[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / CodeGen / TargetInstrInfo.cpp
blobe64c67f6240fccb66556490c96e14fffd2e92a08
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/CodeGen/StackMaps.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCInstrItineraries.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cctype>
35 using namespace llvm;
37 static cl::opt<bool> DisableHazardRecognizer(
38 "disable-sched-hazard", cl::Hidden, cl::init(false),
39 cl::desc("Disable hazard detection during preRA scheduling"));
41 TargetInstrInfo::~TargetInstrInfo() {
44 const TargetRegisterClass*
45 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
46 const TargetRegisterInfo *TRI,
47 const MachineFunction &MF) const {
48 if (OpNum >= MCID.getNumOperands())
49 return nullptr;
51 short RegClass = MCID.OpInfo[OpNum].RegClass;
52 if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
53 return TRI->getPointerRegClass(MF, RegClass);
55 // Instructions like INSERT_SUBREG do not have fixed register classes.
56 if (RegClass < 0)
57 return nullptr;
59 // Otherwise just look it up normally.
60 return TRI->getRegClass(RegClass);
63 /// insertNoop - Insert a noop into the instruction stream at the specified
64 /// point.
65 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
66 MachineBasicBlock::iterator MI) const {
67 llvm_unreachable("Target didn't implement insertNoop!");
70 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
71 return strncmp(Str, MAI.getCommentString().data(),
72 MAI.getCommentString().size()) == 0;
75 /// Measure the specified inline asm to determine an approximation of its
76 /// length.
77 /// Comments (which run till the next SeparatorString or newline) do not
78 /// count as an instruction.
79 /// Any other non-whitespace text is considered an instruction, with
80 /// multiple instructions separated by SeparatorString or newlines.
81 /// Variable-length instructions are not handled here; this function
82 /// may be overloaded in the target code to do that.
83 /// We implement a special case of the .space directive which takes only a
84 /// single integer argument in base 10 that is the size in bytes. This is a
85 /// restricted form of the GAS directive in that we only interpret
86 /// simple--i.e. not a logical or arithmetic expression--size values without
87 /// the optional fill value. This is primarily used for creating arbitrary
88 /// sized inline asm blocks for testing purposes.
89 unsigned TargetInstrInfo::getInlineAsmLength(
90 const char *Str,
91 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
92 // Count the number of instructions in the asm.
93 bool AtInsnStart = true;
94 unsigned Length = 0;
95 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
96 for (; *Str; ++Str) {
97 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
98 strlen(MAI.getSeparatorString())) == 0) {
99 AtInsnStart = true;
100 } else if (isAsmComment(Str, MAI)) {
101 // Stop counting as an instruction after a comment until the next
102 // separator.
103 AtInsnStart = false;
106 if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
107 unsigned AddLength = MaxInstLength;
108 if (strncmp(Str, ".space", 6) == 0) {
109 char *EStr;
110 int SpaceSize;
111 SpaceSize = strtol(Str + 6, &EStr, 10);
112 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
113 while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
114 ++EStr;
115 if (*EStr == '\0' || *EStr == '\n' ||
116 isAsmComment(EStr, MAI)) // Successfully parsed .space argument
117 AddLength = SpaceSize;
119 Length += AddLength;
120 AtInsnStart = false;
124 return Length;
127 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
128 /// after it, replacing it with an unconditional branch to NewDest.
129 void
130 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
131 MachineBasicBlock *NewDest) const {
132 MachineBasicBlock *MBB = Tail->getParent();
134 // Remove all the old successors of MBB from the CFG.
135 while (!MBB->succ_empty())
136 MBB->removeSuccessor(MBB->succ_begin());
138 // Save off the debug loc before erasing the instruction.
139 DebugLoc DL = Tail->getDebugLoc();
141 // Update call site info and remove all the dead instructions
142 // from the end of MBB.
143 while (Tail != MBB->end()) {
144 auto MI = Tail++;
145 if (MI->isCall())
146 MBB->getParent()->updateCallSiteInfo(&*MI);
147 MBB->erase(MI);
150 // If MBB isn't immediately before MBB, insert a branch to it.
151 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
152 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
153 MBB->addSuccessor(NewDest);
156 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
157 bool NewMI, unsigned Idx1,
158 unsigned Idx2) const {
159 const MCInstrDesc &MCID = MI.getDesc();
160 bool HasDef = MCID.getNumDefs();
161 if (HasDef && !MI.getOperand(0).isReg())
162 // No idea how to commute this instruction. Target should implement its own.
