[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / IR / Instructions.cpp
blobeb2f8827b1161ba98782a2feb7f226e69df73375
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
46 using namespace llvm;
48 static cl::opt<bool> SwitchInstProfUpdateWrapperStrict(
49 "switch-inst-prof-update-wrapper-strict", cl::Hidden,
50 cl::desc("Assert that prof branch_weights metadata is valid when creating "
51 "an instance of SwitchInstProfUpdateWrapper"),
52 cl::init(true));
54 //===----------------------------------------------------------------------===//
55 // AllocaInst Class
56 //===----------------------------------------------------------------------===//
58 Optional<uint64_t>
59 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
60 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
61 if (isArrayAllocation()) {
62 auto C = dyn_cast<ConstantInt>(getArraySize());
63 if (!C)
64 return None;
65 Size *= C->getZExtValue();
67 return Size;
70 //===----------------------------------------------------------------------===//
71 // CallSite Class
72 //===----------------------------------------------------------------------===//
74 User::op_iterator CallSite::getCallee() const {
75 return cast<CallBase>(getInstruction())->op_end() - 1;
78 //===----------------------------------------------------------------------===//
79 // SelectInst Class
80 //===----------------------------------------------------------------------===//
82 /// areInvalidOperands - Return a string if the specified operands are invalid
83 /// for a select operation, otherwise return null.
84 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
85 if (Op1->getType() != Op2->getType())
86 return "both values to select must have same type";
88 if (Op1->getType()->isTokenTy())
89 return "select values cannot have token type";
91 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
92 // Vector select.
93 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
94 return "vector select condition element type must be i1";
95 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
96 if (!ET)
97 return "selected values for vector select must be vectors";
98 if (ET->getNumElements() != VT->getNumElements())
99 return "vector select requires selected vectors to have "
100 "the same vector length as select condition";
101 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
102 return "select condition must be i1 or <n x i1>";
104 return nullptr;
107 //===----------------------------------------------------------------------===//
108 // PHINode Class
109 //===----------------------------------------------------------------------===//
111 PHINode::PHINode(const PHINode &PN)
112 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
113 ReservedSpace(PN.getNumOperands()) {
114 allocHungoffUses(PN.getNumOperands());
115 std::copy(PN.op_begin(), PN.op_end(), op_begin());
116 std::copy(PN.block_begin(), PN.block_end(), block_begin());
117 SubclassOptionalData = PN.SubclassOptionalData;
120 // removeIncomingValue - Remove an incoming value. This is useful if a
121 // predecessor basic block is deleted.
122 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
123 Value *Removed = getIncomingValue(Idx);
125 // Move everything after this operand down.
127 // FIXME: we could just swap with the end of the list, then erase. However,
128 // clients might not expect this to happen. The code as it is thrashes the
129 // use/def lists, which is kinda lame.
130 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
131 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
133 // Nuke the last value.
134 Op<-1>().set(nullptr);
135 setNumHungOffUseOperands(getNumOperands() - 1);
137 // If the PHI node is dead, because it has zero entries, nuke it now.
138 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
139 // If anyone is using this PHI, make them use a dummy value instead...
140 replaceAllUsesWith(UndefValue::get(getType()));
141 eraseFromParent();
143 return Removed;
146 /// growOperands - grow operands - This grows the operand list in response
147 /// to a push_back style of operation. This grows the number of ops by 1.5
148 /// times.
150 void PHINode::growOperands() {
151 unsigned e = getNumOperands();
152 unsigned NumOps = e + e / 2;
153 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
155 ReservedSpace = NumOps;
156 growHungoffUses(ReservedSpace, /* IsPhi */ true);
159 /// hasConstantValue - If the specified PHI node always merges together the same
160 /// value, return the value, otherwise return null.
161 Value *PHINode::hasConstantValue() const {
162 // Exploit the fact that phi nodes always have at least one entry.
163 Value *ConstantValue = getIncomingValue(0);
164 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
165 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
166 if (ConstantValue != this)
167 return nullptr; // Incoming values not all the same.
168 // The case where the first value is this PHI.
169 ConstantValue = getIncomingValue(i);
171 if (ConstantValue == this)
172 return UndefValue::get(getType());
173 return ConstantValue;
176 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
177 /// together the same value, assuming that undefs result in the same value as
178 /// non-undefs.
179 /// Unlike \ref hasConstantValue, this does not return a value because the
180 /// unique non-undef incoming value need not dominate the PHI node.
181 bool PHINode::hasConstantOrUndefValue() const {
182 Value *ConstantValue = nullptr;
183 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
184 Value *Incoming = getIncomingValue(i);
185 if (Incoming != this && !isa<UndefValue>(Incoming)) {
186 if (ConstantValue && ConstantValue != Incoming)
187 return false;
188 ConstantValue = Incoming;
191 return true;
194 //===----------------------------------------------------------------------===//
195 // LandingPadInst Implementation
196 //===----------------------------------------------------------------------===//
198 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
199 const Twine &NameStr, Instruction *InsertBefore)
200 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
201 init(NumReservedValues, NameStr);
204 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
205 const Twine &NameStr, BasicBlock *InsertAtEnd)
206 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
207 init(NumReservedValues, NameStr);
210 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
211 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
212 LP.getNumOperands()),
213 ReservedSpace(LP.getNumOperands()) {
214 allocHungoffUses(LP.getNumOperands());
215 Use *OL = getOperandList();
216 const Use *InOL = LP.getOperandList();
217 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
218 OL[I] = InOL[I];
220 setCleanup(LP.isCleanup());
223 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
224 const Twine &NameStr,
225 Instruction *InsertBefore) {
226 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
229 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
230 const Twine &NameStr,
231 BasicBlock *InsertAtEnd) {
232 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
235 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
236 ReservedSpace = NumReservedValues;
237 setNumHungOffUseOperands(0);
238 allocHungoffUses(ReservedSpace);
239 setName(NameStr);
240 setCleanup(false);
243 /// growOperands - grow operands - This grows the operand list in response to a
244 /// push_back style of operation. This grows the number of ops by 2 times.
245 void LandingPadInst::growOperands(unsigned Size) {
246 unsigned e = getNumOperands();
247 if (ReservedSpace >= e + Size) return;
248 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
249 growHungoffUses(ReservedSpace);
252 void LandingPadInst::addClause(Constant *Val) {
253 unsigned OpNo = getNumOperands();
254 growOperands(1);
255 assert(OpNo < ReservedSpace && "Growing didn't work!");
256 setNumHungOffUseOperands(getNumOperands() + 1);
257 getOperandList()[OpNo] = Val;
260 //===----------------------------------------------------------------------===//
261 // CallBase Implementation
262 //===----------------------------------------------------------------------===//
264 Function *CallBase::getCaller() { return getParent()->getParent(); }
266 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
267 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
268 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
271 bool CallBase::isIndirectCall() const {
272 const Value *V = getCalledValue();
273 if (isa<Function>(V) || isa<Constant>(V))
274 return false;
275 if (const CallInst *CI = dyn_cast<CallInst>(this))
276 if (CI->isInlineAsm())
277 return false;
278 return true;
281 /// Tests if this call site must be tail call optimized. Only a CallInst can
282 /// be tail call optimized.
283 bool CallBase::isMustTailCall() const {
284 if (auto *CI = dyn_cast<CallInst>(this))
285 return CI->isMustTailCall();
286 return false;
289 /// Tests if this call site is marked as a tail call.
290 bool CallBase::isTailCall() const {
291 if (auto *CI = dyn_cast<CallInst>(this))
292 return CI->isTailCall();
293 return false;
296 Intrinsic::ID CallBase::getIntrinsicID() const {
297 if (auto *F = getCalledFunction())
298 return F->getIntrinsicID();
299 return Intrinsic::not_intrinsic;
302 bool CallBase::isReturnNonNull() const {
303 if (hasRetAttr(Attribute::NonNull))
304 return true;
306 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
307 !NullPointerIsDefined(getCaller(),
308 getType()->getPointerAddressSpace()))
309 return true;
311 return false;
314 Value *CallBase::getReturnedArgOperand() const {
315 unsigned Index;
317 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
318 return getArgOperand(Index - AttributeList::FirstArgIndex);
319 if (const Function *F = getCalledFunction())
320 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
321 Index)
322 return getArgOperand(Index - AttributeList::FirstArgIndex);
324 return nullptr;
327 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
328 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
329 return true;
331 // Look at the callee, if available.
332 if (const Function *F = getCalledFunction())
333 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
334 return false;
337 /// Determine whether the argument or parameter has the given attribute.
338 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
339 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
341 if (Attrs.hasParamAttribute(ArgNo, Kind))
342 return true;
343 if (const Function *F = getCalledFunction())
344 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
345 return false;
348 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
349 if (const Function *F = getCalledFunction())
350 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
351 return false;
354 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
355 if (const Function *F = getCalledFunction())
356 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
357 return false;
360 CallBase::op_iterator
361 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
362 const unsigned BeginIndex) {
363 auto It = op_begin() + BeginIndex;
364 for (auto &B : Bundles)
365 It = std::copy(B.input_begin(), B.input_end(), It);
367 auto *ContextImpl = getContext().pImpl;
368 auto BI = Bundles.begin();
369 unsigned CurrentIndex = BeginIndex;
371 for (auto &BOI : bundle_op_infos()) {
372 assert(BI != Bundles.end() && "Incorrect allocation?");
374 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
375 BOI.Begin = CurrentIndex;
376 BOI.End = CurrentIndex + BI->input_size();
377 CurrentIndex = BOI.End;
378 BI++;
381 assert(BI == Bundles.end() && "Incorrect allocation?");
383 return It;
386 //===----------------------------------------------------------------------===//
387 // CallInst Implementation
388 //===----------------------------------------------------------------------===//
390 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
391 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
392 this->FTy = FTy;
393 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
394 "NumOperands not set up?");
395 setCalledOperand(Func);
397 #ifndef NDEBUG
398 assert((Args.size() == FTy->getNumParams() ||
399 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
400 "Calling a function with bad signature!");
402 for (unsigned i = 0; i != Args.size(); ++i)
403 assert((i >= FTy->getNumParams() ||
404 FTy->getParamType(i) == Args[i]->getType()) &&
405 "Calling a function with a bad signature!");
406 #endif
408 llvm::copy(Args, op_begin());
410 auto It = populateBundleOperandInfos(Bundles, Args.size());
411 (void)It;
412 assert(It + 1 == op_end() && "Should add up!");
414 setName(NameStr);
417 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
418 this->FTy = FTy;
419 assert(getNumOperands() == 1 && "NumOperands not set up?");
420 setCalledOperand(Func);
422 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
424 setName(NameStr);
427 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
428 Instruction *InsertBefore)
429 : CallBase(Ty->getReturnType(), Instruction::Call,
430 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
431 init(Ty, Func, Name);
434 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
435 BasicBlock *InsertAtEnd)
436 : CallBase(Ty->getReturnType(), Instruction::Call,
437 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
438 init(Ty, Func, Name);
441 CallInst::CallInst(const CallInst &CI)
442 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
443 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
444 CI.getNumOperands()) {
445 setTailCallKind(CI.getTailCallKind());
446 setCallingConv(CI.getCallingConv());
448 std::copy(CI.op_begin(), CI.op_end(), op_begin());
449 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
450 bundle_op_info_begin());
451 SubclassOptionalData = CI.SubclassOptionalData;
454 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
455 Instruction *InsertPt) {
456 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
458 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
459 Args, OpB, CI->getName(), InsertPt);
460 NewCI->setTailCallKind(CI->getTailCallKind());
461 NewCI->setCallingConv(CI->getCallingConv());
462 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
463 NewCI->setAttributes(CI->getAttributes());
464 NewCI->setDebugLoc(CI->getDebugLoc());
465 return NewCI;
468 // Update profile weight for call instruction by scaling it using the ratio
469 // of S/T. The meaning of "branch_weights" meta data for call instruction is
470 // transfered to represent call count.
471 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
472 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
473 if (ProfileData == nullptr)
474 return;
476 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
477 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
478 !ProfDataName->getString().equals("VP")))
479 return;
481 if (T == 0) {
482 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
483 "div by 0. Ignoring. Likely the function "
484 << getParent()->getParent()->getName()
485 << " has 0 entry count, and contains call instructions "
486 "with non-zero prof info.");
487 return;
490 MDBuilder MDB(getContext());
491 SmallVector<Metadata *, 3> Vals;
492 Vals.push_back(ProfileData->getOperand(0));
493 APInt APS(128, S), APT(128, T);
494 if (ProfDataName->getString().equals("branch_weights") &&
495 ProfileData->getNumOperands() > 0) {
496 // Using APInt::div may be expensive, but most cases should fit 64 bits.
497 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
498 ->getValue()
499 .getZExtValue());
500 Val *= APS;
501 Vals.push_back(MDB.createConstant(ConstantInt::get(
502 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
503 } else if (ProfDataName->getString().equals("VP"))
504 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
505 // The first value is the key of the value profile, which will not change.
506 Vals.push_back(ProfileData->getOperand(i));
507 // Using APInt::div may be expensive, but most cases should fit 64 bits.
508 APInt Val(128,
509 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
510 ->getValue()
511 .getZExtValue());
512 Val *= APS;
513 Vals.push_back(MDB.createConstant(
514 ConstantInt::get(Type::getInt64Ty(getContext()),
515 Val.udiv(APT).getLimitedValue())));
517 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
520 /// IsConstantOne - Return true only if val is constant int 1
521 static bool IsConstantOne(Value *val) {
522 assert(val && "IsConstantOne does not work with nullptr val");
523 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
524 return CVal && CVal->isOne();
527 static Instruction *createMalloc(Instruction *InsertBefore,
528 BasicBlock *InsertAtEnd, Type *IntPtrTy,
529 Type *AllocTy, Value *AllocSize,
530 Value *ArraySize,
531 ArrayRef<OperandBundleDef> OpB,
532 Function *MallocF, const Twine &Name) {
533 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
534 "createMalloc needs either InsertBefore or InsertAtEnd");
536 // malloc(type) becomes:
537 // bitcast (i8* malloc(typeSize)) to type*
538 // malloc(type, arraySize) becomes:
539 // bitcast (i8* malloc(typeSize*arraySize)) to type*
540 if (!ArraySize)
541 ArraySize = ConstantInt::get(IntPtrTy, 1);
542 else if (ArraySize->getType() != IntPtrTy) {
543 if (InsertBefore)
544 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
545 "", InsertBefore);
546 else
547 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
548 "", InsertAtEnd);
551 if (!IsConstantOne(ArraySize)) {
552 if (IsConstantOne(AllocSize)) {
553 AllocSize = ArraySize; // Operand * 1 = Operand
554 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
555 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
556 false /*ZExt*/);
557 // Malloc arg is constant product of type size and array size
558 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
559 } else {
560 // Multiply type size by the array size...
561 if (InsertBefore)
562 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
563 "mallocsize", InsertBefore);
564 else
565 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
566 "mallocsize", InsertAtEnd);
570 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
571 // Create the call to Malloc.
