 = getValue(I.getArgOperand(0));
5672 SDValue Op2 = getValue(I.getArgOperand(1));
5673 SDValue Op3 = getValue(I.getArgOperand(2));
5674 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5675 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5676 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5677 unsigned Align = MinAlign(DstAlign, SrcAlign);
5678 bool isVol = MMI.isVolatile();
5679 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5680 // FIXME: Support passing different dest/src alignments to the memmove DAG
5681 // node.
5682 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5683 isTC, MachinePointerInfo(I.getArgOperand(0)),
5684 MachinePointerInfo(I.getArgOperand(1)));
5685 updateDAGForMaybeTailCall(MM);
5686 return;
5688 case Intrinsic::memcpy_element_unordered_atomic: {
5689 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5690 SDValue Dst = getValue(MI.getRawDest());
5691 SDValue Src = getValue(MI.getRawSource());
5692 SDValue Length = getValue(MI.getLength());
5694 unsigned DstAlign = MI.getDestAlignment();
5695 unsigned SrcAlign = MI.getSourceAlignment();
5696 Type *LengthTy = MI.getLength()->getType();
5697 unsigned ElemSz = MI.getElementSizeInBytes();
5698 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5699 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5700 SrcAlign, Length, LengthTy, ElemSz, isTC,
5701 MachinePointerInfo(MI.getRawDest()),
5702 MachinePointerInfo(MI.getRawSource()));
5703 updateDAGForMaybeTailCall(MC);
5704 return;
5706 case Intrinsic::memmove_element_unordered_atomic: {
5707 auto &MI = cast<AtomicMemMoveInst>(I);
5708 SDValue Dst = getValue(MI.getRawDest());
5709 SDValue Src = getValue(MI.getRawSource());
5710 SDValue Length = getValue(MI.getLength());
5712 unsigned DstAlign = MI.getDestAlignment();
5713 unsigned SrcAlign = MI.getSourceAlignment();
5714 Type *LengthTy = MI.getLength()->getType();
5715 unsigned ElemSz = MI.getElementSizeInBytes();
5716 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5717 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5718 SrcAlign, Length, LengthTy, ElemSz, isTC,
5719 MachinePointerInfo(MI.getRawDest()),
5720 MachinePointerInfo(MI.getRawSource()));
5721 updateDAGForMaybeTailCall(MC);
5722 return;
5724 case Intrinsic::memset_element_unordered_atomic: {
5725 auto &MI = cast<AtomicMemSetInst>(I);
5726 SDValue Dst = getValue(MI.getRawDest());
5727 SDValue Val = getValue(MI.getValue());
5728 SDValue Length = getValue(MI.getLength());
5730 unsigned DstAlign = MI.getDestAlignment();
5731 Type *LengthTy = MI.getLength()->getType();
5732 unsigned ElemSz = MI.getElementSizeInBytes();
5733 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5734 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5735 LengthTy, ElemSz, isTC,
5736 MachinePointerInfo(MI.getRawDest()));
5737 updateDAGForMaybeTailCall(MC);
5738 return;
5740 case Intrinsic::dbg_addr:
5741 case Intrinsic::dbg_declare: {
5742 const auto &DI = cast<DbgVariableIntrinsic>(I);
5743 DILocalVariable *Variable = DI.getVariable();
5744 DIExpression *Expression = DI.getExpression();
5745 dropDanglingDebugInfo(Variable, Expression);
5746 assert(Variable && "Missing variable");
5748 // Check if address has undef value.
5749 const Value *Address = DI.getVariableLocation();
5750 if (!Address || isa<UndefValue>(Address) ||
5751 (Address->use_empty() && !isa<Argument>(Address))) {
5752 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5753 return;
5756 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5758 // Check if this variable can be described by a frame index, typically
5759 // either as a static alloca or a byval parameter.
5760 int FI = std::numeric_limits<int>::max();
5761 if (const auto *AI =
5762 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5763 if (AI->isStaticAlloca()) {
5764 auto I = FuncInfo.StaticAllocaMap.find(AI);
5765 if (I != FuncInfo.StaticAllocaMap.end())
5766 FI = I->second;
5768 } else if (const auto *Arg = dyn_cast<Argument>(
5769 Address->stripInBoundsConstantOffsets())) {
5770 FI = FuncInfo.getArgumentFrameIndex(Arg);
5773 // llvm.dbg.addr is control dependent and always generates indirect
5774 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5775 // the MachineFunction variable table.
5776 if (FI != std::numeric_limits<int>::max()) {
5777 if (Intrinsic == Intrinsic::dbg_addr) {
5778 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5779 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5780 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5782 return;
5785 SDValue &N = NodeMap[Address];
5786 if (!N.getNode() && isa<Argument>(Address))
5787 // Check unused arguments map.
5788 N = UnusedArgNodeMap[Address];
5789 SDDbgValue *SDV;
5790 if (N.getNode()) {
5791 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5792 Address = BCI->getOperand(0);
5793 // Parameters are handled specially.
5794 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5795 if (isParameter && FINode) {
5796 // Byval parameter. We have a frame index at this point.
5797 SDV =
5798 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5799 /*IsIndirect*/ true, dl, SDNodeOrder);
5800 } else if (isa<Argument>(Address)) {
5801 // Address is an argument, so try to emit its dbg value using
5802 // virtual register info from the FuncInfo.ValueMap.
5803 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5804 return;
5805 } else {
5806 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5807 true, dl, SDNodeOrder);
5809 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5810 } else {
5811 // If Address is an argument then try to emit its dbg value using
5812 // virtual register info from the FuncInfo.ValueMap.
5813 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5814 N)) {
5815 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5818 return;
5820 case Intrinsic::dbg_label: {
5821 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5822 DILabel *Label = DI.getLabel();
5823 assert(Label && "Missing label");
5825 SDDbgLabel *SDV;
5826 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5827 DAG.AddDbgLabel(SDV);
5828 return;
5830 case Intrinsic::dbg_value: {
5831 const DbgValueInst &DI = cast<DbgValueInst>(I);
5832 assert(DI.getVariable() && "Missing variable");
5834 DILocalVariable *Variable = DI.getVariable();
5835 DIExpression *Expression = DI.getExpression();
5836 dropDanglingDebugInfo(Variable, Expression);
5837 const Value *V = DI.getValue();
5838 if (!V)
5839 return;
5841 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5842 SDNodeOrder))
5843 return;
5845 // TODO: Dangling debug info will eventually either be resolved or produce
5846 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5847 // between the original dbg.value location and its resolved DBG_VALUE, which
5848 // we should ideally fill with an extra Undef DBG_VALUE.
5850 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5851 return;
5854 case Intrinsic::eh_typeid_for: {
5855 // Find the type id for the given typeinfo.
5856 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5857 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5858 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5859 setValue(&I, Res);
5860 return;
5863 case Intrinsic::eh_return_i32:
5864 case Intrinsic::eh_return_i64:
5865 DAG.getMachineFunction().setCallsEHReturn(true);
5866 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5867 MVT::Other,
5868 getControlRoot(),
5869 getValue(I.getArgOperand(0)),
5870 getValue(I.getArgOperand(1))));
5871 return;
5872 case Intrinsic::eh_unwind_init:
5873 DAG.getMachineFunction().setCallsUnwindInit(true);
5874 return;
5875 case Intrinsic::eh_dwarf_cfa:
5876 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5877 TLI.getPointerTy(DAG.getDataLayout()),
5878 getValue(I.getArgOperand(0))));
5879 return;
5880 case Intrinsic::eh_sjlj_callsite: {
5881 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5882 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5883 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5884 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5886 MMI.setCurrentCallSite(CI->getZExtValue());
5887 return;
5889 case Intrinsic::eh_sjlj_functioncontext: {
5890 // Get and store the index of the function context.
5891 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5892 AllocaInst *FnCtx =
5893 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5894 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5895 MFI.setFunctionContextIndex(FI);
5896 return;
5898 case Intrinsic::eh_sjlj_setjmp: {
5899 SDValue Ops[2];
5900 Ops[0] = getRoot();
5901 Ops[1] = getValue(I.getArgOperand(0));
5902 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5903 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5904 setValue(&I, Op.getValue(0));
5905 DAG.setRoot(Op.getValue(1));
5906 return;
5908 case Intrinsic::eh_sjlj_longjmp:
5909 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5910 getRoot(), getValue(I.getArgOperand(0))));
5911 return;
5912 case Intrinsic::eh_sjlj_setup_dispatch:
5913 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5914 getRoot()));
5915 return;
5916 case Intrinsic::masked_gather:
5917 visitMaskedGather(I);
5918 return;
5919 case Intrinsic::masked_load:
5920 visitMaskedLoad(I);
5921 return;
5922 case Intrinsic::masked_scatter:
5923 visitMaskedScatter(I);
5924 return;
5925 case Intrinsic::masked_store:
5926 visitMaskedStore(I);
5927 return;
5928 case Intrinsic::masked_expandload:
5929 visitMaskedLoad(I, true /* IsExpanding */);
5930 return;
5931 case Intrinsic::masked_compressstore:
5932 visitMaskedStore(I, true /* IsCompressing */);
5933 return;
5934 case Intrinsic::x86_mmx_pslli_w:
5935 case Intrinsic::x86_mmx_pslli_d:
5936 case Intrinsic::x86_mmx_pslli_q:
5937 case Intrinsic::x86_mmx_psrli_w:
5938 case Intrinsic::x86_mmx_psrli_d:
5939 case Intrinsic::x86_mmx_psrli_q:
5940 case Intrinsic::x86_mmx_psrai_w:
5941 case Intrinsic::x86_mmx_psrai_d: {
5942 SDValue ShAmt = getValue(I.getArgOperand(1));
5943 if (isa<ConstantSDNode>(ShAmt)) {
5944 visitTargetIntrinsic(I, Intrinsic);
5945 return;
5947 unsigned NewIntrinsic = 0;
5948 EVT ShAmtVT = MVT::v2i32;
5949 switch (Intrinsic) {
5950 case Intrinsic::x86_mmx_pslli_w:
5951 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5952 break;
5953 case Intrinsic::x86_mmx_pslli_d:
5954 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5955 break;
5956 case Intrinsic::x86_mmx_pslli_q:
5957 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5958 break;
5959 case Intrinsic::x86_mmx_psrli_w:
5960 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5961 break;
5962 case Intrinsic::x86_mmx_psrli_d:
5963 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5964 break;
5965 case Intrinsic::x86_mmx_psrli_q:
5966 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5967 break;
5968 case Intrinsic::x86_mmx_psrai_w:
5969 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5970 break;
5971 case Intrinsic::x86_mmx_psrai_d:
5972 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5973 break;
5974 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5977 // The vector shift intrinsics with scalars uses 32b shift amounts but
5978 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5979 // to be zero.
5980 // We must do this early because v2i32 is not a legal type.
5981 SDValue ShOps[2];
5982 ShOps[0] = ShAmt;
5983 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5984 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5985 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5986 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5987 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5988 DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5989 getValue(I.getArgOperand(0)), ShAmt);
5990 setValue(&I, Res);
5991 return;
5993 case Intrinsic::powi:
5994 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5995 getValue(I.getArgOperand(1)), DAG));
5996 return;
5997 case Intrinsic::log:
5998 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5999 return;
6000 case Intrinsic::log2:
6001 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6002 return;
6003 case Intrinsic::log10:
6004 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6005 return;
6006 case Intrinsic::exp:
6007 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6008 return;
6009 case Intrinsic::exp2:
6010 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6011 return;
6012 case Intrinsic::pow:
6013 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6014 getValue(I.getArgOperand(1)), DAG, TLI));
6015 return;
6016 case Intrinsic::sqrt:
6017 case Intrinsic::fabs:
6018 case Intrinsic::sin:
6019 case Intrinsic::cos:
6020 case Intrinsic::floor:
6021 case Intrinsic::ceil:
6022 case Intrinsic::trunc:
6023 case Intrinsic::rint:
6024 case Intrinsic::nearbyint:
6025 case Intrinsic::round:
6026 case Intrinsic::canonicalize: {
6027 unsigned Opcode;
6028 switch (Intrinsic) {
6029 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6030 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6031 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6032 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6033 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6034 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6035 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6036 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6037 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6038 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6039 case Intrinsic::round: Opcode = ISD::FROUND; break;
6040 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6043 setValue(&I, DAG.getNode(Opcode, sdl,
6044 getValue(I.getArgOperand(0)).getValueType(),
6045 getValue(I.getArgOperand(0))));
6046 return;
6048 case Intrinsic::lround:
6049 case Intrinsic::llround:
6050 case Intrinsic::lrint:
6051 case Intrinsic::llrint: {
6052 unsigned Opcode;
6053 switch (Intrinsic) {
6054 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6055 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6056 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6057 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6058 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6061 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6062 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6063 getValue(I.getArgOperand(0))));
6064 return;
6066 case Intrinsic::minnum:
6067 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6068 getValue(I.getArgOperand(0)).getValueType(),
6069 getValue(I.getArgOperand(0)),
6070 getValue(I.getArgOperand(1))));
6071 return;
6072 case Intrinsic::maxnum:
6073 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6074 getValue(I.getArgOperand(0)).getValueType(),
6075 getValue(I.getArgOperand(0)),
6076 getValue(I.getArgOperand(1))));
6077 return;
6078 case Intrinsic::minimum:
6079 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6080 getValue(I.getArgOperand(0)).getValueType(),
6081 getValue(I.getArgOperand(0)),
6082 getValue(I.getArgOperand(1))));
6083 return;
6084 case Intrinsic::maximum:
6085 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6086 getValue(I.getArgOperand(0)).getValueType(),
6087 getValue(I.getArgOperand(0)),
6088 getValue(I.getArgOperand(1))));
6089 return;
6090 case Intrinsic::copysign:
6091 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6092 getValue(I.getArgOperand(0)).getValueType(),
6093 getValue(I.getArgOperand(0)),
6094 getValue(I.getArgOperand(1))));
6095 return;
6096 case Intrinsic::fma:
6097 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6098 getValue(I.getArgOperand(0)).getValueType(),
6099 getValue(I.getArgOperand(0)),
6100 getValue(I.getArgOperand(1)),
6101 getValue(I.getArgOperand(2))));
6102 return;
6103 case Intrinsic::experimental_constrained_fadd:
6104 case Intrinsic::experimental_constrained_fsub:
6105 case Intrinsic::experimental_constrained_fmul:
6106 case Intrinsic::experimental_constrained_fdiv:
6107 case Intrinsic::experimental_constrained_frem:
6108 case Intrinsic::experimental_constrained_fma:
6109 case Intrinsic::experimental_constrained_fptosi:
6110 case Intrinsic::experimental_constrained_fptoui:
6111 case Intrinsic::experimental_constrained_fptrunc:
6112 case Intrinsic::experimental_constrained_fpext:
6113 case Intrinsic::experimental_constrained_sqrt:
6114 case Intrinsic::experimental_constrained_pow:
6115 case Intrinsic::experimental_constrained_powi:
6116 case Intrinsic::experimental_constrained_sin:
6117 case Intrinsic::experimental_constrained_cos:
6118 case Intrinsic::experimental_constrained_exp:
6119 case Intrinsic::experimental_constrained_exp2:
6120 case Intrinsic::experimental_constrained_log:
6121 case Intrinsic::experimental_constrained_log10:
6122 case Intrinsic::experimental_constrained_log2:
6123 case Intrinsic::experimental_constrained_rint:
6124 case Intrinsic::experimental_constrained_nearbyint:
6125 case Intrinsic::experimental_constrained_maxnum:
6126 case Intrinsic::experimental_constrained_minnum:
6127 case Intrinsic::experimental_constrained_ceil:
6128 case Intrinsic::experimental_constrained_floor:
6129 case Intrinsic::experimental_constrained_round:
6130 case Intrinsic::experimental_constrained_trunc:
6131 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6132 return;
6133 case Intrinsic::fmuladd: {
6134 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6135 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6136 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6137 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6138 getValue(I.getArgOperand(0)).getValueType(),
6139 getValue(I.getArgOperand(0)),
6140 getValue(I.getArgOperand(1)),
6141 getValue(I.getArgOperand(2))));
6142 } else {
6143 // TODO: Intrinsic calls should have fast-math-flags.
6144 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6145 getValue(I.getArgOperand(0)).getValueType(),
6146 getValue(I.getArgOperand(0)),
6147 getValue(I.getArgOperand(1)));
6148 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6149 getValue(I.getArgOperand(0)).getValueType(),
6150 Mul,
6151 getValue(I.getArgOperand(2)));
6152 setValue(&I, Add);
6154 return;
6156 case Intrinsic::convert_to_fp16:
6157 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6158 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6159 getValue(I.getArgOperand(0)),
6160 DAG.getTargetConstant(0, sdl,
6161 MVT::i32))));
6162 return;
6163 case Intrinsic::convert_from_fp16:
6164 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6165 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6166 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6167 getValue(I.getArgOperand(0)))));
6168 return;
6169 case Intrinsic::pcmarker: {
6170 SDValue Tmp = getValue(I.getArgOperand(0));
6171 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6172 return;
6174 case Intrinsic::readcyclecounter: {
6175 SDValue Op = getRoot();
6176 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6177 DAG.getVTList(MVT::i64, MVT::Other), Op);
6178 setValue(&I, Res);
6179 DAG.setRoot(Res.getValue(1));
6180 return;
6182 case Intrinsic::bitreverse:
6183 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6184 getValue(I.getArgOperand(0)).getValueType(),
6185 getValue(I.getArgOperand(0))));
6186 return;
6187 case Intrinsic::bswap:
6188 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6189 getValue(I.getArgOperand(0)).getValueType(),
6190 getValue(I.getArgOperand(0))));
6191 return;
6192 case Intrinsic::cttz: {
6193 SDValue Arg = getValue(I.getArgOperand(0));
6194 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6195 EVT Ty = Arg.getValueType();
6196 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6197 sdl, Ty, Arg));
6198 return;
6200 case Intrinsic::ctlz: {
6201 SDValue Arg = getValue(I.getArgOperand(0));
6202 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6203 EVT Ty = Arg.getValueType();
6204 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6205 sdl, Ty, Arg));
6206 return;
6208 case Intrinsic::ctpop: {
6209 SDValue Arg = getValue(I.getArgOperand(0));
6210 EVT Ty = Arg.getValueType();
6211 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6212 return;
6214 case Intrinsic::fshl:
6215 case Intrinsic::fshr: {
6216 bool IsFSHL = Intrinsic == Intrinsic::fshl;
6217 SDValue X = getValue(I.getArgOperand(0));
6218 SDValue Y = getValue(I.getArgOperand(1));
6219 SDValue Z = getValue(I.getArgOperand(2));
6220 EVT VT = X.getValueType();
6221 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6222 SDValue Zero = DAG.getConstant(0, sdl, VT);
6223 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6225 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6226 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6227 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6228 return;
6231 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6232 // avoid the select that is necessary in the general case to filter out
6233 // the 0-shift possibility that leads to UB.
6234 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6235 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6236 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6238 return;
6241 // Some targets only rotate one way. Try the opposite direction.
6242 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6243 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6244 // Negate the shift amount because it is safe to ignore the high bits.
6245 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6246 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6247 return;
6250 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6251 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6252 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6253 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6254 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6255 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6256 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6257 return;
6260 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6261 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6262 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6263 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6264 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6265 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6267 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6268 // and that is undefined. We must compare and select to avoid UB.
6269 EVT CCVT = MVT::i1;
6270 if (VT.isVector())
6271 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6273 // For fshl, 0-shift returns the 1st arg (X).