163 return nullptr;
165 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
166 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
167 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
168 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
169 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
170 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
171 "This only knows how to commute register operands so far");
173 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
174 Register Reg1 = MI.getOperand(Idx1).getReg();
175 Register Reg2 = MI.getOperand(Idx2).getReg();
176 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
177 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
178 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
179 bool Reg1IsKill = MI.getOperand(Idx1).isKill();
180 bool Reg2IsKill = MI.getOperand(Idx2).isKill();
181 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
182 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
183 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
184 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
185 // Avoid calling isRenamable for virtual registers since we assert that
186 // renamable property is only queried/set for physical registers.
187 bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
188 ? MI.getOperand(Idx1).isRenamable()
189 : false;
190 bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
191 ? MI.getOperand(Idx2).isRenamable()
192 : false;
193 // If destination is tied to either of the commuted source register, then
194 // it must be updated.
195 if (HasDef && Reg0 == Reg1 &&
196 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
197 Reg2IsKill = false;
198 Reg0 = Reg2;
199 SubReg0 = SubReg2;
200 } else if (HasDef && Reg0 == Reg2 &&
201 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
202 Reg1IsKill = false;
203 Reg0 = Reg1;
204 SubReg0 = SubReg1;
207 MachineInstr *CommutedMI = nullptr;
208 if (NewMI) {
209 // Create a new instruction.
210 MachineFunction &MF = *MI.getMF();
211 CommutedMI = MF.CloneMachineInstr(&MI);
212 } else {
213 CommutedMI = &MI;
216 if (HasDef) {
217 CommutedMI->getOperand(0).setReg(Reg0);
218 CommutedMI->getOperand(0).setSubReg(SubReg0);
220 CommutedMI->getOperand(Idx2).setReg(Reg1);
221 CommutedMI->getOperand(Idx1).setReg(Reg2);
222 CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
223 CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
224 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
225 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
226 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
227 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
228 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
229 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
230 // Avoid calling setIsRenamable for virtual registers since we assert that
231 // renamable property is only queried/set for physical registers.
232 if (Register::isPhysicalRegister(Reg1))
233 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
234 if (Register::isPhysicalRegister(Reg2))
235 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
236 return CommutedMI;
239 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
240 unsigned OpIdx1,
241 unsigned OpIdx2) const {
242 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
243 // any commutable operand, which is done in findCommutedOpIndices() method
244 // called below.
245 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
246 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
247 assert(MI.isCommutable() &&
248 "Precondition violation: MI must be commutable.");
249 return nullptr;
251 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
254 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
255 unsigned &ResultIdx2,
256 unsigned CommutableOpIdx1,
257 unsigned CommutableOpIdx2) {
258 if (ResultIdx1 == CommuteAnyOperandIndex &&
259 ResultIdx2 == CommuteAnyOperandIndex) {
260 ResultIdx1 = CommutableOpIdx1;
261 ResultIdx2 = CommutableOpIdx2;
262 } else if (ResultIdx1 == CommuteAnyOperandIndex) {
263 if (ResultIdx2 == CommutableOpIdx1)
264 ResultIdx1 = CommutableOpIdx2;
265 else if (ResultIdx2 == CommutableOpIdx2)
266 ResultIdx1 = CommutableOpIdx1;
267 else
268 return false;
269 } else if (ResultIdx2 == CommuteAnyOperandIndex) {
270 if (ResultIdx1 == CommutableOpIdx1)
271 ResultIdx2 = CommutableOpIdx2;
272 else if (ResultIdx1 == CommutableOpIdx2)
273 ResultIdx2 = CommutableOpIdx1;
274 else
275 return false;
276 } else
277 // Check that the result operand indices match the given commutable
278 // operand indices.
279 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
280 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
282 return true;
285 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr &MI,
286 unsigned &SrcOpIdx1,
287 unsigned &SrcOpIdx2) const {
288 assert(!MI.isBundle() &&
289 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
291 const MCInstrDesc &MCID = MI.getDesc();
292 if (!MCID.isCommutable())
293 return false;
295 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
296 // is not true, then the target must implement this.
297 unsigned CommutableOpIdx1 = MCID.getNumDefs();
298 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
299 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
300 CommutableOpIdx1, CommutableOpIdx2))
301 return false;
303 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
304 // No idea.
305 return false;
306 return true;
309 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
310 if (!MI.isTerminator()) return false;
312 // Conditional branch is a special case.