572 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
573 Module *M = BB->getParent()->getParent();
574 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
575 FunctionCallee MallocFunc = MallocF;
576 if (!MallocFunc)
577 // prototype malloc as "void *malloc(size_t)"
578 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
579 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
580 CallInst *MCall = nullptr;
581 Instruction *Result = nullptr;
582 if (InsertBefore) {
583 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
584 InsertBefore);
585 Result = MCall;
586 if (Result->getType() != AllocPtrType)
587 // Create a cast instruction to convert to the right type...
588 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
589 } else {
590 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
591 Result = MCall;
592 if (Result->getType() != AllocPtrType) {
593 InsertAtEnd->getInstList().push_back(MCall);
594 // Create a cast instruction to convert to the right type...
595 Result = new BitCastInst(MCall, AllocPtrType, Name);
598 MCall->setTailCall();
599 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
600 MCall->setCallingConv(F->getCallingConv());
601 if (!F->returnDoesNotAlias())
602 F->setReturnDoesNotAlias();
604 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
606 return Result;
609 /// CreateMalloc - Generate the IR for a call to malloc:
610 /// 1. Compute the malloc call's argument as the specified type's size,
611 /// possibly multiplied by the array size if the array size is not
612 /// constant 1.
613 /// 2. Call malloc with that argument.
614 /// 3. Bitcast the result of the malloc call to the specified type.
615 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
616 Type *IntPtrTy, Type *AllocTy,
617 Value *AllocSize, Value *ArraySize,
618 Function *MallocF,
619 const Twine &Name) {
620 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
621 ArraySize, None, MallocF, Name);
623 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
624 Type *IntPtrTy, Type *AllocTy,
625 Value *AllocSize, Value *ArraySize,
626 ArrayRef<OperandBundleDef> OpB,
627 Function *MallocF,
628 const Twine &Name) {
629 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
630 ArraySize, OpB, MallocF, Name);
633 /// CreateMalloc - Generate the IR for a call to malloc:
634 /// 1. Compute the malloc call's argument as the specified type's size,
635 /// possibly multiplied by the array size if the array size is not
636 /// constant 1.
637 /// 2. Call malloc with that argument.
638 /// 3. Bitcast the result of the malloc call to the specified type.
639 /// Note: This function does not add the bitcast to the basic block, that is the
640 /// responsibility of the caller.
641 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
642 Type *IntPtrTy, Type *AllocTy,
643 Value *AllocSize, Value *ArraySize,
644 Function *MallocF, const Twine &Name) {
645 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
646 ArraySize, None, MallocF, Name);
648 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
649 Type *IntPtrTy, Type *AllocTy,
650 Value *AllocSize, Value *ArraySize,
651 ArrayRef<OperandBundleDef> OpB,
652 Function *MallocF, const Twine &Name) {
653 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
654 ArraySize, OpB, MallocF, Name);
657 static Instruction *createFree(Value *Source,
658 ArrayRef<OperandBundleDef> Bundles,
659 Instruction *InsertBefore,
660 BasicBlock *InsertAtEnd) {
661 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
662 "createFree needs either InsertBefore or InsertAtEnd");
663 assert(Source->getType()->isPointerTy() &&
664 "Can not free something of nonpointer type!");
666 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
667 Module *M = BB->getParent()->getParent();
669 Type *VoidTy = Type::getVoidTy(M->getContext());
670 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
671 // prototype free as "void free(void*)"
672 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
673 CallInst *Result = nullptr;
674 Value *PtrCast = Source;
675 if (InsertBefore) {
676 if (Source->getType() != IntPtrTy)
677 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
678 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
679 } else {
680 if (Source->getType() != IntPtrTy)
681 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
682 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
684 Result->setTailCall();
685 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
686 Result->setCallingConv(F->getCallingConv());
688 return Result;
691 /// CreateFree - Generate the IR for a call to the builtin free function.
692 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
693 return createFree(Source, None, InsertBefore, nullptr);
695 Instruction *CallInst::CreateFree(Value *Source,
696 ArrayRef<OperandBundleDef> Bundles,
697 Instruction *InsertBefore) {
698 return createFree(Source, Bundles, InsertBefore, nullptr);
701 /// CreateFree - Generate the IR for a call to the builtin free function.
702 /// Note: This function does not add the call to the basic block, that is the
703 /// responsibility of the caller.
704 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
705 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
706 assert(FreeCall && "CreateFree did not create a CallInst");
707 return FreeCall;
709 Instruction *CallInst::CreateFree(Value *Source,
710 ArrayRef<OperandBundleDef> Bundles,
711 BasicBlock *InsertAtEnd) {
712 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
713 assert(FreeCall && "CreateFree did not create a CallInst");
714 return FreeCall;
717 //===----------------------------------------------------------------------===//
718 // InvokeInst Implementation
719 //===----------------------------------------------------------------------===//
721 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
722 BasicBlock *IfException, ArrayRef<Value *> Args,
723 ArrayRef<OperandBundleDef> Bundles,
724 const Twine &NameStr) {
725 this->FTy = FTy;
727 assert((int)getNumOperands() ==
728 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
729 "NumOperands not set up?");
730 setNormalDest(IfNormal);
731 setUnwindDest(IfException);
732 setCalledOperand(Fn);
734 #ifndef NDEBUG
735 assert(((Args.size() == FTy->getNumParams()) ||
736 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
737 "Invoking a function with bad signature");
739 for (unsigned i = 0, e = Args.size(); i != e; i++)
740 assert((i >= FTy->getNumParams() ||
741 FTy->getParamType(i) == Args[i]->getType()) &&
742 "Invoking a function with a bad signature!");
743 #endif
745 llvm::copy(Args, op_begin());
747 auto It = populateBundleOperandInfos(Bundles, Args.size());
748 (void)It;
749 assert(It + 3 == op_end() && "Should add up!");
751 setName(NameStr);
754 InvokeInst::InvokeInst(const InvokeInst &II)
755 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
756 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
757 II.getNumOperands()) {
758 setCallingConv(II.getCallingConv());
759 std::copy(II.op_begin(), II.op_end(), op_begin());
760 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
761 bundle_op_info_begin());
762 SubclassOptionalData = II.SubclassOptionalData;
765 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
766 Instruction *InsertPt) {
767 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
769 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
770 II->getNormalDest(), II->getUnwindDest(),
771 Args, OpB, II->getName(), InsertPt);
772 NewII->setCallingConv(II->getCallingConv());
773 NewII->SubclassOptionalData = II->SubclassOptionalData;
774 NewII->setAttributes(II->getAttributes());
775 NewII->setDebugLoc(II->getDebugLoc());
776 return NewII;
780 LandingPadInst *InvokeInst::getLandingPadInst() const {
781 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
784 //===----------------------------------------------------------------------===//
785 // CallBrInst Implementation
786 //===----------------------------------------------------------------------===//
788 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
789 ArrayRef<BasicBlock *> IndirectDests,
790 ArrayRef<Value *> Args,
791 ArrayRef<OperandBundleDef> Bundles,
792 const Twine &NameStr) {
793 this->FTy = FTy;
795 assert((int)getNumOperands() ==
796 ComputeNumOperands(Args.size(), IndirectDests.size(),
797 CountBundleInputs(Bundles)) &&
798 "NumOperands not set up?");
799 NumIndirectDests = IndirectDests.size();
800 setDefaultDest(Fallthrough);
801 for (unsigned i = 0; i != NumIndirectDests; ++i)
802 setIndirectDest(i, IndirectDests[i]);
803 setCalledOperand(Fn);
805 #ifndef NDEBUG
806 assert(((Args.size() == FTy->getNumParams()) ||
807 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
808 "Calling a function with bad signature");
810 for (unsigned i = 0, e = Args.size(); i != e; i++)
811 assert((i >= FTy->getNumParams() ||
812 FTy->getParamType(i) == Args[i]->getType()) &&
813 "Calling a function with a bad signature!");
814 #endif
816 std::copy(Args.begin(), Args.end(), op_begin());
818 auto It = populateBundleOperandInfos(Bundles, Args.size());
819 (void)It;
820 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
822 setName(NameStr);
825 CallBrInst::CallBrInst(const CallBrInst &CBI)
826 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
827 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
828 CBI.getNumOperands()) {
829 setCallingConv(CBI.getCallingConv());
830 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
831 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
832 bundle_op_info_begin());
833 SubclassOptionalData = CBI.SubclassOptionalData;
834 NumIndirectDests = CBI.NumIndirectDests;
837 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
838 Instruction *InsertPt) {
839 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
841 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
842 CBI->getCalledValue(),
843 CBI->getDefaultDest(),
844 CBI->getIndirectDests(),
845 Args, OpB, CBI->getName(), InsertPt);
846 NewCBI->setCallingConv(CBI->getCallingConv());
847 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
848 NewCBI->setAttributes(CBI->getAttributes());
849 NewCBI->setDebugLoc(CBI->getDebugLoc());
850 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
851 return NewCBI;
854 //===----------------------------------------------------------------------===//
855 // ReturnInst Implementation
856 //===----------------------------------------------------------------------===//
858 ReturnInst::ReturnInst(const ReturnInst &RI)
859 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
860 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
861 RI.getNumOperands()) {
862 if (RI.getNumOperands())
863 Op<0>() = RI.Op<0>();
864 SubclassOptionalData = RI.SubclassOptionalData;
867 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
868 : Instruction(Type::getVoidTy(C), Instruction::Ret,
869 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
870 InsertBefore) {
871 if (retVal)
872 Op<0>() = retVal;
875 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
876 : Instruction(Type::getVoidTy(C), Instruction::Ret,
877 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
878 InsertAtEnd) {
879 if (retVal)
880 Op<0>() = retVal;
883 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
884 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
885 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
887 //===----------------------------------------------------------------------===//
888 // ResumeInst Implementation
889 //===----------------------------------------------------------------------===//
891 ResumeInst::ResumeInst(const ResumeInst &RI)
892 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
893 OperandTraits<ResumeInst>::op_begin(this), 1) {
894 Op<0>() = RI.Op<0>();
897 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
898 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
899 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
900 Op<0>() = Exn;
903 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
904 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
906 Op<0>() = Exn;
909 //===----------------------------------------------------------------------===//
910 // CleanupReturnInst Implementation
911 //===----------------------------------------------------------------------===//
913 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
914 : Instruction(CRI.getType(), Instruction::CleanupRet,
915 OperandTraits<CleanupReturnInst>::op_end(this) -
916 CRI.getNumOperands(),
917 CRI.getNumOperands()) {
918 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
919 Op<0>() = CRI.Op<0>();
920 if (CRI.hasUnwindDest())
921 Op<1>() = CRI.Op<1>();
924 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
925 if (UnwindBB)
926 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
928 Op<0>() = CleanupPad;
929 if (UnwindBB)
930 Op<1>() = UnwindBB;
933 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
934 unsigned Values, Instruction *InsertBefore)
935 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
936 Instruction::CleanupRet,
937 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
938 Values, InsertBefore) {
939 init(CleanupPad, UnwindBB);
942 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
943 unsigned Values, BasicBlock *InsertAtEnd)
944 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
945 Instruction::CleanupRet,
946 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
947 Values, InsertAtEnd) {
948 init(CleanupPad, UnwindBB);
951 //===----------------------------------------------------------------------===//
952 // CatchReturnInst Implementation
953 //===----------------------------------------------------------------------===//
954 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
955 Op<0>() = CatchPad;
956 Op<1>() = BB;
959 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
960 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
961 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
962 Op<0>() = CRI.Op<0>();
963 Op<1>() = CRI.Op<1>();
966 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
967 Instruction *InsertBefore)
968 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
969 OperandTraits<CatchReturnInst>::op_begin(this), 2,
970 InsertBefore) {
971 init(CatchPad, BB);
974 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
975 BasicBlock *InsertAtEnd)
976 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
977 OperandTraits<CatchReturnInst>::op_begin(this), 2,
978 InsertAtEnd) {
979 init(CatchPad, BB);
982 //===----------------------------------------------------------------------===//
983 // CatchSwitchInst Implementation
984 //===----------------------------------------------------------------------===//
986 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
987 unsigned NumReservedValues,
988 const Twine &NameStr,
989 Instruction *InsertBefore)
990 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
991 InsertBefore) {
992 if (UnwindDest)
993 ++NumReservedValues;
994 init(ParentPad, UnwindDest, NumReservedValues + 1);
995 setName(NameStr);
998 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
999 unsigned NumReservedValues,
1000 const Twine &NameStr, BasicBlock *InsertAtEnd)
1001 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1002 InsertAtEnd) {
1003 if (UnwindDest)
1004 ++NumReservedValues;
1005 init(ParentPad, UnwindDest, NumReservedValues + 1);
1006 setName(NameStr);
1009 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1010 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1011 CSI.getNumOperands()) {
1012 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1013 setNumHungOffUseOperands(ReservedSpace);
1014 Use *OL = getOperandList();
1015 const Use *InOL = CSI.getOperandList();
1016 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1017 OL[I] = InOL[I];
1020 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1021 unsigned NumReservedValues) {
1022 assert(ParentPad && NumReservedValues);
1024 ReservedSpace = NumReservedValues;
1025 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1026 allocHungoffUses(ReservedSpace);
1028 Op<0>() = ParentPad;
1029 if (UnwindDest) {
1030 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1031 setUnwindDest(UnwindDest);
1035 /// growOperands - grow operands - This grows the operand list in response to a
1036 /// push_back style of operation. This grows the number of ops by 2 times.
1037 void CatchSwitchInst::growOperands(unsigned Size) {
1038 unsigned NumOperands = getNumOperands();
1039 assert(NumOperands >= 1);
1040 if (ReservedSpace >= NumOperands + Size)
1041 return;
1042 ReservedSpace = (NumOperands + Size / 2) * 2;
1043 growHungoffUses(ReservedSpace);
1046 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1047 unsigned OpNo = getNumOperands();
1048 growOperands(1);
1049 assert(OpNo < ReservedSpace && "Growing didn't work!");
1050 setNumHungOffUseOperands(getNumOperands() + 1);
1051 getOperandList()[OpNo] = Handler;
1054 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1055 // Move all subsequent handlers up one.
1056 Use *EndDst = op_end() - 1;
1057 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1058 *CurDst = *(CurDst + 1);
1059 // Null out the last handler use.
