[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
blob4b328624ccd9b04ce058f720d375dadc5639330d
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/MSVCErrorWorkarounds.h"
21 #include "llvm/Support/ManagedStatic.h"
22 #include "llvm/Support/MathExtras.h"
23 #include <mutex>
25 #include <future>
27 using namespace llvm;
28 using namespace llvm::object;
30 #define DEBUG_TYPE "dyld"
32 namespace {
34 enum RuntimeDyldErrorCode {
35 GenericRTDyldError = 1
38 // FIXME: This class is only here to support the transition to llvm::Error. It
39 // will be removed once this transition is complete. Clients should prefer to
40 // deal with the Error value directly, rather than converting to error_code.
41 class RuntimeDyldErrorCategory : public std::error_category {
42 public:
43 const char *name() const noexcept override { return "runtimedyld"; }
45 std::string message(int Condition) const override {
46 switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
47 case GenericRTDyldError: return "Generic RuntimeDyld error";
49 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
53 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
57 char RuntimeDyldError::ID = 0;
59 void RuntimeDyldError::log(raw_ostream &OS) const {
60 OS << ErrMsg << "\n";
63 std::error_code RuntimeDyldError::convertToErrorCode() const {
64 return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
67 // Empty out-of-line virtual destructor as the key function.
68 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70 // Pin LoadedObjectInfo's vtables to this file.
71 void RuntimeDyld::LoadedObjectInfo::anchor() {}
73 namespace llvm {
75 void RuntimeDyldImpl::registerEHFrames() {}
77 void RuntimeDyldImpl::deregisterEHFrames() {
78 MemMgr.deregisterEHFrames();
81 #ifndef NDEBUG
82 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
83 dbgs() << "----- Contents of section " << S.getName() << " " << State
84 << " -----";
86 if (S.getAddress() == nullptr) {
87 dbgs() << "\n <section not emitted>\n";
88 return;
91 const unsigned ColsPerRow = 16;
93 uint8_t *DataAddr = S.getAddress();
94 uint64_t LoadAddr = S.getLoadAddress();
96 unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
97 unsigned BytesRemaining = S.getSize();
99 if (StartPadding) {
100 dbgs() << "\n" << format("0x%016" PRIx64,
101 LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
102 while (StartPadding--)
103 dbgs() << " ";
106 while (BytesRemaining > 0) {
107 if ((LoadAddr & (ColsPerRow - 1)) == 0)
108 dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110 dbgs() << " " << format("%02x", *DataAddr);
112 ++DataAddr;
113 ++LoadAddr;
114 --BytesRemaining;
117 dbgs() << "\n";
119 #endif
121 // Resolve the relocations for all symbols we currently know about.
122 void RuntimeDyldImpl::resolveRelocations() {
123 std::lock_guard<sys::Mutex> locked(lock);
125 // Print out the sections prior to relocation.
126 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
127 dumpSectionMemory(Sections[i], "before relocations"););
129 // First, resolve relocations associated with external symbols.
130 if (auto Err = resolveExternalSymbols()) {
131 HasError = true;
132 ErrorStr = toString(std::move(Err));
135 resolveLocalRelocations();
137 // Print out sections after relocation.
138 LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
139 dumpSectionMemory(Sections[i], "after relocations"););
142 void RuntimeDyldImpl::resolveLocalRelocations() {
143 // Iterate over all outstanding relocations
144 for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
145 // The Section here (Sections[i]) refers to the section in which the
146 // symbol for the relocation is located. The SectionID in the relocation
147 // entry provides the section to which the relocation will be applied.
148 int Idx = it->first;
149 uint64_t Addr = Sections[Idx].getLoadAddress();
150 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
151 << format("%p", (uintptr_t)Addr) << "\n");
152 resolveRelocationList(it->second, Addr);
154 Relocations.clear();
157 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
158 uint64_t TargetAddress) {
159 std::lock_guard<sys::Mutex> locked(lock);
160 for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
161 if (Sections[i].getAddress() == LocalAddress) {
162 reassignSectionAddress(i, TargetAddress);
163 return;
166 llvm_unreachable("Attempting to remap address of unknown section!");
169 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
170 uint64_t &Result) {
171 Expected<uint64_t> AddressOrErr = Sym.getAddress();
172 if (!AddressOrErr)
173 return AddressOrErr.takeError();
174 Result = *AddressOrErr - Sec.getAddress();
175 return Error::success();
178 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
179 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
180 std::lock_guard<sys::Mutex> locked(lock);
182 // Save information about our target
183 Arch = (Triple::ArchType)Obj.getArch();
184 IsTargetLittleEndian = Obj.isLittleEndian();
185 setMipsABI(Obj);
187 // Compute the memory size required to load all sections to be loaded
188 // and pass this information to the memory manager
189 if (MemMgr.needsToReserveAllocationSpace()) {
190 uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
191 uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
192 if (auto Err = computeTotalAllocSize(Obj,
193 CodeSize, CodeAlign,
194 RODataSize, RODataAlign,
195 RWDataSize, RWDataAlign))
196 return std::move(Err);
197 MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
198 RWDataSize, RWDataAlign);
201 // Used sections from the object file
202 ObjSectionToIDMap LocalSections;
204 // Common symbols requiring allocation, with their sizes and alignments
205 CommonSymbolList CommonSymbolsToAllocate;
207 uint64_t CommonSize = 0;
208 uint32_t CommonAlign = 0;
210 // First, collect all weak and common symbols. We need to know if stronger
211 // definitions occur elsewhere.