313 if (MI.isBranch() && !MI.isBarrier())
314 return true;
315 if (!MI.isPredicable())
316 return true;
317 return !isPredicated(MI);
320 bool TargetInstrInfo::PredicateInstruction(
321 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
322 bool MadeChange = false;
324 assert(!MI.isBundle() &&
325 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
327 const MCInstrDesc &MCID = MI.getDesc();
328 if (!MI.isPredicable())
329 return false;
331 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
332 if (MCID.OpInfo[i].isPredicate()) {
333 MachineOperand &MO = MI.getOperand(i);
334 if (MO.isReg()) {
335 MO.setReg(Pred[j].getReg());
336 MadeChange = true;
337 } else if (MO.isImm()) {
338 MO.setImm(Pred[j].getImm());
339 MadeChange = true;
340 } else if (MO.isMBB()) {
341 MO.setMBB(Pred[j].getMBB());
342 MadeChange = true;
344 ++j;
347 return MadeChange;
350 bool TargetInstrInfo::hasLoadFromStackSlot(
351 const MachineInstr &MI,
352 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
353 size_t StartSize = Accesses.size();
354 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
355 oe = MI.memoperands_end();
356 o != oe; ++o) {
357 if ((*o)->isLoad() &&
358 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
359 Accesses.push_back(*o);
361 return Accesses.size() != StartSize;
364 bool TargetInstrInfo::hasStoreToStackSlot(
365 const MachineInstr &MI,
366 SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
367 size_t StartSize = Accesses.size();
368 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
369 oe = MI.memoperands_end();
370 o != oe; ++o) {
371 if ((*o)->isStore() &&
372 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
373 Accesses.push_back(*o);
375 return Accesses.size() != StartSize;
378 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
379 unsigned SubIdx, unsigned &Size,
380 unsigned &Offset,
381 const MachineFunction &MF) const {
382 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
383 if (!SubIdx) {
384 Size = TRI->getSpillSize(*RC);
385 Offset = 0;
386 return true;
388 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
389 // Convert bit size to byte size.
390 if (BitSize % 8)
391 return false;
393 int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
394 if (BitOffset < 0 || BitOffset % 8)
395 return false;
397 Size = BitSize /= 8;
398 Offset = (unsigned)BitOffset / 8;
400 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
402 if (!MF.getDataLayout().isLittleEndian()) {
403 Offset = TRI->getSpillSize(*RC) - (Offset + Size);
405 return true;
408 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
409 MachineBasicBlock::iterator I,
410 unsigned DestReg, unsigned SubIdx,
411 const MachineInstr &Orig,
412 const TargetRegisterInfo &TRI) const {
413 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
414 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
415 MBB.insert(I, MI);
418 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
419 const MachineInstr &MI1,
420 const MachineRegisterInfo *MRI) const {
421 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
424 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
425 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
426 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
427 MachineFunction &MF = *MBB.getParent();
428 return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
431 // If the COPY instruction in MI can be folded to a stack operation, return
432 // the register class to use.
433 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
434 unsigned FoldIdx) {
435 assert(MI.isCopy() && "MI must be a COPY instruction");
436 if (MI.getNumOperands() != 2)
437 return nullptr;
438 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
440 const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
441 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
443 if (FoldOp.getSubReg() || LiveOp.getSubReg())
444 return nullptr;
446 Register FoldReg = FoldOp.getReg();
447 Register LiveReg = LiveOp.getReg();
449 assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");
451 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
452 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
454 if (Register::isPhysicalRegister(LiveOp.getReg()))
455 return RC->contains(LiveOp.getReg()) ? RC : nullptr;
457 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
458 return RC;
460 // FIXME: Allow folding when register classes are memory compatible.
461 return nullptr;
464 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
465 llvm_unreachable("Not implemented");
468 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
469 ArrayRef<unsigned> Ops, int FrameIndex,
470 const TargetInstrInfo &TII) {
471 unsigned StartIdx = 0;
472 switch (MI.getOpcode()) {
473 case TargetOpcode::STACKMAP: {
474 // StackMapLiveValues are foldable
475 StartIdx = StackMapOpers(&MI).getVarIdx();
476 break;
478 case TargetOpcode::PATCHPOINT: {
479 // For PatchPoint, the call args are not foldable (even if reported in the
480 // stackmap e.g. via anyregcc).
481 StartIdx = PatchPointOpers(&MI).getVarIdx();
482 break;
484 case TargetOpcode::STATEPOINT: {
485 // For statepoints, fold deopt and gc arguments, but not call arguments.
486 StartIdx = StatepointOpers(&MI).getVarIdx();
487 break;
489 default:
490 llvm_unreachable("unexpected stackmap opcode");
493 // Return false if any operands requested for folding are not foldable (not
494 // part of the stackmap's live values).
495 for (unsigned Op : Ops) {
496 if (Op < StartIdx)
497 return nullptr;
500 MachineInstr *NewMI =
501 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
502 MachineInstrBuilder MIB(MF, NewMI);
504 // No need to fold return, the meta data, and function arguments
505 for (unsigned i = 0; i < StartIdx; ++i)
506 MIB.add(MI.getOperand(i));
508 for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
509 MachineOperand &MO = MI.getOperand(i);
510 if (is_contained(Ops, i)) {
511 unsigned SpillSize;
512 unsigned SpillOffset;
513 // Compute the spill slot size and offset.