6274 // For fshr, 0-shift returns the 2nd arg (Y).
6275 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6276 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6277 return;
6279 case Intrinsic::sadd_sat: {
6280 SDValue Op1 = getValue(I.getArgOperand(0));
6281 SDValue Op2 = getValue(I.getArgOperand(1));
6282 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6283 return;
6285 case Intrinsic::uadd_sat: {
6286 SDValue Op1 = getValue(I.getArgOperand(0));
6287 SDValue Op2 = getValue(I.getArgOperand(1));
6288 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6289 return;
6291 case Intrinsic::ssub_sat: {
6292 SDValue Op1 = getValue(I.getArgOperand(0));
6293 SDValue Op2 = getValue(I.getArgOperand(1));
6294 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6295 return;
6297 case Intrinsic::usub_sat: {
6298 SDValue Op1 = getValue(I.getArgOperand(0));
6299 SDValue Op2 = getValue(I.getArgOperand(1));
6300 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6301 return;
6303 case Intrinsic::smul_fix:
6304 case Intrinsic::umul_fix: {
6305 SDValue Op1 = getValue(I.getArgOperand(0));
6306 SDValue Op2 = getValue(I.getArgOperand(1));
6307 SDValue Op3 = getValue(I.getArgOperand(2));
6308 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6309 Op1.getValueType(), Op1, Op2, Op3));
6310 return;
6312 case Intrinsic::smul_fix_sat: {
6313 SDValue Op1 = getValue(I.getArgOperand(0));
6314 SDValue Op2 = getValue(I.getArgOperand(1));
6315 SDValue Op3 = getValue(I.getArgOperand(2));
6316 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6317 Op3));
6318 return;
6320 case Intrinsic::stacksave: {
6321 SDValue Op = getRoot();
6322 Res = DAG.getNode(
6323 ISD::STACKSAVE, sdl,
6324 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6325 setValue(&I, Res);
6326 DAG.setRoot(Res.getValue(1));
6327 return;
6329 case Intrinsic::stackrestore:
6330 Res = getValue(I.getArgOperand(0));
6331 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6332 return;
6333 case Intrinsic::get_dynamic_area_offset: {
6334 SDValue Op = getRoot();
6335 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6336 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6337 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6338 // target.
6339 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6340 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6341 " intrinsic!");
6342 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6343 Op);
6344 DAG.setRoot(Op);
6345 setValue(&I, Res);
6346 return;
6348 case Intrinsic::stackguard: {
6349 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6350 MachineFunction &MF = DAG.getMachineFunction();
6351 const Module &M = *MF.getFunction().getParent();
6352 SDValue Chain = getRoot();
6353 if (TLI.useLoadStackGuardNode()) {
6354 Res = getLoadStackGuard(DAG, sdl, Chain);
6355 } else {
6356 const Value *Global = TLI.getSDagStackGuard(M);
6357 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6358 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6359 MachinePointerInfo(Global, 0), Align,
6360 MachineMemOperand::MOVolatile);
6362 if (TLI.useStackGuardXorFP())
6363 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6364 DAG.setRoot(Chain);
6365 setValue(&I, Res);
6366 return;
6368 case Intrinsic::stackprotector: {
6369 // Emit code into the DAG to store the stack guard onto the stack.
6370 MachineFunction &MF = DAG.getMachineFunction();
6371 MachineFrameInfo &MFI = MF.getFrameInfo();
6372 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6373 SDValue Src, Chain = getRoot();
6375 if (TLI.useLoadStackGuardNode())
6376 Src = getLoadStackGuard(DAG, sdl, Chain);
6377 else
6378 Src = getValue(I.getArgOperand(0)); // The guard's value.
6380 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6382 int FI = FuncInfo.StaticAllocaMap[Slot];
6383 MFI.setStackProtectorIndex(FI);
6385 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6387 // Store the stack protector onto the stack.
6388 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6389 DAG.getMachineFunction(), FI),
6390 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6391 setValue(&I, Res);
6392 DAG.setRoot(Res);
6393 return;
6395 case Intrinsic::objectsize: {
6396 // If we don't know by now, we're never going to know.
6397 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6399 assert(CI && "Non-constant type in __builtin_object_size?");
6401 SDValue Arg = getValue(I.getCalledValue());
6402 EVT Ty = Arg.getValueType();
6404 if (CI->isZero())
6405 Res = DAG.getConstant(-1ULL, sdl, Ty);
6406 else
6407 Res = DAG.getConstant(0, sdl, Ty);
6409 setValue(&I, Res);
6410 return;
6413 case Intrinsic::is_constant:
6414 // If this wasn't constant-folded away by now, then it's not a
6415 // constant.
6416 setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6417 return;
6419 case Intrinsic::annotation:
6420 case Intrinsic::ptr_annotation:
6421 case Intrinsic::launder_invariant_group:
6422 case Intrinsic::strip_invariant_group:
6423 // Drop the intrinsic, but forward the value
6424 setValue(&I, getValue(I.getOperand(0)));
6425 return;
6426 case Intrinsic::assume:
6427 case Intrinsic::var_annotation:
6428 case Intrinsic::sideeffect:
6429 // Discard annotate attributes, assumptions, and artificial side-effects.
6430 return;
6432 case Intrinsic::codeview_annotation: {
6433 // Emit a label associated with this metadata.
6434 MachineFunction &MF = DAG.getMachineFunction();
6435 MCSymbol *Label =
6436 MF.getMMI().getContext().createTempSymbol("annotation", true);
6437 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6438 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6439 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6440 DAG.setRoot(Res);
6441 return;
6444 case Intrinsic::init_trampoline: {
6445 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6447 SDValue Ops[6];
6448 Ops[0] = getRoot();
6449 Ops[1] = getValue(I.getArgOperand(0));
6450 Ops[2] = getValue(I.getArgOperand(1));
6451 Ops[3] = getValue(I.getArgOperand(2));
6452 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6453 Ops[5] = DAG.getSrcValue(F);
6455 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6457 DAG.setRoot(Res);
6458 return;
6460 case Intrinsic::adjust_trampoline:
6461 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6462 TLI.getPointerTy(DAG.getDataLayout()),
6463 getValue(I.getArgOperand(0))));
6464 return;
6465 case Intrinsic::gcroot: {
6466 assert(DAG.getMachineFunction().getFunction().hasGC() &&
6467 "only valid in functions with gc specified, enforced by Verifier");
6468 assert(GFI && "implied by previous");
6469 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6470 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6472 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6473 GFI->addStackRoot(FI->getIndex(), TypeMap);
6474 return;
6476 case Intrinsic::gcread:
6477 case Intrinsic::gcwrite:
6478 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6479 case Intrinsic::flt_rounds:
6480 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6481 return;
6483 case Intrinsic::expect:
6484 // Just replace __builtin_expect(exp, c) with EXP.
6485 setValue(&I, getValue(I.getArgOperand(0)));
6486 return;
6488 case Intrinsic::debugtrap:
6489 case Intrinsic::trap: {
6490 StringRef TrapFuncName =
6491 I.getAttributes()
6492 .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6493 .getValueAsString();
6494 if (TrapFuncName.empty()) {
6495 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6496 ISD::TRAP : ISD::DEBUGTRAP;
6497 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6498 return;
6500 TargetLowering::ArgListTy Args;
6502 TargetLowering::CallLoweringInfo CLI(DAG);
6503 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6504 CallingConv::C, I.getType(),
6505 DAG.getExternalSymbol(TrapFuncName.data(),
6506 TLI.getPointerTy(DAG.getDataLayout())),
6507 std::move(Args));
6509 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6510 DAG.setRoot(Result.second);
6511 return;
6514 case Intrinsic::uadd_with_overflow:
6515 case Intrinsic::sadd_with_overflow:
6516 case Intrinsic::usub_with_overflow:
6517 case Intrinsic::ssub_with_overflow:
6518 case Intrinsic::umul_with_overflow:
6519 case Intrinsic::smul_with_overflow: {
6520 ISD::NodeType Op;
6521 switch (Intrinsic) {
6522 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6523 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6524 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6525 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6526 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6527 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6528 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6530 SDValue Op1 = getValue(I.getArgOperand(0));
6531 SDValue Op2 = getValue(I.getArgOperand(1));
6533 EVT ResultVT = Op1.getValueType();
6534 EVT OverflowVT = MVT::i1;
6535 if (ResultVT.isVector())
6536 OverflowVT = EVT::getVectorVT(
6537 *Context, OverflowVT, ResultVT.getVectorNumElements());
6539 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6540 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6541 return;
6543 case Intrinsic::prefetch: {
6544 SDValue Ops[5];
6545 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6546 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6547 Ops[0] = DAG.getRoot();
6548 Ops[1] = getValue(I.getArgOperand(0));
6549 Ops[2] = getValue(I.getArgOperand(1));
6550 Ops[3] = getValue(I.getArgOperand(2));
6551 Ops[4] = getValue(I.getArgOperand(3));
6552 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6553 DAG.getVTList(MVT::Other), Ops,
6554 EVT::getIntegerVT(*Context, 8),
6555 MachinePointerInfo(I.getArgOperand(0)),
6556 0, /* align */
6557 Flags);
6559 // Chain the prefetch in parallell with any pending loads, to stay out of
6560 // the way of later optimizations.
6561 PendingLoads.push_back(Result);
6562 Result = getRoot();
6563 DAG.setRoot(Result);
6564 return;
6566 case Intrinsic::lifetime_start:
6567 case Intrinsic::lifetime_end: {
6568 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6569 // Stack coloring is not enabled in O0, discard region information.
6570 if (TM.getOptLevel() == CodeGenOpt::None)
6571 return;
6573 const int64_t ObjectSize =
6574 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6575 Value *const ObjectPtr = I.getArgOperand(1);
6576 SmallVector<const Value *, 4> Allocas;
6577 GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6579 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6580 E = Allocas.end(); Object != E; ++Object) {
6581 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6583 // Could not find an Alloca.
6584 if (!LifetimeObject)
6585 continue;
6587 // First check that the Alloca is static, otherwise it won't have a
6588 // valid frame index.
6589 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6590 if (SI == FuncInfo.StaticAllocaMap.end())
6591 return;
6593 const int FrameIndex = SI->second;
6594 int64_t Offset;
6595 if (GetPointerBaseWithConstantOffset(
6596 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6597 Offset = -1; // Cannot determine offset from alloca to lifetime object.
6598 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6599 Offset);
6600 DAG.setRoot(Res);
6602 return;
6604 case Intrinsic::invariant_start:
6605 // Discard region information.
6606 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6607 return;
6608 case Intrinsic::invariant_end:
6609 // Discard region information.
6610 return;
6611 case Intrinsic::clear_cache:
6612 /// FunctionName may be null.
6613 if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6614 lowerCallToExternalSymbol(I, FunctionName);
6615 return;
6616 case Intrinsic::donothing:
6617 // ignore
6618 return;
6619 case Intrinsic::experimental_stackmap:
6620 visitStackmap(I);
6621 return;
6622 case Intrinsic::experimental_patchpoint_void:
6623 case Intrinsic::experimental_patchpoint_i64:
6624 visitPatchpoint(&I);
6625 return;
6626 case Intrinsic::experimental_gc_statepoint:
6627 LowerStatepoint(ImmutableStatepoint(&I));
6628 return;
6629 case Intrinsic::experimental_gc_result:
6630 visitGCResult(cast<GCResultInst>(I));
6631 return;
6632 case Intrinsic::experimental_gc_relocate:
6633 visitGCRelocate(cast<GCRelocateInst>(I));
6634 return;
6635 case Intrinsic::instrprof_increment:
6636 llvm_unreachable("instrprof failed to lower an increment");
6637 case Intrinsic::instrprof_value_profile:
6638 llvm_unreachable("instrprof failed to lower a value profiling call");
6639 case Intrinsic::localescape: {
6640 MachineFunction &MF = DAG.getMachineFunction();
6641 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6643 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6644 // is the same on all targets.
6645 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6646 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6647 if (isa<ConstantPointerNull>(Arg))
6648 continue; // Skip null pointers. They represent a hole in index space.
6649 AllocaInst *Slot = cast<AllocaInst>(Arg);
6650 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6651 "can only escape static allocas");
6652 int FI = FuncInfo.StaticAllocaMap[Slot];
6653 MCSymbol *FrameAllocSym =
6654 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6655 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6657 TII->get(TargetOpcode::LOCAL_ESCAPE))
6658 .addSym(FrameAllocSym)
6659 .addFrameIndex(FI);
6662 return;
6665 case Intrinsic::localrecover: {
6666 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6667 MachineFunction &MF = DAG.getMachineFunction();
6668 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6670 // Get the symbol that defines the frame offset.
6671 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6672 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6673 unsigned IdxVal =
6674 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6675 MCSymbol *FrameAllocSym =
6676 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6677 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6679 // Create a MCSymbol for the label to avoid any target lowering
6680 // that would make this PC relative.
6681 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6682 SDValue OffsetVal =
6683 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6685 // Add the offset to the FP.
6686 Value *FP = I.getArgOperand(1);
6687 SDValue FPVal = getValue(FP);
6688 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6689 setValue(&I, Add);
6691 return;
6694 case Intrinsic::eh_exceptionpointer:
6695 case Intrinsic::eh_exceptioncode: {
6696 // Get the exception pointer vreg, copy from it, and resize it to fit.
6697 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6698 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6699 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6700 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6701 SDValue N =
6702 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6703 if (Intrinsic == Intrinsic::eh_exceptioncode)
6704 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6705 setValue(&I, N);
6706 return;
6708 case Intrinsic::xray_customevent: {
6709 // Here we want to make sure that the intrinsic behaves as if it has a
6710 // specific calling convention, and only for x86_64.
6711 // FIXME: Support other platforms later.
6712 const auto &Triple = DAG.getTarget().getTargetTriple();
6713 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6714 return;
6716 SDLoc DL = getCurSDLoc();
6717 SmallVector<SDValue, 8> Ops;
6719 // We want to say that we always want the arguments in registers.
6720 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6721 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6722 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6723 SDValue Chain = getRoot();
6724 Ops.push_back(LogEntryVal);
6725 Ops.push_back(StrSizeVal);
6726 Ops.push_back(Chain);
6728 // We need to enforce the calling convention for the callsite, so that
6729 // argument ordering is enforced correctly, and that register allocation can
6730 // see that some registers may be assumed clobbered and have to preserve
6731 // them across calls to the intrinsic.
6732 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6733 DL, NodeTys, Ops);
6734 SDValue patchableNode = SDValue(MN, 0);
6735 DAG.setRoot(patchableNode);
6736 setValue(&I, patchableNode);
6737 return;
6739 case Intrinsic::xray_typedevent: {
6740 // Here we want to make sure that the intrinsic behaves as if it has a
6741 // specific calling convention, and only for x86_64.
6742 // FIXME: Support other platforms later.
6743 const auto &Triple = DAG.getTarget().getTargetTriple();
6744 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6745 return;
6747 SDLoc DL = getCurSDLoc();
6748 SmallVector<SDValue, 8> Ops;
6750 // We want to say that we always want the arguments in registers.
6751 // It's unclear to me how manipulating the selection DAG here forces callers
6752 // to provide arguments in registers instead of on the stack.
6753 SDValue LogTypeId = getValue(I.getArgOperand(0));
6754 SDValue LogEntryVal = getValue(I.getArgOperand(1));
6755 SDValue StrSizeVal = getValue(I.getArgOperand(2));
6756 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6757 SDValue Chain = getRoot();
6758 Ops.push_back(LogTypeId);
6759 Ops.push_back(LogEntryVal);
6760 Ops.push_back(StrSizeVal);
6761 Ops.push_back(Chain);
6763 // We need to enforce the calling convention for the callsite, so that
6764 // argument ordering is enforced correctly, and that register allocation can
6765 // see that some registers may be assumed clobbered and have to preserve
6766 // them across calls to the intrinsic.
6767 MachineSDNode *MN = DAG.getMachineNode(
6768 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6769 SDValue patchableNode = SDValue(MN, 0);
6770 DAG.setRoot(patchableNode);
6771 setValue(&I, patchableNode);
6772 return;
6774 case Intrinsic::experimental_deoptimize:
6775 LowerDeoptimizeCall(&I);
6776 return;
6778 case Intrinsic::experimental_vector_reduce_v2_fadd:
6779 case Intrinsic::experimental_vector_reduce_v2_fmul:
6780 case Intrinsic::experimental_vector_reduce_add:
6781 case Intrinsic::experimental_vector_reduce_mul:
6782 case Intrinsic::experimental_vector_reduce_and:
6783 case Intrinsic::experimental_vector_reduce_or:
6784 case Intrinsic::experimental_vector_reduce_xor:
6785 case Intrinsic::experimental_vector_reduce_smax:
6786 case Intrinsic::experimental_vector_reduce_smin:
6787 case Intrinsic::experimental_vector_reduce_umax:
6788 case Intrinsic::experimental_vector_reduce_umin:
6789 case Intrinsic::experimental_vector_reduce_fmax:
6790 case Intrinsic::experimental_vector_reduce_fmin:
6791 visitVectorReduce(I, Intrinsic);
6792 return;
6794 case Intrinsic::icall_branch_funnel: {
6795 SmallVector<SDValue, 16> Ops;
6796 Ops.push_back(getValue(I.getArgOperand(0)));
6798 int64_t Offset;
6799 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6800 I.getArgOperand(1), Offset, DAG.getDataLayout()));
6801 if (!Base)
6802 report_fatal_error(
6803 "llvm.icall.branch.funnel operand must be a GlobalValue");
6804 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6806 struct BranchFunnelTarget {
6807 int64_t Offset;
6808 SDValue Target;
6810 SmallVector<BranchFunnelTarget, 8> Targets;
6812 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6813 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6814 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6815 if (ElemBase != Base)
6816 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6817 "to the same GlobalValue");
6819 SDValue Val = getValue(I.getArgOperand(Op + 1));
6820 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6821 if (!GA)
6822 report_fatal_error(
6823 "llvm.icall.branch.funnel operand must be a GlobalValue");
6824 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6825 GA->getGlobal(), getCurSDLoc(),
6826 Val.getValueType(), GA->getOffset())});
6828 llvm::sort(Targets,
6829 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6830 return T1.Offset < T2.Offset;
6833 for (auto &T : Targets) {
6834 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6835 Ops.push_back(T.Target);
6838 Ops.push_back(DAG.getRoot()); // Chain
6839 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6840 getCurSDLoc(), MVT::Other, Ops),
6842 DAG.setRoot(N);
6843 setValue(&I, N);
6844 HasTailCall = true;
6845 return;
6848 case Intrinsic::wasm_landingpad_index:
6849 // Information this intrinsic contained has been transferred to
6850 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6851 // delete it now.
