[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / CodeGen / ShrinkWrap.cpp
blob412a00095b9b650de798aec5da46ea8eab9ab4b0
1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for safe point where the prologue and epilogue can be
10 // inserted.
11 // The safe point for the prologue (resp. epilogue) is called Save
12 // (resp. Restore).
13 // A point is safe for prologue (resp. epilogue) if and only if
14 // it 1) dominates (resp. post-dominates) all the frame related operations and
15 // between 2) two executions of the Save (resp. Restore) point there is an
16 // execution of the Restore (resp. Save) point.
18 // For instance, the following points are safe:
19 // for (int i = 0; i < 10; ++i) {
20 // Save
21 // ...
22 // Restore
23 // }
24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25 // And the following points are not:
26 // for (int i = 0; i < 10; ++i) {
27 // Save
28 // ...
29 // }
30 // for (int i = 0; i < 10; ++i) {
31 // ...
32 // Restore
33 // }
34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 // This pass also ensures that the safe points are 3) cheaper than the regular
37 // entry and exits blocks.
39 // Property #1 is ensured via the use of MachineDominatorTree and
40 // MachinePostDominatorTree.
41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42 // points must be in the same loop.
43 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 // If this pass found points matching all these properties, then
46 // MachineFrameInfo is updated with this information.
48 //===----------------------------------------------------------------------===//
50 #include "llvm/ADT/BitVector.h"
51 #include "llvm/ADT/PostOrderIterator.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
58 #include "llvm/CodeGen/MachineDominators.h"
59 #include "llvm/CodeGen/MachineFrameInfo.h"
60 #include "llvm/CodeGen/MachineFunction.h"
61 #include "llvm/CodeGen/MachineFunctionPass.h"
62 #include "llvm/CodeGen/MachineInstr.h"
63 #include "llvm/CodeGen/MachineLoopInfo.h"
64 #include "llvm/CodeGen/MachineOperand.h"
65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
66 #include "llvm/CodeGen/MachinePostDominators.h"
67 #include "llvm/CodeGen/RegisterClassInfo.h"
68 #include "llvm/CodeGen/RegisterScavenging.h"
69 #include "llvm/CodeGen/TargetFrameLowering.h"
70 #include "llvm/CodeGen/TargetInstrInfo.h"
71 #include "llvm/CodeGen/TargetLowering.h"
72 #include "llvm/CodeGen/TargetRegisterInfo.h"
73 #include "llvm/CodeGen/TargetSubtargetInfo.h"
74 #include "llvm/IR/Attributes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/MC/MCAsmInfo.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <memory>
87 using namespace llvm;
89 #define DEBUG_TYPE "shrink-wrap"
91 STATISTIC(NumFunc, "Number of functions");
92 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
93 STATISTIC(NumCandidatesDropped,
94 "Number of shrink-wrapping candidates dropped because of frequency");
96 static cl::opt<cl::boolOrDefault>
97 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
98 cl::desc("enable the shrink-wrapping pass"));
100 namespace {
102 /// Class to determine where the safe point to insert the
103 /// prologue and epilogue are.
104 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
105 /// shrink-wrapping term for prologue/epilogue placement, this pass
106 /// does not rely on expensive data-flow analysis. Instead we use the
107 /// dominance properties and loop information to decide which point
108 /// are safe for such insertion.
109 class ShrinkWrap : public MachineFunctionPass {
110 /// Hold callee-saved information.
111 RegisterClassInfo RCI;
112 MachineDominatorTree *MDT;
113 MachinePostDominatorTree *MPDT;
115 /// Current safe point found for the prologue.
116 /// The prologue will be inserted before the first instruction
117 /// in this basic block.
118 MachineBasicBlock *Save;
120 /// Current safe point found for the epilogue.
121 /// The epilogue will be inserted before the first terminator instruction
122 /// in this basic block.
123 MachineBasicBlock *Restore;
125 /// Hold the information of the basic block frequency.
126 /// Use to check the profitability of the new points.
127 MachineBlockFrequencyInfo *MBFI;
129 /// Hold the loop information. Used to determine if Save and Restore
130 /// are in the same loop.
131 MachineLoopInfo *MLI;
133 // Emit remarks.
134 MachineOptimizationRemarkEmitter *ORE = nullptr;
136 /// Frequency of the Entry block.
137 uint64_t EntryFreq;
139 /// Current opcode for frame setup.
140 unsigned FrameSetupOpcode;
142 /// Current opcode for frame destroy.
143 unsigned FrameDestroyOpcode;
145 /// Stack pointer register, used by llvm.{savestack,restorestack}
146 unsigned SP;
148 /// Entry block.