1060 *EndDst = nullptr;
1062 setNumHungOffUseOperands(getNumOperands() - 1);
1065 //===----------------------------------------------------------------------===//
1066 // FuncletPadInst Implementation
1067 //===----------------------------------------------------------------------===//
1068 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1069 const Twine &NameStr) {
1070 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1071 llvm::copy(Args, op_begin());
1072 setParentPad(ParentPad);
1073 setName(NameStr);
1076 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1077 : Instruction(FPI.getType(), FPI.getOpcode(),
1078 OperandTraits<FuncletPadInst>::op_end(this) -
1079 FPI.getNumOperands(),
1080 FPI.getNumOperands()) {
1081 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1082 setParentPad(FPI.getParentPad());
1085 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1086 ArrayRef<Value *> Args, unsigned Values,
1087 const Twine &NameStr, Instruction *InsertBefore)
1088 : Instruction(ParentPad->getType(), Op,
1089 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1090 InsertBefore) {
1091 init(ParentPad, Args, NameStr);
1094 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1095 ArrayRef<Value *> Args, unsigned Values,
1096 const Twine &NameStr, BasicBlock *InsertAtEnd)
1097 : Instruction(ParentPad->getType(), Op,
1098 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1099 InsertAtEnd) {
1100 init(ParentPad, Args, NameStr);
1103 //===----------------------------------------------------------------------===//
1104 // UnreachableInst Implementation
1105 //===----------------------------------------------------------------------===//
1107 UnreachableInst::UnreachableInst(LLVMContext &Context,
1108 Instruction *InsertBefore)
1109 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1110 0, InsertBefore) {}
1111 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1112 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1113 0, InsertAtEnd) {}
1115 //===----------------------------------------------------------------------===//
1116 // BranchInst Implementation
1117 //===----------------------------------------------------------------------===//
1119 void BranchInst::AssertOK() {
1120 if (isConditional())
1121 assert(getCondition()->getType()->isIntegerTy(1) &&
1122 "May only branch on boolean predicates!");
1125 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1126 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1127 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1128 InsertBefore) {
1129 assert(IfTrue && "Branch destination may not be null!");
1130 Op<-1>() = IfTrue;
1133 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1134 Instruction *InsertBefore)
1135 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1136 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1137 InsertBefore) {
1138 Op<-1>() = IfTrue;
1139 Op<-2>() = IfFalse;
1140 Op<-3>() = Cond;
1141 #ifndef NDEBUG
1142 AssertOK();
1143 #endif
1146 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1147 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1148 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1149 assert(IfTrue && "Branch destination may not be null!");
1150 Op<-1>() = IfTrue;
1153 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1154 BasicBlock *InsertAtEnd)
1155 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1156 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1157 Op<-1>() = IfTrue;
1158 Op<-2>() = IfFalse;
1159 Op<-3>() = Cond;
1160 #ifndef NDEBUG
1161 AssertOK();
1162 #endif
1165 BranchInst::BranchInst(const BranchInst &BI)
1166 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1167 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1168 BI.getNumOperands()) {
1169 Op<-1>() = BI.Op<-1>();
1170 if (BI.getNumOperands() != 1) {
1171 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1172 Op<-3>() = BI.Op<-3>();
1173 Op<-2>() = BI.Op<-2>();
1175 SubclassOptionalData = BI.SubclassOptionalData;
1178 void BranchInst::swapSuccessors() {
1179 assert(isConditional() &&
1180 "Cannot swap successors of an unconditional branch");
1181 Op<-1>().swap(Op<-2>());
1183 // Update profile metadata if present and it matches our structural
1184 // expectations.
1185 swapProfMetadata();
1188 //===----------------------------------------------------------------------===//
1189 // AllocaInst Implementation
1190 //===----------------------------------------------------------------------===//
1192 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1193 if (!Amt)
1194 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1195 else {
1196 assert(!isa<BasicBlock>(Amt) &&
1197 "Passed basic block into allocation size parameter! Use other ctor");
1198 assert(Amt->getType()->isIntegerTy() &&
1199 "Allocation array size is not an integer!");
1201 return Amt;
1204 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1205 Instruction *InsertBefore)
1206 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1208 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1209 BasicBlock *InsertAtEnd)
1210 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1212 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1213 const Twine &Name, Instruction *InsertBefore)
1214 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1216 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1217 const Twine &Name, BasicBlock *InsertAtEnd)
1218 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1220 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1221 unsigned Align, const Twine &Name,
1222 Instruction *InsertBefore)
1223 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1224 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1225 AllocatedType(Ty) {
1226 setAlignment(Align);
1227 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1228 setName(Name);
1231 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1232 unsigned Align, const Twine &Name,
1233 BasicBlock *InsertAtEnd)
1234 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1235 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1236 AllocatedType(Ty) {
1237 setAlignment(Align);
1238 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1239 setName(Name);
1242 void AllocaInst::setAlignment(unsigned Align) {
1243 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1244 assert(Align <= MaximumAlignment &&
1245 "Alignment is greater than MaximumAlignment!");
1246 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1247 (Log2_32(Align) + 1));
1248 assert(getAlignment() == Align && "Alignment representation error!");
1251 bool AllocaInst::isArrayAllocation() const {
1252 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1253 return !CI->isOne();
1254 return true;
1257 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1258 /// function and is a constant size. If so, the code generator will fold it
1259 /// into the prolog/epilog code, so it is basically free.
1260 bool AllocaInst::isStaticAlloca() const {
1261 // Must be constant size.
1262 if (!isa<ConstantInt>(getArraySize())) return false;
1264 // Must be in the entry block.
1265 const BasicBlock *Parent = getParent();
1266 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1269 //===----------------------------------------------------------------------===//
1270 // LoadInst Implementation
1271 //===----------------------------------------------------------------------===//
1273 void LoadInst::AssertOK() {
1274 assert(getOperand(0)->getType()->isPointerTy() &&
1275 "Ptr must have pointer type.");
1276 assert(!(isAtomic() && getAlignment() == 0) &&
1277 "Alignment required for atomic load");
1280 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1281 Instruction *InsertBef)
1282 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1284 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1285 BasicBlock *InsertAE)
1286 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1288 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1289 Instruction *InsertBef)
1290 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1292 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1293 BasicBlock *InsertAE)
1294 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1296 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1297 unsigned Align, Instruction *InsertBef)
1298 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1299 SyncScope::System, InsertBef) {}
1301 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1302 unsigned Align, BasicBlock *InsertAE)
1303 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1304 SyncScope::System, InsertAE) {}
1306 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1307 unsigned Align, AtomicOrdering Order,
1308 SyncScope::ID SSID, Instruction *InsertBef)
1309 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1310 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1311 setVolatile(isVolatile);
1312 setAlignment(Align);
1313 setAtomic(Order, SSID);
1314 AssertOK();
1315 setName(Name);
1318 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1319 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
1320 BasicBlock *InsertAE)
1321 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1322 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1323 setVolatile(isVolatile);
1324 setAlignment(Align);
1325 setAtomic(Order, SSID);
1326 AssertOK();
1327 setName(Name);
1330 void LoadInst::setAlignment(unsigned Align) {
1331 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1332 assert(Align <= MaximumAlignment &&
1333 "Alignment is greater than MaximumAlignment!");
1334 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1335 ((Log2_32(Align)+1)<<1));
1336 assert(getAlignment() == Align && "Alignment representation error!");
1339 //===----------------------------------------------------------------------===//
1340 // StoreInst Implementation
1341 //===----------------------------------------------------------------------===//
1343 void StoreInst::AssertOK() {
1344 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1345 assert(getOperand(1)->getType()->isPointerTy() &&
1346 "Ptr must have pointer type!");
1347 assert(getOperand(0)->getType() ==
1348 cast<PointerType>(getOperand(1)->getType())->getElementType()
1349 && "Ptr must be a pointer to Val type!");
1350 assert(!(isAtomic() && getAlignment() == 0) &&
1351 "Alignment required for atomic store");
1354 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1355 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1357 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1358 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1360 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1361 Instruction *InsertBefore)
1362 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1364 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1365 BasicBlock *InsertAtEnd)
1366 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1368 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1369 Instruction *InsertBefore)
1370 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1371 SyncScope::System, InsertBefore) {}
1373 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1374 BasicBlock *InsertAtEnd)
1375 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1376 SyncScope::System, InsertAtEnd) {}
1378 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1379 unsigned Align, AtomicOrdering Order,
1380 SyncScope::ID SSID,
1381 Instruction *InsertBefore)
1382 : Instruction(Type::getVoidTy(val->getContext()), Store,
1383 OperandTraits<StoreInst>::op_begin(this),
1384 OperandTraits<StoreInst>::operands(this),
1385 InsertBefore) {
1386 Op<0>() = val;
1387 Op<1>() = addr;
1388 setVolatile(isVolatile);
1389 setAlignment(Align);
1390 setAtomic(Order, SSID);
1391 AssertOK();
1394 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1395 unsigned Align, AtomicOrdering Order,
1396 SyncScope::ID SSID,
1397 BasicBlock *InsertAtEnd)
1398 : Instruction(Type::getVoidTy(val->getContext()), Store,
1399 OperandTraits<StoreInst>::op_begin(this),
1400 OperandTraits<StoreInst>::operands(this),
1401 InsertAtEnd) {
1402 Op<0>() = val;
1403 Op<1>() = addr;
1404 setVolatile(isVolatile);
1405 setAlignment(Align);
1406 setAtomic(Order, SSID);
1407 AssertOK();
1410 void StoreInst::setAlignment(unsigned Align) {
1411 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1412 assert(Align <= MaximumAlignment &&
1413 "Alignment is greater than MaximumAlignment!");
1414 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1415 ((Log2_32(Align)+1) << 1));
1416 assert(getAlignment() == Align && "Alignment representation error!");
1419 //===----------------------------------------------------------------------===//
1420 // AtomicCmpXchgInst Implementation
1421 //===----------------------------------------------------------------------===//
1423 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1424 AtomicOrdering SuccessOrdering,
1425 AtomicOrdering FailureOrdering,
1426 SyncScope::ID SSID) {
1427 Op<0>() = Ptr;
1428 Op<1>() = Cmp;
1429 Op<2>() = NewVal;
1430 setSuccessOrdering(SuccessOrdering);
1431 setFailureOrdering(FailureOrdering);
1432 setSyncScopeID(SSID);
1434 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1435 "All operands must be non-null!");
1436 assert(getOperand(0)->getType()->isPointerTy() &&
1437 "Ptr must have pointer type!");
1438 assert(getOperand(1)->getType() ==
1439 cast<PointerType>(getOperand(0)->getType())->getElementType()
1440 && "Ptr must be a pointer to Cmp type!");
1441 assert(getOperand(2)->getType() ==
1442 cast<PointerType>(getOperand(0)->getType())->getElementType()
1443 && "Ptr must be a pointer to NewVal type!");
1444 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1445 "AtomicCmpXchg instructions must be atomic!");
1446 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1447 "AtomicCmpXchg instructions must be atomic!");
1448 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1449 "AtomicCmpXchg failure argument shall be no stronger than the success "
1450 "argument");
1451 assert(FailureOrdering != AtomicOrdering::Release &&
1452 FailureOrdering != AtomicOrdering::AcquireRelease &&
1453 "AtomicCmpXchg failure ordering cannot include release semantics");
1456 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1457 AtomicOrdering SuccessOrdering,
1458 AtomicOrdering FailureOrdering,
1459 SyncScope::ID SSID,
1460 Instruction *InsertBefore)
1461 : Instruction(
1462 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1463 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1464 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1465 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1468 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1469 AtomicOrdering SuccessOrdering,
1470 AtomicOrdering FailureOrdering,
1471 SyncScope::ID SSID,
1472 BasicBlock *InsertAtEnd)
1473 : Instruction(
1474 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1475 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1476 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1477 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1480 //===----------------------------------------------------------------------===//
1481 // AtomicRMWInst Implementation
1482 //===----------------------------------------------------------------------===//
1484 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1485 AtomicOrdering Ordering,
1486 SyncScope::ID SSID) {
1487 Op<0>() = Ptr;
1488 Op<1>() = Val;
1489 setOperation(Operation);
1490 setOrdering(Ordering);
1491 setSyncScopeID(SSID);
1493 assert(getOperand(0) && getOperand(1) &&
1494 "All operands must be non-null!");
1495 assert(getOperand(0)->getType()->isPointerTy() &&
1496 "Ptr must have pointer type!");
1497 assert(getOperand(1)->getType() ==
1498 cast<PointerType>(getOperand(0)->getType())->getElementType()
1499 && "Ptr must be a pointer to Val type!");
1500 assert(Ordering != AtomicOrdering::NotAtomic &&
1501 "AtomicRMW instructions must be atomic!");
1504 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1505 AtomicOrdering Ordering,
1506 SyncScope::ID SSID,
1507 Instruction *InsertBefore)
1508 : Instruction(Val->getType(), AtomicRMW,
1509 OperandTraits<AtomicRMWInst>::op_begin(this),
1510 OperandTraits<AtomicRMWInst>::operands(this),
1511 InsertBefore) {
1512 Init(Operation, Ptr, Val, Ordering, SSID);
1515 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1516 AtomicOrdering Ordering,
1517 SyncScope::ID SSID,
1518 BasicBlock *InsertAtEnd)
1519 : Instruction(Val->getType(), AtomicRMW,
1520 OperandTraits<AtomicRMWInst>::op_begin(this),
1521 OperandTraits<AtomicRMWInst>::operands(this),
1522 InsertAtEnd) {
1523 Init(Operation, Ptr, Val, Ordering, SSID);
1526 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1527 switch (Op) {
1528 case AtomicRMWInst::Xchg:
1529 return "xchg";
1530 case AtomicRMWInst::Add:
1531 return "add";
1532 case AtomicRMWInst::Sub:
1533 return "sub";
1534 case AtomicRMWInst::And:
1535 return "and";
1536 case AtomicRMWInst::Nand:
1537 return "nand";
1538 case AtomicRMWInst::Or:
1539 return "or";
1540 case AtomicRMWInst::Xor:
1541 return "xor";
1542 case AtomicRMWInst::Max:
1543 return "max";
1544 case AtomicRMWInst::Min:
1545 return "min";
1546 case AtomicRMWInst::UMax:
1547 return "umax";
1548 case AtomicRMWInst::UMin:
1549 return "umin";
1550 case AtomicRMWInst::FAdd:
1551 return "fadd";
1552 case AtomicRMWInst::FSub:
1553 return "fsub";
1554 case AtomicRMWInst::BAD_BINOP:
1555 return "<invalid operation>";
1558 llvm_unreachable("invalid atomicrmw operation");
1561 //===----------------------------------------------------------------------===//
1562 // FenceInst Implementation
1563 //===----------------------------------------------------------------------===//
1565 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1566 SyncScope::ID SSID,
1567 Instruction *InsertBefore)
1568 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1569 setOrdering(Ordering);
1570 setSyncScopeID(SSID);
1573 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1574 SyncScope::ID SSID,
1575 BasicBlock *InsertAtEnd)
1576 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1577 setOrdering(Ordering);
1578 setSyncScopeID(SSID);
1581 //===----------------------------------------------------------------------===//
1582 // GetElementPtrInst Implementation
1583 //===----------------------------------------------------------------------===//
1585 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1586 const Twine &Name) {
1587 assert(getNumOperands() == 1 + IdxList.size() &&
1588 "NumOperands not initialized?");
1589 Op<0>() = Ptr;
1590 llvm::copy(IdxList, op_begin() + 1);
1591 setName(Name);
1594 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1595 : Instruction(GEPI.getType(), GetElementPtr,
1596 OperandTraits<GetElementPtrInst>::op_end(this) -
1597 GEPI.getNumOperands(),
1598 GEPI.getNumOperands()),
1599 SourceElementType(GEPI.SourceElementType),
1600 ResultElementType(GEPI.ResultElementType) {
1601 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1602 SubclassOptionalData = GEPI.SubclassOptionalData;
1605 /// getIndexedType - Returns the type of the element that would be accessed with
1606 /// a gep instruction with the specified parameters.