514 const TargetRegisterClass *RC =
515 MF.getRegInfo().getRegClass(MO.getReg());
516 bool Valid =
517 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
518 if (!Valid)
519 report_fatal_error("cannot spill patchpoint subregister operand");
520 MIB.addImm(StackMaps::IndirectMemRefOp);
521 MIB.addImm(SpillSize);
522 MIB.addFrameIndex(FrameIndex);
523 MIB.addImm(SpillOffset);
525 else
526 MIB.add(MO);
528 return NewMI;
531 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
532 ArrayRef<unsigned> Ops, int FI,
533 LiveIntervals *LIS,
534 VirtRegMap *VRM) const {
535 auto Flags = MachineMemOperand::MONone;
536 for (unsigned OpIdx : Ops)
537 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
538 : MachineMemOperand::MOLoad;
540 MachineBasicBlock *MBB = MI.getParent();
541 assert(MBB && "foldMemoryOperand needs an inserted instruction");
542 MachineFunction &MF = *MBB->getParent();
544 // If we're not folding a load into a subreg, the size of the load is the
545 // size of the spill slot. But if we are, we need to figure out what the
546 // actual load size is.
547 int64_t MemSize = 0;
548 const MachineFrameInfo &MFI = MF.getFrameInfo();
549 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
551 if (Flags & MachineMemOperand::MOStore) {
552 MemSize = MFI.getObjectSize(FI);
553 } else {
554 for (unsigned OpIdx : Ops) {
555 int64_t OpSize = MFI.getObjectSize(FI);
557 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
558 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
559 if (SubRegSize > 0 && !(SubRegSize % 8))
560 OpSize = SubRegSize / 8;
563 MemSize = std::max(MemSize, OpSize);
567 assert(MemSize && "Did not expect a zero-sized stack slot");
569 MachineInstr *NewMI = nullptr;
571 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
572 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
573 MI.getOpcode() == TargetOpcode::STATEPOINT) {
574 // Fold stackmap/patchpoint.
575 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
576 if (NewMI)
577 MBB->insert(MI, NewMI);
578 } else {
579 // Ask the target to do the actual folding.
580 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
583 if (NewMI) {
584 NewMI->setMemRefs(MF, MI.memoperands());
585 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
586 assert((!(Flags & MachineMemOperand::MOStore) ||
587 NewMI->mayStore()) &&
588 "Folded a def to a non-store!");
589 assert((!(Flags & MachineMemOperand::MOLoad) ||
590 NewMI->mayLoad()) &&
591 "Folded a use to a non-load!");
592 assert(MFI.getObjectOffset(FI) != -1);
593 MachineMemOperand *MMO = MF.getMachineMemOperand(
594 MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
595 MFI.getObjectAlignment(FI));
596 NewMI->addMemOperand(MF, MMO);
598 return NewMI;
601 // Straight COPY may fold as load/store.
602 if (!MI.isCopy() || Ops.size() != 1)
603 return nullptr;
605 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
606 if (!RC)
607 return nullptr;
609 const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
610 MachineBasicBlock::iterator Pos = MI;
612 if (Flags == MachineMemOperand::MOStore)
613 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
614 else
615 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
616 return &*--Pos;
619 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
620 ArrayRef<unsigned> Ops,
621 MachineInstr &LoadMI,
622 LiveIntervals *LIS) const {
623 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
624 #ifndef NDEBUG
625 for (unsigned OpIdx : Ops)
626 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
627 #endif
629 MachineBasicBlock &MBB = *MI.getParent();
630 MachineFunction &MF = *MBB.getParent();
632 // Ask the target to do the actual folding.
633 MachineInstr *NewMI = nullptr;
634 int FrameIndex = 0;
636 if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
637 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
638 MI.getOpcode() == TargetOpcode::STATEPOINT) &&
639 isLoadFromStackSlot(LoadMI, FrameIndex)) {
640 // Fold stackmap/patchpoint.
641 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
642 if (NewMI)
643 NewMI = &*MBB.insert(MI, NewMI);
644 } else {
645 // Ask the target to do the actual folding.
646 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
649 if (!NewMI)
650 return nullptr;
652 // Copy the memoperands from the load to the folded instruction.
653 if (MI.memoperands_empty()) {
654 NewMI->setMemRefs(MF, LoadMI.memoperands());
655 } else {
656 // Handle the rare case of folding multiple loads.