149 const MachineBasicBlock *Entry;
151 using SetOfRegs = SmallSetVector<unsigned, 16>;
153 /// Registers that need to be saved for the current function.
154 mutable SetOfRegs CurrentCSRs;
156 /// Current MachineFunction.
157 MachineFunction *MachineFunc;
159 /// Check if \p MI uses or defines a callee-saved register or
160 /// a frame index. If this is the case, this means \p MI must happen
161 /// after Save and before Restore.
162 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
164 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
165 if (CurrentCSRs.empty()) {
166 BitVector SavedRegs;
167 const TargetFrameLowering *TFI =
168 MachineFunc->getSubtarget().getFrameLowering();
170 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
172 for (int Reg = SavedRegs.find_first(); Reg != -1;
173 Reg = SavedRegs.find_next(Reg))
174 CurrentCSRs.insert((unsigned)Reg);
176 return CurrentCSRs;
179 /// Update the Save and Restore points such that \p MBB is in
180 /// the region that is dominated by Save and post-dominated by Restore
181 /// and Save and Restore still match the safe point definition.
182 /// Such point may not exist and Save and/or Restore may be null after
183 /// this call.
184 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
186 /// Initialize the pass for \p MF.
187 void init(MachineFunction &MF) {
188 RCI.runOnMachineFunction(MF);
189 MDT = &getAnalysis<MachineDominatorTree>();
190 MPDT = &getAnalysis<MachinePostDominatorTree>();
191 Save = nullptr;
192 Restore = nullptr;
193 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
194 MLI = &getAnalysis<MachineLoopInfo>();
195 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
196 EntryFreq = MBFI->getEntryFreq();
197 const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
198 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
199 FrameSetupOpcode = TII.getCallFrameSetupOpcode();
200 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
201 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
202 Entry = &MF.front();
203 CurrentCSRs.clear();
204 MachineFunc = &MF;
206 ++NumFunc;
209 /// Check whether or not Save and Restore points are still interesting for
210 /// shrink-wrapping.
211 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
213 /// Check if shrink wrapping is enabled for this target and function.
214 static bool isShrinkWrapEnabled(const MachineFunction &MF);
216 public:
217 static char ID;
219 ShrinkWrap() : MachineFunctionPass(ID) {
220 initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
223 void getAnalysisUsage(AnalysisUsage &AU) const override {
224 AU.setPreservesAll();
225 AU.addRequired<MachineBlockFrequencyInfo>();
226 AU.addRequired<MachineDominatorTree>();
227 AU.addRequired<MachinePostDominatorTree>();
228 AU.addRequired<MachineLoopInfo>();
229 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
230 MachineFunctionPass::getAnalysisUsage(AU);
233 MachineFunctionProperties getRequiredProperties() const override {
234 return MachineFunctionProperties().set(
235 MachineFunctionProperties::Property::NoVRegs);
238 StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
240 /// Perform the shrink-wrapping analysis and update
241 /// the MachineFrameInfo attached to \p MF with the results.
242 bool runOnMachineFunction(MachineFunction &MF) override;
245 } // end anonymous namespace
247 char ShrinkWrap::ID = 0;
249 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
251 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
252 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
253 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
254 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
255 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
256 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
257 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
259 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
260 RegScavenger *RS) const {
261 // This prevents premature stack popping when occurs a indirect stack
262 // access. It is overly aggressive for the moment.
263 // TODO: - Obvious non-stack loads and store, such as global values,
264 // are known to not access the stack.
265 // - Further, data dependency and alias analysis can validate
266 // that load and stores never derive from the stack pointer.
267 if (MI.mayLoadOrStore())
268 return true;
270 if (MI.getOpcode() == FrameSetupOpcode ||
271 MI.getOpcode() == FrameDestroyOpcode) {
272 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
273 return true;
275 for (const MachineOperand &MO : MI.operands()) {
276 bool UseOrDefCSR = false;
277 if (MO.isReg()) {
278 // Ignore instructions like DBG_VALUE which don't read/def the register.
279 if (!MO.isDef() && !MO.readsReg())
280 continue;
281 Register PhysReg = MO.getReg();
282 if (!PhysReg)
283 continue;
284 assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!");
285 // The stack pointer is not normally described as a callee-saved register
286 // in calling convention definitions, so we need to watch for it
287 // separately. An SP mentioned by a call instruction, we can ignore,
288 // though, as it's harmless and we do not want to effectively disable tail
289 // calls by forcing the restore point to post-dominate them.
290 UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
291 RCI.getLastCalleeSavedAlias(PhysReg);
292 } else if (MO.isRegMask()) {
293 // Check if this regmask clobbers any of the CSRs.