1608 /// The Idxs pointer should point to a continuous piece of memory containing the
1609 /// indices, either as Value* or uint64_t.
1611 /// A null type is returned if the indices are invalid for the specified
1612 /// pointer type.
1614 template <typename IndexTy>
1615 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1616 // Handle the special case of the empty set index set, which is always valid.
1617 if (IdxList.empty())
1618 return Agg;
1620 // If there is at least one index, the top level type must be sized, otherwise
1621 // it cannot be 'stepped over'.
1622 if (!Agg->isSized())
1623 return nullptr;
1625 unsigned CurIdx = 1;
1626 for (; CurIdx != IdxList.size(); ++CurIdx) {
1627 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1628 if (!CT || CT->isPointerTy()) return nullptr;
1629 IndexTy Index = IdxList[CurIdx];
1630 if (!CT->indexValid(Index)) return nullptr;
1631 Agg = CT->getTypeAtIndex(Index);
1633 return CurIdx == IdxList.size() ? Agg : nullptr;
1636 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1637 return getIndexedTypeInternal(Ty, IdxList);
1640 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1641 ArrayRef<Constant *> IdxList) {
1642 return getIndexedTypeInternal(Ty, IdxList);
1645 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1646 return getIndexedTypeInternal(Ty, IdxList);
1649 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1650 /// zeros. If so, the result pointer and the first operand have the same
1651 /// value, just potentially different types.
1652 bool GetElementPtrInst::hasAllZeroIndices() const {
1653 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1654 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1655 if (!CI->isZero()) return false;
1656 } else {
1657 return false;
1660 return true;
1663 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1664 /// constant integers. If so, the result pointer and the first operand have
1665 /// a constant offset between them.
1666 bool GetElementPtrInst::hasAllConstantIndices() const {
1667 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1668 if (!isa<ConstantInt>(getOperand(i)))
1669 return false;
1671 return true;
1674 void GetElementPtrInst::setIsInBounds(bool B) {
1675 cast<GEPOperator>(this)->setIsInBounds(B);
1678 bool GetElementPtrInst::isInBounds() const {
1679 return cast<GEPOperator>(this)->isInBounds();
1682 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1683 APInt &Offset) const {
1684 // Delegate to the generic GEPOperator implementation.
1685 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1688 //===----------------------------------------------------------------------===//
1689 // ExtractElementInst Implementation
1690 //===----------------------------------------------------------------------===//
1692 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1693 const Twine &Name,
1694 Instruction *InsertBef)
1695 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1696 ExtractElement,
1697 OperandTraits<ExtractElementInst>::op_begin(this),
1698 2, InsertBef) {
1699 assert(isValidOperands(Val, Index) &&
1700 "Invalid extractelement instruction operands!");
1701 Op<0>() = Val;
1702 Op<1>() = Index;
1703 setName(Name);
1706 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1707 const Twine &Name,
1708 BasicBlock *InsertAE)
1709 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1710 ExtractElement,
1711 OperandTraits<ExtractElementInst>::op_begin(this),
1712 2, InsertAE) {
1713 assert(isValidOperands(Val, Index) &&
1714 "Invalid extractelement instruction operands!");
1716 Op<0>() = Val;
1717 Op<1>() = Index;
1718 setName(Name);
1721 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1722 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1723 return false;
1724 return true;
1727 //===----------------------------------------------------------------------===//
1728 // InsertElementInst Implementation
1729 //===----------------------------------------------------------------------===//
1731 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1732 const Twine &Name,
1733 Instruction *InsertBef)
1734 : Instruction(Vec->getType(), InsertElement,
1735 OperandTraits<InsertElementInst>::op_begin(this),
1736 3, InsertBef) {
1737 assert(isValidOperands(Vec, Elt, Index) &&
1738 "Invalid insertelement instruction operands!");
1739 Op<0>() = Vec;
1740 Op<1>() = Elt;
1741 Op<2>() = Index;
1742 setName(Name);
1745 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1746 const Twine &Name,
1747 BasicBlock *InsertAE)
1748 : Instruction(Vec->getType(), InsertElement,
1749 OperandTraits<InsertElementInst>::op_begin(this),
1750 3, InsertAE) {
1751 assert(isValidOperands(Vec, Elt, Index) &&
1752 "Invalid insertelement instruction operands!");
1754 Op<0>() = Vec;
1755 Op<1>() = Elt;
1756 Op<2>() = Index;
1757 setName(Name);
1760 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1761 const Value *Index) {
1762 if (!Vec->getType()->isVectorTy())
1763 return false; // First operand of insertelement must be vector type.
1765 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1766 return false;// Second operand of insertelement must be vector element type.
1768 if (!Index->getType()->isIntegerTy())
1769 return false; // Third operand of insertelement must be i32.
1770 return true;
1773 //===----------------------------------------------------------------------===//
1774 // ShuffleVectorInst Implementation
1775 //===----------------------------------------------------------------------===//
1777 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1778 const Twine &Name,
1779 Instruction *InsertBefore)
1780 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1781 cast<VectorType>(Mask->getType())->getNumElements()),
1782 ShuffleVector,
1783 OperandTraits<ShuffleVectorInst>::op_begin(this),
1784 OperandTraits<ShuffleVectorInst>::operands(this),
1785 InsertBefore) {
1786 assert(isValidOperands(V1, V2, Mask) &&
1787 "Invalid shuffle vector instruction operands!");
1788 Op<0>() = V1;
1789 Op<1>() = V2;
1790 Op<2>() = Mask;
1791 setName(Name);
1794 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1795 const Twine &Name,
1796 BasicBlock *InsertAtEnd)
1797 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1798 cast<VectorType>(Mask->getType())->getNumElements()),
1799 ShuffleVector,
1800 OperandTraits<ShuffleVectorInst>::op_begin(this),
1801 OperandTraits<ShuffleVectorInst>::operands(this),
1802 InsertAtEnd) {
1803 assert(isValidOperands(V1, V2, Mask) &&
1804 "Invalid shuffle vector instruction operands!");
1806 Op<0>() = V1;
1807 Op<1>() = V2;
1808 Op<2>() = Mask;
1809 setName(Name);
1812 void ShuffleVectorInst::commute() {
1813 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1814 int NumMaskElts = getMask()->getType()->getVectorNumElements();
1815 SmallVector<Constant*, 16> NewMask(NumMaskElts);
1816 Type *Int32Ty = Type::getInt32Ty(getContext());
1817 for (int i = 0; i != NumMaskElts; ++i) {
1818 int MaskElt = getMaskValue(i);
1819 if (MaskElt == -1) {
1820 NewMask[i] = UndefValue::get(Int32Ty);
1821 continue;
1823 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1824 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1825 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1827 Op<2>() = ConstantVector::get(NewMask);
1828 Op<0>().swap(Op<1>());
1831 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1832 const Value *Mask) {
1833 // V1 and V2 must be vectors of the same type.
1834 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1835 return false;
1837 // Mask must be vector of i32.
1838 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1839 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1840 return false;
1842 // Check to see if Mask is valid.
1843 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1844 return true;
1846 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1847 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1848 for (Value *Op : MV->operands()) {
1849 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1850 if (CI->uge(V1Size*2))
1851 return false;
1852 } else if (!isa<UndefValue>(Op)) {
1853 return false;
1856 return true;
1859 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1860 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1861 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1862 if (CDS->getElementAsInteger(i) >= V1Size*2)
1863 return false;
1864 return true;
1867 // The bitcode reader can create a place holder for a forward reference
1868 // used as the shuffle mask. When this occurs, the shuffle mask will
1869 // fall into this case and fail. To avoid this error, do this bit of
1870 // ugliness to allow such a mask pass.
1871 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1872 if (CE->getOpcode() == Instruction::UserOp1)
1873 return true;
1875 return false;
1878 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1879 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1880 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1881 return CDS->getElementAsInteger(i);
1882 Constant *C = Mask->getAggregateElement(i);
1883 if (isa<UndefValue>(C))
1884 return -1;
1885 return cast<ConstantInt>(C)->getZExtValue();
1888 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1889 SmallVectorImpl<int> &Result) {
1890 unsigned NumElts = Mask->getType()->getVectorNumElements();
1892 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1893 for (unsigned i = 0; i != NumElts; ++i)
1894 Result.push_back(CDS->getElementAsInteger(i));
1895 return;
1897 for (unsigned i = 0; i != NumElts; ++i) {
1898 Constant *C = Mask->getAggregateElement(i);
1899 Result.push_back(isa<UndefValue>(C) ? -1 :
1900 cast<ConstantInt>(C)->getZExtValue());
1904 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1905 assert(!Mask.empty() && "Shuffle mask must contain elements");
1906 bool UsesLHS = false;
1907 bool UsesRHS = false;
1908 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1909 if (Mask[i] == -1)
1910 continue;
1911 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1912 "Out-of-bounds shuffle mask element");
1913 UsesLHS |= (Mask[i] < NumOpElts);
1914 UsesRHS |= (Mask[i] >= NumOpElts);
1915 if (UsesLHS && UsesRHS)
1916 return false;
1918 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1919 return true;
1922 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1923 // We don't have vector operand size information, so assume operands are the
1924 // same size as the mask.
1925 return isSingleSourceMaskImpl(Mask, Mask.size());
1928 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1929 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1930 return false;
1931 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1932 if (Mask[i] == -1)
1933 continue;
1934 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1935 return false;
1937 return true;
1940 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1941 // We don't have vector operand size information, so assume operands are the
1942 // same size as the mask.
1943 return isIdentityMaskImpl(Mask, Mask.size());
1946 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1947 if (!isSingleSourceMask(Mask))
1948 return false;
1949 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1950 if (Mask[i] == -1)
1951 continue;
1952 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1953 return false;
1955 return true;
1958 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1959 if (!isSingleSourceMask(Mask))
1960 return false;
1961 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1962 if (Mask[i] == -1)
1963 continue;
1964 if (Mask[i] != 0 && Mask[i] != NumElts)
1965 return false;
1967 return true;
1970 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1971 // Select is differentiated from identity. It requires using both sources.
1972 if (isSingleSourceMask(Mask))
1973 return false;
1974 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1975 if (Mask[i] == -1)
1976 continue;
1977 if (Mask[i] != i && Mask[i] != (NumElts + i))
1978 return false;
1980 return true;
1983 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1984 // Example masks that will return true:
1985 // v1 = <a, b, c, d>
1986 // v2 = <e, f, g, h>
1987 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1988 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1990 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1991 int NumElts = Mask.size();
1992 if (NumElts < 2 || !isPowerOf2_32(NumElts))
1993 return false;
1995 // 2. The first element of the mask must be either a 0 or a 1.
1996 if (Mask[0] != 0 && Mask[0] != 1)
1997 return false;
1999 // 3. The difference between the first 2 elements must be equal to the
2000 // number of elements in the mask.
2001 if ((Mask[1] - Mask[0]) != NumElts)
2002 return false;
2004 // 4. The difference between consecutive even-numbered and odd-numbered
2005 // elements must be equal to 2.
2006 for (int i = 2; i < NumElts; ++i) {
2007 int MaskEltVal = Mask[i];
2008 if (MaskEltVal == -1)
2009 return false;
2010 int MaskEltPrevVal = Mask[i - 2];
2011 if (MaskEltVal - MaskEltPrevVal != 2)
2012 return false;
2014 return true;
2017 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2018 int NumSrcElts, int &Index) {
2019 // Must extract from a single source.
2020 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2021 return false;
2023 // Must be smaller (else this is an Identity shuffle).
2024 if (NumSrcElts <= (int)Mask.size())
2025 return false;
2027 // Find start of extraction, accounting that we may start with an UNDEF.
2028 int SubIndex = -1;
2029 for (int i = 0, e = Mask.size(); i != e; ++i) {
2030 int M = Mask[i];
2031 if (M < 0)
2032 continue;
2033 int Offset = (M % NumSrcElts) - i;
2034 if (0 <= SubIndex && SubIndex != Offset)
2035 return false;
2036 SubIndex = Offset;
2039 if (0 <= SubIndex) {
2040 Index = SubIndex;
2041 return true;
2043 return false;
2046 bool ShuffleVectorInst::isIdentityWithPadding() const {
2047 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2048 int NumMaskElts = getType()->getVectorNumElements();
2049 if (NumMaskElts <= NumOpElts)
2050 return false;
2052 // The first part of the mask must choose elements from exactly 1 source op.
2053 SmallVector<int, 16> Mask = getShuffleMask();
2054 if (!isIdentityMaskImpl(Mask, NumOpElts))
2055 return false;
2057 // All extending must be with undef elements.
2058 for (int i = NumOpElts; i < NumMaskElts; ++i)
2059 if (Mask[i] != -1)
2060 return false;
2062 return true;
2065 bool ShuffleVectorInst::isIdentityWithExtract() const {
2066 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2067 int NumMaskElts = getType()->getVectorNumElements();
2068 if (NumMaskElts >= NumOpElts)
2069 return false;
2071 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2074 bool ShuffleVectorInst::isConcat() const {
2075 // Vector concatenation is differentiated from identity with padding.
2076 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2077 return false;
2079 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2080 int NumMaskElts = getType()->getVectorNumElements();
2081 if (NumMaskElts != NumOpElts * 2)
2082 return false;
2084 // Use the mask length rather than the operands' vector lengths here. We
2085 // already know that the shuffle returns a vector twice as long as the inputs,
2086 // and neither of the inputs are undef vectors. If the mask picks consecutive
2087 // elements from both inputs, then this is a concatenation of the inputs.
2088 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2091 //===----------------------------------------------------------------------===//
2092 // InsertValueInst Class
2093 //===----------------------------------------------------------------------===//
2095 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2096 const Twine &Name) {
2097 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2099 // There's no fundamental reason why we require at least one index
2100 // (other than weirdness with &*IdxBegin being invalid; see
2101 // getelementptr's init routine for example). But there's no
2102 // present need to support it.
2103 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2105 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2106 Val->getType() && "Inserted value must match indexed type!");
2107 Op<0>() = Agg;
2108 Op<1>() = Val;
2110 Indices.append(Idxs.begin(), Idxs.end());
2111 setName(Name);
2114 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2115 : Instruction(IVI.getType(), InsertValue,
2116 OperandTraits<InsertValueInst>::op_begin(this), 2),
2117 Indices(IVI.Indices) {
2118 Op<0>() = IVI.getOperand(0);
2119 Op<1>() = IVI.getOperand(1);
2120 SubclassOptionalData = IVI.SubclassOptionalData;
2123 //===----------------------------------------------------------------------===//
2124 // ExtractValueInst Class
2125 //===----------------------------------------------------------------------===//
2127 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2128 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2130 // There's no fundamental reason why we require at least one index.
2131 // But there's no present need to support it.
2132 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2134 Indices.append(Idxs.begin(), Idxs.end());
2135 setName(Name);
2138 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2139 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2140 Indices(EVI.Indices) {
2141 SubclassOptionalData = EVI.SubclassOptionalData;
2144 // getIndexedType - Returns the type of the element that would be extracted
2145 // with an extractvalue instruction with the specified parameters.