657 NewMI->setMemRefs(MF, MI.memoperands());
658 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
659 E = LoadMI.memoperands_end();
660 I != E; ++I) {
661 NewMI->addMemOperand(MF, *I);
664 return NewMI;
667 bool TargetInstrInfo::hasReassociableOperands(
668 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
669 const MachineOperand &Op1 = Inst.getOperand(1);
670 const MachineOperand &Op2 = Inst.getOperand(2);
671 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
673 // We need virtual register definitions for the operands that we will
674 // reassociate.
675 MachineInstr *MI1 = nullptr;
676 MachineInstr *MI2 = nullptr;
677 if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
678 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
679 if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
680 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
682 // And they need to be in the trace (otherwise, they won't have a depth).
683 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
686 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
687 bool &Commuted) const {
688 const MachineBasicBlock *MBB = Inst.getParent();
689 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
690 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
691 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
692 unsigned AssocOpcode = Inst.getOpcode();
694 // If only one operand has the same opcode and it's the second source operand,
695 // the operands must be commuted.
696 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
697 if (Commuted)
698 std::swap(MI1, MI2);
700 // 1. The previous instruction must be the same type as Inst.
701 // 2. The previous instruction must have virtual register definitions for its
702 // operands in the same basic block as Inst.
703 // 3. The previous instruction's result must only be used by Inst.
704 return MI1->getOpcode() == AssocOpcode &&
705 hasReassociableOperands(*MI1, MBB) &&
706 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
709 // 1. The operation must be associative and commutative.
710 // 2. The instruction must have virtual register definitions for its
711 // operands in the same basic block.
712 // 3. The instruction must have a reassociable sibling.
713 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
714 bool &Commuted) const {
715 return isAssociativeAndCommutative(Inst) &&
716 hasReassociableOperands(Inst, Inst.getParent()) &&
717 hasReassociableSibling(Inst, Commuted);
720 // The concept of the reassociation pass is that these operations can benefit
721 // from this kind of transformation:
723 // A = ? op ?
724 // B = A op X (Prev)
725 // C = B op Y (Root)
726 // -->
727 // A = ? op ?
728 // B = X op Y
729 // C = A op B
731 // breaking the dependency between A and B, allowing them to be executed in
732 // parallel (or back-to-back in a pipeline) instead of depending on each other.
734 // FIXME: This has the potential to be expensive (compile time) while not
735 // improving the code at all. Some ways to limit the overhead:
736 // 1. Track successful transforms; bail out if hit rate gets too low.
737 // 2. Only enable at -O3 or some other non-default optimization level.
738 // 3. Pre-screen pattern candidates here: if an operand of the previous
739 // instruction is known to not increase the critical path, then don't match
740 // that pattern.
741 bool TargetInstrInfo::getMachineCombinerPatterns(
742 MachineInstr &Root,
743 SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
744 bool Commute;
745 if (isReassociationCandidate(Root, Commute)) {
746 // We found a sequence of instructions that may be suitable for a
747 // reassociation of operands to increase ILP. Specify each commutation
748 // possibility for the Prev instruction in the sequence and let the
749 // machine combiner decide if changing the operands is worthwhile.
750 if (Commute) {
751 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
752 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
753 } else {
754 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
755 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
757 return true;
760 return false;
763 /// Return true when a code sequence can improve loop throughput.
764 bool
765 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
766 return false;
769 /// Attempt the reassociation transformation to reduce critical path length.
770 /// See the above comments before getMachineCombinerPatterns().
771 void TargetInstrInfo::reassociateOps(
772 MachineInstr &Root, MachineInstr &Prev,
773 MachineCombinerPattern Pattern,
774 SmallVectorImpl<MachineInstr *> &InsInstrs,
775 SmallVectorImpl<MachineInstr *> &DelInstrs,
776 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
777 MachineFunction *MF = Root.getMF();
778 MachineRegisterInfo &MRI = MF->getRegInfo();
779 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
780 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
781 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
783 // This array encodes the operand index for each parameter because the
784 // operands may be commuted. Each row corresponds to a pattern value,
785 // and each column specifies the index of A, B, X, Y.