294 for (unsigned Reg : getCurrentCSRs(RS)) {
295 if (MO.clobbersPhysReg(Reg)) {
296 UseOrDefCSR = true;
297 break;
301 // Skip FrameIndex operands in DBG_VALUE instructions.
302 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
303 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
304 << MO.isFI() << "): " << MI << '\n');
305 return true;
308 return false;
311 /// Helper function to find the immediate (post) dominator.
312 template <typename ListOfBBs, typename DominanceAnalysis>
313 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
314 DominanceAnalysis &Dom) {
315 MachineBasicBlock *IDom = &Block;
316 for (MachineBasicBlock *BB : BBs) {
317 IDom = Dom.findNearestCommonDominator(IDom, BB);
318 if (!IDom)
319 break;
321 if (IDom == &Block)
322 return nullptr;
323 return IDom;
326 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
327 RegScavenger *RS) {
328 // Get rid of the easy cases first.
329 if (!Save)
330 Save = &MBB;
331 else
332 Save = MDT->findNearestCommonDominator(Save, &MBB);
334 if (!Save) {
335 LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
336 return;
339 if (!Restore)
340 Restore = &MBB;
341 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
342 // means the block never returns. If that's the
343 // case, we don't want to call
344 // `findNearestCommonDominator`, which will
345 // return `Restore`.
346 Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
347 else
348 Restore = nullptr; // Abort, we can't find a restore point in this case.
350 // Make sure we would be able to insert the restore code before the
351 // terminator.
352 if (Restore == &MBB) {
353 for (const MachineInstr &Terminator : MBB.terminators()) {
354 if (!useOrDefCSROrFI(Terminator, RS))
355 continue;
356 // One of the terminator needs to happen before the restore point.
357 if (MBB.succ_empty()) {
358 Restore = nullptr; // Abort, we can't find a restore point in this case.
359 break;
361 // Look for a restore point that post-dominates all the successors.
362 // The immediate post-dominator is what we are looking for.
363 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
364 break;
368 if (!Restore) {
369 LLVM_DEBUG(
370 dbgs() << "Restore point needs to be spanned on several blocks\n");
371 return;
374 // Make sure Save and Restore are suitable for shrink-wrapping:
375 // 1. all path from Save needs to lead to Restore before exiting.
376 // 2. all path to Restore needs to go through Save from Entry.
377 // We achieve that by making sure that:
378 // A. Save dominates Restore.
379 // B. Restore post-dominates Save.
380 // C. Save and Restore are in the same loop.
381 bool SaveDominatesRestore = false;
382 bool RestorePostDominatesSave = false;
383 while (Save && Restore &&
384 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
385 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
386 // Post-dominance is not enough in loops to ensure that all uses/defs
387 // are after the prologue and before the epilogue at runtime.
388 // E.g.,
389 // while(1) {
390 // Save
391 // Restore
392 // if (...)
393 // break;
394 // use/def CSRs
395 // }
396 // All the uses/defs of CSRs are dominated by Save and post-dominated
397 // by Restore. However, the CSRs uses are still reachable after
398 // Restore and before Save are executed.
400 // For now, just push the restore/save points outside of loops.
401 // FIXME: Refine the criteria to still find interesting cases
402 // for loops.
403 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
404 // Fix (A).
405 if (!SaveDominatesRestore) {
406 Save = MDT->findNearestCommonDominator(Save, Restore);
407 continue;
409 // Fix (B).
410 if (!RestorePostDominatesSave)
411 Restore = MPDT->findNearestCommonDominator(Restore, Save);
413 // Fix (C).
414 if (Save && Restore &&
415 (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
416 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
417 // Push Save outside of this loop if immediate dominator is different
418 // from save block. If immediate dominator is not different, bail out.
419 Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
420 if (!Save)
421 break;
422 } else {
423 // If the loop does not exit, there is no point in looking
424 // for a post-dominator outside the loop.
425 SmallVector<MachineBasicBlock*, 4> ExitBlocks;
426 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
427 // Push Restore outside of this loop.
428 // Look for the immediate post-dominator of the loop exits.
429 MachineBasicBlock *IPdom = Restore;
430 for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
431 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
432 if (!IPdom)
433 break;
435 // If the immediate post-dominator is not in a less nested loop,
436 // then we are stuck in a program with an infinite loop.
437 // In that case, we will not find a safe point, hence, bail out.