212 JITSymbolResolver::LookupSet ResponsibilitySet;
214 JITSymbolResolver::LookupSet Symbols;
215 for (auto &Sym : Obj.symbols()) {
216 uint32_t Flags = Sym.getFlags();
217 if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
218 // Get symbol name.
219 if (auto NameOrErr = Sym.getName())
220 Symbols.insert(*NameOrErr);
221 else
222 return NameOrErr.takeError();
226 if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
227 ResponsibilitySet = std::move(*ResultOrErr);
228 else
229 return ResultOrErr.takeError();
232 // Parse symbols
233 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
234 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
235 ++I) {
236 uint32_t Flags = I->getFlags();
238 // Skip undefined symbols.
239 if (Flags & SymbolRef::SF_Undefined)
240 continue;
242 // Get the symbol type.
243 object::SymbolRef::Type SymType;
244 if (auto SymTypeOrErr = I->getType())
245 SymType = *SymTypeOrErr;
246 else
247 return SymTypeOrErr.takeError();
249 // Get symbol name.
250 StringRef Name;
251 if (auto NameOrErr = I->getName())
252 Name = *NameOrErr;
253 else
254 return NameOrErr.takeError();
256 // Compute JIT symbol flags.
257 auto JITSymFlags = getJITSymbolFlags(*I);
258 if (!JITSymFlags)
259 return JITSymFlags.takeError();
261 // If this is a weak definition, check to see if there's a strong one.
262 // If there is, skip this symbol (we won't be providing it: the strong
263 // definition will). If there's no strong definition, make this definition
264 // strong.
265 if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
266 // First check whether there's already a definition in this instance.
267 if (GlobalSymbolTable.count(Name))
268 continue;
270 // If we're not responsible for this symbol, skip it.
271 if (!ResponsibilitySet.count(Name))
272 continue;
274 // Otherwise update the flags on the symbol to make this definition
275 // strong.
276 if (JITSymFlags->isWeak())
277 *JITSymFlags &= ~JITSymbolFlags::Weak;
278 if (JITSymFlags->isCommon()) {
279 *JITSymFlags &= ~JITSymbolFlags::Common;
280 uint32_t Align = I->getAlignment();
281 uint64_t Size = I->getCommonSize();
282 if (!CommonAlign)
283 CommonAlign = Align;
284 CommonSize = alignTo(CommonSize, Align) + Size;
285 CommonSymbolsToAllocate.push_back(*I);
289 if (Flags & SymbolRef::SF_Absolute &&
290 SymType != object::SymbolRef::ST_File) {
291 uint64_t Addr = 0;
292 if (auto AddrOrErr = I->getAddress())
293 Addr = *AddrOrErr;
294 else
295 return AddrOrErr.takeError();
297 unsigned SectionID = AbsoluteSymbolSection;
299 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
300 << " SID: " << SectionID
301 << " Offset: " << format("%p", (uintptr_t)Addr)
302 << " flags: " << Flags << "\n");
303 GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
304 } else if (SymType == object::SymbolRef::ST_Function ||
305 SymType == object::SymbolRef::ST_Data ||
306 SymType == object::SymbolRef::ST_Unknown ||
307 SymType == object::SymbolRef::ST_Other) {
309 section_iterator SI = Obj.section_end();
310 if (auto SIOrErr = I->getSection())
311 SI = *SIOrErr;
312 else
313 return SIOrErr.takeError();
315 if (SI == Obj.section_end())
316 continue;
318 // Get symbol offset.
319 uint64_t SectOffset;
320 if (auto Err = getOffset(*I, *SI, SectOffset))
321 return std::move(Err);
323 bool IsCode = SI->isText();
324 unsigned SectionID;
325 if (auto SectionIDOrErr =
326 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
327 SectionID = *SectionIDOrErr;
328 else
329 return SectionIDOrErr.takeError();
331 LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
332 << " SID: " << SectionID
333 << " Offset: " << format("%p", (uintptr_t)SectOffset)
334 << " flags: " << Flags << "\n");
335 GlobalSymbolTable[Name] =
336 SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
340 // Allocate common symbols
341 if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
342 CommonAlign))
343 return std::move(Err);
345 // Parse and process relocations
346 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
347 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
348 SI != SE; ++SI) {
349 StubMap Stubs;
350 section_iterator RelocatedSection = SI->getRelocatedSection();
352 if (RelocatedSection == SE)
353 continue;
355 relocation_iterator I = SI->relocation_begin();
356 relocation_iterator E = SI->relocation_end();
358 if (I == E && !ProcessAllSections)
359 continue;
361 bool IsCode = RelocatedSection->isText();
362 unsigned SectionID = 0;
363 if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
364 LocalSections))
365 SectionID = *SectionIDOrErr;
366 else
367 return SectionIDOrErr.takeError();
369 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
371 for (; I != E;)
372 if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
373 I = *IOrErr;
374 else
375 return IOrErr.takeError();
377 // If there is a NotifyStubEmitted callback set, call it to register any
378 // stubs created for this section.
379 if (NotifyStubEmitted) {
380 StringRef FileName = Obj.getFileName();
381 StringRef SectionName = Sections[SectionID].getName();
382 for (auto &KV : Stubs) {
384 auto &VR = KV.first;
385 uint64_t StubAddr = KV.second;
387 // If this is a named stub, just call NotifyStubEmitted.
388 if (VR.SymbolName) {
389 NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
390 StubAddr);
391 continue;
394 // Otherwise we will have to try a reverse lookup on the globla symbol table.