6852 return;
6854 case Intrinsic::aarch64_settag:
6855 case Intrinsic::aarch64_settag_zero: {
6856 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6857 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6858 SDValue Val = TSI.EmitTargetCodeForSetTag(
6859 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6860 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6861 ZeroMemory);
6862 DAG.setRoot(Val);
6863 setValue(&I, Val);
6864 return;
6866 case Intrinsic::ptrmask: {
6867 SDValue Ptr = getValue(I.getOperand(0));
6868 SDValue Const = getValue(I.getOperand(1));
6870 EVT DestVT =
6871 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6873 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6874 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6875 return;
6880 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6881 const ConstrainedFPIntrinsic &FPI) {
6882 SDLoc sdl = getCurSDLoc();
6883 unsigned Opcode;
6884 switch (FPI.getIntrinsicID()) {
6885 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6886 case Intrinsic::experimental_constrained_fadd:
6887 Opcode = ISD::STRICT_FADD;
6888 break;
6889 case Intrinsic::experimental_constrained_fsub:
6890 Opcode = ISD::STRICT_FSUB;
6891 break;
6892 case Intrinsic::experimental_constrained_fmul:
6893 Opcode = ISD::STRICT_FMUL;
6894 break;
6895 case Intrinsic::experimental_constrained_fdiv:
6896 Opcode = ISD::STRICT_FDIV;
6897 break;
6898 case Intrinsic::experimental_constrained_frem:
6899 Opcode = ISD::STRICT_FREM;
6900 break;
6901 case Intrinsic::experimental_constrained_fma:
6902 Opcode = ISD::STRICT_FMA;
6903 break;
6904 case Intrinsic::experimental_constrained_fptosi:
6905 Opcode = ISD::STRICT_FP_TO_SINT;
6906 break;
6907 case Intrinsic::experimental_constrained_fptoui:
6908 Opcode = ISD::STRICT_FP_TO_UINT;
6909 break;
6910 case Intrinsic::experimental_constrained_fptrunc:
6911 Opcode = ISD::STRICT_FP_ROUND;
6912 break;
6913 case Intrinsic::experimental_constrained_fpext:
6914 Opcode = ISD::STRICT_FP_EXTEND;
6915 break;
6916 case Intrinsic::experimental_constrained_sqrt:
6917 Opcode = ISD::STRICT_FSQRT;
6918 break;
6919 case Intrinsic::experimental_constrained_pow:
6920 Opcode = ISD::STRICT_FPOW;
6921 break;
6922 case Intrinsic::experimental_constrained_powi:
6923 Opcode = ISD::STRICT_FPOWI;
6924 break;
6925 case Intrinsic::experimental_constrained_sin:
6926 Opcode = ISD::STRICT_FSIN;
6927 break;
6928 case Intrinsic::experimental_constrained_cos:
6929 Opcode = ISD::STRICT_FCOS;
6930 break;
6931 case Intrinsic::experimental_constrained_exp:
6932 Opcode = ISD::STRICT_FEXP;
6933 break;
6934 case Intrinsic::experimental_constrained_exp2:
6935 Opcode = ISD::STRICT_FEXP2;
6936 break;
6937 case Intrinsic::experimental_constrained_log:
6938 Opcode = ISD::STRICT_FLOG;
6939 break;
6940 case Intrinsic::experimental_constrained_log10:
6941 Opcode = ISD::STRICT_FLOG10;
6942 break;
6943 case Intrinsic::experimental_constrained_log2:
6944 Opcode = ISD::STRICT_FLOG2;
6945 break;
6946 case Intrinsic::experimental_constrained_rint:
6947 Opcode = ISD::STRICT_FRINT;
6948 break;
6949 case Intrinsic::experimental_constrained_nearbyint:
6950 Opcode = ISD::STRICT_FNEARBYINT;
6951 break;
6952 case Intrinsic::experimental_constrained_maxnum:
6953 Opcode = ISD::STRICT_FMAXNUM;
6954 break;
6955 case Intrinsic::experimental_constrained_minnum:
6956 Opcode = ISD::STRICT_FMINNUM;
6957 break;
6958 case Intrinsic::experimental_constrained_ceil:
6959 Opcode = ISD::STRICT_FCEIL;
6960 break;
6961 case Intrinsic::experimental_constrained_floor:
6962 Opcode = ISD::STRICT_FFLOOR;
6963 break;
6964 case Intrinsic::experimental_constrained_round:
6965 Opcode = ISD::STRICT_FROUND;
6966 break;
6967 case Intrinsic::experimental_constrained_trunc:
6968 Opcode = ISD::STRICT_FTRUNC;
6969 break;
6971 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6972 SDValue Chain = getRoot();
6973 SmallVector<EVT, 4> ValueVTs;
6974 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6975 ValueVTs.push_back(MVT::Other); // Out chain
6977 SDVTList VTs = DAG.getVTList(ValueVTs);
6978 SDValue Result;
6979 if (Opcode == ISD::STRICT_FP_ROUND)
6980 Result = DAG.getNode(Opcode, sdl, VTs,
6981 { Chain, getValue(FPI.getArgOperand(0)),
6982 DAG.getTargetConstant(0, sdl,
6983 TLI.getPointerTy(DAG.getDataLayout())) });
6984 else if (FPI.isUnaryOp())
6985 Result = DAG.getNode(Opcode, sdl, VTs,
6986 { Chain, getValue(FPI.getArgOperand(0)) });
6987 else if (FPI.isTernaryOp())
6988 Result = DAG.getNode(Opcode, sdl, VTs,
6989 { Chain, getValue(FPI.getArgOperand(0)),
6990 getValue(FPI.getArgOperand(1)),
6991 getValue(FPI.getArgOperand(2)) });
6992 else
6993 Result = DAG.getNode(Opcode, sdl, VTs,
6994 { Chain, getValue(FPI.getArgOperand(0)),
6995 getValue(FPI.getArgOperand(1)) });
6997 if (FPI.getExceptionBehavior() !=
6998 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
6999 SDNodeFlags Flags;
7000 Flags.setFPExcept(true);
7001 Result->setFlags(Flags);
7004 assert(Result.getNode()->getNumValues() == 2);
7005 SDValue OutChain = Result.getValue(1);
7006 DAG.setRoot(OutChain);
7007 SDValue FPResult = Result.getValue(0);
7008 setValue(&FPI, FPResult);
7011 std::pair<SDValue, SDValue>
7012 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7013 const BasicBlock *EHPadBB) {
7014 MachineFunction &MF = DAG.getMachineFunction();
7015 MachineModuleInfo &MMI = MF.getMMI();
7016 MCSymbol *BeginLabel = nullptr;
7018 if (EHPadBB) {
7019 // Insert a label before the invoke call to mark the try range. This can be
7020 // used to detect deletion of the invoke via the MachineModuleInfo.
7021 BeginLabel = MMI.getContext().createTempSymbol();
7023 // For SjLj, keep track of which landing pads go with which invokes
7024 // so as to maintain the ordering of pads in the LSDA.
7025 unsigned CallSiteIndex = MMI.getCurrentCallSite();
7026 if (CallSiteIndex) {
7027 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7028 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7030 // Now that the call site is handled, stop tracking it.
7031 MMI.setCurrentCallSite(0);
7034 // Both PendingLoads and PendingExports must be flushed here;
7035 // this call might not return.
7036 (void)getRoot();
7037 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7039 CLI.setChain(getRoot());
7041 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7042 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7044 assert((CLI.IsTailCall || Result.second.getNode()) &&
7045 "Non-null chain expected with non-tail call!");
7046 assert((Result.second.getNode() || !Result.first.getNode()) &&
7047 "Null value expected with tail call!");
7049 if (!Result.second.getNode()) {
7050 // As a special case, a null chain means that a tail call has been emitted
7051 // and the DAG root is already updated.
7052 HasTailCall = true;
7054 // Since there's no actual continuation from this block, nothing can be
7055 // relying on us setting vregs for them.
7056 PendingExports.clear();
7057 } else {
7058 DAG.setRoot(Result.second);
7061 if (EHPadBB) {
7062 // Insert a label at the end of the invoke call to mark the try range. This
7063 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7064 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7065 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7067 // Inform MachineModuleInfo of range.
7068 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7069 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7070 // actually use outlined funclets and their LSDA info style.
7071 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7072 assert(CLI.CS);
7073 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7074 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7075 BeginLabel, EndLabel);
7076 } else if (!isScopedEHPersonality(Pers)) {
7077 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7081 return Result;
7084 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7085 bool isTailCall,
7086 const BasicBlock *EHPadBB) {
7087 auto &DL = DAG.getDataLayout();
7088 FunctionType *FTy = CS.getFunctionType();
7089 Type *RetTy = CS.getType();
7091 TargetLowering::ArgListTy Args;
7092 Args.reserve(CS.arg_size());
7094 const Value *SwiftErrorVal = nullptr;
7095 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7097 // We can't tail call inside a function with a swifterror argument. Lowering
7098 // does not support this yet. It would have to move into the swifterror
7099 // register before the call.
7100 auto *Caller = CS.getInstruction()->getParent()->getParent();
7101 if (TLI.supportSwiftError() &&
7102 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7103 isTailCall = false;
7105 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7106 i != e; ++i) {
7107 TargetLowering::ArgListEntry Entry;
7108 const Value *V = *i;
7110 // Skip empty types
7111 if (V->getType()->isEmptyTy())
7112 continue;
7114 SDValue ArgNode = getValue(V);
7115 Entry.Node = ArgNode; Entry.Ty = V->getType();
7117 Entry.setAttributes(&CS, i - CS.arg_begin());
7119 // Use swifterror virtual register as input to the call.
7120 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7121 SwiftErrorVal = V;
7122 // We find the virtual register for the actual swifterror argument.
7123 // Instead of using the Value, we use the virtual register instead.
7124 Entry.Node = DAG.getRegister(
7125 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7126 EVT(TLI.getPointerTy(DL)));
7129 Args.push_back(Entry);
7131 // If we have an explicit sret argument that is an Instruction, (i.e., it
7132 // might point to function-local memory), we can't meaningfully tail-call.
7133 if (Entry.IsSRet && isa<Instruction>(V))
7134 isTailCall = false;
7137 // Check if target-independent constraints permit a tail call here.
7138 // Target-dependent constraints are checked within TLI->LowerCallTo.
7139 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7140 isTailCall = false;
7142 // Disable tail calls if there is an swifterror argument. Targets have not
7143 // been updated to support tail calls.
7144 if (TLI.supportSwiftError() && SwiftErrorVal)
7145 isTailCall = false;
7147 TargetLowering::CallLoweringInfo CLI(DAG);
7148 CLI.setDebugLoc(getCurSDLoc())
7149 .setChain(getRoot())
7150 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7151 .setTailCall(isTailCall)
7152 .setConvergent(CS.isConvergent());
7153 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7155 if (Result.first.getNode()) {
7156 const Instruction *Inst = CS.getInstruction();
7157 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7158 setValue(Inst, Result.first);
7161 // The last element of CLI.InVals has the SDValue for swifterror return.
7162 // Here we copy it to a virtual register and update SwiftErrorMap for
7163 // book-keeping.
7164 if (SwiftErrorVal && TLI.supportSwiftError()) {
7165 // Get the last element of InVals.
7166 SDValue Src = CLI.InVals.back();
7167 Register VReg = SwiftError.getOrCreateVRegDefAt(
7168 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7169 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7170 DAG.setRoot(CopyNode);
7174 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7175 SelectionDAGBuilder &Builder) {
7176 // Check to see if this load can be trivially constant folded, e.g. if the
7177 // input is from a string literal.
7178 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7179 // Cast pointer to the type we really want to load.
7180 Type *LoadTy =
7181 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7182 if (LoadVT.isVector())
7183 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7185 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7186 PointerType::getUnqual(LoadTy));
7188 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7189 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7190 return Builder.getValue(LoadCst);
7193 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7194 // still constant memory, the input chain can be the entry node.
7195 SDValue Root;
7196 bool ConstantMemory = false;
7198 // Do not serialize (non-volatile) loads of constant memory with anything.
7199 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7200 Root = Builder.DAG.getEntryNode();
7201 ConstantMemory = true;
7202 } else {
7203 // Do not serialize non-volatile loads against each other.
7204 Root = Builder.DAG.getRoot();
7207 SDValue Ptr = Builder.getValue(PtrVal);
7208 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7209 Ptr, MachinePointerInfo(PtrVal),
7210 /* Alignment = */ 1);
7212 if (!ConstantMemory)
7213 Builder.PendingLoads.push_back(LoadVal.getValue(1));
7214 return LoadVal;
7217 /// Record the value for an instruction that produces an integer result,
7218 /// converting the type where necessary.
7219 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7220 SDValue Value,
7221 bool IsSigned) {
7222 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7223 I.getType(), true);
7224 if (IsSigned)
7225 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7226 else
7227 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7228 setValue(&I, Value);
7231 /// See if we can lower a memcmp call into an optimized form. If so, return
7232 /// true and lower it. Otherwise return false, and it will be lowered like a
7233 /// normal call.
7234 /// The caller already checked that \p I calls the appropriate LibFunc with a
7235 /// correct prototype.
7236 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7237 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7238 const Value *Size = I.getArgOperand(2);
7239 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7240 if (CSize && CSize->getZExtValue() == 0) {
7241 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7242 I.getType(), true);
7243 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7244 return true;
7247 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7248 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7249 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7250 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7251 if (Res.first.getNode()) {
7252 processIntegerCallValue(I, Res.first, true);
7253 PendingLoads.push_back(Res.second);
7254 return true;
7257 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7258 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7259 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7260 return false;
7262 // If the target has a fast compare for the given size, it will return a
7263 // preferred load type for that size. Require that the load VT is legal and
7264 // that the target supports unaligned loads of that type. Otherwise, return
7265 // INVALID.
7266 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7267 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7268 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7269 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7270 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7271 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7272 // TODO: Check alignment of src and dest ptrs.
7273 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7274 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7275 if (!TLI.isTypeLegal(LVT) ||
7276 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7277 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7278 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7281 return LVT;
7284 // This turns into unaligned loads. We only do this if the target natively
7285 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7286 // we'll only produce a small number of byte loads.
7287 MVT LoadVT;
7288 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7289 switch (NumBitsToCompare) {
7290 default:
7291 return false;
7292 case 16:
7293 LoadVT = MVT::i16;
7294 break;
7295 case 32:
7296 LoadVT = MVT::i32;
7297 break;
7298 case 64:
7299 case 128:
7300 case 256:
7301 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7302 break;
7305 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7306 return false;
7308 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7309 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7311 // Bitcast to a wide integer type if the loads are vectors.
7312 if (LoadVT.isVector()) {
7313 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7314 LoadL = DAG.getBitcast(CmpVT, LoadL);
7315 LoadR = DAG.getBitcast(CmpVT, LoadR);
7318 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7319 processIntegerCallValue(I, Cmp, false);
7320 return true;
7323 /// See if we can lower a memchr call into an optimized form. If so, return
7324 /// true and lower it. Otherwise return false, and it will be lowered like a
7325 /// normal call.
7326 /// The caller already checked that \p I calls the appropriate LibFunc with a
7327 /// correct prototype.
7328 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7329 const Value *Src = I.getArgOperand(0);
7330 const Value *Char = I.getArgOperand(1);
7331 const Value *Length = I.getArgOperand(2);
7333 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7334 std::pair<SDValue, SDValue> Res =
7335 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7336 getValue(Src), getValue(Char), getValue(Length),
7337 MachinePointerInfo(Src));
7338 if (Res.first.getNode()) {
7339 setValue(&I, Res.first);
7340 PendingLoads.push_back(Res.second);
7341 return true;
7344 return false;
7347 /// See if we can lower a mempcpy call into an optimized form. If so, return
7348 /// true and lower it. Otherwise return false, and it will be lowered like a
7349 /// normal call.
7350 /// The caller already checked that \p I calls the appropriate LibFunc with a
7351 /// correct prototype.
7352 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7353 SDValue Dst = getValue(I.getArgOperand(0));
7354 SDValue Src = getValue(I.getArgOperand(1));
7355 SDValue Size = getValue(I.getArgOperand(2));
7357 unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7358 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7359 unsigned Align = std::min(DstAlign, SrcAlign);
7360 if (Align == 0) // Alignment of one or both could not be inferred.
7361 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7363 bool isVol = false;
7364 SDLoc sdl = getCurSDLoc();
7366 // In the mempcpy context we need to pass in a false value for isTailCall
7367 // because the return pointer needs to be adjusted by the size of
7368 // the copied memory.
7369 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7370 false, /*isTailCall=*/false,
7371 MachinePointerInfo(I.getArgOperand(0)),
7372 MachinePointerInfo(I.getArgOperand(1)));
7373 assert(MC.getNode() != nullptr &&
7374 "** memcpy should not be lowered as TailCall in mempcpy context **");
7375 DAG.setRoot(MC);
7377 // Check if Size needs to be truncated or extended.
7378 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7380 // Adjust return pointer to point just past the last dst byte.
7381 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7382 Dst, Size);
7383 setValue(&I, DstPlusSize);
7384 return true;
7387 /// See if we can lower a strcpy call into an optimized form. If so, return
7388 /// true and lower it, otherwise return false and it will be lowered like a
7389 /// normal call.
7390 /// The caller already checked that \p I calls the appropriate LibFunc with a
7391 /// correct prototype.
7392 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7393 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7395 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7396 std::pair<SDValue, SDValue> Res =
7397 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7398 getValue(Arg0), getValue(Arg1),
7399 MachinePointerInfo(Arg0),
7400 MachinePointerInfo(Arg1), isStpcpy);
7401 if (Res.first.getNode()) {
7402 setValue(&I, Res.first);
7403 DAG.setRoot(Res.second);
7404 return true;
7407 return false;
7410 /// See if we can lower a strcmp call into an optimized form. If so, return
7411 /// true and lower it, otherwise return false and it will be lowered like a
7412 /// normal call.
7413 /// The caller already checked that \p I calls the appropriate LibFunc with a
7414 /// correct prototype.
7415 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7416 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7418 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7419 std::pair<SDValue, SDValue> Res =
7420 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7421 getValue(Arg0), getValue(Arg1),
7422 MachinePointerInfo(Arg0),
7423 MachinePointerInfo(Arg1));
7424 if (Res.first.getNode()) {
7425 processIntegerCallValue(I, Res.first, true);
7426 PendingLoads.push_back(Res.second);
7427 return true;
7430 return false;
7433 /// See if we can lower a strlen call into an optimized form. If so, return
7434 /// true and lower it, otherwise return false and it will be lowered like a
7435 /// normal call.
7436 /// The caller already checked that \p I calls the appropriate LibFunc with a
7437 /// correct prototype.
7438 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7439 const Value *Arg0 = I.getArgOperand(0);
7441 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7442 std::pair<SDValue, SDValue> Res =
7443 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7444 getValue(Arg0), MachinePointerInfo(Arg0));
7445 if (Res.first.getNode()) {
7446 processIntegerCallValue(I, Res.first, false);
7447 PendingLoads.push_back(Res.second);
7448 return true;
7451 return false;
7454 /// See if we can lower a strnlen call into an optimized form. If so, return
7455 /// true and lower it, otherwise return false and it will be lowered like a
7456 /// normal call.
7457 /// The caller already checked that \p I calls the appropriate LibFunc with a
7458 /// correct prototype.
7459 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7460 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7462 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7463 std::pair<SDValue, SDValue> Res =
7464 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7465 getValue(Arg0), getValue(Arg1),
7466 MachinePointerInfo(Arg0));
7467 if (Res.first.getNode()) {
7468 processIntegerCallValue(I, Res.first, false);
7469 PendingLoads.push_back(Res.second);
7470 return true;
7473 return false;
7476 /// See if we can lower a unary floating-point operation into an SDNode with
7477 /// the specified Opcode. If so, return true and lower it, otherwise return
7478 /// false and it will be lowered like a normal call.
7479 /// The caller already checked that \p I calls the appropriate LibFunc with a
7480 /// correct prototype.
7481 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7482 unsigned Opcode) {
7483 // We already checked this call's prototype; verify it doesn't modify errno.