786 unsigned OpIdx[4][4] = {
787 { 1, 1, 2, 2 },
788 { 1, 2, 2, 1 },
789 { 2, 1, 1, 2 },
790 { 2, 2, 1, 1 }
793 int Row;
794 switch (Pattern) {
795 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
796 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
797 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
798 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
799 default: llvm_unreachable("unexpected MachineCombinerPattern");
802 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
803 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
804 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
805 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
806 MachineOperand &OpC = Root.getOperand(0);
808 Register RegA = OpA.getReg();
809 Register RegB = OpB.getReg();
810 Register RegX = OpX.getReg();
811 Register RegY = OpY.getReg();
812 Register RegC = OpC.getReg();
814 if (Register::isVirtualRegister(RegA))
815 MRI.constrainRegClass(RegA, RC);
816 if (Register::isVirtualRegister(RegB))
817 MRI.constrainRegClass(RegB, RC);
818 if (Register::isVirtualRegister(RegX))
819 MRI.constrainRegClass(RegX, RC);
820 if (Register::isVirtualRegister(RegY))
821 MRI.constrainRegClass(RegY, RC);
822 if (Register::isVirtualRegister(RegC))
823 MRI.constrainRegClass(RegC, RC);
825 // Create a new virtual register for the result of (X op Y) instead of
826 // recycling RegB because the MachineCombiner's computation of the critical
827 // path requires a new register definition rather than an existing one.
828 Register NewVR = MRI.createVirtualRegister(RC);
829 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
831 unsigned Opcode = Root.getOpcode();
832 bool KillA = OpA.isKill();
833 bool KillX = OpX.isKill();
834 bool KillY = OpY.isKill();
836 // Create new instructions for insertion.
837 MachineInstrBuilder MIB1 =
838 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
839 .addReg(RegX, getKillRegState(KillX))
840 .addReg(RegY, getKillRegState(KillY));
841 MachineInstrBuilder MIB2 =
842 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
843 .addReg(RegA, getKillRegState(KillA))
844 .addReg(NewVR, getKillRegState(true));
846 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
848 // Record new instructions for insertion and old instructions for deletion.
849 InsInstrs.push_back(MIB1);
850 InsInstrs.push_back(MIB2);
851 DelInstrs.push_back(&Prev);
852 DelInstrs.push_back(&Root);
855 void TargetInstrInfo::genAlternativeCodeSequence(
856 MachineInstr &Root, MachineCombinerPattern Pattern,
857 SmallVectorImpl<MachineInstr *> &InsInstrs,
858 SmallVectorImpl<MachineInstr *> &DelInstrs,
859 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
860 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
862 // Select the previous instruction in the sequence based on the input pattern.
863 MachineInstr *Prev = nullptr;
864 switch (Pattern) {
865 case MachineCombinerPattern::REASSOC_AX_BY:
866 case MachineCombinerPattern::REASSOC_XA_BY:
867 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
868 break;
869 case MachineCombinerPattern::REASSOC_AX_YB:
870 case MachineCombinerPattern::REASSOC_XA_YB:
871 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
872 break;
873 default:
874 break;
877 assert(Prev && "Unknown pattern for machine combiner");
879 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
882 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
883 const MachineInstr &MI, AliasAnalysis *AA) const {
884 const MachineFunction &MF = *MI.getMF();
885 const MachineRegisterInfo &MRI = MF.getRegInfo();
887 // Remat clients assume operand 0 is the defined register.
888 if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
889 return false;
890 Register DefReg = MI.getOperand(0).getReg();
892 // A sub-register definition can only be rematerialized if the instruction
893 // doesn't read the other parts of the register. Otherwise it is really a
894 // read-modify-write operation on the full virtual register which cannot be
895 // moved safely.
896 if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
897 MI.readsVirtualRegister(DefReg))
898 return false;
900 // A load from a fixed stack slot can be rematerialized. This may be
901 // redundant with subsequent checks, but it's target-independent,
902 // simple, and a common case.
903 int FrameIdx = 0;
904 if (isLoadFromStackSlot(MI, FrameIdx) &&
905 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
906 return true;
908 // Avoid instructions obviously unsafe for remat.
909 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
910 MI.hasUnmodeledSideEffects())
911 return false;
913 // Don't remat inline asm. We have no idea how expensive it is
914 // even if it's side effect free.
915 if (MI.isInlineAsm())
916 return false;
918 // Avoid instructions which load from potentially varying memory.
919 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
920 return false;
922 // If any of the registers accessed are non-constant, conservatively assume
923 // the instruction is not rematerializable.
924 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
925 const MachineOperand &MO = MI.getOperand(i);
926 if (!MO.isReg()) continue;
927 Register Reg = MO.getReg();
928 if (Reg == 0)
929 continue;
931 // Check for a well-behaved physical register.
932 if (Register::isPhysicalRegister(Reg)) {
933 if (MO.isUse()) {
934 // If the physreg has no defs anywhere, it's just an ambient register
935 // and we can freely move its uses. Alternatively, if it's allocatable,
936 // it could get allocated to something with a def during allocation.
937 if (!MRI.isConstantPhysReg(Reg))
938 return false;
939 } else {
940 // A physreg def. We can't remat it.
941 return false;
943 continue;
946 // Only allow one virtual-register def. There may be multiple defs of the
947 // same virtual register, though.