438 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
439 Restore = IPdom;
440 else {
441 Restore = nullptr;
442 break;
449 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
450 StringRef RemarkName, StringRef RemarkMessage,
451 const DiagnosticLocation &Loc,
452 const MachineBasicBlock *MBB) {
453 ORE->emit([&]() {
454 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
455 << RemarkMessage;
458 LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
459 return false;
462 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
463 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
464 return false;
466 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
468 init(MF);
470 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
471 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
472 // If MF is irreducible, a block may be in a loop without
473 // MachineLoopInfo reporting it. I.e., we may use the
474 // post-dominance property in loops, which lead to incorrect
475 // results. Moreover, we may miss that the prologue and
476 // epilogue are not in the same loop, leading to unbalanced
477 // construction/deconstruction of the stack frame.
478 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
479 "Irreducible CFGs are not supported yet.",
480 MF.getFunction().getSubprogram(), &MF.front());
483 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
484 std::unique_ptr<RegScavenger> RS(
485 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
487 for (MachineBasicBlock &MBB : MF) {
488 LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
489 << MBB.getName() << '\n');
491 if (MBB.isEHFuncletEntry())
492 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
493 "EH Funclets are not supported yet.",
494 MBB.front().getDebugLoc(), &MBB);
496 if (MBB.isEHPad()) {
497 // Push the prologue and epilogue outside of
498 // the region that may throw by making sure
499 // that all the landing pads are at least at the
500 // boundary of the save and restore points.
501 // The problem with exceptions is that the throw
502 // is not properly modeled and in particular, a
503 // basic block can jump out from the middle.
504 updateSaveRestorePoints(MBB, RS.get());
505 if (!ArePointsInteresting()) {
506 LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
507 return false;
509 continue;
512 for (const MachineInstr &MI : MBB) {
513 if (!useOrDefCSROrFI(MI, RS.get()))
514 continue;
515 // Save (resp. restore) point must dominate (resp. post dominate)
516 // MI. Look for the proper basic block for those.
517 updateSaveRestorePoints(MBB, RS.get());
518 // If we are at a point where we cannot improve the placement of
519 // save/restore instructions, just give up.
520 if (!ArePointsInteresting()) {
521 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
522 return false;
524 // No need to look for other instructions, this basic block
525 // will already be part of the handled region.
526 break;
529 if (!ArePointsInteresting()) {
530 // If the points are not interesting at this point, then they must be null
531 // because it means we did not encounter any frame/CSR related code.
532 // Otherwise, we would have returned from the previous loop.
533 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
534 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
535 return false;
538 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
539 << '\n');
541 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
542 do {
543 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
544 << Save->getNumber() << ' ' << Save->getName() << ' '
545 << MBFI->getBlockFreq(Save).getFrequency()
546 << "\nRestore: " << Restore->getNumber() << ' '
547 << Restore->getName() << ' '
548 << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
550 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
551 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
552 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
553 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
554 TFI->canUseAsEpilogue(*Restore)))
555 break;
556 LLVM_DEBUG(
557 dbgs() << "New points are too expensive or invalid for the target\n");
558 MachineBasicBlock *NewBB;
559 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
560 Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
561 if (!Save)
562 break;
563 NewBB = Save;
564 } else {
565 // Restore is expensive.
566 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
567 if (!Restore)
568 break;
569 NewBB = Restore;
571 updateSaveRestorePoints(*NewBB, RS.get());
572 } while (Save && Restore);
574 if (!ArePointsInteresting()) {
575 ++NumCandidatesDropped;
576 return false;
579 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
580 << Save->getNumber() << ' ' << Save->getName()
581 << "\nRestore: " << Restore->getNumber() << ' '
582 << Restore->getName() << '\n');
584 MachineFrameInfo &MFI = MF.getFrameInfo();
585 MFI.setSavePoint(Save);
586 MFI.setRestorePoint(Restore);
587 ++NumCandidates;
588 return false;
591 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
592 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
594 switch (EnableShrinkWrapOpt) {
595 case cl::BOU_UNSET:
596 return TFI->enableShrinkWrapping(MF) &&
597 // Windows with CFI has some limitations that make it impossible
598 // to use shrink-wrapping.
599 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
600 // Sanitizers look at the value of the stack at the location
601 // of the crash. Since a crash can happen anywhere, the
602 // frame must be lowered before anything else happen for the
603 // sanitizers to be able to get a correct stack frame.
604 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
605 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
606 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
607 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
608 // If EnableShrinkWrap is set, it takes precedence on whatever the
609 // target sets. The rational is that we assume we want to test
610 // something related to shrink-wrapping.
611 case cl::BOU_TRUE:
612 return true;
613 case cl::BOU_FALSE:
614 return false;
616 llvm_unreachable("Invalid shrink-wrapping state");