7484 if (!I.onlyReadsMemory())
7485 return false;
7487 SDValue Tmp = getValue(I.getArgOperand(0));
7488 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7489 return true;
7492 /// See if we can lower a binary floating-point operation into an SDNode with
7493 /// the specified Opcode. If so, return true and lower it. Otherwise return
7494 /// false, and it will be lowered like a normal call.
7495 /// The caller already checked that \p I calls the appropriate LibFunc with a
7496 /// correct prototype.
7497 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7498 unsigned Opcode) {
7499 // We already checked this call's prototype; verify it doesn't modify errno.
7500 if (!I.onlyReadsMemory())
7501 return false;
7503 SDValue Tmp0 = getValue(I.getArgOperand(0));
7504 SDValue Tmp1 = getValue(I.getArgOperand(1));
7505 EVT VT = Tmp0.getValueType();
7506 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7507 return true;
7510 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7511 // Handle inline assembly differently.
7512 if (isa<InlineAsm>(I.getCalledValue())) {
7513 visitInlineAsm(&I);
7514 return;
7517 if (Function *F = I.getCalledFunction()) {
7518 if (F->isDeclaration()) {
7519 // Is this an LLVM intrinsic or a target-specific intrinsic?
7520 unsigned IID = F->getIntrinsicID();
7521 if (!IID)
7522 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7523 IID = II->getIntrinsicID(F);
7525 if (IID) {
7526 visitIntrinsicCall(I, IID);
7527 return;
7531 // Check for well-known libc/libm calls. If the function is internal, it
7532 // can't be a library call. Don't do the check if marked as nobuiltin for
7533 // some reason or the call site requires strict floating point semantics.
7534 LibFunc Func;
7535 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7536 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7537 LibInfo->hasOptimizedCodeGen(Func)) {
7538 switch (Func) {
7539 default: break;
7540 case LibFunc_copysign:
7541 case LibFunc_copysignf:
7542 case LibFunc_copysignl:
7543 // We already checked this call's prototype; verify it doesn't modify
7544 // errno.
7545 if (I.onlyReadsMemory()) {
7546 SDValue LHS = getValue(I.getArgOperand(0));
7547 SDValue RHS = getValue(I.getArgOperand(1));
7548 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7549 LHS.getValueType(), LHS, RHS));
7550 return;
7552 break;
7553 case LibFunc_fabs:
7554 case LibFunc_fabsf:
7555 case LibFunc_fabsl:
7556 if (visitUnaryFloatCall(I, ISD::FABS))
7557 return;
7558 break;
7559 case LibFunc_fmin:
7560 case LibFunc_fminf:
7561 case LibFunc_fminl:
7562 if (visitBinaryFloatCall(I, ISD::FMINNUM))
7563 return;
7564 break;
7565 case LibFunc_fmax:
7566 case LibFunc_fmaxf:
7567 case LibFunc_fmaxl:
7568 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7569 return;
7570 break;
7571 case LibFunc_sin:
7572 case LibFunc_sinf:
7573 case LibFunc_sinl:
7574 if (visitUnaryFloatCall(I, ISD::FSIN))
7575 return;
7576 break;
7577 case LibFunc_cos:
7578 case LibFunc_cosf:
7579 case LibFunc_cosl:
7580 if (visitUnaryFloatCall(I, ISD::FCOS))
7581 return;
7582 break;
7583 case LibFunc_sqrt:
7584 case LibFunc_sqrtf:
7585 case LibFunc_sqrtl:
7586 case LibFunc_sqrt_finite:
7587 case LibFunc_sqrtf_finite:
7588 case LibFunc_sqrtl_finite:
7589 if (visitUnaryFloatCall(I, ISD::FSQRT))
7590 return;
7591 break;
7592 case LibFunc_floor:
7593 case LibFunc_floorf:
7594 case LibFunc_floorl:
7595 if (visitUnaryFloatCall(I, ISD::FFLOOR))
7596 return;
7597 break;
7598 case LibFunc_nearbyint:
7599 case LibFunc_nearbyintf:
7600 case LibFunc_nearbyintl:
7601 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7602 return;
7603 break;
7604 case LibFunc_ceil:
7605 case LibFunc_ceilf:
7606 case LibFunc_ceill:
7607 if (visitUnaryFloatCall(I, ISD::FCEIL))
7608 return;
7609 break;
7610 case LibFunc_rint:
7611 case LibFunc_rintf:
7612 case LibFunc_rintl:
7613 if (visitUnaryFloatCall(I, ISD::FRINT))
7614 return;
7615 break;
7616 case LibFunc_round:
7617 case LibFunc_roundf:
7618 case LibFunc_roundl:
7619 if (visitUnaryFloatCall(I, ISD::FROUND))
7620 return;
7621 break;
7622 case LibFunc_trunc:
7623 case LibFunc_truncf:
7624 case LibFunc_truncl:
7625 if (visitUnaryFloatCall(I, ISD::FTRUNC))
7626 return;
7627 break;
7628 case LibFunc_log2:
7629 case LibFunc_log2f:
7630 case LibFunc_log2l:
7631 if (visitUnaryFloatCall(I, ISD::FLOG2))
7632 return;
7633 break;
7634 case LibFunc_exp2:
7635 case LibFunc_exp2f:
7636 case LibFunc_exp2l:
7637 if (visitUnaryFloatCall(I, ISD::FEXP2))
7638 return;
7639 break;
7640 case LibFunc_memcmp:
7641 if (visitMemCmpCall(I))
7642 return;
7643 break;
7644 case LibFunc_mempcpy:
7645 if (visitMemPCpyCall(I))
7646 return;
7647 break;
7648 case LibFunc_memchr:
7649 if (visitMemChrCall(I))
7650 return;
7651 break;
7652 case LibFunc_strcpy:
7653 if (visitStrCpyCall(I, false))
7654 return;
7655 break;
7656 case LibFunc_stpcpy:
7657 if (visitStrCpyCall(I, true))
7658 return;
7659 break;
7660 case LibFunc_strcmp:
7661 if (visitStrCmpCall(I))
7662 return;
7663 break;
7664 case LibFunc_strlen:
7665 if (visitStrLenCall(I))
7666 return;
7667 break;
7668 case LibFunc_strnlen:
7669 if (visitStrNLenCall(I))
7670 return;
7671 break;
7676 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7677 // have to do anything here to lower funclet bundles.
7678 assert(!I.hasOperandBundlesOtherThan(
7679 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7680 "Cannot lower calls with arbitrary operand bundles!");
7682 SDValue Callee = getValue(I.getCalledValue());
7684 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7685 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7686 else
7687 // Check if we can potentially perform a tail call. More detailed checking
7688 // is be done within LowerCallTo, after more information about the call is
7689 // known.
7690 LowerCallTo(&I, Callee, I.isTailCall());
7693 namespace {
7695 /// AsmOperandInfo - This contains information for each constraint that we are
7696 /// lowering.
7697 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7698 public:
7699 /// CallOperand - If this is the result output operand or a clobber
7700 /// this is null, otherwise it is the incoming operand to the CallInst.
7701 /// This gets modified as the asm is processed.
7702 SDValue CallOperand;
7704 /// AssignedRegs - If this is a register or register class operand, this
7705 /// contains the set of register corresponding to the operand.
7706 RegsForValue AssignedRegs;
7708 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7709 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7712 /// Whether or not this operand accesses memory
7713 bool hasMemory(const TargetLowering &TLI) const {
7714 // Indirect operand accesses access memory.
7715 if (isIndirect)
7716 return true;
7718 for (const auto &Code : Codes)
7719 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7720 return true;
7722 return false;
7725 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7726 /// corresponds to. If there is no Value* for this operand, it returns
7727 /// MVT::Other.
7728 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7729 const DataLayout &DL) const {
7730 if (!CallOperandVal) return MVT::Other;
7732 if (isa<BasicBlock>(CallOperandVal))
7733 return TLI.getPointerTy(DL);
7735 llvm::Type *OpTy = CallOperandVal->getType();
7737 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7738 // If this is an indirect operand, the operand is a pointer to the
7739 // accessed type.
7740 if (isIndirect) {
7741 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7742 if (!PtrTy)
7743 report_fatal_error("Indirect operand for inline asm not a pointer!");
7744 OpTy = PtrTy->getElementType();
7747 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7748 if (StructType *STy = dyn_cast<StructType>(OpTy))
7749 if (STy->getNumElements() == 1)
7750 OpTy = STy->getElementType(0);
7752 // If OpTy is not a single value, it may be a struct/union that we
7753 // can tile with integers.
7754 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7755 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7756 switch (BitSize) {
7757 default: break;
7758 case 1:
7759 case 8:
7760 case 16:
7761 case 32:
7762 case 64:
7763 case 128:
7764 OpTy = IntegerType::get(Context, BitSize);
7765 break;
7769 return TLI.getValueType(DL, OpTy, true);
7773 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7775 } // end anonymous namespace
7777 /// Make sure that the output operand \p OpInfo and its corresponding input
7778 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7779 /// out).
7780 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7781 SDISelAsmOperandInfo &MatchingOpInfo,
7782 SelectionDAG &DAG) {
7783 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7784 return;
7786 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7787 const auto &TLI = DAG.getTargetLoweringInfo();
7789 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7790 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7791 OpInfo.ConstraintVT);
7792 std::pair<unsigned, const TargetRegisterClass *> InputRC =
7793 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7794 MatchingOpInfo.ConstraintVT);
7795 if ((OpInfo.ConstraintVT.isInteger() !=
7796 MatchingOpInfo.ConstraintVT.isInteger()) ||
7797 (MatchRC.second != InputRC.second)) {
7798 // FIXME: error out in a more elegant fashion
7799 report_fatal_error("Unsupported asm: input constraint"
7800 " with a matching output constraint of"
7801 " incompatible type!");
7803 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7806 /// Get a direct memory input to behave well as an indirect operand.
7807 /// This may introduce stores, hence the need for a \p Chain.
7808 /// \return The (possibly updated) chain.
7809 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7810 SDISelAsmOperandInfo &OpInfo,
7811 SelectionDAG &DAG) {
7812 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7814 // If we don't have an indirect input, put it in the constpool if we can,
7815 // otherwise spill it to a stack slot.
7816 // TODO: This isn't quite right. We need to handle these according to
7817 // the addressing mode that the constraint wants. Also, this may take
7818 // an additional register for the computation and we don't want that
7819 // either.
7821 // If the operand is a float, integer, or vector constant, spill to a
7822 // constant pool entry to get its address.
7823 const Value *OpVal = OpInfo.CallOperandVal;
7824 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7825 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7826 OpInfo.CallOperand = DAG.getConstantPool(
7827 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7828 return Chain;
7831 // Otherwise, create a stack slot and emit a store to it before the asm.
7832 Type *Ty = OpVal->getType();
7833 auto &DL = DAG.getDataLayout();
7834 uint64_t TySize = DL.getTypeAllocSize(Ty);
7835 unsigned Align = DL.getPrefTypeAlignment(Ty);
7836 MachineFunction &MF = DAG.getMachineFunction();
7837 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7838 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7839 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7840 MachinePointerInfo::getFixedStack(MF, SSFI),
7841 TLI.getMemValueType(DL, Ty));
7842 OpInfo.CallOperand = StackSlot;
7844 return Chain;
7847 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7848 /// specified operand. We prefer to assign virtual registers, to allow the
7849 /// register allocator to handle the assignment process. However, if the asm
7850 /// uses features that we can't model on machineinstrs, we have SDISel do the
7851 /// allocation. This produces generally horrible, but correct, code.
7853 /// OpInfo describes the operand
7854 /// RefOpInfo describes the matching operand if any, the operand otherwise
7855 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7856 SDISelAsmOperandInfo &OpInfo,
7857 SDISelAsmOperandInfo &RefOpInfo) {
7858 LLVMContext &Context = *DAG.getContext();
7859 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7861 MachineFunction &MF = DAG.getMachineFunction();
7862 SmallVector<unsigned, 4> Regs;
7863 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7865 // No work to do for memory operations.
7866 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7867 return;
7869 // If this is a constraint for a single physreg, or a constraint for a
7870 // register class, find it.
7871 unsigned AssignedReg;
7872 const TargetRegisterClass *RC;
7873 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7874 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7875 // RC is unset only on failure. Return immediately.
7876 if (!RC)
7877 return;
7879 // Get the actual register value type. This is important, because the user
7880 // may have asked for (e.g.) the AX register in i32 type. We need to
7881 // remember that AX is actually i16 to get the right extension.
7882 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7884 if (OpInfo.ConstraintVT != MVT::Other) {
7885 // If this is an FP operand in an integer register (or visa versa), or more
7886 // generally if the operand value disagrees with the register class we plan
7887 // to stick it in, fix the operand type.
7889 // If this is an input value, the bitcast to the new type is done now.
7890 // Bitcast for output value is done at the end of visitInlineAsm().
7891 if ((OpInfo.Type == InlineAsm::isOutput ||
7892 OpInfo.Type == InlineAsm::isInput) &&
7893 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7894 // Try to convert to the first EVT that the reg class contains. If the
7895 // types are identical size, use a bitcast to convert (e.g. two differing
7896 // vector types). Note: output bitcast is done at the end of
7897 // visitInlineAsm().
7898 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7899 // Exclude indirect inputs while they are unsupported because the code
7900 // to perform the load is missing and thus OpInfo.CallOperand still
7901 // refers to the input address rather than the pointed-to value.
7902 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7903 OpInfo.CallOperand =
7904 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7905 OpInfo.ConstraintVT = RegVT;
7906 // If the operand is an FP value and we want it in integer registers,
7907 // use the corresponding integer type. This turns an f64 value into
7908 // i64, which can be passed with two i32 values on a 32-bit machine.
7909 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7910 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7911 if (OpInfo.Type == InlineAsm::isInput)
7912 OpInfo.CallOperand =
7913 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7914 OpInfo.ConstraintVT = VT;
7919 // No need to allocate a matching input constraint since the constraint it's
7920 // matching to has already been allocated.
7921 if (OpInfo.isMatchingInputConstraint())
7922 return;
7924 EVT ValueVT = OpInfo.ConstraintVT;
7925 if (OpInfo.ConstraintVT == MVT::Other)
7926 ValueVT = RegVT;
7928 // Initialize NumRegs.
7929 unsigned NumRegs = 1;
7930 if (OpInfo.ConstraintVT != MVT::Other)
7931 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7933 // If this is a constraint for a specific physical register, like {r17},
7934 // assign it now.
7936 // If this associated to a specific register, initialize iterator to correct
7937 // place. If virtual, make sure we have enough registers
7939 // Initialize iterator if necessary
7940 TargetRegisterClass::iterator I = RC->begin();
7941 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7943 // Do not check for single registers.
7944 if (AssignedReg) {
7945 for (; *I != AssignedReg; ++I)
7946 assert(I != RC->end() && "AssignedReg should be member of RC");
7949 for (; NumRegs; --NumRegs, ++I) {
7950 assert(I != RC->end() && "Ran out of registers to allocate!");
7951 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7952 Regs.push_back(R);
7955 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7958 static unsigned
7959 findMatchingInlineAsmOperand(unsigned OperandNo,
7960 const std::vector<SDValue> &AsmNodeOperands) {
7961 // Scan until we find the definition we already emitted of this operand.
7962 unsigned CurOp = InlineAsm::Op_FirstOperand;
7963 for (; OperandNo; --OperandNo) {
7964 // Advance to the next operand.
7965 unsigned OpFlag =
7966 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7967 assert((InlineAsm::isRegDefKind(OpFlag) ||
7968 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7969 InlineAsm::isMemKind(OpFlag)) &&
7970 "Skipped past definitions?");
7971 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7973 return CurOp;
7976 namespace {
7978 class ExtraFlags {
7979 unsigned Flags = 0;
7981 public:
7982 explicit ExtraFlags(ImmutableCallSite CS) {
7983 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7984 if (IA->hasSideEffects())
7985 Flags |= InlineAsm::Extra_HasSideEffects;
7986 if (IA->isAlignStack())
7987 Flags |= InlineAsm::Extra_IsAlignStack;
7988 if (CS.isConvergent())
7989 Flags |= InlineAsm::Extra_IsConvergent;
7990 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7993 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7994 // Ideally, we would only check against memory constraints. However, the
7995 // meaning of an Other constraint can be target-specific and we can't easily
7996 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7997 // for Other constraints as well.
7998 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7999 OpInfo.ConstraintType == TargetLowering::C_Other) {
8000 if (OpInfo.Type == InlineAsm::isInput)
8001 Flags |= InlineAsm::Extra_MayLoad;
8002 else if (OpInfo.Type == InlineAsm::isOutput)
8003 Flags |= InlineAsm::Extra_MayStore;
8004 else if (OpInfo.Type == InlineAsm::isClobber)
8005 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8009 unsigned get() const { return Flags; }
8012 } // end anonymous namespace
8014 /// visitInlineAsm - Handle a call to an InlineAsm object.
8015 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
8016 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
8018 /// ConstraintOperands - Information about all of the constraints.
8019 SDISelAsmOperandInfoVector ConstraintOperands;
8021 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8022 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8023 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8025 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8026 // AsmDialect, MayLoad, MayStore).
8027 bool HasSideEffect = IA->hasSideEffects();
8028 ExtraFlags ExtraInfo(CS);
8030 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
8031 unsigned ResNo = 0; // ResNo - The result number of the next output.
8032 for (auto &T : TargetConstraints) {
8033 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8034 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8036 // Compute the value type for each operand.
8037 if (OpInfo.Type == InlineAsm::isInput ||
8038 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8039 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8041 // Process the call argument. BasicBlocks are labels, currently appearing
8042 // only in asm's.
8043 const Instruction *I = CS.getInstruction();
8044 if (isa<CallBrInst>(I) &&
8045 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8046 cast<CallBrInst>(I)->getNumIndirectDests())) {
8047 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8048 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8049 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8050 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8051 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8052 } else {
8053 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8056 OpInfo.ConstraintVT =
8057 OpInfo
8058 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8059 .getSimpleVT();
8060 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8061 // The return value of the call is this value. As such, there is no
8062 // corresponding argument.
8063 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8064 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8065 OpInfo.ConstraintVT = TLI.getSimpleValueType(
8066 DAG.getDataLayout(), STy->getElementType(ResNo));
8067 } else {
8068 assert(ResNo == 0 && "Asm only has one result!");
8069 OpInfo.ConstraintVT =
8070 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8072 ++ResNo;
8073 } else {
8074 OpInfo.ConstraintVT = MVT::Other;
8077 if (!HasSideEffect)
8078 HasSideEffect = OpInfo.hasMemory(TLI);
8080 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8081 // FIXME: Could we compute this on OpInfo rather than T?
8083 // Compute the constraint code and ConstraintType to use.
8084 TLI.ComputeConstraintToUse(T, SDValue());
8086 if (T.ConstraintType == TargetLowering::C_Immediate &&
8087 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8088 // We've delayed emitting a diagnostic like the "n" constraint because
8089 // inlining could cause an integer showing up.
8090 return emitInlineAsmError(
8091 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8092 "integer constant expression");
8094 ExtraInfo.update(T);
8098 // We won't need to flush pending loads if this asm doesn't touch
8099 // memory and is nonvolatile.
8100 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8102 bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8103 if (IsCallBr) {
8104 // If this is a callbr we need to flush pending exports since inlineasm_br
8105 // is a terminator. We need to do this before nodes are glued to
8106 // the inlineasm_br node.
8107 Chain = getControlRoot();
8110 // Second pass over the constraints: compute which constraint option to use.