948 if (MO.isDef() && Reg != DefReg)
949 return false;
951 // Don't allow any virtual-register uses. Rematting an instruction with
952 // virtual register uses would length the live ranges of the uses, which
953 // is not necessarily a good idea, certainly not "trivial".
954 if (MO.isUse())
955 return false;
958 // Everything checked out.
959 return true;
962 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
963 const MachineFunction *MF = MI.getMF();
964 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
965 bool StackGrowsDown =
966 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
968 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
969 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
971 if (!isFrameInstr(MI))
972 return 0;
974 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
976 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
977 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
978 SPAdj = -SPAdj;
980 return SPAdj;
983 /// isSchedulingBoundary - Test if the given instruction should be
984 /// considered a scheduling boundary. This primarily includes labels
985 /// and terminators.
986 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
987 const MachineBasicBlock *MBB,
988 const MachineFunction &MF) const {
989 // Terminators and labels can't be scheduled around.
990 if (MI.isTerminator() || MI.isPosition())
991 return true;
993 // Don't attempt to schedule around any instruction that defines
994 // a stack-oriented pointer, as it's unlikely to be profitable. This
995 // saves compile time, because it doesn't require every single
996 // stack slot reference to depend on the instruction that does the
997 // modification.
998 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
999 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1000 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1003 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1004 // may choose to honor.
1005 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1006 return !DisableHazardRecognizer;
1009 // Default implementation of CreateTargetRAHazardRecognizer.
1010 ScheduleHazardRecognizer *TargetInstrInfo::
1011 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1012 const ScheduleDAG *DAG) const {
1013 // Dummy hazard recognizer allows all instructions to issue.
1014 return new ScheduleHazardRecognizer();
1017 // Default implementation of CreateTargetMIHazardRecognizer.
1018 ScheduleHazardRecognizer *TargetInstrInfo::
1019 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
1020 const ScheduleDAG *DAG) const {
1021 return (ScheduleHazardRecognizer *)
1022 new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1025 // Default implementation of CreateTargetPostRAHazardRecognizer.
1026 ScheduleHazardRecognizer *TargetInstrInfo::
1027 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1028 const ScheduleDAG *DAG) const {
1029 return (ScheduleHazardRecognizer *)
1030 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1033 //===----------------------------------------------------------------------===//
1034 // SelectionDAG latency interface.
1035 //===----------------------------------------------------------------------===//
1038 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1039 SDNode *DefNode, unsigned DefIdx,
1040 SDNode *UseNode, unsigned UseIdx) const {
1041 if (!ItinData || ItinData->isEmpty())
1042 return -1;
1044 if (!DefNode->isMachineOpcode())
1045 return -1;
1047 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1048 if (!UseNode->isMachineOpcode())
1049 return ItinData->getOperandCycle(DefClass, DefIdx);
1050 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1051 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1054 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1055 SDNode *N) const {
1056 if (!ItinData || ItinData->isEmpty())
1057 return 1;
1059 if (!N->isMachineOpcode())
1060 return 1;
1062 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1065 //===----------------------------------------------------------------------===//
1066 // MachineInstr latency interface.
1067 //===----------------------------------------------------------------------===//
1069 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1070 const MachineInstr &MI) const {
1071 if (!ItinData || ItinData->isEmpty())
1072 return 1;
1074 unsigned Class = MI.getDesc().getSchedClass();
1075 int UOps = ItinData->Itineraries[Class].NumMicroOps;
1076 if (UOps >= 0)
1077 return UOps;
1079 // The # of u-ops is dynamically determined. The specific target should
1080 // override this function to return the right number.
1081 return 1;
1084 /// Return the default expected latency for a def based on it's opcode.
1085 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1086 const MachineInstr &DefMI) const {
1087 if (DefMI.isTransient())
1088 return 0;
1089 if (DefMI.mayLoad())
1090 return SchedModel.LoadLatency;
1091 if (isHighLatencyDef(DefMI.getOpcode()))
1092 return SchedModel.HighLatency;
1093 return 1;
1096 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1097 return 0;
1100 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1101 const MachineInstr &MI,
1102 unsigned *PredCost) const {
1103 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1104 // still have a MinLatency property, which getStageLatency checks.