2147 // A null type is returned if the indices are invalid for the specified
2148 // pointer type.
2150 Type *ExtractValueInst::getIndexedType(Type *Agg,
2151 ArrayRef<unsigned> Idxs) {
2152 for (unsigned Index : Idxs) {
2153 // We can't use CompositeType::indexValid(Index) here.
2154 // indexValid() always returns true for arrays because getelementptr allows
2155 // out-of-bounds indices. Since we don't allow those for extractvalue and
2156 // insertvalue we need to check array indexing manually.
2157 // Since the only other types we can index into are struct types it's just
2158 // as easy to check those manually as well.
2159 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2160 if (Index >= AT->getNumElements())
2161 return nullptr;
2162 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2163 if (Index >= ST->getNumElements())
2164 return nullptr;
2165 } else {
2166 // Not a valid type to index into.
2167 return nullptr;
2170 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2172 return const_cast<Type*>(Agg);
2175 //===----------------------------------------------------------------------===//
2176 // UnaryOperator Class
2177 //===----------------------------------------------------------------------===//
2179 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2180 Type *Ty, const Twine &Name,
2181 Instruction *InsertBefore)
2182 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2183 Op<0>() = S;
2184 setName(Name);
2185 AssertOK();
2188 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2189 Type *Ty, const Twine &Name,
2190 BasicBlock *InsertAtEnd)
2191 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2192 Op<0>() = S;
2193 setName(Name);
2194 AssertOK();
2197 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2198 const Twine &Name,
2199 Instruction *InsertBefore) {
2200 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2203 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2204 const Twine &Name,
2205 BasicBlock *InsertAtEnd) {
2206 UnaryOperator *Res = Create(Op, S, Name);
2207 InsertAtEnd->getInstList().push_back(Res);
2208 return Res;
2211 void UnaryOperator::AssertOK() {
2212 Value *LHS = getOperand(0);
2213 (void)LHS; // Silence warnings.
2214 #ifndef NDEBUG
2215 switch (getOpcode()) {
2216 case FNeg:
2217 assert(getType() == LHS->getType() &&
2218 "Unary operation should return same type as operand!");
2219 assert(getType()->isFPOrFPVectorTy() &&
2220 "Tried to create a floating-point operation on a "
2221 "non-floating-point type!");
2222 break;
2223 default: llvm_unreachable("Invalid opcode provided");
2225 #endif
2228 //===----------------------------------------------------------------------===//
2229 // BinaryOperator Class
2230 //===----------------------------------------------------------------------===//
2232 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2233 Type *Ty, const Twine &Name,
2234 Instruction *InsertBefore)
2235 : Instruction(Ty, iType,
2236 OperandTraits<BinaryOperator>::op_begin(this),
2237 OperandTraits<BinaryOperator>::operands(this),
2238 InsertBefore) {
2239 Op<0>() = S1;
2240 Op<1>() = S2;
2241 setName(Name);
2242 AssertOK();
2245 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2246 Type *Ty, const Twine &Name,
2247 BasicBlock *InsertAtEnd)
2248 : Instruction(Ty, iType,
2249 OperandTraits<BinaryOperator>::op_begin(this),
2250 OperandTraits<BinaryOperator>::operands(this),
2251 InsertAtEnd) {
2252 Op<0>() = S1;
2253 Op<1>() = S2;
2254 setName(Name);
2255 AssertOK();
2258 void BinaryOperator::AssertOK() {
2259 Value *LHS = getOperand(0), *RHS = getOperand(1);
2260 (void)LHS; (void)RHS; // Silence warnings.
2261 assert(LHS->getType() == RHS->getType() &&
2262 "Binary operator operand types must match!");
2263 #ifndef NDEBUG
2264 switch (getOpcode()) {
2265 case Add: case Sub:
2266 case Mul:
2267 assert(getType() == LHS->getType() &&
2268 "Arithmetic operation should return same type as operands!");
2269 assert(getType()->isIntOrIntVectorTy() &&
2270 "Tried to create an integer operation on a non-integer type!");
2271 break;
2272 case FAdd: case FSub:
2273 case FMul:
2274 assert(getType() == LHS->getType() &&
2275 "Arithmetic operation should return same type as operands!");
2276 assert(getType()->isFPOrFPVectorTy() &&
2277 "Tried to create a floating-point operation on a "
2278 "non-floating-point type!");
2279 break;
2280 case UDiv:
2281 case SDiv:
2282 assert(getType() == LHS->getType() &&
2283 "Arithmetic operation should return same type as operands!");
2284 assert(getType()->isIntOrIntVectorTy() &&
2285 "Incorrect operand type (not integer) for S/UDIV");
2286 break;
2287 case FDiv:
2288 assert(getType() == LHS->getType() &&
2289 "Arithmetic operation should return same type as operands!");
2290 assert(getType()->isFPOrFPVectorTy() &&
2291 "Incorrect operand type (not floating point) for FDIV");
2292 break;
2293 case URem:
2294 case SRem:
2295 assert(getType() == LHS->getType() &&
2296 "Arithmetic operation should return same type as operands!");
2297 assert(getType()->isIntOrIntVectorTy() &&
2298 "Incorrect operand type (not integer) for S/UREM");
2299 break;
2300 case FRem:
2301 assert(getType() == LHS->getType() &&
2302 "Arithmetic operation should return same type as operands!");
2303 assert(getType()->isFPOrFPVectorTy() &&
2304 "Incorrect operand type (not floating point) for FREM");
2305 break;
2306 case Shl:
2307 case LShr:
2308 case AShr:
2309 assert(getType() == LHS->getType() &&
2310 "Shift operation should return same type as operands!");
2311 assert(getType()->isIntOrIntVectorTy() &&
2312 "Tried to create a shift operation on a non-integral type!");
2313 break;
2314 case And: case Or:
2315 case Xor:
2316 assert(getType() == LHS->getType() &&
2317 "Logical operation should return same type as operands!");
2318 assert(getType()->isIntOrIntVectorTy() &&
2319 "Tried to create a logical operation on a non-integral type!");
2320 break;
2321 default: llvm_unreachable("Invalid opcode provided");
2323 #endif
2326 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2327 const Twine &Name,
2328 Instruction *InsertBefore) {
2329 assert(S1->getType() == S2->getType() &&
2330 "Cannot create binary operator with two operands of differing type!");
2331 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2334 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2335 const Twine &Name,
2336 BasicBlock *InsertAtEnd) {
2337 BinaryOperator *Res = Create(Op, S1, S2, Name);
2338 InsertAtEnd->getInstList().push_back(Res);
2339 return Res;
2342 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2343 Instruction *InsertBefore) {
2344 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2345 return new BinaryOperator(Instruction::Sub,
2346 zero, Op,
2347 Op->getType(), Name, InsertBefore);
2350 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2351 BasicBlock *InsertAtEnd) {
2352 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2353 return new BinaryOperator(Instruction::Sub,
2354 zero, Op,
2355 Op->getType(), Name, InsertAtEnd);
2358 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2359 Instruction *InsertBefore) {
2360 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2361 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2364 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2365 BasicBlock *InsertAtEnd) {
2366 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2367 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2370 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2371 Instruction *InsertBefore) {
2372 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2373 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2376 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2377 BasicBlock *InsertAtEnd) {
2378 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2379 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2382 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2383 Instruction *InsertBefore) {
2384 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2385 return new BinaryOperator(Instruction::FSub, zero, Op,
2386 Op->getType(), Name, InsertBefore);
2389 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2390 BasicBlock *InsertAtEnd) {
2391 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2392 return new BinaryOperator(Instruction::FSub, zero, Op,
2393 Op->getType(), Name, InsertAtEnd);
2396 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2397 Instruction *InsertBefore) {
2398 Constant *C = Constant::getAllOnesValue(Op->getType());
2399 return new BinaryOperator(Instruction::Xor, Op, C,
2400 Op->getType(), Name, InsertBefore);
2403 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2404 BasicBlock *InsertAtEnd) {
2405 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2406 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2407 Op->getType(), Name, InsertAtEnd);
2410 // Exchange the two operands to this instruction. This instruction is safe to
2411 // use on any binary instruction and does not modify the semantics of the
2412 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2413 // is changed.
2414 bool BinaryOperator::swapOperands() {
2415 if (!isCommutative())
2416 return true; // Can't commute operands
2417 Op<0>().swap(Op<1>());
2418 return false;
2421 //===----------------------------------------------------------------------===//
2422 // FPMathOperator Class
2423 //===----------------------------------------------------------------------===//
2425 float FPMathOperator::getFPAccuracy() const {
2426 const MDNode *MD =
2427 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2428 if (!MD)
2429 return 0.0;
2430 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2431 return Accuracy->getValueAPF().convertToFloat();
2434 //===----------------------------------------------------------------------===//
2435 // CastInst Class
2436 //===----------------------------------------------------------------------===//
2438 // Just determine if this cast only deals with integral->integral conversion.
2439 bool CastInst::isIntegerCast() const {
2440 switch (getOpcode()) {
2441 default: return false;
2442 case Instruction::ZExt:
2443 case Instruction::SExt:
2444 case Instruction::Trunc:
2445 return true;
2446 case Instruction::BitCast:
2447 return getOperand(0)->getType()->isIntegerTy() &&
2448 getType()->isIntegerTy();
2452 bool CastInst::isLosslessCast() const {
2453 // Only BitCast can be lossless, exit fast if we're not BitCast
2454 if (getOpcode() != Instruction::BitCast)
2455 return false;
2457 // Identity cast is always lossless
2458 Type *SrcTy = getOperand(0)->getType();
2459 Type *DstTy = getType();
2460 if (SrcTy == DstTy)
2461 return true;
2463 // Pointer to pointer is always lossless.
2464 if (SrcTy->isPointerTy())
2465 return DstTy->isPointerTy();
2466 return false; // Other types have no identity values
2469 /// This function determines if the CastInst does not require any bits to be
2470 /// changed in order to effect the cast. Essentially, it identifies cases where
2471 /// no code gen is necessary for the cast, hence the name no-op cast. For
2472 /// example, the following are all no-op casts:
2473 /// # bitcast i32* %x to i8*
2474 /// # bitcast <2 x i32> %x to <4 x i16>
2475 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2476 /// Determine if the described cast is a no-op.
2477 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2478 Type *SrcTy,
2479 Type *DestTy,
2480 const DataLayout &DL) {
2481 switch (Opcode) {
2482 default: llvm_unreachable("Invalid CastOp");
2483 case Instruction::Trunc:
2484 case Instruction::ZExt:
2485 case Instruction::SExt:
2486 case Instruction::FPTrunc:
2487 case Instruction::FPExt:
2488 case Instruction::UIToFP:
2489 case Instruction::SIToFP:
2490 case Instruction::FPToUI:
2491 case Instruction::FPToSI:
2492 case Instruction::AddrSpaceCast:
2493 // TODO: Target informations may give a more accurate answer here.
2494 return false;
2495 case Instruction::BitCast:
2496 return true; // BitCast never modifies bits.
2497 case Instruction::PtrToInt:
2498 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2499 DestTy->getScalarSizeInBits();
2500 case Instruction::IntToPtr:
2501 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2502 SrcTy->getScalarSizeInBits();
2506 bool CastInst::isNoopCast(const DataLayout &DL) const {
2507 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2510 /// This function determines if a pair of casts can be eliminated and what
2511 /// opcode should be used in the elimination. This assumes that there are two
2512 /// instructions like this:
2513 /// * %F = firstOpcode SrcTy %x to MidTy
2514 /// * %S = secondOpcode MidTy %F to DstTy
2515 /// The function returns a resultOpcode so these two casts can be replaced with:
2516 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2517 /// If no such cast is permitted, the function returns 0.
2518 unsigned CastInst::isEliminableCastPair(
2519 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2520 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2521 Type *DstIntPtrTy) {
2522 // Define the 144 possibilities for these two cast instructions. The values
2523 // in this matrix determine what to do in a given situation and select the
2524 // case in the switch below. The rows correspond to firstOp, the columns
2525 // correspond to secondOp. In looking at the table below, keep in mind
2526 // the following cast properties:
2528 // Size Compare Source Destination
2529 // Operator Src ? Size Type Sign Type Sign
2530 // -------- ------------ ------------------- ---------------------
2531 // TRUNC > Integer Any Integral Any
2532 // ZEXT < Integral Unsigned Integer Any
2533 // SEXT < Integral Signed Integer Any
2534 // FPTOUI n/a FloatPt n/a Integral Unsigned
2535 // FPTOSI n/a FloatPt n/a Integral Signed
2536 // UITOFP n/a Integral Unsigned FloatPt n/a
2537 // SITOFP n/a Integral Signed FloatPt n/a
2538 // FPTRUNC > FloatPt n/a FloatPt n/a
2539 // FPEXT < FloatPt n/a FloatPt n/a
2540 // PTRTOINT n/a Pointer n/a Integral Unsigned
2541 // INTTOPTR n/a Integral Unsigned Pointer n/a
2542 // BITCAST = FirstClass n/a FirstClass n/a
2543 // ADDRSPCST n/a Pointer n/a Pointer n/a
2545 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2546 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2547 // into "fptoui double to i64", but this loses information about the range
2548 // of the produced value (we no longer know the top-part is all zeros).
2549 // Further this conversion is often much more expensive for typical hardware,
2550 // and causes issues when building libgcc. We disallow fptosi+sext for the
2551 // same reason.
2552 const unsigned numCastOps =
2553 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2554 static const uint8_t CastResults[numCastOps][numCastOps] = {
2555 // T F F U S F F P I B A -+
2556 // R Z S P P I I T P 2 N T S |
2557 // U E E 2 2 2 2 R E I T C C +- secondOp
2558 // N X X U S F F N X N 2 V V |
2559 // C T T I I P P C T T P T T -+
2560 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2561 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2562 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2563 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2564 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2565 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2566 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2567 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2568 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2569 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2570 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2571 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2572 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2575 // TODO: This logic could be encoded into the table above and handled in the
2576 // switch below.
2577 // If either of the casts are a bitcast from scalar to vector, disallow the
2578 // merging. However, any pair of bitcasts are allowed.
2579 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2580 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2581 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2583 // Check if any of the casts convert scalars <-> vectors.
2584 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2585 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2586 if (!AreBothBitcasts)
2587 return 0;
2589 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2590 [secondOp-Instruction::CastOpsBegin];
2591 switch (ElimCase) {
2592 case 0:
2593 // Categorically disallowed.
2594 return 0;
2595 case 1:
2596 // Allowed, use first cast's opcode.
2597 return firstOp;
2598 case 2:
2599 // Allowed, use second cast's opcode.
2600 return secondOp;
2601 case 3:
2602 // No-op cast in second op implies firstOp as long as the DestTy
2603 // is integer and we are not converting between a vector and a
2604 // non-vector type.
2605 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2606 return firstOp;
2607 return 0;
2608 case 4:
2609 // No-op cast in second op implies firstOp as long as the DestTy
2610 // is floating point.