8111 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8112 // If this is an output operand with a matching input operand, look up the
8113 // matching input. If their types mismatch, e.g. one is an integer, the
8114 // other is floating point, or their sizes are different, flag it as an
8115 // error.
8116 if (OpInfo.hasMatchingInput()) {
8117 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8118 patchMatchingInput(OpInfo, Input, DAG);
8121 // Compute the constraint code and ConstraintType to use.
8122 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8124 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8125 OpInfo.Type == InlineAsm::isClobber)
8126 continue;
8128 // If this is a memory input, and if the operand is not indirect, do what we
8129 // need to provide an address for the memory input.
8130 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8131 !OpInfo.isIndirect) {
8132 assert((OpInfo.isMultipleAlternative ||
8133 (OpInfo.Type == InlineAsm::isInput)) &&
8134 "Can only indirectify direct input operands!");
8136 // Memory operands really want the address of the value.
8137 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8139 // There is no longer a Value* corresponding to this operand.
8140 OpInfo.CallOperandVal = nullptr;
8142 // It is now an indirect operand.
8143 OpInfo.isIndirect = true;
8148 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8149 std::vector<SDValue> AsmNodeOperands;
8150 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
8151 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8152 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8154 // If we have a !srcloc metadata node associated with it, we want to attach
8155 // this to the ultimately generated inline asm machineinstr. To do this, we
8156 // pass in the third operand as this (potentially null) inline asm MDNode.
8157 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8158 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8160 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8161 // bits as operand 3.
8162 AsmNodeOperands.push_back(DAG.getTargetConstant(
8163 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8165 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8166 // this, assign virtual and physical registers for inputs and otput.
8167 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8168 // Assign Registers.
8169 SDISelAsmOperandInfo &RefOpInfo =
8170 OpInfo.isMatchingInputConstraint()
8171 ? ConstraintOperands[OpInfo.getMatchedOperand()]
8172 : OpInfo;
8173 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8175 switch (OpInfo.Type) {
8176 case InlineAsm::isOutput:
8177 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8178 ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8179 OpInfo.ConstraintType == TargetLowering::C_Other) &&
8180 OpInfo.isIndirect)) {
8181 unsigned ConstraintID =
8182 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8183 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8184 "Failed to convert memory constraint code to constraint id.");
8186 // Add information to the INLINEASM node to know about this output.
8187 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8188 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8189 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8190 MVT::i32));
8191 AsmNodeOperands.push_back(OpInfo.CallOperand);
8192 break;
8193 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8194 OpInfo.ConstraintType == TargetLowering::C_Other) &&
8195 !OpInfo.isIndirect) ||
8196 OpInfo.ConstraintType == TargetLowering::C_Register ||
8197 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8198 // Otherwise, this outputs to a register (directly for C_Register /
8199 // C_RegisterClass, and a target-defined fashion for
8200 // C_Immediate/C_Other). Find a register that we can use.
8201 if (OpInfo.AssignedRegs.Regs.empty()) {
8202 emitInlineAsmError(
8203 CS, "couldn't allocate output register for constraint '" +
8204 Twine(OpInfo.ConstraintCode) + "'");
8205 return;
8208 // Add information to the INLINEASM node to know that this register is
8209 // set.
8210 OpInfo.AssignedRegs.AddInlineAsmOperands(
8211 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8212 : InlineAsm::Kind_RegDef,
8213 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8215 break;
8217 case InlineAsm::isInput: {
8218 SDValue InOperandVal = OpInfo.CallOperand;
8220 if (OpInfo.isMatchingInputConstraint()) {
8221 // If this is required to match an output register we have already set,
8222 // just use its register.
8223 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8224 AsmNodeOperands);
8225 unsigned OpFlag =
8226 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8227 if (InlineAsm::isRegDefKind(OpFlag) ||
8228 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8229 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8230 if (OpInfo.isIndirect) {
8231 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8232 emitInlineAsmError(CS, "inline asm not supported yet:"
8233 " don't know how to handle tied "
8234 "indirect register inputs");
8235 return;
8238 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8239 SmallVector<unsigned, 4> Regs;
8241 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8242 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8243 MachineRegisterInfo &RegInfo =
8244 DAG.getMachineFunction().getRegInfo();
8245 for (unsigned i = 0; i != NumRegs; ++i)
8246 Regs.push_back(RegInfo.createVirtualRegister(RC));
8247 } else {
8248 emitInlineAsmError(CS, "inline asm error: This value type register "
8249 "class is not natively supported!");
8250 return;
8253 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8255 SDLoc dl = getCurSDLoc();
8256 // Use the produced MatchedRegs object to
8257 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8258 CS.getInstruction());
8259 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8260 true, OpInfo.getMatchedOperand(), dl,
8261 DAG, AsmNodeOperands);
8262 break;
8265 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8266 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8267 "Unexpected number of operands");
8268 // Add information to the INLINEASM node to know about this input.
8269 // See InlineAsm.h isUseOperandTiedToDef.
8270 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8271 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8272 OpInfo.getMatchedOperand());
8273 AsmNodeOperands.push_back(DAG.getTargetConstant(
8274 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8275 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8276 break;
8279 // Treat indirect 'X' constraint as memory.
8280 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8281 OpInfo.ConstraintType == TargetLowering::C_Other) &&
8282 OpInfo.isIndirect)
8283 OpInfo.ConstraintType = TargetLowering::C_Memory;
8285 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8286 OpInfo.ConstraintType == TargetLowering::C_Other) {
8287 std::vector<SDValue> Ops;
8288 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8289 Ops, DAG);
8290 if (Ops.empty()) {
8291 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8292 if (isa<ConstantSDNode>(InOperandVal)) {
8293 emitInlineAsmError(CS, "value out of range for constraint '" +
8294 Twine(OpInfo.ConstraintCode) + "'");
8295 return;
8298 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8299 Twine(OpInfo.ConstraintCode) + "'");
8300 return;
8303 // Add information to the INLINEASM node to know about this input.
8304 unsigned ResOpType =
8305 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8306 AsmNodeOperands.push_back(DAG.getTargetConstant(
8307 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8308 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8309 break;
8312 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8313 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8314 assert(InOperandVal.getValueType() ==
8315 TLI.getPointerTy(DAG.getDataLayout()) &&
8316 "Memory operands expect pointer values");
8318 unsigned ConstraintID =
8319 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8320 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8321 "Failed to convert memory constraint code to constraint id.");
8323 // Add information to the INLINEASM node to know about this input.
8324 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8325 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8326 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8327 getCurSDLoc(),
8328 MVT::i32));
8329 AsmNodeOperands.push_back(InOperandVal);
8330 break;
8333 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8334 OpInfo.ConstraintType == TargetLowering::C_Register ||
8335 OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8336 "Unknown constraint type!");
8338 // TODO: Support this.
8339 if (OpInfo.isIndirect) {
8340 emitInlineAsmError(
8341 CS, "Don't know how to handle indirect register inputs yet "
8342 "for constraint '" +
8343 Twine(OpInfo.ConstraintCode) + "'");
8344 return;
8347 // Copy the input into the appropriate registers.
8348 if (OpInfo.AssignedRegs.Regs.empty()) {
8349 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8350 Twine(OpInfo.ConstraintCode) + "'");
8351 return;
8354 SDLoc dl = getCurSDLoc();
8356 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8357 Chain, &Flag, CS.getInstruction());
8359 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8360 dl, DAG, AsmNodeOperands);
8361 break;
8363 case InlineAsm::isClobber:
8364 // Add the clobbered value to the operand list, so that the register
8365 // allocator is aware that the physreg got clobbered.
8366 if (!OpInfo.AssignedRegs.Regs.empty())
8367 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8368 false, 0, getCurSDLoc(), DAG,
8369 AsmNodeOperands);
8370 break;
8374 // Finish up input operands. Set the input chain and add the flag last.
8375 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8376 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8378 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8379 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8380 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8381 Flag = Chain.getValue(1);
8383 // Do additional work to generate outputs.
8385 SmallVector<EVT, 1> ResultVTs;
8386 SmallVector<SDValue, 1> ResultValues;
8387 SmallVector<SDValue, 8> OutChains;
8389 llvm::Type *CSResultType = CS.getType();
8390 ArrayRef<Type *> ResultTypes;
8391 if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8392 ResultTypes = StructResult->elements();
8393 else if (!CSResultType->isVoidTy())
8394 ResultTypes = makeArrayRef(CSResultType);
8396 auto CurResultType = ResultTypes.begin();
8397 auto handleRegAssign = [&](SDValue V) {
8398 assert(CurResultType != ResultTypes.end() && "Unexpected value");
8399 assert((*CurResultType)->isSized() && "Unexpected unsized type");
8400 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8401 ++CurResultType;
8402 // If the type of the inline asm call site return value is different but has
8403 // same size as the type of the asm output bitcast it. One example of this
8404 // is for vectors with different width / number of elements. This can
8405 // happen for register classes that can contain multiple different value
8406 // types. The preg or vreg allocated may not have the same VT as was
8407 // expected.
8409 // This can also happen for a return value that disagrees with the register
8410 // class it is put in, eg. a double in a general-purpose register on a
8411 // 32-bit machine.
8412 if (ResultVT != V.getValueType() &&
8413 ResultVT.getSizeInBits() == V.getValueSizeInBits())
8414 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8415 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8416 V.getValueType().isInteger()) {
8417 // If a result value was tied to an input value, the computed result
8418 // may have a wider width than the expected result. Extract the
8419 // relevant portion.
8420 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8422 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8423 ResultVTs.push_back(ResultVT);
8424 ResultValues.push_back(V);
8427 // Deal with output operands.
8428 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8429 if (OpInfo.Type == InlineAsm::isOutput) {
8430 SDValue Val;
8431 // Skip trivial output operands.
8432 if (OpInfo.AssignedRegs.Regs.empty())
8433 continue;
8435 switch (OpInfo.ConstraintType) {
8436 case TargetLowering::C_Register:
8437 case TargetLowering::C_RegisterClass:
8438 Val = OpInfo.AssignedRegs.getCopyFromRegs(
8439 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8440 break;
8441 case TargetLowering::C_Immediate:
8442 case TargetLowering::C_Other:
8443 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8444 OpInfo, DAG);
8445 break;
8446 case TargetLowering::C_Memory:
8447 break; // Already handled.
8448 case TargetLowering::C_Unknown:
8449 assert(false && "Unexpected unknown constraint");
8452 // Indirect output manifest as stores. Record output chains.
8453 if (OpInfo.isIndirect) {
8454 const Value *Ptr = OpInfo.CallOperandVal;
8455 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8456 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8457 MachinePointerInfo(Ptr));
8458 OutChains.push_back(Store);
8459 } else {
8460 // generate CopyFromRegs to associated registers.
8461 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8462 if (Val.getOpcode() == ISD::MERGE_VALUES) {
8463 for (const SDValue &V : Val->op_values())
8464 handleRegAssign(V);
8465 } else
8466 handleRegAssign(Val);
8471 // Set results.
8472 if (!ResultValues.empty()) {
8473 assert(CurResultType == ResultTypes.end() &&
8474 "Mismatch in number of ResultTypes");
8475 assert(ResultValues.size() == ResultTypes.size() &&
8476 "Mismatch in number of output operands in asm result");
8478 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8479 DAG.getVTList(ResultVTs), ResultValues);
8480 setValue(CS.getInstruction(), V);
8483 // Collect store chains.
8484 if (!OutChains.empty())
8485 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8487 // Only Update Root if inline assembly has a memory effect.
8488 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8489 DAG.setRoot(Chain);
8492 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8493 const Twine &Message) {
8494 LLVMContext &Ctx = *DAG.getContext();
8495 Ctx.emitError(CS.getInstruction(), Message);
8497 // Make sure we leave the DAG in a valid state
8498 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8499 SmallVector<EVT, 1> ValueVTs;
8500 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8502 if (ValueVTs.empty())
8503 return;
8505 SmallVector<SDValue, 1> Ops;
8506 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8507 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8509 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8512 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8513 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8514 MVT::Other, getRoot(),
8515 getValue(I.getArgOperand(0)),
8516 DAG.getSrcValue(I.getArgOperand(0))));
8519 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8520 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8521 const DataLayout &DL = DAG.getDataLayout();
8522 SDValue V = DAG.getVAArg(
8523 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8524 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8525 DL.getABITypeAlignment(I.getType()));
8526 DAG.setRoot(V.getValue(1));
8528 if (I.getType()->isPointerTy())
8529 V = DAG.getPtrExtOrTrunc(
8530 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8531 setValue(&I, V);
8534 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8535 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8536 MVT::Other, getRoot(),
8537 getValue(I.getArgOperand(0)),
8538 DAG.getSrcValue(I.getArgOperand(0))));
8541 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8542 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8543 MVT::Other, getRoot(),
8544 getValue(I.getArgOperand(0)),
8545 getValue(I.getArgOperand(1)),
8546 DAG.getSrcValue(I.getArgOperand(0)),
8547 DAG.getSrcValue(I.getArgOperand(1))));
8550 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8551 const Instruction &I,
8552 SDValue Op) {
8553 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8554 if (!Range)
8555 return Op;
8557 ConstantRange CR = getConstantRangeFromMetadata(*Range);
8558 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8559 return Op;
8561 APInt Lo = CR.getUnsignedMin();
8562 if (!Lo.isMinValue())
8563 return Op;
8565 APInt Hi = CR.getUnsignedMax();
8566 unsigned Bits = std::max(Hi.getActiveBits(),
8567 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8569 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8571 SDLoc SL = getCurSDLoc();
8573 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8574 DAG.getValueType(SmallVT));
8575 unsigned NumVals = Op.getNode()->getNumValues();
8576 if (NumVals == 1)
8577 return ZExt;
8579 SmallVector<SDValue, 4> Ops;
8581 Ops.push_back(ZExt);
8582 for (unsigned I = 1; I != NumVals; ++I)
8583 Ops.push_back(Op.getValue(I));
8585 return DAG.getMergeValues(Ops, SL);
8588 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8589 /// the call being lowered.
8591 /// This is a helper for lowering intrinsics that follow a target calling
8592 /// convention or require stack pointer adjustment. Only a subset of the
8593 /// intrinsic's operands need to participate in the calling convention.
8594 void SelectionDAGBuilder::populateCallLoweringInfo(
8595 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8596 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8597 bool IsPatchPoint) {
8598 TargetLowering::ArgListTy Args;
8599 Args.reserve(NumArgs);
8601 // Populate the argument list.
8602 // Attributes for args start at offset 1, after the return attribute.
8603 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8604 ArgI != ArgE; ++ArgI) {
8605 const Value *V = Call->getOperand(ArgI);
8607 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8609 TargetLowering::ArgListEntry Entry;
8610 Entry.Node = getValue(V);
8611 Entry.Ty = V->getType();
8612 Entry.setAttributes(Call, ArgI);
8613 Args.push_back(Entry);
8616 CLI.setDebugLoc(getCurSDLoc())
8617 .setChain(getRoot())
8618 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8619 .setDiscardResult(Call->use_empty())
8620 .setIsPatchPoint(IsPatchPoint);
8623 /// Add a stack map intrinsic call's live variable operands to a stackmap
8624 /// or patchpoint target node's operand list.
8626 /// Constants are converted to TargetConstants purely as an optimization to
8627 /// avoid constant materialization and register allocation.
8629 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8630 /// generate addess computation nodes, and so FinalizeISel can convert the
8631 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8632 /// address materialization and register allocation, but may also be required
8633 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8634 /// alloca in the entry block, then the runtime may assume that the alloca's
8635 /// StackMap location can be read immediately after compilation and that the
8636 /// location is valid at any point during execution (this is similar to the
8637 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8638 /// only available in a register, then the runtime would need to trap when
8639 /// execution reaches the StackMap in order to read the alloca's location.
8640 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8641 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8642 SelectionDAGBuilder &Builder) {
8643 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8644 SDValue OpVal = Builder.getValue(CS.getArgument(i));
8645 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8646 Ops.push_back(
8647 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8648 Ops.push_back(
8649 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8650 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8651 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8652 Ops.push_back(Builder.DAG.getTargetFrameIndex(
8653 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8654 } else
8655 Ops.push_back(OpVal);
8659 /// Lower llvm.experimental.stackmap directly to its target opcode.
8660 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8661 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8662 // [live variables...])
8664 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8666 SDValue Chain, InFlag, Callee, NullPtr;
8667 SmallVector<SDValue, 32> Ops;
8669 SDLoc DL = getCurSDLoc();
8670 Callee = getValue(CI.getCalledValue());
8671 NullPtr = DAG.getIntPtrConstant(0, DL, true);
8673 // The stackmap intrinsic only records the live variables (the arguemnts
8674 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8675 // intrinsic, this won't be lowered to a function call. This means we don't
8676 // have to worry about calling conventions and target specific lowering code.
8677 // Instead we perform the call lowering right here.
8679 // chain, flag = CALLSEQ_START(chain, 0, 0)
8680 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8681 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8683 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8684 InFlag = Chain.getValue(1);
8686 // Add the <id> and <numBytes> constants.
8687 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8688 Ops.push_back(DAG.getTargetConstant(
8689 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8690 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8691 Ops.push_back(DAG.getTargetConstant(
8692 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8693 MVT::i32));
8695 // Push live variables for the stack map.
8696 addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8698 // We are not pushing any register mask info here on the operands list,
8699 // because the stackmap doesn't clobber anything.
8701 // Push the chain and the glue flag.
8702 Ops.push_back(Chain);
8703 Ops.push_back(InFlag);
8705 // Create the STACKMAP node.
8706 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8707 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8708 Chain = SDValue(SM, 0);
8709 InFlag = Chain.getValue(1);
8711 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8713 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8715 // Set the root to the target-lowered call chain.
8716 DAG.setRoot(Chain);
8718 // Inform the Frame Information that we have a stackmap in this function.
8719 FuncInfo.MF->getFrameInfo().setHasStackMap();
8722 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8723 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8724 const BasicBlock *EHPadBB) {
8725 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8726 // i32 <numBytes>,
8727 // i8* <target>,
8728 // i32 <numArgs>,
8729 // [Args...],
8730 // [live variables...])
8732 CallingConv::ID CC = CS.getCallingConv();
8733 bool IsAnyRegCC = CC == CallingConv::AnyReg;
8734 bool HasDef = !CS->getType()->isVoidTy();
8735 SDLoc dl = getCurSDLoc();
8736 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8738 // Handle immediate and symbolic callees.
8739 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8740 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8741 /*isTarget=*/true);
8742 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8743 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8744 SDLoc(SymbolicCallee),
8745 SymbolicCallee->getValueType(0));
8747 // Get the real number of arguments participating in the call <numArgs>
8748 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8749 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8751 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8752 // Intrinsics include all meta-operands up to but not including CC.
8753 unsigned NumMetaOpers = PatchPointOpers::CCPos;
8754 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8755 "Not enough arguments provided to the patchpoint intrinsic");
8757 // For AnyRegCC the arguments are lowered later on manually.
8758 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8759 Type *ReturnTy =
8760 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8762 TargetLowering::CallLoweringInfo CLI(DAG);
8763 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8764 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8765 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8767 SDNode *CallEnd = Result.second.getNode();
8768 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8769 CallEnd = CallEnd->getOperand(0).getNode();
8771 /// Get a call instruction from the call sequence chain.
8772 /// Tail calls are not allowed.
8773 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8774 "Expected a callseq node.");
8775 SDNode *Call = CallEnd->getOperand(0).getNode();
8776 bool HasGlue = Call->getGluedNode();
8778 // Replace the target specific call node with the patchable intrinsic.