395 for (auto &GSTMapEntry : GlobalSymbolTable) {
396 StringRef SymbolName = GSTMapEntry.first();
397 auto &GSTEntry = GSTMapEntry.second;
398 if (GSTEntry.getSectionID() == VR.SectionID &&
399 GSTEntry.getOffset() == VR.Offset) {
400 NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
401 StubAddr);
402 break;
409 // Process remaining sections
410 if (ProcessAllSections) {
411 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
412 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
413 SI != SE; ++SI) {
415 /* Ignore already loaded sections */
416 if (LocalSections.find(*SI) != LocalSections.end())
417 continue;
419 bool IsCode = SI->isText();
420 if (auto SectionIDOrErr =
421 findOrEmitSection(Obj, *SI, IsCode, LocalSections))
422 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
423 else
424 return SectionIDOrErr.takeError();
428 // Give the subclasses a chance to tie-up any loose ends.
429 if (auto Err = finalizeLoad(Obj, LocalSections))
430 return std::move(Err);
432 // for (auto E : LocalSections)
433 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
435 return LocalSections;
438 // A helper method for computeTotalAllocSize.
439 // Computes the memory size required to allocate sections with the given sizes,
440 // assuming that all sections are allocated with the given alignment
441 static uint64_t
442 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
443 uint64_t Alignment) {
444 uint64_t TotalSize = 0;
445 for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
446 uint64_t AlignedSize =
447 (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
448 TotalSize += AlignedSize;
450 return TotalSize;
453 static bool isRequiredForExecution(const SectionRef Section) {
454 const ObjectFile *Obj = Section.getObject();
455 if (isa<object::ELFObjectFileBase>(Obj))
456 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
457 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
458 const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
459 // Avoid loading zero-sized COFF sections.
460 // In PE files, VirtualSize gives the section size, and SizeOfRawData
461 // may be zero for sections with content. In Obj files, SizeOfRawData
462 // gives the section size, and VirtualSize is always zero. Hence
463 // the need to check for both cases below.
464 bool HasContent =
465 (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
466 bool IsDiscardable =
467 CoffSection->Characteristics &
468 (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
469 return HasContent && !IsDiscardable;
472 assert(isa<MachOObjectFile>(Obj));
473 return true;
476 static bool isReadOnlyData(const SectionRef Section) {
477 const ObjectFile *Obj = Section.getObject();
478 if (isa<object::ELFObjectFileBase>(Obj))
479 return !(ELFSectionRef(Section).getFlags() &
480 (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
481 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
482 return ((COFFObj->getCOFFSection(Section)->Characteristics &
483 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
484 | COFF::IMAGE_SCN_MEM_READ
485 | COFF::IMAGE_SCN_MEM_WRITE))
487 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
488 | COFF::IMAGE_SCN_MEM_READ));
490 assert(isa<MachOObjectFile>(Obj));
491 return false;
494 static bool isZeroInit(const SectionRef Section) {
495 const ObjectFile *Obj = Section.getObject();
496 if (isa<object::ELFObjectFileBase>(Obj))
497 return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
498 if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
499 return COFFObj->getCOFFSection(Section)->Characteristics &
500 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
502 auto *MachO = cast<MachOObjectFile>(Obj);
503 unsigned SectionType = MachO->getSectionType(Section);
504 return SectionType == MachO::S_ZEROFILL ||
505 SectionType == MachO::S_GB_ZEROFILL;
508 // Compute an upper bound of the memory size that is required to load all
509 // sections
510 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
511 uint64_t &CodeSize,
512 uint32_t &CodeAlign,
513 uint64_t &RODataSize,
514 uint32_t &RODataAlign,
515 uint64_t &RWDataSize,
516 uint32_t &RWDataAlign) {
517 // Compute the size of all sections required for execution
518 std::vector<uint64_t> CodeSectionSizes;
519 std::vector<uint64_t> ROSectionSizes;
520 std::vector<uint64_t> RWSectionSizes;
522 // Collect sizes of all sections to be loaded;
523 // also determine the max alignment of all sections
524 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
525 SI != SE; ++SI) {
526 const SectionRef &Section = *SI;
528 bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
530 // Consider only the sections that are required to be loaded for execution
531 if (IsRequired) {
532 uint64_t DataSize = Section.getSize();
533 uint64_t Alignment64 = Section.getAlignment();
534 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
535 bool IsCode = Section.isText();
536 bool IsReadOnly = isReadOnlyData(Section);
538 Expected<StringRef> NameOrErr = Section.getName();
539 if (!NameOrErr)
540 return NameOrErr.takeError();
541 StringRef Name = *NameOrErr;
543 uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
545 uint64_t PaddingSize = 0;
546 if (Name == ".eh_frame")
547 PaddingSize += 4;
548 if (StubBufSize != 0)
549 PaddingSize += getStubAlignment() - 1;
551 uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
553 // The .eh_frame section (at least on Linux) needs an extra four bytes
554 // padded
555 // with zeroes added at the end. For MachO objects, this section has a
556 // slightly different name, so this won't have any effect for MachO
557 // objects.
558 if (Name == ".eh_frame")
559 SectionSize += 4;
561 if (!SectionSize)
562 SectionSize = 1;
564 if (IsCode) {
565 CodeAlign = std::max(CodeAlign, Alignment);
566 CodeSectionSizes.push_back(SectionSize);
567 } else if (IsReadOnly) {
568 RODataAlign = std::max(RODataAlign, Alignment);
569 ROSectionSizes.push_back(SectionSize);
570 } else {
571 RWDataAlign = std::max(RWDataAlign, Alignment);
572 RWSectionSizes.push_back(SectionSize);
577 // Compute Global Offset Table size. If it is not zero we
578 // also update alignment, which is equal to a size of a
579 // single GOT entry.