2611 if (DstTy->isFloatingPointTy())
2612 return firstOp;
2613 return 0;
2614 case 5:
2615 // No-op cast in first op implies secondOp as long as the SrcTy
2616 // is an integer.
2617 if (SrcTy->isIntegerTy())
2618 return secondOp;
2619 return 0;
2620 case 6:
2621 // No-op cast in first op implies secondOp as long as the SrcTy
2622 // is a floating point.
2623 if (SrcTy->isFloatingPointTy())
2624 return secondOp;
2625 return 0;
2626 case 7: {
2627 // Cannot simplify if address spaces are different!
2628 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2629 return 0;
2631 unsigned MidSize = MidTy->getScalarSizeInBits();
2632 // We can still fold this without knowing the actual sizes as long we
2633 // know that the intermediate pointer is the largest possible
2634 // pointer size.
2635 // FIXME: Is this always true?
2636 if (MidSize == 64)
2637 return Instruction::BitCast;
2639 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2640 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2641 return 0;
2642 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2643 if (MidSize >= PtrSize)
2644 return Instruction::BitCast;
2645 return 0;
2647 case 8: {
2648 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2649 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2650 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2651 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2652 unsigned DstSize = DstTy->getScalarSizeInBits();
2653 if (SrcSize == DstSize)
2654 return Instruction::BitCast;
2655 else if (SrcSize < DstSize)
2656 return firstOp;
2657 return secondOp;
2659 case 9:
2660 // zext, sext -> zext, because sext can't sign extend after zext
2661 return Instruction::ZExt;
2662 case 11: {
2663 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2664 if (!MidIntPtrTy)
2665 return 0;
2666 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2667 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2668 unsigned DstSize = DstTy->getScalarSizeInBits();
2669 if (SrcSize <= PtrSize && SrcSize == DstSize)
2670 return Instruction::BitCast;
2671 return 0;
2673 case 12:
2674 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2675 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2676 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2677 return Instruction::AddrSpaceCast;
2678 return Instruction::BitCast;
2679 case 13:
2680 // FIXME: this state can be merged with (1), but the following assert
2681 // is useful to check the correcteness of the sequence due to semantic
2682 // change of bitcast.
2683 assert(
2684 SrcTy->isPtrOrPtrVectorTy() &&
2685 MidTy->isPtrOrPtrVectorTy() &&
2686 DstTy->isPtrOrPtrVectorTy() &&
2687 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2688 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2689 "Illegal addrspacecast, bitcast sequence!");
2690 // Allowed, use first cast's opcode
2691 return firstOp;
2692 case 14:
2693 // bitcast, addrspacecast -> addrspacecast if the element type of
2694 // bitcast's source is the same as that of addrspacecast's destination.
2695 if (SrcTy->getScalarType()->getPointerElementType() ==
2696 DstTy->getScalarType()->getPointerElementType())
2697 return Instruction::AddrSpaceCast;
2698 return 0;
2699 case 15:
2700 // FIXME: this state can be merged with (1), but the following assert
2701 // is useful to check the correcteness of the sequence due to semantic
2702 // change of bitcast.
2703 assert(
2704 SrcTy->isIntOrIntVectorTy() &&
2705 MidTy->isPtrOrPtrVectorTy() &&
2706 DstTy->isPtrOrPtrVectorTy() &&
2707 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2708 "Illegal inttoptr, bitcast sequence!");
2709 // Allowed, use first cast's opcode
2710 return firstOp;
2711 case 16:
2712 // FIXME: this state can be merged with (2), but the following assert
2713 // is useful to check the correcteness of the sequence due to semantic
2714 // change of bitcast.
2715 assert(
2716 SrcTy->isPtrOrPtrVectorTy() &&
2717 MidTy->isPtrOrPtrVectorTy() &&
2718 DstTy->isIntOrIntVectorTy() &&
2719 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2720 "Illegal bitcast, ptrtoint sequence!");
2721 // Allowed, use second cast's opcode
2722 return secondOp;
2723 case 17:
2724 // (sitofp (zext x)) -> (uitofp x)
2725 return Instruction::UIToFP;
2726 case 99:
2727 // Cast combination can't happen (error in input). This is for all cases
2728 // where the MidTy is not the same for the two cast instructions.
2729 llvm_unreachable("Invalid Cast Combination");
2730 default:
2731 llvm_unreachable("Error in CastResults table!!!");
2735 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2736 const Twine &Name, Instruction *InsertBefore) {
2737 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2738 // Construct and return the appropriate CastInst subclass
2739 switch (op) {
2740 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2741 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2742 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2743 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2744 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2745 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2746 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2747 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2748 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2749 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2750 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2751 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2752 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2753 default: llvm_unreachable("Invalid opcode provided");
2757 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2758 const Twine &Name, BasicBlock *InsertAtEnd) {
2759 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2760 // Construct and return the appropriate CastInst subclass
2761 switch (op) {
2762 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2763 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2764 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2765 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2766 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2767 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2768 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2769 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2770 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2771 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2772 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2773 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2774 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2775 default: llvm_unreachable("Invalid opcode provided");
2779 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2780 const Twine &Name,
2781 Instruction *InsertBefore) {
2782 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2783 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2784 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2787 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2788 const Twine &Name,
2789 BasicBlock *InsertAtEnd) {
2790 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2791 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2792 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2795 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2796 const Twine &Name,
2797 Instruction *InsertBefore) {
2798 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2799 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2800 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2803 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2804 const Twine &Name,
2805 BasicBlock *InsertAtEnd) {
2806 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2807 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2808 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2811 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2812 const Twine &Name,
2813 Instruction *InsertBefore) {
2814 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2815 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2816 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2819 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2820 const Twine &Name,
2821 BasicBlock *InsertAtEnd) {
2822 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2823 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2824 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2827 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2828 const Twine &Name,
2829 BasicBlock *InsertAtEnd) {
2830 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2831 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2832 "Invalid cast");
2833 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2834 assert((!Ty->isVectorTy() ||
2835 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2836 "Invalid cast");
2838 if (Ty->isIntOrIntVectorTy())
2839 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2841 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2844 /// Create a BitCast or a PtrToInt cast instruction
2845 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2846 const Twine &Name,
2847 Instruction *InsertBefore) {
2848 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2849 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2850 "Invalid cast");
2851 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2852 assert((!Ty->isVectorTy() ||
2853 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2854 "Invalid cast");
2856 if (Ty->isIntOrIntVectorTy())
2857 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2859 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2862 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2863 Value *S, Type *Ty,
2864 const Twine &Name,
2865 BasicBlock *InsertAtEnd) {
2866 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2867 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2869 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2870 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2872 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2875 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2876 Value *S, Type *Ty,
2877 const Twine &Name,
2878 Instruction *InsertBefore) {
2879 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2880 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2882 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2883 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2885 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2888 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2889 const Twine &Name,
2890 Instruction *InsertBefore) {
2891 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2892 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2893 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2894 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2896 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2899 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2900 bool isSigned, const Twine &Name,
2901 Instruction *InsertBefore) {
2902 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2903 "Invalid integer cast");
2904 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2905 unsigned DstBits = Ty->getScalarSizeInBits();
2906 Instruction::CastOps opcode =
2907 (SrcBits == DstBits ? Instruction::BitCast :
2908 (SrcBits > DstBits ? Instruction::Trunc :
2909 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2910 return Create(opcode, C, Ty, Name, InsertBefore);
2913 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2914 bool isSigned, const Twine &Name,
2915 BasicBlock *InsertAtEnd) {
2916 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2917 "Invalid cast");
2918 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2919 unsigned DstBits = Ty->getScalarSizeInBits();
2920 Instruction::CastOps opcode =
2921 (SrcBits == DstBits ? Instruction::BitCast :
2922 (SrcBits > DstBits ? Instruction::Trunc :
2923 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2924 return Create(opcode, C, Ty, Name, InsertAtEnd);
2927 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2928 const Twine &Name,
2929 Instruction *InsertBefore) {
2930 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2931 "Invalid cast");
2932 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2933 unsigned DstBits = Ty->getScalarSizeInBits();
2934 Instruction::CastOps opcode =
2935 (SrcBits == DstBits ? Instruction::BitCast :
2936 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2937 return Create(opcode, C, Ty, Name, InsertBefore);
2940 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2941 const Twine &Name,
2942 BasicBlock *InsertAtEnd) {
2943 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2944 "Invalid cast");
2945 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2946 unsigned DstBits = Ty->getScalarSizeInBits();
2947 Instruction::CastOps opcode =
2948 (SrcBits == DstBits ? Instruction::BitCast :
2949 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2950 return Create(opcode, C, Ty, Name, InsertAtEnd);
2953 // Check whether it is valid to call getCastOpcode for these types.
2954 // This routine must be kept in sync with getCastOpcode.
2955 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2956 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2957 return false;
2959 if (SrcTy == DestTy)
2960 return true;
2962 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2963 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2964 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2965 // An element by element cast. Valid if casting the elements is valid.
2966 SrcTy = SrcVecTy->getElementType();
2967 DestTy = DestVecTy->getElementType();
2970 // Get the bit sizes, we'll need these
2971 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2972 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2974 // Run through the possibilities ...
2975 if (DestTy->isIntegerTy()) { // Casting to integral
2976 if (SrcTy->isIntegerTy()) // Casting from integral
2977 return true;
2978 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2979 return true;
2980 if (SrcTy->isVectorTy()) // Casting from vector
2981 return DestBits == SrcBits;
2982 // Casting from something else
2983 return SrcTy->isPointerTy();
2985 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2986 if (SrcTy->isIntegerTy()) // Casting from integral
2987 return true;
2988 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2989 return true;
2990 if (SrcTy->isVectorTy()) // Casting from vector
2991 return DestBits == SrcBits;
2992 // Casting from something else
2993 return false;
2995 if (DestTy->isVectorTy()) // Casting to vector
2996 return DestBits == SrcBits;
2997 if (DestTy->isPointerTy()) { // Casting to pointer
2998 if (SrcTy->isPointerTy()) // Casting from pointer
2999 return true;
3000 return SrcTy->isIntegerTy(); // Casting from integral
3002 if (DestTy->isX86_MMXTy()) {
3003 if (SrcTy->isVectorTy())
3004 return DestBits == SrcBits; // 64-bit vector to MMX
3005 return false;
3006 } // Casting to something else
3007 return false;
3010 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3011 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3012 return false;
3014 if (SrcTy == DestTy)
3015 return true;
3017 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3018 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3019 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3020 // An element by element cast. Valid if casting the elements is valid.
3021 SrcTy = SrcVecTy->getElementType();
3022 DestTy = DestVecTy->getElementType();
3027 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3028 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3029 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3033 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3034 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3036 // Could still have vectors of pointers if the number of elements doesn't
3037 // match
3038 if (SrcBits == 0 || DestBits == 0)
3039 return false;
3041 if (SrcBits != DestBits)
3042 return false;
3044 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3045 return false;
3047 return true;
3050 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3051 const DataLayout &DL) {
3052 // ptrtoint and inttoptr are not allowed on non-integral pointers
3053 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3054 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3055 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3056 !DL.isNonIntegralPointerType(PtrTy));
3057 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3058 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3059 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3060 !DL.isNonIntegralPointerType(PtrTy));
3062 return isBitCastable(SrcTy, DestTy);
3065 // Provide a way to get a "cast" where the cast opcode is inferred from the
3066 // types and size of the operand. This, basically, is a parallel of the
3067 // logic in the castIsValid function below. This axiom should hold:
3068 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3069 // should not assert in castIsValid. In other words, this produces a "correct"
3070 // casting opcode for the arguments passed to it.
3071 // This routine must be kept in sync with isCastable.
3072 Instruction::CastOps
3073 CastInst::getCastOpcode(
3074 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3075 Type *SrcTy = Src->getType();
3077 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3078 "Only first class types are castable!");
3080 if (SrcTy == DestTy)
3081 return BitCast;
3083 // FIXME: Check address space sizes here
3084 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3085 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3086 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3087 // An element by element cast. Find the appropriate opcode based on the
3088 // element types.
3089 SrcTy = SrcVecTy->getElementType();
3090 DestTy = DestVecTy->getElementType();
3093 // Get the bit sizes, we'll need these
3094 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3095 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3097 // Run through the possibilities ...
3098 if (DestTy->isIntegerTy()) { // Casting to integral
3099 if (SrcTy->isIntegerTy()) { // Casting from integral
3100 if (DestBits < SrcBits)
3101 return Trunc; // int -> smaller int
3102 else if (DestBits > SrcBits) { // its an extension
3103 if (SrcIsSigned)
3104 return SExt; // signed -> SEXT
3105 else
3106 return ZExt; // unsigned -> ZEXT
3107 } else {
3108 return BitCast; // Same size, No-op cast
3110 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3111 if (DestIsSigned)
3112 return FPToSI; // FP -> sint
3113 else
3114 return FPToUI; // FP -> uint
3115 } else if (SrcTy->isVectorTy()) {
3116 assert(DestBits == SrcBits &&
3117 "Casting vector to integer of different width");
3118 return BitCast; // Same size, no-op cast
3119 } else {
3120 assert(SrcTy->isPointerTy() &&
3121 "Casting from a value that is not first-class type");
3122 return PtrToInt; // ptr -> int
3124 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3125 if (SrcTy->isIntegerTy()) { // Casting from integral
3126 if (SrcIsSigned)
3127 return SIToFP; // sint -> FP
3128 else
3129 return UIToFP; // uint -> FP
3130 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3131 if (DestBits < SrcBits) {
3132 return FPTrunc; // FP -> smaller FP
3133 } else if (DestBits > SrcBits) {
3134 return FPExt; // FP -> larger FP
3135 } else {
3136 return BitCast; // same size, no-op cast
3138 } else if (SrcTy->isVectorTy()) {
3139 assert(DestBits == SrcBits &&
3140 "Casting vector to floating point of different width");
3141 return BitCast; // same size, no-op cast
3143 llvm_unreachable("Casting pointer or non-first class to float");
3144 } else if (DestTy->isVectorTy()) {
3145 assert(DestBits == SrcBits &&
3146 "Illegal cast to vector (wrong type or size)");
3147 return BitCast;
3148 } else if (DestTy->isPointerTy()) {
3149 if (SrcTy->isPointerTy()) {
3150 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3151 return AddrSpaceCast;
3152 return BitCast; // ptr -> ptr
3153 } else if (SrcTy->isIntegerTy()) {
3154 return IntToPtr; // int -> ptr
3156 llvm_unreachable("Casting pointer to other than pointer or int");
3157 } else if (DestTy->isX86_MMXTy()) {
3158 if (SrcTy->isVectorTy()) {
3159 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3160 return BitCast; // 64-bit vector to MMX
3162 llvm_unreachable("Illegal cast to X86_MMX");
3164 llvm_unreachable("Casting to type that is not first-class");
3167 //===----------------------------------------------------------------------===//
3168 // CastInst SubClass Constructors
3169 //===----------------------------------------------------------------------===//
3171 /// Check that the construction parameters for a CastInst are correct. This
3172 /// could be broken out into the separate constructors but it is useful to have
3173 /// it in one place and to eliminate the redundant code for getting the sizes
3174 /// of the types involved.