8779 SmallVector<SDValue, 8> Ops;
8781 // Add the <id> and <numBytes> constants.
8782 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8783 Ops.push_back(DAG.getTargetConstant(
8784 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8785 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8786 Ops.push_back(DAG.getTargetConstant(
8787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8788 MVT::i32));
8790 // Add the callee.
8791 Ops.push_back(Callee);
8793 // Adjust <numArgs> to account for any arguments that have been passed on the
8794 // stack instead.
8795 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8796 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8797 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8798 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8800 // Add the calling convention
8801 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8803 // Add the arguments we omitted previously. The register allocator should
8804 // place these in any free register.
8805 if (IsAnyRegCC)
8806 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8807 Ops.push_back(getValue(CS.getArgument(i)));
8809 // Push the arguments from the call instruction up to the register mask.
8810 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8811 Ops.append(Call->op_begin() + 2, e);
8813 // Push live variables for the stack map.
8814 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8816 // Push the register mask info.
8817 if (HasGlue)
8818 Ops.push_back(*(Call->op_end()-2));
8819 else
8820 Ops.push_back(*(Call->op_end()-1));
8822 // Push the chain (this is originally the first operand of the call, but
8823 // becomes now the last or second to last operand).
8824 Ops.push_back(*(Call->op_begin()));
8826 // Push the glue flag (last operand).
8827 if (HasGlue)
8828 Ops.push_back(*(Call->op_end()-1));
8830 SDVTList NodeTys;
8831 if (IsAnyRegCC && HasDef) {
8832 // Create the return types based on the intrinsic definition
8833 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834 SmallVector<EVT, 3> ValueVTs;
8835 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8836 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8838 // There is always a chain and a glue type at the end
8839 ValueVTs.push_back(MVT::Other);
8840 ValueVTs.push_back(MVT::Glue);
8841 NodeTys = DAG.getVTList(ValueVTs);
8842 } else
8843 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8845 // Replace the target specific call node with a PATCHPOINT node.
8846 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8847 dl, NodeTys, Ops);
8849 // Update the NodeMap.
8850 if (HasDef) {
8851 if (IsAnyRegCC)
8852 setValue(CS.getInstruction(), SDValue(MN, 0));
8853 else
8854 setValue(CS.getInstruction(), Result.first);
8857 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8858 // call sequence. Furthermore the location of the chain and glue can change
8859 // when the AnyReg calling convention is used and the intrinsic returns a
8860 // value.
8861 if (IsAnyRegCC && HasDef) {
8862 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8863 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8864 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8865 } else
8866 DAG.ReplaceAllUsesWith(Call, MN);
8867 DAG.DeleteNode(Call);
8869 // Inform the Frame Information that we have a patchpoint in this function.
8870 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8873 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8874 unsigned Intrinsic) {
8875 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8876 SDValue Op1 = getValue(I.getArgOperand(0));
8877 SDValue Op2;
8878 if (I.getNumArgOperands() > 1)
8879 Op2 = getValue(I.getArgOperand(1));
8880 SDLoc dl = getCurSDLoc();
8881 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8882 SDValue Res;
8883 FastMathFlags FMF;
8884 if (isa<FPMathOperator>(I))
8885 FMF = I.getFastMathFlags();
8887 switch (Intrinsic) {
8888 case Intrinsic::experimental_vector_reduce_v2_fadd:
8889 if (FMF.allowReassoc())
8890 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8891 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8892 else
8893 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8894 break;
8895 case Intrinsic::experimental_vector_reduce_v2_fmul:
8896 if (FMF.allowReassoc())
8897 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8898 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8899 else
8900 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8901 break;
8902 case Intrinsic::experimental_vector_reduce_add:
8903 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8904 break;
8905 case Intrinsic::experimental_vector_reduce_mul:
8906 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8907 break;
8908 case Intrinsic::experimental_vector_reduce_and:
8909 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8910 break;
8911 case Intrinsic::experimental_vector_reduce_or:
8912 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8913 break;
8914 case Intrinsic::experimental_vector_reduce_xor:
8915 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8916 break;
8917 case Intrinsic::experimental_vector_reduce_smax:
8918 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8919 break;
8920 case Intrinsic::experimental_vector_reduce_smin:
8921 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8922 break;
8923 case Intrinsic::experimental_vector_reduce_umax:
8924 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8925 break;
8926 case Intrinsic::experimental_vector_reduce_umin:
8927 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8928 break;
8929 case Intrinsic::experimental_vector_reduce_fmax:
8930 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8931 break;
8932 case Intrinsic::experimental_vector_reduce_fmin:
8933 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8934 break;
8935 default:
8936 llvm_unreachable("Unhandled vector reduce intrinsic");
8938 setValue(&I, Res);
8941 /// Returns an AttributeList representing the attributes applied to the return
8942 /// value of the given call.
8943 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8944 SmallVector<Attribute::AttrKind, 2> Attrs;
8945 if (CLI.RetSExt)
8946 Attrs.push_back(Attribute::SExt);
8947 if (CLI.RetZExt)
8948 Attrs.push_back(Attribute::ZExt);
8949 if (CLI.IsInReg)
8950 Attrs.push_back(Attribute::InReg);
8952 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8953 Attrs);
8956 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8957 /// implementation, which just calls LowerCall.
8958 /// FIXME: When all targets are
8959 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8960 std::pair<SDValue, SDValue>
8961 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8962 // Handle the incoming return values from the call.
8963 CLI.Ins.clear();
8964 Type *OrigRetTy = CLI.RetTy;
8965 SmallVector<EVT, 4> RetTys;
8966 SmallVector<uint64_t, 4> Offsets;
8967 auto &DL = CLI.DAG.getDataLayout();
8968 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8970 if (CLI.IsPostTypeLegalization) {
8971 // If we are lowering a libcall after legalization, split the return type.
8972 SmallVector<EVT, 4> OldRetTys;
8973 SmallVector<uint64_t, 4> OldOffsets;
8974 RetTys.swap(OldRetTys);
8975 Offsets.swap(OldOffsets);
8977 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8978 EVT RetVT = OldRetTys[i];
8979 uint64_t Offset = OldOffsets[i];
8980 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8981 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8982 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8983 RetTys.append(NumRegs, RegisterVT);
8984 for (unsigned j = 0; j != NumRegs; ++j)
8985 Offsets.push_back(Offset + j * RegisterVTByteSZ);
8989 SmallVector<ISD::OutputArg, 4> Outs;
8990 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8992 bool CanLowerReturn =
8993 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8994 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8996 SDValue DemoteStackSlot;
8997 int DemoteStackIdx = -100;
8998 if (!CanLowerReturn) {
8999 // FIXME: equivalent assert?
9000 // assert(!CS.hasInAllocaArgument() &&
9001 // "sret demotion is incompatible with inalloca");
9002 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9003 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
9004 MachineFunction &MF = CLI.DAG.getMachineFunction();
9005 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
9006 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9007 DL.getAllocaAddrSpace());
9009 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9010 ArgListEntry Entry;
9011 Entry.Node = DemoteStackSlot;
9012 Entry.Ty = StackSlotPtrType;
9013 Entry.IsSExt = false;
9014 Entry.IsZExt = false;
9015 Entry.IsInReg = false;
9016 Entry.IsSRet = true;
9017 Entry.IsNest = false;
9018 Entry.IsByVal = false;
9019 Entry.IsReturned = false;
9020 Entry.IsSwiftSelf = false;
9021 Entry.IsSwiftError = false;
9022 Entry.Alignment = Align;
9023 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9024 CLI.NumFixedArgs += 1;
9025 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9027 // sret demotion isn't compatible with tail-calls, since the sret argument
9028 // points into the callers stack frame.
9029 CLI.IsTailCall = false;
9030 } else {
9031 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9032 CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9033 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9034 ISD::ArgFlagsTy Flags;
9035 if (NeedsRegBlock) {
9036 Flags.setInConsecutiveRegs();
9037 if (I == RetTys.size() - 1)
9038 Flags.setInConsecutiveRegsLast();
9040 EVT VT = RetTys[I];
9041 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9042 CLI.CallConv, VT);
9043 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9044 CLI.CallConv, VT);
9045 for (unsigned i = 0; i != NumRegs; ++i) {
9046 ISD::InputArg MyFlags;
9047 MyFlags.Flags = Flags;
9048 MyFlags.VT = RegisterVT;
9049 MyFlags.ArgVT = VT;
9050 MyFlags.Used = CLI.IsReturnValueUsed;
9051 if (CLI.RetTy->isPointerTy()) {
9052 MyFlags.Flags.setPointer();
9053 MyFlags.Flags.setPointerAddrSpace(
9054 cast<PointerType>(CLI.RetTy)->getAddressSpace());
9056 if (CLI.RetSExt)
9057 MyFlags.Flags.setSExt();
9058 if (CLI.RetZExt)
9059 MyFlags.Flags.setZExt();
9060 if (CLI.IsInReg)
9061 MyFlags.Flags.setInReg();
9062 CLI.Ins.push_back(MyFlags);
9067 // We push in swifterror return as the last element of CLI.Ins.
9068 ArgListTy &Args = CLI.getArgs();
9069 if (supportSwiftError()) {
9070 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9071 if (Args[i].IsSwiftError) {
9072 ISD::InputArg MyFlags;
9073 MyFlags.VT = getPointerTy(DL);
9074 MyFlags.ArgVT = EVT(getPointerTy(DL));
9075 MyFlags.Flags.setSwiftError();
9076 CLI.Ins.push_back(MyFlags);
9081 // Handle all of the outgoing arguments.
9082 CLI.Outs.clear();
9083 CLI.OutVals.clear();
9084 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9085 SmallVector<EVT, 4> ValueVTs;
9086 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9087 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9088 Type *FinalType = Args[i].Ty;
9089 if (Args[i].IsByVal)
9090 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9091 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9092 FinalType, CLI.CallConv, CLI.IsVarArg);
9093 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9094 ++Value) {
9095 EVT VT = ValueVTs[Value];
9096 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9097 SDValue Op = SDValue(Args[i].Node.getNode(),
9098 Args[i].Node.getResNo() + Value);
9099 ISD::ArgFlagsTy Flags;
9101 // Certain targets (such as MIPS), may have a different ABI alignment
9102 // for a type depending on the context. Give the target a chance to
9103 // specify the alignment it wants.
9104 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
9106 if (Args[i].Ty->isPointerTy()) {
9107 Flags.setPointer();
9108 Flags.setPointerAddrSpace(
9109 cast<PointerType>(Args[i].Ty)->getAddressSpace());
9111 if (Args[i].IsZExt)
9112 Flags.setZExt();
9113 if (Args[i].IsSExt)
9114 Flags.setSExt();
9115 if (Args[i].IsInReg) {
9116 // If we are using vectorcall calling convention, a structure that is
9117 // passed InReg - is surely an HVA
9118 if (CLI.CallConv == CallingConv::X86_VectorCall &&
9119 isa<StructType>(FinalType)) {
9120 // The first value of a structure is marked
9121 if (0 == Value)
9122 Flags.setHvaStart();
9123 Flags.setHva();
9125 // Set InReg Flag
9126 Flags.setInReg();
9128 if (Args[i].IsSRet)
9129 Flags.setSRet();
9130 if (Args[i].IsSwiftSelf)
9131 Flags.setSwiftSelf();
9132 if (Args[i].IsSwiftError)
9133 Flags.setSwiftError();
9134 if (Args[i].IsByVal)
9135 Flags.setByVal();
9136 if (Args[i].IsInAlloca) {
9137 Flags.setInAlloca();
9138 // Set the byval flag for CCAssignFn callbacks that don't know about
9139 // inalloca. This way we can know how many bytes we should've allocated
9140 // and how many bytes a callee cleanup function will pop. If we port
9141 // inalloca to more targets, we'll have to add custom inalloca handling
9142 // in the various CC lowering callbacks.
9143 Flags.setByVal();
9145 if (Args[i].IsByVal || Args[i].IsInAlloca) {
9146 PointerType *Ty = cast<PointerType>(Args[i].Ty);
9147 Type *ElementTy = Ty->getElementType();
9149 unsigned FrameSize = DL.getTypeAllocSize(
9150 Args[i].ByValType ? Args[i].ByValType : ElementTy);
9151 Flags.setByValSize(FrameSize);
9153 // info is not there but there are cases it cannot get right.
9154 unsigned FrameAlign;
9155 if (Args[i].Alignment)
9156 FrameAlign = Args[i].Alignment;
9157 else
9158 FrameAlign = getByValTypeAlignment(ElementTy, DL);
9159 Flags.setByValAlign(FrameAlign);
9161 if (Args[i].IsNest)
9162 Flags.setNest();
9163 if (NeedsRegBlock)
9164 Flags.setInConsecutiveRegs();
9165 Flags.setOrigAlign(OriginalAlignment);
9167 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9168 CLI.CallConv, VT);
9169 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9170 CLI.CallConv, VT);
9171 SmallVector<SDValue, 4> Parts(NumParts);
9172 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9174 if (Args[i].IsSExt)
9175 ExtendKind = ISD::SIGN_EXTEND;
9176 else if (Args[i].IsZExt)
9177 ExtendKind = ISD::ZERO_EXTEND;
9179 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9180 // for now.
9181 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9182 CanLowerReturn) {
9183 assert((CLI.RetTy == Args[i].Ty ||
9184 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9185 CLI.RetTy->getPointerAddressSpace() ==
9186 Args[i].Ty->getPointerAddressSpace())) &&
9187 RetTys.size() == NumValues && "unexpected use of 'returned'");
9188 // Before passing 'returned' to the target lowering code, ensure that
9189 // either the register MVT and the actual EVT are the same size or that
9190 // the return value and argument are extended in the same way; in these
9191 // cases it's safe to pass the argument register value unchanged as the
9192 // return register value (although it's at the target's option whether
9193 // to do so)
9194 // TODO: allow code generation to take advantage of partially preserved
9195 // registers rather than clobbering the entire register when the
9196 // parameter extension method is not compatible with the return
9197 // extension method
9198 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9199 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9200 CLI.RetZExt == Args[i].IsZExt))
9201 Flags.setReturned();
9204 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9205 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9207 for (unsigned j = 0; j != NumParts; ++j) {
9208 // if it isn't first piece, alignment must be 1
9209 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9210 i < CLI.NumFixedArgs,
9211 i, j*Parts[j].getValueType().getStoreSize());
9212 if (NumParts > 1 && j == 0)
9213 MyFlags.Flags.setSplit();
9214 else if (j != 0) {
9215 MyFlags.Flags.setOrigAlign(1);
9216 if (j == NumParts - 1)
9217 MyFlags.Flags.setSplitEnd();
9220 CLI.Outs.push_back(MyFlags);
9221 CLI.OutVals.push_back(Parts[j]);
9224 if (NeedsRegBlock && Value == NumValues - 1)
9225 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9229 SmallVector<SDValue, 4> InVals;
9230 CLI.Chain = LowerCall(CLI, InVals);
9232 // Update CLI.InVals to use outside of this function.
9233 CLI.InVals = InVals;
9235 // Verify that the target's LowerCall behaved as expected.
9236 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9237 "LowerCall didn't return a valid chain!");
9238 assert((!CLI.IsTailCall || InVals.empty()) &&
9239 "LowerCall emitted a return value for a tail call!");
9240 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9241 "LowerCall didn't emit the correct number of values!");
9243 // For a tail call, the return value is merely live-out and there aren't
9244 // any nodes in the DAG representing it. Return a special value to
9245 // indicate that a tail call has been emitted and no more Instructions
9246 // should be processed in the current block.
9247 if (CLI.IsTailCall) {
9248 CLI.DAG.setRoot(CLI.Chain);
9249 return std::make_pair(SDValue(), SDValue());
9252 #ifndef NDEBUG
9253 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9254 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9255 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9256 "LowerCall emitted a value with the wrong type!");
9258 #endif
9260 SmallVector<SDValue, 4> ReturnValues;
9261 if (!CanLowerReturn) {
9262 // The instruction result is the result of loading from the
9263 // hidden sret parameter.
9264 SmallVector<EVT, 1> PVTs;
9265 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9267 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9268 assert(PVTs.size() == 1 && "Pointers should fit in one register");
9269 EVT PtrVT = PVTs[0];
9271 unsigned NumValues = RetTys.size();
9272 ReturnValues.resize(NumValues);
9273 SmallVector<SDValue, 4> Chains(NumValues);
9275 // An aggregate return value cannot wrap around the address space, so
9276 // offsets to its parts don't wrap either.
9277 SDNodeFlags Flags;
9278 Flags.setNoUnsignedWrap(true);
9280 for (unsigned i = 0; i < NumValues; ++i) {
9281 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9282 CLI.DAG.getConstant(Offsets[i], CLI.DL,
9283 PtrVT), Flags);
9284 SDValue L = CLI.DAG.getLoad(
9285 RetTys[i], CLI.DL, CLI.Chain, Add,
9286 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9287 DemoteStackIdx, Offsets[i]),
9288 /* Alignment = */ 1);
9289 ReturnValues[i] = L;
9290 Chains[i] = L.getValue(1);
9293 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9294 } else {
9295 // Collect the legal value parts into potentially illegal values
9296 // that correspond to the original function's return values.
9297 Optional<ISD::NodeType> AssertOp;
9298 if (CLI.RetSExt)
9299 AssertOp = ISD::AssertSext;
9300 else if (CLI.RetZExt)
9301 AssertOp = ISD::AssertZext;
9302 unsigned CurReg = 0;
9303 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9304 EVT VT = RetTys[I];
9305 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9306 CLI.CallConv, VT);
9307 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9308 CLI.CallConv, VT);
9310 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9311 NumRegs, RegisterVT, VT, nullptr,
9312 CLI.CallConv, AssertOp));
9313 CurReg += NumRegs;
9316 // For a function returning void, there is no return value. We can't create
9317 // such a node, so we just return a null return value in that case. In
9318 // that case, nothing will actually look at the value.
9319 if (ReturnValues.empty())
9320 return std::make_pair(SDValue(), CLI.Chain);
9323 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9324 CLI.DAG.getVTList(RetTys), ReturnValues);
9325 return std::make_pair(Res, CLI.Chain);
9328 void TargetLowering::LowerOperationWrapper(SDNode *N,
9329 SmallVectorImpl<SDValue> &Results,
9330 SelectionDAG &DAG) const {
9331 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9332 Results.push_back(Res);
9335 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9336 llvm_unreachable("LowerOperation not implemented for this target!");
9339 void
9340 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9341 SDValue Op = getNonRegisterValue(V);
9342 assert((Op.getOpcode() != ISD::CopyFromReg ||
9343 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9344 "Copy from a reg to the same reg!");
9345 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9348 // If this is an InlineAsm we have to match the registers required, not the
9349 // notional registers required by the type.
9351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9352 None); // This is not an ABI copy.
9353 SDValue Chain = DAG.getEntryNode();
9355 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9356 FuncInfo.PreferredExtendType.end())
9357 ? ISD::ANY_EXTEND
9358 : FuncInfo.PreferredExtendType[V];
9359 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9360 PendingExports.push_back(Chain);
9363 #include "llvm/CodeGen/SelectionDAGISel.h"
9365 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9366 /// entry block, return true. This includes arguments used by switches, since
9367 /// the switch may expand into multiple basic blocks.
9368 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9369 // With FastISel active, we may be splitting blocks, so force creation
9370 // of virtual registers for all non-dead arguments.