580 if (unsigned GotSize = computeGOTSize(Obj)) {
581 RWSectionSizes.push_back(GotSize);
582 RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
585 // Compute the size of all common symbols
586 uint64_t CommonSize = 0;
587 uint32_t CommonAlign = 1;
588 for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
589 ++I) {
590 uint32_t Flags = I->getFlags();
591 if (Flags & SymbolRef::SF_Common) {
592 // Add the common symbols to a list. We'll allocate them all below.
593 uint64_t Size = I->getCommonSize();
594 uint32_t Align = I->getAlignment();
595 // If this is the first common symbol, use its alignment as the alignment
596 // for the common symbols section.
597 if (CommonSize == 0)
598 CommonAlign = Align;
599 CommonSize = alignTo(CommonSize, Align) + Size;
602 if (CommonSize != 0) {
603 RWSectionSizes.push_back(CommonSize);
604 RWDataAlign = std::max(RWDataAlign, CommonAlign);
607 // Compute the required allocation space for each different type of sections
608 // (code, read-only data, read-write data) assuming that all sections are
609 // allocated with the max alignment. Note that we cannot compute with the
610 // individual alignments of the sections, because then the required size
611 // depends on the order, in which the sections are allocated.
612 CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
613 RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
614 RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
616 return Error::success();
619 // compute GOT size
620 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
621 size_t GotEntrySize = getGOTEntrySize();
622 if (!GotEntrySize)
623 return 0;
625 size_t GotSize = 0;
626 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
627 SI != SE; ++SI) {
629 for (const RelocationRef &Reloc : SI->relocations())
630 if (relocationNeedsGot(Reloc))
631 GotSize += GotEntrySize;
634 return GotSize;
637 // compute stub buffer size for the given section
638 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
639 const SectionRef &Section) {
640 unsigned StubSize = getMaxStubSize();
641 if (StubSize == 0) {
642 return 0;
644 // FIXME: this is an inefficient way to handle this. We should computed the
645 // necessary section allocation size in loadObject by walking all the sections
646 // once.
647 unsigned StubBufSize = 0;
648 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
649 SI != SE; ++SI) {
650 section_iterator RelSecI = SI->getRelocatedSection();
651 if (!(RelSecI == Section))
652 continue;
654 for (const RelocationRef &Reloc : SI->relocations())
655 if (relocationNeedsStub(Reloc))
656 StubBufSize += StubSize;
659 // Get section data size and alignment
660 uint64_t DataSize = Section.getSize();
661 uint64_t Alignment64 = Section.getAlignment();
663 // Add stubbuf size alignment
664 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
665 unsigned StubAlignment = getStubAlignment();
666 unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
667 if (StubAlignment > EndAlignment)
668 StubBufSize += StubAlignment - EndAlignment;
669 return StubBufSize;
672 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
673 unsigned Size) const {
674 uint64_t Result = 0;
675 if (IsTargetLittleEndian) {
676 Src += Size - 1;
677 while (Size--)
678 Result = (Result << 8) | *Src--;
679 } else
680 while (Size--)
681 Result = (Result << 8) | *Src++;
683 return Result;
686 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
687 unsigned Size) const {
688 if (IsTargetLittleEndian) {
689 while (Size--) {
690 *Dst++ = Value & 0xFF;
691 Value >>= 8;
693 } else {
694 Dst += Size - 1;
695 while (Size--) {
696 *Dst-- = Value & 0xFF;
697 Value >>= 8;
702 Expected<JITSymbolFlags>
703 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
704 return JITSymbolFlags::fromObjectSymbol(SR);
707 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
708 CommonSymbolList &SymbolsToAllocate,
709 uint64_t CommonSize,
710 uint32_t CommonAlign) {
711 if (SymbolsToAllocate.empty())
712 return Error::success();
714 // Allocate memory for the section
715 unsigned SectionID = Sections.size();
716 uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
717 "<common symbols>", false);
718 if (!Addr)
719 report_fatal_error("Unable to allocate memory for common symbols!");
720 uint64_t Offset = 0;
721 Sections.push_back(
722 SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
723 memset(Addr, 0, CommonSize);
725 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
726 << " new addr: " << format("%p", Addr)
727 << " DataSize: " << CommonSize << "\n");
729 // Assign the address of each symbol
730 for (auto &Sym : SymbolsToAllocate) {
731 uint32_t Align = Sym.getAlignment();
732 uint64_t Size = Sym.getCommonSize();
733 StringRef Name;
734 if (auto NameOrErr = Sym.getName())
735 Name = *NameOrErr;
736 else
737 return NameOrErr.takeError();
738 if (Align) {
739 // This symbol has an alignment requirement.