3175 bool
3176 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3177 // Check for type sanity on the arguments
3178 Type *SrcTy = S->getType();
3180 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3181 SrcTy->isAggregateType() || DstTy->isAggregateType())
3182 return false;
3184 // Get the size of the types in bits, we'll need this later
3185 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3186 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3188 // If these are vector types, get the lengths of the vectors (using zero for
3189 // scalar types means that checking that vector lengths match also checks that
3190 // scalars are not being converted to vectors or vectors to scalars).
3191 unsigned SrcLength = SrcTy->isVectorTy() ?
3192 cast<VectorType>(SrcTy)->getNumElements() : 0;
3193 unsigned DstLength = DstTy->isVectorTy() ?
3194 cast<VectorType>(DstTy)->getNumElements() : 0;
3196 // Switch on the opcode provided
3197 switch (op) {
3198 default: return false; // This is an input error
3199 case Instruction::Trunc:
3200 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3201 SrcLength == DstLength && SrcBitSize > DstBitSize;
3202 case Instruction::ZExt:
3203 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3204 SrcLength == DstLength && SrcBitSize < DstBitSize;
3205 case Instruction::SExt:
3206 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3207 SrcLength == DstLength && SrcBitSize < DstBitSize;
3208 case Instruction::FPTrunc:
3209 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3210 SrcLength == DstLength && SrcBitSize > DstBitSize;
3211 case Instruction::FPExt:
3212 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3213 SrcLength == DstLength && SrcBitSize < DstBitSize;
3214 case Instruction::UIToFP:
3215 case Instruction::SIToFP:
3216 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3217 SrcLength == DstLength;
3218 case Instruction::FPToUI:
3219 case Instruction::FPToSI:
3220 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3221 SrcLength == DstLength;
3222 case Instruction::PtrToInt:
3223 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3224 return false;
3225 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3226 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3227 return false;
3228 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3229 case Instruction::IntToPtr:
3230 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3231 return false;
3232 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3233 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3234 return false;
3235 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3236 case Instruction::BitCast: {
3237 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3238 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3240 // BitCast implies a no-op cast of type only. No bits change.
3241 // However, you can't cast pointers to anything but pointers.
3242 if (!SrcPtrTy != !DstPtrTy)
3243 return false;
3245 // For non-pointer cases, the cast is okay if the source and destination bit
3246 // widths are identical.
3247 if (!SrcPtrTy)
3248 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3250 // If both are pointers then the address spaces must match.
3251 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3252 return false;
3254 // A vector of pointers must have the same number of elements.
3255 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3256 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3257 if (SrcVecTy && DstVecTy)
3258 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3259 if (SrcVecTy)
3260 return SrcVecTy->getNumElements() == 1;
3261 if (DstVecTy)
3262 return DstVecTy->getNumElements() == 1;
3264 return true;
3266 case Instruction::AddrSpaceCast: {
3267 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3268 if (!SrcPtrTy)
3269 return false;
3271 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3272 if (!DstPtrTy)
3273 return false;
3275 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3276 return false;
3278 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3279 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3280 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3282 return false;
3285 return true;
3290 TruncInst::TruncInst(
3291 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3292 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3293 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3296 TruncInst::TruncInst(
3297 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3298 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3299 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3302 ZExtInst::ZExtInst(
3303 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3304 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3305 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3308 ZExtInst::ZExtInst(
3309 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3310 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3311 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3313 SExtInst::SExtInst(
3314 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3315 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3316 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3319 SExtInst::SExtInst(
3320 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3321 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3322 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3325 FPTruncInst::FPTruncInst(
3326 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3327 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3328 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3331 FPTruncInst::FPTruncInst(
3332 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3333 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3334 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3337 FPExtInst::FPExtInst(
3338 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3339 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3340 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3343 FPExtInst::FPExtInst(
3344 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3345 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3346 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3349 UIToFPInst::UIToFPInst(
3350 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3351 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3352 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3355 UIToFPInst::UIToFPInst(
3356 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3357 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3358 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3361 SIToFPInst::SIToFPInst(
3362 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3363 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3364 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3367 SIToFPInst::SIToFPInst(
3368 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3369 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3370 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3373 FPToUIInst::FPToUIInst(
3374 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3375 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3376 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3379 FPToUIInst::FPToUIInst(
3380 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3381 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3382 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3385 FPToSIInst::FPToSIInst(
3386 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3387 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3388 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3391 FPToSIInst::FPToSIInst(
3392 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3393 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3394 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3397 PtrToIntInst::PtrToIntInst(
3398 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3399 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3400 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3403 PtrToIntInst::PtrToIntInst(
3404 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3405 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3406 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3409 IntToPtrInst::IntToPtrInst(
3410 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3411 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3412 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3415 IntToPtrInst::IntToPtrInst(
3416 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3417 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3418 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3421 BitCastInst::BitCastInst(
3422 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3423 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3424 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3427 BitCastInst::BitCastInst(
3428 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3429 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3430 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3433 AddrSpaceCastInst::AddrSpaceCastInst(
3434 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3435 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3436 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3439 AddrSpaceCastInst::AddrSpaceCastInst(
3440 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3441 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3442 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3445 //===----------------------------------------------------------------------===//
3446 // CmpInst Classes
3447 //===----------------------------------------------------------------------===//
3449 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3450 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3451 Instruction *FlagsSource)
3452 : Instruction(ty, op,
3453 OperandTraits<CmpInst>::op_begin(this),
3454 OperandTraits<CmpInst>::operands(this),
3455 InsertBefore) {
3456 Op<0>() = LHS;
3457 Op<1>() = RHS;
3458 setPredicate((Predicate)predicate);
3459 setName(Name);
3460 if (FlagsSource)
3461 copyIRFlags(FlagsSource);
3464 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3465 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3466 : Instruction(ty, op,
3467 OperandTraits<CmpInst>::op_begin(this),
3468 OperandTraits<CmpInst>::operands(this),
3469 InsertAtEnd) {
3470 Op<0>() = LHS;
3471 Op<1>() = RHS;
3472 setPredicate((Predicate)predicate);
3473 setName(Name);
3476 CmpInst *
3477 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3478 const Twine &Name, Instruction *InsertBefore) {
3479 if (Op == Instruction::ICmp) {
3480 if (InsertBefore)
3481 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3482 S1, S2, Name);
3483 else
3484 return new ICmpInst(CmpInst::Predicate(predicate),
3485 S1, S2, Name);
3488 if (InsertBefore)
3489 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3490 S1, S2, Name);
3491 else
3492 return new FCmpInst(CmpInst::Predicate(predicate),
3493 S1, S2, Name);
3496 CmpInst *
3497 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3498 const Twine &Name, BasicBlock *InsertAtEnd) {
3499 if (Op == Instruction::ICmp) {
3500 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3501 S1, S2, Name);
3503 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3504 S1, S2, Name);
3507 void CmpInst::swapOperands() {
3508 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3509 IC->swapOperands();
3510 else
3511 cast<FCmpInst>(this)->swapOperands();
3514 bool CmpInst::isCommutative() const {
3515 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3516 return IC->isCommutative();
3517 return cast<FCmpInst>(this)->isCommutative();
3520 bool CmpInst::isEquality() const {
3521 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3522 return IC->isEquality();
3523 return cast<FCmpInst>(this)->isEquality();
3526 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3527 switch (pred) {
3528 default: llvm_unreachable("Unknown cmp predicate!");
3529 case ICMP_EQ: return ICMP_NE;
3530 case ICMP_NE: return ICMP_EQ;
3531 case ICMP_UGT: return ICMP_ULE;
3532 case ICMP_ULT: return ICMP_UGE;
3533 case ICMP_UGE: return ICMP_ULT;
3534 case ICMP_ULE: return ICMP_UGT;
3535 case ICMP_SGT: return ICMP_SLE;
3536 case ICMP_SLT: return ICMP_SGE;
3537 case ICMP_SGE: return ICMP_SLT;
3538 case ICMP_SLE: return ICMP_SGT;
3540 case FCMP_OEQ: return FCMP_UNE;
3541 case FCMP_ONE: return FCMP_UEQ;
3542 case FCMP_OGT: return FCMP_ULE;
3543 case FCMP_OLT: return FCMP_UGE;
3544 case FCMP_OGE: return FCMP_ULT;
3545 case FCMP_OLE: return FCMP_UGT;
3546 case FCMP_UEQ: return FCMP_ONE;
3547 case FCMP_UNE: return FCMP_OEQ;
3548 case FCMP_UGT: return FCMP_OLE;
3549 case FCMP_ULT: return FCMP_OGE;
3550 case FCMP_UGE: return FCMP_OLT;
3551 case FCMP_ULE: return FCMP_OGT;
3552 case FCMP_ORD: return FCMP_UNO;
3553 case FCMP_UNO: return FCMP_ORD;
3554 case FCMP_TRUE: return FCMP_FALSE;
3555 case FCMP_FALSE: return FCMP_TRUE;
3559 StringRef CmpInst::getPredicateName(Predicate Pred) {
3560 switch (Pred) {
3561 default: return "unknown";
3562 case FCmpInst::FCMP_FALSE: return "false";
3563 case FCmpInst::FCMP_OEQ: return "oeq";
3564 case FCmpInst::FCMP_OGT: return "ogt";
3565 case FCmpInst::FCMP_OGE: return "oge";
3566 case FCmpInst::FCMP_OLT: return "olt";
3567 case FCmpInst::FCMP_OLE: return "ole";
3568 case FCmpInst::FCMP_ONE: return "one";
3569 case FCmpInst::FCMP_ORD: return "ord";
3570 case FCmpInst::FCMP_UNO: return "uno";
3571 case FCmpInst::FCMP_UEQ: return "ueq";
3572 case FCmpInst::FCMP_UGT: return "ugt";
3573 case FCmpInst::FCMP_UGE: return "uge";
3574 case FCmpInst::FCMP_ULT: return "ult";
3575 case FCmpInst::FCMP_ULE: return "ule";
3576 case FCmpInst::FCMP_UNE: return "une";
3577 case FCmpInst::FCMP_TRUE: return "true";
3578 case ICmpInst::ICMP_EQ: return "eq";
3579 case ICmpInst::ICMP_NE: return "ne";
3580 case ICmpInst::ICMP_SGT: return "sgt";
3581 case ICmpInst::ICMP_SGE: return "sge";
3582 case ICmpInst::ICMP_SLT: return "slt";
3583 case ICmpInst::ICMP_SLE: return "sle";
3584 case ICmpInst::ICMP_UGT: return "ugt";
3585 case ICmpInst::ICMP_UGE: return "uge";
3586 case ICmpInst::ICMP_ULT: return "ult";
3587 case ICmpInst::ICMP_ULE: return "ule";
3591 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3592 switch (pred) {
3593 default: llvm_unreachable("Unknown icmp predicate!");
3594 case ICMP_EQ: case ICMP_NE:
3595 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3596 return pred;
3597 case ICMP_UGT: return ICMP_SGT;
3598 case ICMP_ULT: return ICMP_SLT;
3599 case ICMP_UGE: return ICMP_SGE;
3600 case ICMP_ULE: return ICMP_SLE;
3604 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3605 switch (pred) {
3606 default: llvm_unreachable("Unknown icmp predicate!");
3607 case ICMP_EQ: case ICMP_NE:
3608 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3609 return pred;
3610 case ICMP_SGT: return ICMP_UGT;
3611 case ICMP_SLT: return ICMP_ULT;
3612 case ICMP_SGE: return ICMP_UGE;
3613 case ICMP_SLE: return ICMP_ULE;
3617 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3618 switch (pred) {
3619 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3620 case ICMP_SGT: return ICMP_SGE;
3621 case ICMP_SLT: return ICMP_SLE;
3622 case ICMP_SGE: return ICMP_SGT;
3623 case ICMP_SLE: return ICMP_SLT;
3624 case ICMP_UGT: return ICMP_UGE;
3625 case ICMP_ULT: return ICMP_ULE;
3626 case ICMP_UGE: return ICMP_UGT;
3627 case ICMP_ULE: return ICMP_ULT;
3629 case FCMP_OGT: return FCMP_OGE;
3630 case FCMP_OLT: return FCMP_OLE;
3631 case FCMP_OGE: return FCMP_OGT;
3632 case FCMP_OLE: return FCMP_OLT;
3633 case FCMP_UGT: return FCMP_UGE;
3634 case FCMP_ULT: return FCMP_ULE;
3635 case FCMP_UGE: return FCMP_UGT;
3636 case FCMP_ULE: return FCMP_ULT;
3640 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3641 switch (pred) {
3642 default: llvm_unreachable("Unknown cmp predicate!");
3643 case ICMP_EQ: case ICMP_NE:
3644 return pred;
3645 case ICMP_SGT: return ICMP_SLT;
3646 case ICMP_SLT: return ICMP_SGT;
3647 case ICMP_SGE: return ICMP_SLE;
3648 case ICMP_SLE: return ICMP_SGE;
3649 case ICMP_UGT: return ICMP_ULT;
3650 case ICMP_ULT: return ICMP_UGT;
3651 case ICMP_UGE: return ICMP_ULE;
3652 case ICMP_ULE: return ICMP_UGE;
3654 case FCMP_FALSE: case FCMP_TRUE:
3655 case FCMP_OEQ: case FCMP_ONE:
3656 case FCMP_UEQ: case FCMP_UNE:
3657 case FCMP_ORD: case FCMP_UNO:
3658 return pred;
3659 case FCMP_OGT: return FCMP_OLT;
3660 case FCMP_OLT: return FCMP_OGT;
3661 case FCMP_OGE: return FCMP_OLE;
3662 case FCMP_OLE: return FCMP_OGE;
3663 case FCMP_UGT: return FCMP_ULT;
3664 case FCMP_ULT: return FCMP_UGT;
3665 case FCMP_UGE: return FCMP_ULE;
3666 case FCMP_ULE: return FCMP_UGE;
3670 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3671 switch (pred) {
3672 case ICMP_SGT: return ICMP_SGE;
3673 case ICMP_SLT: return ICMP_SLE;
3674 case ICMP_UGT: return ICMP_UGE;
3675 case ICMP_ULT: return ICMP_ULE;
3676 case FCMP_OGT: return FCMP_OGE;
3677 case FCMP_OLT: return FCMP_OLE;
3678 case FCMP_UGT: return FCMP_UGE;
3679 case FCMP_ULT: return FCMP_ULE;
3680 default: return pred;
3684 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3685 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3687 switch (pred) {
3688 default:
3689 llvm_unreachable("Unknown predicate!");
3690 case CmpInst::ICMP_ULT:
3691 return CmpInst::ICMP_SLT;
3692 case CmpInst::ICMP_ULE:
3693 return CmpInst::ICMP_SLE;
3694 case CmpInst::ICMP_UGT:
3695 return CmpInst::ICMP_SGT;
3696 case CmpInst::ICMP_UGE:
3697 return CmpInst::ICMP_SGE;
3701 bool CmpInst::isUnsigned(Predicate predicate) {
3702 switch (predicate) {
3703 default: return false;
3704 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3705 case ICmpInst::ICMP_UGE: return true;
3709 bool CmpInst::isSigned(Predicate predicate) {
3710 switch (predicate) {
3711 default: return false;
3712 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3713 case ICmpInst::ICMP_SGE: return true;
3717 bool CmpInst::isOrdered(Predicate predicate) {
3718 switch (predicate) {
3719 default: return false;
3720 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3721 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3722 case FCmpInst::FCMP_ORD: return true;
3726 bool CmpInst::isUnordered(Predicate predicate) {
3727 switch (predicate) {
3728 default: return false;
3729 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3730 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3731 case FCmpInst::FCMP_UNO: return true;
3735 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3736 switch(predicate) {
3737 default: return false;
3738 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3739 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3743 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3744 switch(predicate) {
3745 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3746 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3747 default: return false;
3751 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3752 // If the predicates match, then we know the first condition implies the
3753 // second is true.