9371 if (FastISel)
9372 return A->use_empty();
9374 const BasicBlock &Entry = A->getParent()->front();
9375 for (const User *U : A->users())
9376 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9377 return false; // Use not in entry block.
9379 return true;
9382 using ArgCopyElisionMapTy =
9383 DenseMap<const Argument *,
9384 std::pair<const AllocaInst *, const StoreInst *>>;
9386 /// Scan the entry block of the function in FuncInfo for arguments that look
9387 /// like copies into a local alloca. Record any copied arguments in
9388 /// ArgCopyElisionCandidates.
9389 static void
9390 findArgumentCopyElisionCandidates(const DataLayout &DL,
9391 FunctionLoweringInfo *FuncInfo,
9392 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9393 // Record the state of every static alloca used in the entry block. Argument
9394 // allocas are all used in the entry block, so we need approximately as many
9395 // entries as we have arguments.
9396 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9397 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9398 unsigned NumArgs = FuncInfo->Fn->arg_size();
9399 StaticAllocas.reserve(NumArgs * 2);
9401 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9402 if (!V)
9403 return nullptr;
9404 V = V->stripPointerCasts();
9405 const auto *AI = dyn_cast<AllocaInst>(V);
9406 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9407 return nullptr;
9408 auto Iter = StaticAllocas.insert({AI, Unknown});
9409 return &Iter.first->second;
9412 // Look for stores of arguments to static allocas. Look through bitcasts and
9413 // GEPs to handle type coercions, as long as the alloca is fully initialized
9414 // by the store. Any non-store use of an alloca escapes it and any subsequent
9415 // unanalyzed store might write it.
9416 // FIXME: Handle structs initialized with multiple stores.
9417 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9418 // Look for stores, and handle non-store uses conservatively.
9419 const auto *SI = dyn_cast<StoreInst>(&I);
9420 if (!SI) {
9421 // We will look through cast uses, so ignore them completely.
9422 if (I.isCast())
9423 continue;
9424 // Ignore debug info intrinsics, they don't escape or store to allocas.
9425 if (isa<DbgInfoIntrinsic>(I))
9426 continue;
9427 // This is an unknown instruction. Assume it escapes or writes to all
9428 // static alloca operands.
9429 for (const Use &U : I.operands()) {
9430 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9431 *Info = StaticAllocaInfo::Clobbered;
9433 continue;
9436 // If the stored value is a static alloca, mark it as escaped.
9437 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9438 *Info = StaticAllocaInfo::Clobbered;
9440 // Check if the destination is a static alloca.
9441 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9442 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9443 if (!Info)
9444 continue;
9445 const AllocaInst *AI = cast<AllocaInst>(Dst);
9447 // Skip allocas that have been initialized or clobbered.
9448 if (*Info != StaticAllocaInfo::Unknown)
9449 continue;
9451 // Check if the stored value is an argument, and that this store fully
9452 // initializes the alloca. Don't elide copies from the same argument twice.
9453 const Value *Val = SI->getValueOperand()->stripPointerCasts();
9454 const auto *Arg = dyn_cast<Argument>(Val);
9455 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9456 Arg->getType()->isEmptyTy() ||
9457 DL.getTypeStoreSize(Arg->getType()) !=
9458 DL.getTypeAllocSize(AI->getAllocatedType()) ||
9459 ArgCopyElisionCandidates.count(Arg)) {
9460 *Info = StaticAllocaInfo::Clobbered;
9461 continue;
9464 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9465 << '\n');
9467 // Mark this alloca and store for argument copy elision.
9468 *Info = StaticAllocaInfo::Elidable;
9469 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9471 // Stop scanning if we've seen all arguments. This will happen early in -O0
9472 // builds, which is useful, because -O0 builds have large entry blocks and
9473 // many allocas.
9474 if (ArgCopyElisionCandidates.size() == NumArgs)
9475 break;
9479 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9480 /// ArgVal is a load from a suitable fixed stack object.
9481 static void tryToElideArgumentCopy(
9482 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9483 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9484 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9485 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9486 SDValue ArgVal, bool &ArgHasUses) {
9487 // Check if this is a load from a fixed stack object.
9488 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9489 if (!LNode)
9490 return;
9491 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9492 if (!FINode)
9493 return;
9495 // Check that the fixed stack object is the right size and alignment.
9496 // Look at the alignment that the user wrote on the alloca instead of looking
9497 // at the stack object.
9498 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9499 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9500 const AllocaInst *AI = ArgCopyIter->second.first;
9501 int FixedIndex = FINode->getIndex();
9502 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9503 int OldIndex = AllocaIndex;
9504 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9505 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9506 LLVM_DEBUG(
9507 dbgs() << " argument copy elision failed due to bad fixed stack "
9508 "object size\n");
9509 return;
9511 unsigned RequiredAlignment = AI->getAlignment();
9512 if (!RequiredAlignment) {
9513 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9514 AI->getAllocatedType());
9516 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9517 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9518 "greater than stack argument alignment ("
9519 << RequiredAlignment << " vs "
9520 << MFI.getObjectAlignment(FixedIndex) << ")\n");
9521 return;
9524 // Perform the elision. Delete the old stack object and replace its only use
9525 // in the variable info map. Mark the stack object as mutable.
9526 LLVM_DEBUG({
9527 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9528 << " Replacing frame index " << OldIndex << " with " << FixedIndex
9529 << '\n';
9531 MFI.RemoveStackObject(OldIndex);
9532 MFI.setIsImmutableObjectIndex(FixedIndex, false);
9533 AllocaIndex = FixedIndex;
9534 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9535 Chains.push_back(ArgVal.getValue(1));
9537 // Avoid emitting code for the store implementing the copy.
9538 const StoreInst *SI = ArgCopyIter->second.second;
9539 ElidedArgCopyInstrs.insert(SI);
9541 // Check for uses of the argument again so that we can avoid exporting ArgVal
9542 // if it is't used by anything other than the store.
9543 for (const Value *U : Arg.users()) {
9544 if (U != SI) {
9545 ArgHasUses = true;
9546 break;
9551 void SelectionDAGISel::LowerArguments(const Function &F) {
9552 SelectionDAG &DAG = SDB->DAG;
9553 SDLoc dl = SDB->getCurSDLoc();
9554 const DataLayout &DL = DAG.getDataLayout();
9555 SmallVector<ISD::InputArg, 16> Ins;
9557 if (!FuncInfo->CanLowerReturn) {
9558 // Put in an sret pointer parameter before all the other parameters.
9559 SmallVector<EVT, 1> ValueVTs;
9560 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9561 F.getReturnType()->getPointerTo(
9562 DAG.getDataLayout().getAllocaAddrSpace()),
9563 ValueVTs);
9565 // NOTE: Assuming that a pointer will never break down to more than one VT
9566 // or one register.
9567 ISD::ArgFlagsTy Flags;
9568 Flags.setSRet();
9569 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9570 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9571 ISD::InputArg::NoArgIndex, 0);
9572 Ins.push_back(RetArg);
9575 // Look for stores of arguments to static allocas. Mark such arguments with a
9576 // flag to ask the target to give us the memory location of that argument if
9577 // available.
9578 ArgCopyElisionMapTy ArgCopyElisionCandidates;
9579 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9581 // Set up the incoming argument description vector.
9582 for (const Argument &Arg : F.args()) {
9583 unsigned ArgNo = Arg.getArgNo();
9584 SmallVector<EVT, 4> ValueVTs;
9585 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9586 bool isArgValueUsed = !Arg.use_empty();
9587 unsigned PartBase = 0;
9588 Type *FinalType = Arg.getType();
9589 if (Arg.hasAttribute(Attribute::ByVal))
9590 FinalType = Arg.getParamByValType();
9591 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9592 FinalType, F.getCallingConv(), F.isVarArg());
9593 for (unsigned Value = 0, NumValues = ValueVTs.size();
9594 Value != NumValues; ++Value) {
9595 EVT VT = ValueVTs[Value];
9596 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9597 ISD::ArgFlagsTy Flags;
9599 // Certain targets (such as MIPS), may have a different ABI alignment
9600 // for a type depending on the context. Give the target a chance to
9601 // specify the alignment it wants.
9602 unsigned OriginalAlignment =
9603 TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9605 if (Arg.getType()->isPointerTy()) {
9606 Flags.setPointer();
9607 Flags.setPointerAddrSpace(
9608 cast<PointerType>(Arg.getType())->getAddressSpace());
9610 if (Arg.hasAttribute(Attribute::ZExt))
9611 Flags.setZExt();
9612 if (Arg.hasAttribute(Attribute::SExt))
9613 Flags.setSExt();
9614 if (Arg.hasAttribute(Attribute::InReg)) {
9615 // If we are using vectorcall calling convention, a structure that is
9616 // passed InReg - is surely an HVA
9617 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9618 isa<StructType>(Arg.getType())) {
9619 // The first value of a structure is marked
9620 if (0 == Value)
9621 Flags.setHvaStart();
9622 Flags.setHva();
9624 // Set InReg Flag
9625 Flags.setInReg();
9627 if (Arg.hasAttribute(Attribute::StructRet))
9628 Flags.setSRet();
9629 if (Arg.hasAttribute(Attribute::SwiftSelf))
9630 Flags.setSwiftSelf();
9631 if (Arg.hasAttribute(Attribute::SwiftError))
9632 Flags.setSwiftError();
9633 if (Arg.hasAttribute(Attribute::ByVal))
9634 Flags.setByVal();
9635 if (Arg.hasAttribute(Attribute::InAlloca)) {
9636 Flags.setInAlloca();
9637 // Set the byval flag for CCAssignFn callbacks that don't know about
9638 // inalloca. This way we can know how many bytes we should've allocated
9639 // and how many bytes a callee cleanup function will pop. If we port
9640 // inalloca to more targets, we'll have to add custom inalloca handling
9641 // in the various CC lowering callbacks.
9642 Flags.setByVal();
9644 if (F.getCallingConv() == CallingConv::X86_INTR) {
9645 // IA Interrupt passes frame (1st parameter) by value in the stack.
9646 if (ArgNo == 0)
9647 Flags.setByVal();
9649 if (Flags.isByVal() || Flags.isInAlloca()) {
9650 Type *ElementTy = Arg.getParamByValType();
9652 // For ByVal, size and alignment should be passed from FE. BE will
9653 // guess if this info is not there but there are cases it cannot get
9654 // right.
9655 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9656 Flags.setByValSize(FrameSize);
9658 unsigned FrameAlign;
9659 if (Arg.getParamAlignment())
9660 FrameAlign = Arg.getParamAlignment();
9661 else
9662 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9663 Flags.setByValAlign(FrameAlign);
9665 if (Arg.hasAttribute(Attribute::Nest))
9666 Flags.setNest();
9667 if (NeedsRegBlock)
9668 Flags.setInConsecutiveRegs();
9669 Flags.setOrigAlign(OriginalAlignment);
9670 if (ArgCopyElisionCandidates.count(&Arg))
9671 Flags.setCopyElisionCandidate();
9672 if (Arg.hasAttribute(Attribute::Returned))
9673 Flags.setReturned();
9675 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9676 *CurDAG->getContext(), F.getCallingConv(), VT);
9677 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9678 *CurDAG->getContext(), F.getCallingConv(), VT);
9679 for (unsigned i = 0; i != NumRegs; ++i) {
9680 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9681 ArgNo, PartBase+i*RegisterVT.getStoreSize());
9682 if (NumRegs > 1 && i == 0)
9683 MyFlags.Flags.setSplit();
9684 // if it isn't first piece, alignment must be 1
9685 else if (i > 0) {
9686 MyFlags.Flags.setOrigAlign(1);
9687 if (i == NumRegs - 1)
9688 MyFlags.Flags.setSplitEnd();
9690 Ins.push_back(MyFlags);
9692 if (NeedsRegBlock && Value == NumValues - 1)
9693 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9694 PartBase += VT.getStoreSize();
9698 // Call the target to set up the argument values.
9699 SmallVector<SDValue, 8> InVals;
9700 SDValue NewRoot = TLI->LowerFormalArguments(
9701 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9703 // Verify that the target's LowerFormalArguments behaved as expected.
9704 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9705 "LowerFormalArguments didn't return a valid chain!");
9706 assert(InVals.size() == Ins.size() &&
9707 "LowerFormalArguments didn't emit the correct number of values!");
9708 LLVM_DEBUG({
9709 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9710 assert(InVals[i].getNode() &&
9711 "LowerFormalArguments emitted a null value!");
9712 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9713 "LowerFormalArguments emitted a value with the wrong type!");
9717 // Update the DAG with the new chain value resulting from argument lowering.
9718 DAG.setRoot(NewRoot);
9720 // Set up the argument values.
9721 unsigned i = 0;
9722 if (!FuncInfo->CanLowerReturn) {
9723 // Create a virtual register for the sret pointer, and put in a copy
9724 // from the sret argument into it.
9725 SmallVector<EVT, 1> ValueVTs;
9726 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9727 F.getReturnType()->getPointerTo(
9728 DAG.getDataLayout().getAllocaAddrSpace()),
9729 ValueVTs);
9730 MVT VT = ValueVTs[0].getSimpleVT();
9731 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9732 Optional<ISD::NodeType> AssertOp = None;
9733 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9734 nullptr, F.getCallingConv(), AssertOp);
9736 MachineFunction& MF = SDB->DAG.getMachineFunction();
9737 MachineRegisterInfo& RegInfo = MF.getRegInfo();
9738 Register SRetReg =
9739 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9740 FuncInfo->DemoteRegister = SRetReg;
9741 NewRoot =
9742 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9743 DAG.setRoot(NewRoot);
9745 // i indexes lowered arguments. Bump it past the hidden sret argument.
9746 ++i;
9749 SmallVector<SDValue, 4> Chains;
9750 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9751 for (const Argument &Arg : F.args()) {
9752 SmallVector<SDValue, 4> ArgValues;
9753 SmallVector<EVT, 4> ValueVTs;
9754 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9755 unsigned NumValues = ValueVTs.size();
9756 if (NumValues == 0)
9757 continue;
9759 bool ArgHasUses = !Arg.use_empty();
9761 // Elide the copying store if the target loaded this argument from a
9762 // suitable fixed stack object.
9763 if (Ins[i].Flags.isCopyElisionCandidate()) {
9764 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9765 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9766 InVals[i], ArgHasUses);
9769 // If this argument is unused then remember its value. It is used to generate
9770 // debugging information.
9771 bool isSwiftErrorArg =
9772 TLI->supportSwiftError() &&
9773 Arg.hasAttribute(Attribute::SwiftError);
9774 if (!ArgHasUses && !isSwiftErrorArg) {
9775 SDB->setUnusedArgValue(&Arg, InVals[i]);
9777 // Also remember any frame index for use in FastISel.
9778 if (FrameIndexSDNode *FI =
9779 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9780 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9783 for (unsigned Val = 0; Val != NumValues; ++Val) {
9784 EVT VT = ValueVTs[Val];
9785 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9786 F.getCallingConv(), VT);
9787 unsigned NumParts = TLI->getNumRegistersForCallingConv(
9788 *CurDAG->getContext(), F.getCallingConv(), VT);
9790 // Even an apparant 'unused' swifterror argument needs to be returned. So
9791 // we do generate a copy for it that can be used on return from the
9792 // function.
9793 if (ArgHasUses || isSwiftErrorArg) {
9794 Optional<ISD::NodeType> AssertOp;
9795 if (Arg.hasAttribute(Attribute::SExt))
9796 AssertOp = ISD::AssertSext;
9797 else if (Arg.hasAttribute(Attribute::ZExt))
9798 AssertOp = ISD::AssertZext;
9800 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9801 PartVT, VT, nullptr,
9802 F.getCallingConv(), AssertOp));
9805 i += NumParts;
9808 // We don't need to do anything else for unused arguments.
9809 if (ArgValues.empty())
9810 continue;
9812 // Note down frame index.
9813 if (FrameIndexSDNode *FI =
9814 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9815 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9817 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9818 SDB->getCurSDLoc());
9820 SDB->setValue(&Arg, Res);
9821 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9822 // We want to associate the argument with the frame index, among
9823 // involved operands, that correspond to the lowest address. The
9824 // getCopyFromParts function, called earlier, is swapping the order of
9825 // the operands to BUILD_PAIR depending on endianness. The result of
9826 // that swapping is that the least significant bits of the argument will
9827 // be in the first operand of the BUILD_PAIR node, and the most
9828 // significant bits will be in the second operand.
9829 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9830 if (LoadSDNode *LNode =
9831 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9832 if (FrameIndexSDNode *FI =
9833 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9834 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9837 // Update the SwiftErrorVRegDefMap.
9838 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9839 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9840 if (Register::isVirtualRegister(Reg))
9841 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9842 Reg);
9845 // If this argument is live outside of the entry block, insert a copy from
9846 // wherever we got it to the vreg that other BB's will reference it as.
9847 if (Res.getOpcode() == ISD::CopyFromReg) {
9848 // If we can, though, try to skip creating an unnecessary vreg.
9849 // FIXME: This isn't very clean... it would be nice to make this more
9850 // general.
9851 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9852 if (Register::isVirtualRegister(Reg)) {
9853 FuncInfo->ValueMap[&Arg] = Reg;
9854 continue;
9857 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9858 FuncInfo->InitializeRegForValue(&Arg);
9859 SDB->CopyToExportRegsIfNeeded(&Arg);
9863 if (!Chains.empty()) {
9864 Chains.push_back(NewRoot);
9865 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9868 DAG.setRoot(NewRoot);
9870 assert(i == InVals.size() && "Argument register count mismatch!");
9872 // If any argument copy elisions occurred and we have debug info, update the
9873 // stale frame indices used in the dbg.declare variable info table.
9874 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9875 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9876 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9877 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9878 if (I != ArgCopyElisionFrameIndexMap.end())
9879 VI.Slot = I->second;
9883 // Finally, if the target has anything special to do, allow it to do so.
9884 EmitFunctionEntryCode();
9887 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9888 /// ensure constants are generated when needed. Remember the virtual registers
9889 /// that need to be added to the Machine PHI nodes as input. We cannot just
9890 /// directly add them, because expansion might result in multiple MBB's for one
9891 /// BB. As such, the start of the BB might correspond to a different MBB than
9892 /// the end.
9893 void
9894 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9895 const Instruction *TI = LLVMBB->getTerminator();
9897 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9899 // Check PHI nodes in successors that expect a value to be available from this
9900 // block.
9901 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9902 const BasicBlock *SuccBB = TI->getSuccessor(succ);
9903 if (!isa<PHINode>(SuccBB->begin())) continue;
9904 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9906 // If this terminator has multiple identical successors (common for
9907 // switches), only handle each succ once.
9908 if (!SuccsHandled.insert(SuccMBB).second)
9909 continue;
9911 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9913 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9914 // nodes and Machine PHI nodes, but the incoming operands have not been
9915 // emitted yet.
9916 for (const PHINode &PN : SuccBB->phis()) {
9917 // Ignore dead phi's.
9918 if (PN.use_empty())
9919 continue;
9921 // Skip empty types
9922 if (PN.getType()->isEmptyTy())
9923 continue;
9925 unsigned Reg;
9926 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9928 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9929 unsigned &RegOut = ConstantsOut[C];
9930 if (RegOut == 0) {
9931 RegOut = FuncInfo.CreateRegs(C);
9932 CopyValueToVirtualRegister(C, RegOut);
9934 Reg = RegOut;
9935 } else {
9936 DenseMap<const Value *, unsigned>::iterator I =
9937 FuncInfo.ValueMap.find(PHIOp);
9938 if (I != FuncInfo.ValueMap.end())
9939 Reg = I->second;
9940 else {
9941 assert(isa<AllocaInst>(PHIOp) &&
9942 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9943 "Didn't codegen value into a register!??");
9944 Reg = FuncInfo.CreateRegs(PHIOp);
9945 CopyValueToVirtualRegister(PHIOp, Reg);
9949 // Remember that this register needs to added to the machine PHI node as
9950 // the input for this MBB.