740 uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
741 Addr += AlignOffset;
742 Offset += AlignOffset;
744 auto JITSymFlags = getJITSymbolFlags(Sym);
746 if (!JITSymFlags)
747 return JITSymFlags.takeError();
749 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
750 << format("%p", Addr) << "\n");
751 GlobalSymbolTable[Name] =
752 SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
753 Offset += Size;
754 Addr += Size;
757 return Error::success();
760 Expected<unsigned>
761 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
762 const SectionRef &Section,
763 bool IsCode) {
764 StringRef data;
765 uint64_t Alignment64 = Section.getAlignment();
767 unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
768 unsigned PaddingSize = 0;
769 unsigned StubBufSize = 0;
770 bool IsRequired = isRequiredForExecution(Section);
771 bool IsVirtual = Section.isVirtual();
772 bool IsZeroInit = isZeroInit(Section);
773 bool IsReadOnly = isReadOnlyData(Section);
774 uint64_t DataSize = Section.getSize();
776 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
777 // while being more "polite". Other formats do not support 0-aligned sections
778 // anyway, so we should guarantee that the alignment is always at least 1.
779 Alignment = std::max(1u, Alignment);
781 Expected<StringRef> NameOrErr = Section.getName();
782 if (!NameOrErr)
783 return NameOrErr.takeError();
784 StringRef Name = *NameOrErr;
786 StubBufSize = computeSectionStubBufSize(Obj, Section);
788 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
789 // with zeroes added at the end. For MachO objects, this section has a
790 // slightly different name, so this won't have any effect for MachO objects.
791 if (Name == ".eh_frame")
792 PaddingSize = 4;
794 uintptr_t Allocate;
795 unsigned SectionID = Sections.size();
796 uint8_t *Addr;
797 const char *pData = nullptr;
799 // If this section contains any bits (i.e. isn't a virtual or bss section),
800 // grab a reference to them.
801 if (!IsVirtual && !IsZeroInit) {
802 // In either case, set the location of the unrelocated section in memory,
803 // since we still process relocations for it even if we're not applying them.
804 if (Expected<StringRef> E = Section.getContents())
805 data = *E;
806 else
807 return E.takeError();
808 pData = data.data();
811 // If there are any stubs then the section alignment needs to be at least as
812 // high as stub alignment or padding calculations may by incorrect when the
813 // section is remapped.
814 if (StubBufSize != 0) {
815 Alignment = std::max(Alignment, getStubAlignment());
816 PaddingSize += getStubAlignment() - 1;
819 // Some sections, such as debug info, don't need to be loaded for execution.
820 // Process those only if explicitly requested.
821 if (IsRequired || ProcessAllSections) {
822 Allocate = DataSize + PaddingSize + StubBufSize;
823 if (!Allocate)
824 Allocate = 1;
825 Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
826 Name)
827 : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
828 Name, IsReadOnly);
829 if (!Addr)
830 report_fatal_error("Unable to allocate section memory!");
832 // Zero-initialize or copy the data from the image
833 if (IsZeroInit || IsVirtual)
834 memset(Addr, 0, DataSize);
835 else
836 memcpy(Addr, pData, DataSize);
838 // Fill in any extra bytes we allocated for padding
839 if (PaddingSize != 0) {
840 memset(Addr + DataSize, 0, PaddingSize);
841 // Update the DataSize variable to include padding.
842 DataSize += PaddingSize;
844 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
845 // have been increased above to account for this).
846 if (StubBufSize > 0)
847 DataSize &= -(uint64_t)getStubAlignment();
850 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
851 << Name << " obj addr: " << format("%p", pData)
852 << " new addr: " << format("%p", Addr) << " DataSize: "
853 << DataSize << " StubBufSize: " << StubBufSize
854 << " Allocate: " << Allocate << "\n");
855 } else {
856 // Even if we didn't load the section, we need to record an entry for it
857 // to handle later processing (and by 'handle' I mean don't do anything
858 // with these sections).
859 Allocate = 0;
860 Addr = nullptr;
861 LLVM_DEBUG(
862 dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
863 << " obj addr: " << format("%p", data.data()) << " new addr: 0"
864 << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
865 << " Allocate: " << Allocate << "\n");
868 Sections.push_back(
869 SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
871 // Debug info sections are linked as if their load address was zero
872 if (!IsRequired)
873 Sections.back().setLoadAddress(0);
875 return SectionID;
878 Expected<unsigned>
879 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
880 const SectionRef &Section,
881 bool IsCode,
882 ObjSectionToIDMap &LocalSections) {
884 unsigned SectionID = 0;
885 ObjSectionToIDMap::iterator i = LocalSections.find(Section);
886 if (i != LocalSections.end())
887 SectionID = i->second;
888 else {
889 if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
890 SectionID = *SectionIDOrErr;
891 else
892 return SectionIDOrErr.takeError();
893 LocalSections[Section] = SectionID;
895 return SectionID;
898 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
899 unsigned SectionID) {
900 Relocations[SectionID].push_back(RE);
903 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
904 StringRef SymbolName) {
905 // Relocation by symbol. If the symbol is found in the global symbol table,
906 // create an appropriate section relocation. Otherwise, add it to
907 // ExternalSymbolRelocations.
908 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
909 if (Loc == GlobalSymbolTable.end()) {
910 ExternalSymbolRelocations[SymbolName].push_back(RE);
911 } else {
912 // Copy the RE since we want to modify its addend.
913 RelocationEntry RECopy = RE;
914 const auto &SymInfo = Loc->second;
915 RECopy.Addend += SymInfo.getOffset();
916 Relocations[SymInfo.getSectionID()].push_back(RECopy);
920 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
921 unsigned AbiVariant) {
922 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
923 // This stub has to be able to access the full address space,
924 // since symbol lookup won't necessarily find a handy, in-range,
925 // PLT stub for functions which could be anywhere.