1105 if (!ItinData)
1106 return MI.mayLoad() ? 2 : 1;
1108 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1111 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1112 const MachineInstr &DefMI,
1113 unsigned DefIdx) const {
1114 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1115 if (!ItinData || ItinData->isEmpty())
1116 return false;
1118 unsigned DefClass = DefMI.getDesc().getSchedClass();
1119 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1120 return (DefCycle != -1 && DefCycle <= 1);
1123 Optional<ParamLoadedValue>
1124 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI) const {
1125 const MachineFunction *MF = MI.getMF();
1126 const MachineOperand *Op = nullptr;
1127 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});;
1128 const MachineOperand *SrcRegOp, *DestRegOp;
1130 if (isCopyInstr(MI, SrcRegOp, DestRegOp)) {
1131 Op = SrcRegOp;
1132 return ParamLoadedValue(Op, Expr);
1133 } else if (MI.isMoveImmediate()) {
1134 Op = &MI.getOperand(1);
1135 return ParamLoadedValue(Op, Expr);
1136 } else if (MI.hasOneMemOperand()) {
1137 int64_t Offset;
1138 const auto &TRI = MF->getSubtarget().getRegisterInfo();
1139 const auto &TII = MF->getSubtarget().getInstrInfo();
1140 const MachineOperand *BaseOp;
1142 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
1143 return None;
1145 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, Offset);
1146 Op = BaseOp;
1147 return ParamLoadedValue(Op, Expr);
1150 return None;
1153 /// Both DefMI and UseMI must be valid. By default, call directly to the
1154 /// itinerary. This may be overriden by the target.
1155 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1156 const MachineInstr &DefMI,
1157 unsigned DefIdx,
1158 const MachineInstr &UseMI,
1159 unsigned UseIdx) const {
1160 unsigned DefClass = DefMI.getDesc().getSchedClass();
1161 unsigned UseClass = UseMI.getDesc().getSchedClass();
1162 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1165 /// If we can determine the operand latency from the def only, without itinerary
1166 /// lookup, do so. Otherwise return -1.
1167 int TargetInstrInfo::computeDefOperandLatency(
1168 const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1170 // Let the target hook getInstrLatency handle missing itineraries.
1171 if (!ItinData)
1172 return getInstrLatency(ItinData, DefMI);
1174 if(ItinData->isEmpty())
1175 return defaultDefLatency(ItinData->SchedModel, DefMI);
1177 // ...operand lookup required
1178 return -1;
1181 bool TargetInstrInfo::getRegSequenceInputs(
1182 const MachineInstr &MI, unsigned DefIdx,
1183 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1184 assert((MI.isRegSequence() ||
1185 MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1187 if (!MI.isRegSequence())
1188 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1190 // We are looking at:
1191 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1192 assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1193 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1194 OpIdx += 2) {
1195 const MachineOperand &MOReg = MI.getOperand(OpIdx);
1196 if (MOReg.isUndef())
1197 continue;
1198 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1199 assert(MOSubIdx.isImm() &&
1200 "One of the subindex of the reg_sequence is not an immediate");
1201 // Record Reg:SubReg, SubIdx.
1202 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1203 (unsigned)MOSubIdx.getImm()));
1205 return true;
1208 bool TargetInstrInfo::getExtractSubregInputs(
1209 const MachineInstr &MI, unsigned DefIdx,
1210 RegSubRegPairAndIdx &InputReg) const {
1211 assert((MI.isExtractSubreg() ||
1212 MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1214 if (!MI.isExtractSubreg())
1215 return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1217 // We are looking at:
1218 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1219 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1220 const MachineOperand &MOReg = MI.getOperand(1);
1221 if (MOReg.isUndef())
1222 return false;
1223 const MachineOperand &MOSubIdx = MI.getOperand(2);
1224 assert(MOSubIdx.isImm() &&
1225 "The subindex of the extract_subreg is not an immediate");
1227 InputReg.Reg = MOReg.getReg();
1228 InputReg.SubReg = MOReg.getSubReg();
1229 InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1230 return true;
1233 bool TargetInstrInfo::getInsertSubregInputs(
1234 const MachineInstr &MI, unsigned DefIdx,
1235 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1236 assert((MI.isInsertSubreg() ||
1237 MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1239 if (!MI.isInsertSubreg())
1240 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1242 // We are looking at:
1243 // Def = INSERT_SEQUENCE v0, v1, sub0.
1244 assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1245 const MachineOperand &MOBaseReg = MI.getOperand(1);
1246 const MachineOperand &MOInsertedReg = MI.getOperand(2);
1247 if (MOInsertedReg.isUndef())
1248 return false;
1249 const MachineOperand &MOSubIdx = MI.getOperand(3);
1250 assert(MOSubIdx.isImm() &&
1251 "One of the subindex of the reg_sequence is not an immediate");
1252 BaseReg.Reg = MOBaseReg.getReg();
1253 BaseReg.SubReg = MOBaseReg.getSubReg();
1255 InsertedReg.Reg = MOInsertedReg.getReg();
1256 InsertedReg.SubReg = MOInsertedReg.getSubReg();
1257 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1258 return true;