9951 SmallVector<EVT, 4> ValueVTs;
9952 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9953 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9954 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9955 EVT VT = ValueVTs[vti];
9956 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9957 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9958 FuncInfo.PHINodesToUpdate.push_back(
9959 std::make_pair(&*MBBI++, Reg + i));
9960 Reg += NumRegisters;
9965 ConstantsOut.clear();
9968 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9969 /// is 0.
9970 MachineBasicBlock *
9971 SelectionDAGBuilder::StackProtectorDescriptor::
9972 AddSuccessorMBB(const BasicBlock *BB,
9973 MachineBasicBlock *ParentMBB,
9974 bool IsLikely,
9975 MachineBasicBlock *SuccMBB) {
9976 // If SuccBB has not been created yet, create it.
9977 if (!SuccMBB) {
9978 MachineFunction *MF = ParentMBB->getParent();
9979 MachineFunction::iterator BBI(ParentMBB);
9980 SuccMBB = MF->CreateMachineBasicBlock(BB);
9981 MF->insert(++BBI, SuccMBB);
9983 // Add it as a successor of ParentMBB.
9984 ParentMBB->addSuccessor(
9985 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9986 return SuccMBB;
9989 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9990 MachineFunction::iterator I(MBB);
9991 if (++I == FuncInfo.MF->end())
9992 return nullptr;
9993 return &*I;
9996 /// During lowering new call nodes can be created (such as memset, etc.).
9997 /// Those will become new roots of the current DAG, but complications arise
9998 /// when they are tail calls. In such cases, the call lowering will update
9999 /// the root, but the builder still needs to know that a tail call has been
10000 /// lowered in order to avoid generating an additional return.
10001 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10002 // If the node is null, we do have a tail call.
10003 if (MaybeTC.getNode() != nullptr)
10004 DAG.setRoot(MaybeTC);
10005 else
10006 HasTailCall = true;
10009 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10010 MachineBasicBlock *SwitchMBB,
10011 MachineBasicBlock *DefaultMBB) {
10012 MachineFunction *CurMF = FuncInfo.MF;
10013 MachineBasicBlock *NextMBB = nullptr;
10014 MachineFunction::iterator BBI(W.MBB);
10015 if (++BBI != FuncInfo.MF->end())
10016 NextMBB = &*BBI;
10018 unsigned Size = W.LastCluster - W.FirstCluster + 1;
10020 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10022 if (Size == 2 && W.MBB == SwitchMBB) {
10023 // If any two of the cases has the same destination, and if one value
10024 // is the same as the other, but has one bit unset that the other has set,
10025 // use bit manipulation to do two compares at once. For example:
10026 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10027 // TODO: This could be extended to merge any 2 cases in switches with 3
10028 // cases.
10029 // TODO: Handle cases where W.CaseBB != SwitchBB.
10030 CaseCluster &Small = *W.FirstCluster;
10031 CaseCluster &Big = *W.LastCluster;
10033 if (Small.Low == Small.High && Big.Low == Big.High &&
10034 Small.MBB == Big.MBB) {
10035 const APInt &SmallValue = Small.Low->getValue();
10036 const APInt &BigValue = Big.Low->getValue();
10038 // Check that there is only one bit different.
10039 APInt CommonBit = BigValue ^ SmallValue;
10040 if (CommonBit.isPowerOf2()) {
10041 SDValue CondLHS = getValue(Cond);
10042 EVT VT = CondLHS.getValueType();
10043 SDLoc DL = getCurSDLoc();
10045 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10046 DAG.getConstant(CommonBit, DL, VT));
10047 SDValue Cond = DAG.getSetCC(
10048 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10049 ISD::SETEQ);
10051 // Update successor info.
10052 // Both Small and Big will jump to Small.BB, so we sum up the
10053 // probabilities.
10054 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10055 if (BPI)
10056 addSuccessorWithProb(
10057 SwitchMBB, DefaultMBB,
10058 // The default destination is the first successor in IR.
10059 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10060 else
10061 addSuccessorWithProb(SwitchMBB, DefaultMBB);
10063 // Insert the true branch.
10064 SDValue BrCond =
10065 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10066 DAG.getBasicBlock(Small.MBB));
10067 // Insert the false branch.
10068 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10069 DAG.getBasicBlock(DefaultMBB));
10071 DAG.setRoot(BrCond);
10072 return;
10077 if (TM.getOptLevel() != CodeGenOpt::None) {
10078 // Here, we order cases by probability so the most likely case will be
10079 // checked first. However, two clusters can have the same probability in
10080 // which case their relative ordering is non-deterministic. So we use Low
10081 // as a tie-breaker as clusters are guaranteed to never overlap.
10082 llvm::sort(W.FirstCluster, W.LastCluster + 1,
10083 [](const CaseCluster &a, const CaseCluster &b) {
10084 return a.Prob != b.Prob ?
10085 a.Prob > b.Prob :
10086 a.Low->getValue().slt(b.Low->getValue());
10089 // Rearrange the case blocks so that the last one falls through if possible
10090 // without changing the order of probabilities.
10091 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10092 --I;
10093 if (I->Prob > W.LastCluster->Prob)
10094 break;
10095 if (I->Kind == CC_Range && I->MBB == NextMBB) {
10096 std::swap(*I, *W.LastCluster);
10097 break;
10102 // Compute total probability.
10103 BranchProbability DefaultProb = W.DefaultProb;
10104 BranchProbability UnhandledProbs = DefaultProb;
10105 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10106 UnhandledProbs += I->Prob;
10108 MachineBasicBlock *CurMBB = W.MBB;
10109 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10110 bool FallthroughUnreachable = false;
10111 MachineBasicBlock *Fallthrough;
10112 if (I == W.LastCluster) {
10113 // For the last cluster, fall through to the default destination.
10114 Fallthrough = DefaultMBB;
10115 FallthroughUnreachable = isa<UnreachableInst>(
10116 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10117 } else {
10118 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10119 CurMF->insert(BBI, Fallthrough);
10120 // Put Cond in a virtual register to make it available from the new blocks.
10121 ExportFromCurrentBlock(Cond);
10123 UnhandledProbs -= I->Prob;
10125 switch (I->Kind) {
10126 case CC_JumpTable: {
10127 // FIXME: Optimize away range check based on pivot comparisons.
10128 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10129 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10131 // The jump block hasn't been inserted yet; insert it here.
10132 MachineBasicBlock *JumpMBB = JT->MBB;
10133 CurMF->insert(BBI, JumpMBB);
10135 auto JumpProb = I->Prob;
10136 auto FallthroughProb = UnhandledProbs;
10138 // If the default statement is a target of the jump table, we evenly
10139 // distribute the default probability to successors of CurMBB. Also
10140 // update the probability on the edge from JumpMBB to Fallthrough.
10141 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10142 SE = JumpMBB->succ_end();
10143 SI != SE; ++SI) {
10144 if (*SI == DefaultMBB) {
10145 JumpProb += DefaultProb / 2;
10146 FallthroughProb -= DefaultProb / 2;
10147 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10148 JumpMBB->normalizeSuccProbs();
10149 break;
10153 if (FallthroughUnreachable) {
10154 // Skip the range check if the fallthrough block is unreachable.
10155 JTH->OmitRangeCheck = true;
10158 if (!JTH->OmitRangeCheck)
10159 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10160 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10161 CurMBB->normalizeSuccProbs();
10163 // The jump table header will be inserted in our current block, do the
10164 // range check, and fall through to our fallthrough block.
10165 JTH->HeaderBB = CurMBB;
10166 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10168 // If we're in the right place, emit the jump table header right now.
10169 if (CurMBB == SwitchMBB) {
10170 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10171 JTH->Emitted = true;
10173 break;
10175 case CC_BitTests: {
10176 // FIXME: If Fallthrough is unreachable, skip the range check.
10178 // FIXME: Optimize away range check based on pivot comparisons.
10179 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10181 // The bit test blocks haven't been inserted yet; insert them here.
10182 for (BitTestCase &BTC : BTB->Cases)
10183 CurMF->insert(BBI, BTC.ThisBB);
10185 // Fill in fields of the BitTestBlock.
10186 BTB->Parent = CurMBB;
10187 BTB->Default = Fallthrough;
10189 BTB->DefaultProb = UnhandledProbs;
10190 // If the cases in bit test don't form a contiguous range, we evenly
10191 // distribute the probability on the edge to Fallthrough to two
10192 // successors of CurMBB.
10193 if (!BTB->ContiguousRange) {
10194 BTB->Prob += DefaultProb / 2;
10195 BTB->DefaultProb -= DefaultProb / 2;
10198 // If we're in the right place, emit the bit test header right now.
10199 if (CurMBB == SwitchMBB) {
10200 visitBitTestHeader(*BTB, SwitchMBB);
10201 BTB->Emitted = true;
10203 break;
10205 case CC_Range: {
10206 const Value *RHS, *LHS, *MHS;
10207 ISD::CondCode CC;
10208 if (I->Low == I->High) {
10209 // Check Cond == I->Low.
10210 CC = ISD::SETEQ;
10211 LHS = Cond;
10212 RHS=I->Low;
10213 MHS = nullptr;
10214 } else {
10215 // Check I->Low <= Cond <= I->High.
10216 CC = ISD::SETLE;
10217 LHS = I->Low;
10218 MHS = Cond;
10219 RHS = I->High;
10222 // If Fallthrough is unreachable, fold away the comparison.
10223 if (FallthroughUnreachable)
10224 CC = ISD::SETTRUE;
10226 // The false probability is the sum of all unhandled cases.
10227 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10228 getCurSDLoc(), I->Prob, UnhandledProbs);
10230 if (CurMBB == SwitchMBB)
10231 visitSwitchCase(CB, SwitchMBB);
10232 else
10233 SL->SwitchCases.push_back(CB);
10235 break;
10238 CurMBB = Fallthrough;
10242 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10243 CaseClusterIt First,
10244 CaseClusterIt Last) {
10245 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10246 if (X.Prob != CC.Prob)
10247 return X.Prob > CC.Prob;
10249 // Ties are broken by comparing the case value.
10250 return X.Low->getValue().slt(CC.Low->getValue());
10254 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10255 const SwitchWorkListItem &W,
10256 Value *Cond,
10257 MachineBasicBlock *SwitchMBB) {
10258 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10259 "Clusters not sorted?");
10261 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10263 // Balance the tree based on branch probabilities to create a near-optimal (in
10264 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10265 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10266 CaseClusterIt LastLeft = W.FirstCluster;
10267 CaseClusterIt FirstRight = W.LastCluster;
10268 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10269 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10271 // Move LastLeft and FirstRight towards each other from opposite directions to
10272 // find a partitioning of the clusters which balances the probability on both
10273 // sides. If LeftProb and RightProb are equal, alternate which side is
10274 // taken to ensure 0-probability nodes are distributed evenly.
10275 unsigned I = 0;
10276 while (LastLeft + 1 < FirstRight) {
10277 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10278 LeftProb += (++LastLeft)->Prob;
10279 else
10280 RightProb += (--FirstRight)->Prob;
10281 I++;
10284 while (true) {
10285 // Our binary search tree differs from a typical BST in that ours can have up
10286 // to three values in each leaf. The pivot selection above doesn't take that
10287 // into account, which means the tree might require more nodes and be less
10288 // efficient. We compensate for this here.
10290 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10291 unsigned NumRight = W.LastCluster - FirstRight + 1;
10293 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10294 // If one side has less than 3 clusters, and the other has more than 3,
10295 // consider taking a cluster from the other side.
10297 if (NumLeft < NumRight) {
10298 // Consider moving the first cluster on the right to the left side.
10299 CaseCluster &CC = *FirstRight;
10300 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10301 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10302 if (LeftSideRank <= RightSideRank) {
10303 // Moving the cluster to the left does not demote it.
10304 ++LastLeft;
10305 ++FirstRight;
10306 continue;
10308 } else {
10309 assert(NumRight < NumLeft);
10310 // Consider moving the last element on the left to the right side.
10311 CaseCluster &CC = *LastLeft;
10312 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10313 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10314 if (RightSideRank <= LeftSideRank) {
10315 // Moving the cluster to the right does not demot it.
10316 --LastLeft;
10317 --FirstRight;
10318 continue;
10322 break;
10325 assert(LastLeft + 1 == FirstRight);
10326 assert(LastLeft >= W.FirstCluster);
10327 assert(FirstRight <= W.LastCluster);
10329 // Use the first element on the right as pivot since we will make less-than
10330 // comparisons against it.
10331 CaseClusterIt PivotCluster = FirstRight;
10332 assert(PivotCluster > W.FirstCluster);
10333 assert(PivotCluster <= W.LastCluster);
10335 CaseClusterIt FirstLeft = W.FirstCluster;
10336 CaseClusterIt LastRight = W.LastCluster;
10338 const ConstantInt *Pivot = PivotCluster->Low;
10340 // New blocks will be inserted immediately after the current one.
10341 MachineFunction::iterator BBI(W.MBB);
10342 ++BBI;
10344 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10345 // we can branch to its destination directly if it's squeezed exactly in
10346 // between the known lower bound and Pivot - 1.
10347 MachineBasicBlock *LeftMBB;
10348 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10349 FirstLeft->Low == W.GE &&
10350 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10351 LeftMBB = FirstLeft->MBB;
10352 } else {
10353 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10354 FuncInfo.MF->insert(BBI, LeftMBB);
10355 WorkList.push_back(
10356 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10357 // Put Cond in a virtual register to make it available from the new blocks.
10358 ExportFromCurrentBlock(Cond);
10361 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10362 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10363 // directly if RHS.High equals the current upper bound.
10364 MachineBasicBlock *RightMBB;
10365 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10366 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10367 RightMBB = FirstRight->MBB;
10368 } else {
10369 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10370 FuncInfo.MF->insert(BBI, RightMBB);
10371 WorkList.push_back(
10372 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10373 // Put Cond in a virtual register to make it available from the new blocks.
10374 ExportFromCurrentBlock(Cond);
10377 // Create the CaseBlock record that will be used to lower the branch.
10378 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10379 getCurSDLoc(), LeftProb, RightProb);
10381 if (W.MBB == SwitchMBB)
10382 visitSwitchCase(CB, SwitchMBB);
10383 else
10384 SL->SwitchCases.push_back(CB);
10387 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10388 // from the swith statement.
10389 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10390 BranchProbability PeeledCaseProb) {
10391 if (PeeledCaseProb == BranchProbability::getOne())
10392 return BranchProbability::getZero();
10393 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10395 uint32_t Numerator = CaseProb.getNumerator();
10396 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10397 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10400 // Try to peel the top probability case if it exceeds the threshold.
10401 // Return current MachineBasicBlock for the switch statement if the peeling
10402 // does not occur.
10403 // If the peeling is performed, return the newly created MachineBasicBlock
10404 // for the peeled switch statement. Also update Clusters to remove the peeled
10405 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10406 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10407 const SwitchInst &SI, CaseClusterVector &Clusters,
10408 BranchProbability &PeeledCaseProb) {
10409 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10410 // Don't perform if there is only one cluster or optimizing for size.
10411 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10412 TM.getOptLevel() == CodeGenOpt::None ||
10413 SwitchMBB->getParent()->getFunction().hasMinSize())
10414 return SwitchMBB;
10416 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10417 unsigned PeeledCaseIndex = 0;
10418 bool SwitchPeeled = false;
10419 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10420 CaseCluster &CC = Clusters[Index];
10421 if (CC.Prob < TopCaseProb)
10422 continue;
10423 TopCaseProb = CC.Prob;
10424 PeeledCaseIndex = Index;
10425 SwitchPeeled = true;
10427 if (!SwitchPeeled)
10428 return SwitchMBB;
10430 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10431 << TopCaseProb << "\n");
10433 // Record the MBB for the peeled switch statement.
10434 MachineFunction::iterator BBI(SwitchMBB);
10435 ++BBI;
10436 MachineBasicBlock *PeeledSwitchMBB =
10437 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10438 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10440 ExportFromCurrentBlock(SI.getCondition());
10441 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10442 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10443 nullptr, nullptr, TopCaseProb.getCompl()};
10444 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10446 Clusters.erase(PeeledCaseIt);
10447 for (CaseCluster &CC : Clusters) {
10448 LLVM_DEBUG(
10449 dbgs() << "Scale the probablity for one cluster, before scaling: "
10450 << CC.Prob << "\n");
10451 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10452 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10454 PeeledCaseProb = TopCaseProb;
10455 return PeeledSwitchMBB;
10458 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10459 // Extract cases from the switch.
10460 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10461 CaseClusterVector Clusters;
10462 Clusters.reserve(SI.getNumCases());
10463 for (auto I : SI.cases()) {
10464 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10465 const ConstantInt *CaseVal = I.getCaseValue();
10466 BranchProbability Prob =
10467 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10468 : BranchProbability(1, SI.getNumCases() + 1);
10469 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10472 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10474 // Cluster adjacent cases with the same destination. We do this at all
10475 // optimization levels because it's cheap to do and will make codegen faster
10476 // if there are many clusters.
10477 sortAndRangeify(Clusters);
10479 // The branch probablity of the peeled case.
10480 BranchProbability PeeledCaseProb = BranchProbability::getZero();
10481 MachineBasicBlock *PeeledSwitchMBB =
10482 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10484 // If there is only the default destination, jump there directly.
10485 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10486 if (Clusters.empty()) {
10487 assert(PeeledSwitchMBB == SwitchMBB);
10488 SwitchMBB->addSuccessor(DefaultMBB);
10489 if (DefaultMBB != NextBlock(SwitchMBB)) {
10490 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10491 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10493 return;
10496 SL->findJumpTables(Clusters, &SI, DefaultMBB);
10497 SL->findBitTestClusters(Clusters, &SI);
10499 LLVM_DEBUG({
10500 dbgs() << "Case clusters: ";
10501 for (const CaseCluster &C : Clusters) {
10502 if (C.Kind == CC_JumpTable)
10503 dbgs() << "JT:";
10504 if (C.Kind == CC_BitTests)
10505 dbgs() << "BT:";
10507 C.Low->getValue().print(dbgs(), true);
10508 if (C.Low != C.High) {
10509 dbgs() << '-';
10510 C.High->getValue().print(dbgs(), true);
10512 dbgs() << ' ';
10514 dbgs() << '\n';
10517 assert(!Clusters.empty());
10518 SwitchWorkList WorkList;
10519 CaseClusterIt First = Clusters.begin();
10520 CaseClusterIt Last = Clusters.end() - 1;
10521 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10522 // Scale the branchprobability for DefaultMBB if the peel occurs and
10523 // DefaultMBB is not replaced.
10524 if (PeeledCaseProb != BranchProbability::getZero() &&
10525 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10526 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10527 WorkList.push_back(
10528 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10530 while (!WorkList.empty()) {
10531 SwitchWorkListItem W = WorkList.back();
10532 WorkList.pop_back();
10533 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10535 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10536 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10537 // For optimized builds, lower large range as a balanced binary tree.
10538 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10539 continue;
10542 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);