926 // Stub can use ip0 (== x16) to calculate address
927 writeBytesUnaligned(0xd2e00010, Addr, 4); // movz ip0, #:abs_g3:<addr>
928 writeBytesUnaligned(0xf2c00010, Addr+4, 4); // movk ip0, #:abs_g2_nc:<addr>
929 writeBytesUnaligned(0xf2a00010, Addr+8, 4); // movk ip0, #:abs_g1_nc:<addr>
930 writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
931 writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
933 return Addr;
934 } else if (Arch == Triple::arm || Arch == Triple::armeb) {
935 // TODO: There is only ARM far stub now. We should add the Thumb stub,
936 // and stubs for branches Thumb - ARM and ARM - Thumb.
937 writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
938 return Addr + 4;
939 } else if (IsMipsO32ABI || IsMipsN32ABI) {
940 // 0: 3c190000 lui t9,%hi(addr).
941 // 4: 27390000 addiu t9,t9,%lo(addr).
942 // 8: 03200008 jr t9.
943 // c: 00000000 nop.
944 const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
945 const unsigned NopInstr = 0x0;
946 unsigned JrT9Instr = 0x03200008;
947 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
948 (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
949 JrT9Instr = 0x03200009;
951 writeBytesUnaligned(LuiT9Instr, Addr, 4);
952 writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
953 writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
954 writeBytesUnaligned(NopInstr, Addr + 12, 4);
955 return Addr;
956 } else if (IsMipsN64ABI) {
957 // 0: 3c190000 lui t9,%highest(addr).
958 // 4: 67390000 daddiu t9,t9,%higher(addr).
959 // 8: 0019CC38 dsll t9,t9,16.
960 // c: 67390000 daddiu t9,t9,%hi(addr).
961 // 10: 0019CC38 dsll t9,t9,16.
962 // 14: 67390000 daddiu t9,t9,%lo(addr).
963 // 18: 03200008 jr t9.
964 // 1c: 00000000 nop.
965 const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
966 DsllT9Instr = 0x19CC38;
967 const unsigned NopInstr = 0x0;
968 unsigned JrT9Instr = 0x03200008;
969 if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
970 JrT9Instr = 0x03200009;
972 writeBytesUnaligned(LuiT9Instr, Addr, 4);
973 writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
974 writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
975 writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
976 writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
977 writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
978 writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
979 writeBytesUnaligned(NopInstr, Addr + 28, 4);
980 return Addr;
981 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
982 // Depending on which version of the ELF ABI is in use, we need to
983 // generate one of two variants of the stub. They both start with
984 // the same sequence to load the target address into r12.
985 writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
986 writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
987 writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
988 writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
989 writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
990 if (AbiVariant == 2) {
991 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
992 // The address is already in r12 as required by the ABI. Branch to it.
993 writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
994 writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
995 writeInt32BE(Addr+28, 0x4E800420); // bctr
996 } else {
997 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
998 // Load the function address on r11 and sets it to control register. Also
999 // loads the function TOC in r2 and environment pointer to r11.
1000 writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
1001 writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
1002 writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
1003 writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1004 writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
1005 writeInt32BE(Addr+40, 0x4E800420); // bctr
1007 return Addr;
1008 } else if (Arch == Triple::systemz) {
1009 writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
1010 writeInt16BE(Addr+2, 0x0000);
1011 writeInt16BE(Addr+4, 0x0004);
1012 writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
1013 // 8-byte address stored at Addr + 8
1014 return Addr;
1015 } else if (Arch == Triple::x86_64) {
1016 *Addr = 0xFF; // jmp
1017 *(Addr+1) = 0x25; // rip
1018 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1019 } else if (Arch == Triple::x86) {
1020 *Addr = 0xE9; // 32-bit pc-relative jump.
1022 return Addr;
1025 // Assign an address to a symbol name and resolve all the relocations
1026 // associated with it.
1027 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1028 uint64_t Addr) {
1029 // The address to use for relocation resolution is not
1030 // the address of the local section buffer. We must be doing
1031 // a remote execution environment of some sort. Relocations can't
1032 // be applied until all the sections have been moved. The client must
1033 // trigger this with a call to MCJIT::finalize() or
1034 // RuntimeDyld::resolveRelocations().
1036 // Addr is a uint64_t because we can't assume the pointer width
1037 // of the target is the same as that of the host. Just use a generic
1038 // "big enough" type.
1039 LLVM_DEBUG(
1040 dbgs() << "Reassigning address for section " << SectionID << " ("
1041 << Sections[SectionID].getName() << "): "
1042 << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1043 << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1044 Sections[SectionID].setLoadAddress(Addr);
1047 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1048 uint64_t Value) {
1049 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1050 const RelocationEntry &RE = Relocs[i];
1051 // Ignore relocations for sections that were not loaded
1052 if (Sections[RE.SectionID].getAddress() == nullptr)
1053 continue;
1054 resolveRelocation(RE, Value);
1058 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1059 const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1060 while (!ExternalSymbolRelocations.empty()) {
1062 StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1064 StringRef Name = i->first();
1065 if (Name.size() == 0) {
1066 // This is an absolute symbol, use an address of zero.
1067 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1068 << "\n");
1069 RelocationList &Relocs = i->second;
1070 resolveRelocationList(Relocs, 0);
1071 } else {
1072 uint64_t Addr = 0;
1073 JITSymbolFlags Flags;
1074 RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1075 if (Loc == GlobalSymbolTable.end()) {
1076 auto RRI = ExternalSymbolMap.find(Name);
1077 assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1078 Addr = RRI->second.getAddress();
1079 Flags = RRI->second.getFlags();
1080 // The call to getSymbolAddress may have caused additional modules to
1081 // be loaded, which may have added new entries to the
1082 // ExternalSymbolRelocations map. Consquently, we need to update our
1083 // iterator. This is also why retrieval of the relocation list
1084 // associated with this symbol is deferred until below this point.