3754 if (Pred1 == Pred2)
3755 return true;
3757 switch (Pred1) {
3758 default:
3759 break;
3760 case ICMP_EQ:
3761 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3762 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3763 Pred2 == ICMP_SLE;
3764 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3765 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3766 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3767 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3768 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3769 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3770 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3771 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3773 return false;
3776 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3777 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3780 //===----------------------------------------------------------------------===//
3781 // SwitchInst Implementation
3782 //===----------------------------------------------------------------------===//
3784 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3785 assert(Value && Default && NumReserved);
3786 ReservedSpace = NumReserved;
3787 setNumHungOffUseOperands(2);
3788 allocHungoffUses(ReservedSpace);
3790 Op<0>() = Value;
3791 Op<1>() = Default;
3794 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3795 /// switch on and a default destination. The number of additional cases can
3796 /// be specified here to make memory allocation more efficient. This
3797 /// constructor can also autoinsert before another instruction.
3798 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3799 Instruction *InsertBefore)
3800 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3801 nullptr, 0, InsertBefore) {
3802 init(Value, Default, 2+NumCases*2);
3805 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3806 /// switch on and a default destination. The number of additional cases can
3807 /// be specified here to make memory allocation more efficient. This
3808 /// constructor also autoinserts at the end of the specified BasicBlock.
3809 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3810 BasicBlock *InsertAtEnd)
3811 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3812 nullptr, 0, InsertAtEnd) {
3813 init(Value, Default, 2+NumCases*2);
3816 SwitchInst::SwitchInst(const SwitchInst &SI)
3817 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3818 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3819 setNumHungOffUseOperands(SI.getNumOperands());
3820 Use *OL = getOperandList();
3821 const Use *InOL = SI.getOperandList();
3822 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3823 OL[i] = InOL[i];
3824 OL[i+1] = InOL[i+1];
3826 SubclassOptionalData = SI.SubclassOptionalData;
3829 /// addCase - Add an entry to the switch instruction...
3831 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3832 unsigned NewCaseIdx = getNumCases();
3833 unsigned OpNo = getNumOperands();
3834 if (OpNo+2 > ReservedSpace)
3835 growOperands(); // Get more space!
3836 // Initialize some new operands.
3837 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3838 setNumHungOffUseOperands(OpNo+2);
3839 CaseHandle Case(this, NewCaseIdx);
3840 Case.setValue(OnVal);
3841 Case.setSuccessor(Dest);
3844 /// removeCase - This method removes the specified case and its successor
3845 /// from the switch instruction.
3846 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3847 unsigned idx = I->getCaseIndex();
3849 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3851 unsigned NumOps = getNumOperands();
3852 Use *OL = getOperandList();
3854 // Overwrite this case with the end of the list.
3855 if (2 + (idx + 1) * 2 != NumOps) {
3856 OL[2 + idx * 2] = OL[NumOps - 2];
3857 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3860 // Nuke the last value.
3861 OL[NumOps-2].set(nullptr);
3862 OL[NumOps-2+1].set(nullptr);
3863 setNumHungOffUseOperands(NumOps-2);
3865 return CaseIt(this, idx);
3868 /// growOperands - grow operands - This grows the operand list in response
3869 /// to a push_back style of operation. This grows the number of ops by 3 times.
3871 void SwitchInst::growOperands() {
3872 unsigned e = getNumOperands();
3873 unsigned NumOps = e*3;
3875 ReservedSpace = NumOps;
3876 growHungoffUses(ReservedSpace);
3879 MDNode *
3880 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3881 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3882 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3883 if (MDName->getString() == "branch_weights")
3884 return ProfileData;
3885 return nullptr;
3888 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3889 assert(State == Changed && "called only if metadata has changed");
3891 if (!Weights)
3892 return nullptr;
3894 assert(SI.getNumSuccessors() == Weights->size() &&
3895 "num of prof branch_weights must accord with num of successors");
3897 bool AllZeroes =
3898 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3900 if (AllZeroes || Weights.getValue().size() < 2)
3901 return nullptr;
3903 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3906 void SwitchInstProfUpdateWrapper::init() {
3907 MDNode *ProfileData = getProfBranchWeightsMD(SI);
3908 if (!ProfileData) {
3909 State = Initialized;
3910 return;
3913 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3914 State = Invalid;
3915 if (SwitchInstProfUpdateWrapperStrict)
3916 llvm_unreachable("number of prof branch_weights metadata operands does "
3917 "not correspond to number of succesors");
3918 return;
3921 SmallVector<uint32_t, 8> Weights;
3922 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3923 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3924 uint32_t CW = C->getValue().getZExtValue();
3925 Weights.push_back(CW);
3927 State = Initialized;
3928 this->Weights = std::move(Weights);
3931 SwitchInst::CaseIt
3932 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3933 if (Weights) {
3934 assert(SI.getNumSuccessors() == Weights->size() &&
3935 "num of prof branch_weights must accord with num of successors");
3936 State = Changed;
3937 // Copy the last case to the place of the removed one and shrink.
3938 // This is tightly coupled with the way SwitchInst::removeCase() removes
3939 // the cases in SwitchInst::removeCase(CaseIt).
3940 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3941 Weights.getValue().pop_back();
3943 return SI.removeCase(I);
3946 void SwitchInstProfUpdateWrapper::addCase(
3947 ConstantInt *OnVal, BasicBlock *Dest,
3948 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3949 SI.addCase(OnVal, Dest);
3951 if (State == Invalid)
3952 return;
3954 if (!Weights && W && *W) {
3955 State = Changed;
3956 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3957 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3958 } else if (Weights) {
3959 State = Changed;
3960 Weights.getValue().push_back(W ? *W : 0);
3962 if (Weights)
3963 assert(SI.getNumSuccessors() == Weights->size() &&
3964 "num of prof branch_weights must accord with num of successors");
3967 SymbolTableList<Instruction>::iterator
3968 SwitchInstProfUpdateWrapper::eraseFromParent() {
3969 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3970 if (State != Invalid) {
3971 State = Initialized;
3972 if (Weights)
3973 Weights->resize(0);
3975 return SI.eraseFromParent();
3978 SwitchInstProfUpdateWrapper::CaseWeightOpt
3979 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3980 if (!Weights)
3981 return None;
3982 return Weights.getValue()[idx];
3985 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3986 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3987 if (!W || State == Invalid)
3988 return;
3990 if (!Weights && *W)
3991 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3993 if (Weights) {
3994 auto &OldW = Weights.getValue()[idx];
3995 if (*W != OldW) {
3996 State = Changed;
3997 OldW = *W;
4002 SwitchInstProfUpdateWrapper::CaseWeightOpt
4003 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4004 unsigned idx) {
4005 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4006 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4007 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4008 ->getValue()
4009 .getZExtValue();
4011 return None;
4014 //===----------------------------------------------------------------------===//
4015 // IndirectBrInst Implementation
4016 //===----------------------------------------------------------------------===//
4018 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4019 assert(Address && Address->getType()->isPointerTy() &&
4020 "Address of indirectbr must be a pointer");
4021 ReservedSpace = 1+NumDests;
4022 setNumHungOffUseOperands(1);
4023 allocHungoffUses(ReservedSpace);
4025 Op<0>() = Address;
4029 /// growOperands - grow operands - This grows the operand list in response
4030 /// to a push_back style of operation. This grows the number of ops by 2 times.
4032 void IndirectBrInst::growOperands() {
4033 unsigned e = getNumOperands();
4034 unsigned NumOps = e*2;
4036 ReservedSpace = NumOps;
4037 growHungoffUses(ReservedSpace);
4040 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4041 Instruction *InsertBefore)
4042 : Instruction(Type::getVoidTy(Address->getContext()),
4043 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4044 init(Address, NumCases);
4047 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4048 BasicBlock *InsertAtEnd)
4049 : Instruction(Type::getVoidTy(Address->getContext()),
4050 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4051 init(Address, NumCases);
4054 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4055 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4056 nullptr, IBI.getNumOperands()) {
4057 allocHungoffUses(IBI.getNumOperands());
4058 Use *OL = getOperandList();
4059 const Use *InOL = IBI.getOperandList();
4060 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4061 OL[i] = InOL[i];
4062 SubclassOptionalData = IBI.SubclassOptionalData;
4065 /// addDestination - Add a destination.
4067 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4068 unsigned OpNo = getNumOperands();
4069 if (OpNo+1 > ReservedSpace)
4070 growOperands(); // Get more space!
4071 // Initialize some new operands.
4072 assert(OpNo < ReservedSpace && "Growing didn't work!");
4073 setNumHungOffUseOperands(OpNo+1);
4074 getOperandList()[OpNo] = DestBB;
4077 /// removeDestination - This method removes the specified successor from the
4078 /// indirectbr instruction.
4079 void IndirectBrInst::removeDestination(unsigned idx) {
4080 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4082 unsigned NumOps = getNumOperands();
4083 Use *OL = getOperandList();
4085 // Replace this value with the last one.
4086 OL[idx+1] = OL[NumOps-1];
4088 // Nuke the last value.
4089 OL[NumOps-1].set(nullptr);
4090 setNumHungOffUseOperands(NumOps-1);
4093 //===----------------------------------------------------------------------===//
4094 // cloneImpl() implementations
4095 //===----------------------------------------------------------------------===//
4097 // Define these methods here so vtables don't get emitted into every translation
4098 // unit that uses these classes.
4100 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4101 return new (getNumOperands()) GetElementPtrInst(*this);
4104 UnaryOperator *UnaryOperator::cloneImpl() const {
4105 return Create(getOpcode(), Op<0>());
4108 BinaryOperator *BinaryOperator::cloneImpl() const {
4109 return Create(getOpcode(), Op<0>(), Op<1>());
4112 FCmpInst *FCmpInst::cloneImpl() const {
4113 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4116 ICmpInst *ICmpInst::cloneImpl() const {
4117 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4120 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4121 return new ExtractValueInst(*this);
4124 InsertValueInst *InsertValueInst::cloneImpl() const {
4125 return new InsertValueInst(*this);
4128 AllocaInst *AllocaInst::cloneImpl() const {
4129 AllocaInst *Result = new AllocaInst(getAllocatedType(),
4130 getType()->getAddressSpace(),
4131 (Value *)getOperand(0), getAlignment());
4132 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4133 Result->setSwiftError(isSwiftError());
4134 return Result;
4137 LoadInst *LoadInst::cloneImpl() const {
4138 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4139 getAlignment(), getOrdering(), getSyncScopeID());
4142 StoreInst *StoreInst::cloneImpl() const {
4143 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4144 getAlignment(), getOrdering(), getSyncScopeID());
4148 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4149 AtomicCmpXchgInst *Result =
4150 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4151 getSuccessOrdering(), getFailureOrdering(),
4152 getSyncScopeID());
4153 Result->setVolatile(isVolatile());
4154 Result->setWeak(isWeak());
4155 return Result;
4158 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4159 AtomicRMWInst *Result =
4160 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4161 getOrdering(), getSyncScopeID());
4162 Result->setVolatile(isVolatile());
4163 return Result;
4166 FenceInst *FenceInst::cloneImpl() const {
4167 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4170 TruncInst *TruncInst::cloneImpl() const {
4171 return new TruncInst(getOperand(0), getType());
4174 ZExtInst *ZExtInst::cloneImpl() const {
4175 return new ZExtInst(getOperand(0), getType());
4178 SExtInst *SExtInst::cloneImpl() const {
4179 return new SExtInst(getOperand(0), getType());
4182 FPTruncInst *FPTruncInst::cloneImpl() const {
4183 return new FPTruncInst(getOperand(0), getType());
4186 FPExtInst *FPExtInst::cloneImpl() const {
4187 return new FPExtInst(getOperand(0), getType());
4190 UIToFPInst *UIToFPInst::cloneImpl() const {
4191 return new UIToFPInst(getOperand(0), getType());
4194 SIToFPInst *SIToFPInst::cloneImpl() const {
4195 return new SIToFPInst(getOperand(0), getType());
4198 FPToUIInst *FPToUIInst::cloneImpl() const {
4199 return new FPToUIInst(getOperand(0), getType());
4202 FPToSIInst *FPToSIInst::cloneImpl() const {
4203 return new FPToSIInst(getOperand(0), getType());
4206 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4207 return new PtrToIntInst(getOperand(0), getType());
4210 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4211 return new IntToPtrInst(getOperand(0), getType());
4214 BitCastInst *BitCastInst::cloneImpl() const {
4215 return new BitCastInst(getOperand(0), getType());
4218 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4219 return new AddrSpaceCastInst(getOperand(0), getType());
4222 CallInst *CallInst::cloneImpl() const {
4223 if (hasOperandBundles()) {
4224 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4225 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4227 return new(getNumOperands()) CallInst(*this);
4230 SelectInst *SelectInst::cloneImpl() const {
4231 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4234 VAArgInst *VAArgInst::cloneImpl() const {
4235 return new VAArgInst(getOperand(0), getType());
4238 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4239 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4242 InsertElementInst *InsertElementInst::cloneImpl() const {
4243 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4246 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4247 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4250 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4252 LandingPadInst *LandingPadInst::cloneImpl() const {
4253 return new LandingPadInst(*this);
4256 ReturnInst *ReturnInst::cloneImpl() const {
4257 return new(getNumOperands()) ReturnInst(*this);
4260 BranchInst *BranchInst::cloneImpl() const {
4261 return new(getNumOperands()) BranchInst(*this);
4264 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4266 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4267 return new IndirectBrInst(*this);
4270 InvokeInst *InvokeInst::cloneImpl() const {
4271 if (hasOperandBundles()) {
4272 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4273 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4275 return new(getNumOperands()) InvokeInst(*this);
4278 CallBrInst *CallBrInst::cloneImpl() const {
4279 if (hasOperandBundles()) {
4280 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4281 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4283 return new (getNumOperands()) CallBrInst(*this);
4286 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4288 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4289 return new (getNumOperands()) CleanupReturnInst(*this);
4292 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4293 return new (getNumOperands()) CatchReturnInst(*this);
4296 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4297 return new CatchSwitchInst(*this);
4300 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4301 return new (getNumOperands()) FuncletPadInst(*this);
4304 UnreachableInst *UnreachableInst::cloneImpl() const {
4305 LLVMContext &Context = getContext();
4306 return new UnreachableInst(Context);