1085 // New entries may have been added to the relocation list.
1086 i = ExternalSymbolRelocations.find(Name);
1087 } else {
1088 // We found the symbol in our global table. It was probably in a
1089 // Module that we loaded previously.
1090 const auto &SymInfo = Loc->second;
1091 Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1092 SymInfo.getOffset();
1093 Flags = SymInfo.getFlags();
1096 // FIXME: Implement error handling that doesn't kill the host program!
1097 if (!Addr)
1098 report_fatal_error("Program used external function '" + Name +
1099 "' which could not be resolved!");
1101 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1102 // manually and we shouldn't resolve its relocations.
1103 if (Addr != UINT64_MAX) {
1105 // Tweak the address based on the symbol flags if necessary.
1106 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1107 // if the target symbol is Thumb.
1108 Addr = modifyAddressBasedOnFlags(Addr, Flags);
1110 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1111 << format("0x%lx", Addr) << "\n");
1112 // This list may have been updated when we called getSymbolAddress, so
1113 // don't change this code to get the list earlier.
1114 RelocationList &Relocs = i->second;
1115 resolveRelocationList(Relocs, Addr);
1119 ExternalSymbolRelocations.erase(i);
1123 Error RuntimeDyldImpl::resolveExternalSymbols() {
1124 StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1126 // Resolution can trigger emission of more symbols, so iterate until
1127 // we've resolved *everything*.
1129 JITSymbolResolver::LookupSet ResolvedSymbols;
1131 while (true) {
1132 JITSymbolResolver::LookupSet NewSymbols;
1134 for (auto &RelocKV : ExternalSymbolRelocations) {
1135 StringRef Name = RelocKV.first();
1136 if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1137 !ResolvedSymbols.count(Name))
1138 NewSymbols.insert(Name);
1141 if (NewSymbols.empty())
1142 break;
1144 #ifdef _MSC_VER
1145 using ExpectedLookupResult =
1146 MSVCPExpected<JITSymbolResolver::LookupResult>;
1147 #else
1148 using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1149 #endif
1151 auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1152 auto NewSymbolsF = NewSymbolsP->get_future();
1153 Resolver.lookup(NewSymbols,
1154 [=](Expected<JITSymbolResolver::LookupResult> Result) {
1155 NewSymbolsP->set_value(std::move(Result));
1158 auto NewResolverResults = NewSymbolsF.get();
1160 if (!NewResolverResults)
1161 return NewResolverResults.takeError();
1163 assert(NewResolverResults->size() == NewSymbols.size() &&
1164 "Should have errored on unresolved symbols");
1166 for (auto &RRKV : *NewResolverResults) {
1167 assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1168 ExternalSymbolMap.insert(RRKV);
1169 ResolvedSymbols.insert(RRKV.first);
1174 applyExternalSymbolRelocations(ExternalSymbolMap);
1176 return Error::success();
1179 void RuntimeDyldImpl::finalizeAsync(
1180 std::unique_ptr<RuntimeDyldImpl> This, std::function<void(Error)> OnEmitted,
1181 std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1183 // FIXME: Move-capture OnRelocsApplied and UnderlyingBuffer once we have
1184 // c++14.
1185 auto SharedUnderlyingBuffer =
1186 std::shared_ptr<MemoryBuffer>(std::move(UnderlyingBuffer));
1187 auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1188 auto PostResolveContinuation =
1189 [SharedThis, OnEmitted, SharedUnderlyingBuffer](
1190 Expected<JITSymbolResolver::LookupResult> Result) {
1191 if (!Result) {
1192 OnEmitted(Result.takeError());
1193 return;
1196 /// Copy the result into a StringMap, where the keys are held by value.
1197 StringMap<JITEvaluatedSymbol> Resolved;
1198 for (auto &KV : *Result)
1199 Resolved[KV.first] = KV.second;
1201 SharedThis->applyExternalSymbolRelocations(Resolved);
1202 SharedThis->resolveLocalRelocations();
1203 SharedThis->registerEHFrames();
1204 std::string ErrMsg;
1205 if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1206 OnEmitted(make_error<StringError>(std::move(ErrMsg),
1207 inconvertibleErrorCode()));
1208 else
1209 OnEmitted(Error::success());
1212 JITSymbolResolver::LookupSet Symbols;
1214 for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1215 StringRef Name = RelocKV.first();
1216 assert(!Name.empty() && "Symbol has no name?");
1217 assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1218 "Name already processed. RuntimeDyld instances can not be re-used "
1219 "when finalizing with finalizeAsync.");
1220 Symbols.insert(Name);
1223 if (!Symbols.empty()) {
1224 SharedThis->Resolver.lookup(Symbols, PostResolveContinuation);
1225 } else
1226 PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1229 //===----------------------------------------------------------------------===//
1230 // RuntimeDyld class implementation
1232 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1233 const object::SectionRef &Sec) const {
1235 auto I = ObjSecToIDMap.find(Sec);
1236 if (I != ObjSecToIDMap.end())
1237 return RTDyld.Sections[I->second].getLoadAddress();
1239 return 0;
1242 void RuntimeDyld::MemoryManager::anchor() {}
1243 void JITSymbolResolver::anchor() {}
1244 void LegacyJITSymbolResolver::anchor() {}
1246 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1247 JITSymbolResolver &Resolver)
1248 : MemMgr(MemMgr), Resolver(Resolver) {
1249 // FIXME: There's a potential issue lurking here if a single instance of
1250 // RuntimeDyld is used to load multiple objects. The current implementation
1251 // associates a single memory manager with a RuntimeDyld instance. Even
1252 // though the public class spawns a new 'impl' instance for each load,
1253 // they share a single memory manager. This can become a problem when page
1254 // permissions are applied.
1255 Dyld = nullptr;
1256 ProcessAllSections = false;
1259 RuntimeDyld::~RuntimeDyld() {}
1261 static std::unique_ptr<RuntimeDyldCOFF>
1262 createRuntimeDyldCOFF(
1263 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1264 JITSymbolResolver &Resolver, bool ProcessAllSections,
1265 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1266 std::unique_ptr<RuntimeDyldCOFF> Dyld =
1267 RuntimeDyldCOFF::create(Arch, MM, Resolver);
1268 Dyld->setProcessAllSections(ProcessAllSections);
1269 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1270 return Dyld;
1273 static std::unique_ptr<RuntimeDyldELF>
1274 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1275 JITSymbolResolver &Resolver, bool ProcessAllSections,
1276 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1277 std::unique_ptr<RuntimeDyldELF> Dyld =
1278 RuntimeDyldELF::create(Arch, MM, Resolver);
1279 Dyld->setProcessAllSections(ProcessAllSections);
1280 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1281 return Dyld;
1284 static std::unique_ptr<RuntimeDyldMachO>
1285 createRuntimeDyldMachO(
1286 Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1287 JITSymbolResolver &Resolver,
1288 bool ProcessAllSections,
1289 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1290 std::unique_ptr<RuntimeDyldMachO> Dyld =
1291 RuntimeDyldMachO::create(Arch, MM, Resolver);
1292 Dyld->setProcessAllSections(ProcessAllSections);
1293 Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1294 return Dyld;
1297 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1298 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1299 if (!Dyld) {
1300 if (Obj.isELF())
1301 Dyld =
1302 createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1303 MemMgr, Resolver, ProcessAllSections,
1304 std::move(NotifyStubEmitted));
1305 else if (Obj.isMachO())
1306 Dyld = createRuntimeDyldMachO(
1307 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1308 ProcessAllSections, std::move(NotifyStubEmitted));
1309 else if (Obj.isCOFF())
1310 Dyld = createRuntimeDyldCOFF(
1311 static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1312 ProcessAllSections, std::move(NotifyStubEmitted));
1313 else
1314 report_fatal_error("Incompatible object format!");
1317 if (!Dyld->isCompatibleFile(Obj))
1318 report_fatal_error("Incompatible object format!");
1320 auto LoadedObjInfo = Dyld->loadObject(Obj);
1321 MemMgr.notifyObjectLoaded(*this, Obj);
1322 return LoadedObjInfo;
1325 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1326 if (!Dyld)
1327 return nullptr;
1328 return Dyld->getSymbolLocalAddress(Name);
1331 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1332 assert(Dyld && "No RuntimeDyld instance attached");
1333 return Dyld->getSymbolSectionID(Name);
1336 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1337 if (!Dyld)
1338 return nullptr;
1339 return Dyld->getSymbol(Name);
1342 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1343 if (!Dyld)
1344 return std::map<StringRef, JITEvaluatedSymbol>();
1345 return Dyld->getSymbolTable();
1348 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1350 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1351 Dyld->reassignSectionAddress(SectionID, Addr);
1354 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1355 uint64_t TargetAddress) {
1356 Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1359 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1361 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1363 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1364 bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1365 MemMgr.FinalizationLocked = true;
1366 resolveRelocations();
1367 registerEHFrames();
1368 if (!MemoryFinalizationLocked) {
1369 MemMgr.finalizeMemory();
1370 MemMgr.FinalizationLocked = false;
1374 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1375 assert(Dyld && "No Dyld instance attached");
1376 return Dyld->getSectionContent(SectionID);
1379 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1380 assert(Dyld && "No Dyld instance attached");
1381 return Dyld->getSectionLoadAddress(SectionID);
1384 void RuntimeDyld::registerEHFrames() {
1385 if (Dyld)
1386 Dyld->registerEHFrames();
1389 void RuntimeDyld::deregisterEHFrames() {
1390 if (Dyld)
1391 Dyld->deregisterEHFrames();
1393 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1394 // so that we can re-use RuntimeDyld's implementation without twisting the
1395 // interface any further for ORC's purposes.
1396 void jitLinkForORC(object::ObjectFile &Obj,
1397 std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1398 RuntimeDyld::MemoryManager &MemMgr,
1399 JITSymbolResolver &Resolver, bool ProcessAllSections,
1400 std::function<Error(
1401 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1402 std::map<StringRef, JITEvaluatedSymbol>)>
1403 OnLoaded,
1404 std::function<void(Error)> OnEmitted) {
1406 RuntimeDyld RTDyld(MemMgr, Resolver);
1407 RTDyld.setProcessAllSections(ProcessAllSections);
1409 auto Info = RTDyld.loadObject(Obj);
1411 if (RTDyld.hasError()) {
1412 OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1413 inconvertibleErrorCode()));
1414 return;
1417 if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1418 OnEmitted(std::move(Err));
1420 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1421 std::move(UnderlyingBuffer));
1424 } // end namespace llvm