[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AArch64 / AArch64CollectLOH.cpp
blob9f324b4332093977d5632f1c24e4b2d43d5e13be
1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that collect the Linker Optimization Hint (LOH).
10 // This pass should be run at the very end of the compilation flow, just before
11 // assembly printer.
12 // To be useful for the linker, the LOH must be printed into the assembly file.
14 // A LOH describes a sequence of instructions that may be optimized by the
15 // linker.
16 // This same sequence cannot be optimized by the compiler because some of
17 // the information will be known at link time.
18 // For instance, consider the following sequence:
19 // L1: adrp xA, sym@PAGE
20 // L2: add xB, xA, sym@PAGEOFF
21 // L3: ldr xC, [xB, #imm]
22 // This sequence can be turned into:
23 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
24 // L3: ldr xC, sym+#imm
25 // It may also be turned into either the following more efficient
26 // code sequences:
27 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
28 // L1: adrp xA, sym@PAGE
29 // L3: ldr xC, [xB, sym@PAGEOFF + #imm]
30 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
31 // L1: adr xA, sym
32 // L3: ldr xC, [xB, #imm]
34 // To be valid a LOH must meet all the requirements needed by all the related
35 // possible linker transformations.
36 // For instance, using the running example, the constraints to emit
37 // ".loh AdrpAddLdr" are:
38 // - L1, L2, and L3 instructions are of the expected type, i.e.,
39 // respectively ADRP, ADD (immediate), and LD.
40 // - The result of L1 is used only by L2.
41 // - The register argument (xA) used in the ADD instruction is defined
42 // only by L1.
43 // - The result of L2 is used only by L3.
44 // - The base address (xB) in L3 is defined only L2.
45 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
46 // @PAGE/@PAGEOFF with no additional constants
48 // Currently supported LOHs are:
49 // * So called non-ADRP-related:
50 // - .loh AdrpAddLdr L1, L2, L3:
51 // L1: adrp xA, sym@PAGE
52 // L2: add xB, xA, sym@PAGEOFF
53 // L3: ldr xC, [xB, #imm]
54 // - .loh AdrpLdrGotLdr L1, L2, L3:
55 // L1: adrp xA, sym@GOTPAGE
56 // L2: ldr xB, [xA, sym@GOTPAGEOFF]
57 // L3: ldr xC, [xB, #imm]
58 // - .loh AdrpLdr L1, L3:
59 // L1: adrp xA, sym@PAGE
60 // L3: ldr xC, [xA, sym@PAGEOFF]
61 // - .loh AdrpAddStr L1, L2, L3:
62 // L1: adrp xA, sym@PAGE
63 // L2: add xB, xA, sym@PAGEOFF
64 // L3: str xC, [xB, #imm]
65 // - .loh AdrpLdrGotStr L1, L2, L3:
66 // L1: adrp xA, sym@GOTPAGE
67 // L2: ldr xB, [xA, sym@GOTPAGEOFF]
68 // L3: str xC, [xB, #imm]
69 // - .loh AdrpAdd L1, L2:
70 // L1: adrp xA, sym@PAGE
71 // L2: add xB, xA, sym@PAGEOFF
72 // For all these LOHs, L1, L2, L3 form a simple chain:
73 // L1 result is used only by L2 and L2 result by L3.
74 // L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
75 // by L1.
76 // All these LOHs aim at using more efficient load/store patterns by folding
77 // some instructions used to compute the address directly into the load/store.
79 // * So called ADRP-related:
80 // - .loh AdrpAdrp L2, L1:
81 // L2: ADRP xA, sym1@PAGE
82 // L1: ADRP xA, sym2@PAGE
83 // L2 dominates L1 and xA is not redifined between L2 and L1
84 // This LOH aims at getting rid of redundant ADRP instructions.
86 // The overall design for emitting the LOHs is:
87 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
88 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
89 // 1. Associates them a label.
90 // 2. Emits them in a MCStreamer (EmitLOHDirective).
91 // - The MCMachOStreamer records them into the MCAssembler.
92 // - The MCAsmStreamer prints them.
93 // - Other MCStreamers ignore them.
94 // 3. Closes the MCStreamer:
95 // - The MachObjectWriter gets them from the MCAssembler and writes
96 // them in the object file.
97 // - Other ObjectWriters ignore them.
98 //===----------------------------------------------------------------------===//
100 #include "AArch64.h"
101 #include "AArch64InstrInfo.h"
102 #include "AArch64MachineFunctionInfo.h"
103 #include "llvm/ADT/BitVector.h"
104 #include "llvm/ADT/DenseMap.h"
105 #include "llvm/ADT/MapVector.h"
106 #include "llvm/ADT/SmallVector.h"
107 #include "llvm/ADT/Statistic.h"
108 #include "llvm/CodeGen/MachineBasicBlock.h"
109 #include "llvm/CodeGen/MachineFunctionPass.h"
110 #include "llvm/CodeGen/MachineInstr.h"
111 #include "llvm/CodeGen/TargetRegisterInfo.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/ErrorHandling.h"
114 #include "llvm/Support/raw_ostream.h"
115 #include "llvm/Target/TargetMachine.h"
116 using namespace llvm;
118 #define DEBUG_TYPE "aarch64-collect-loh"
120 STATISTIC(NumADRPSimpleCandidate,
121 "Number of simplifiable ADRP dominate by another");
122 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
123 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
124 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
125 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
126 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
127 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
129 #define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
131 namespace {
133 struct AArch64CollectLOH : public MachineFunctionPass {
134 static char ID;
135 AArch64CollectLOH() : MachineFunctionPass(ID) {}
137 bool runOnMachineFunction(MachineFunction &MF) override;
139 MachineFunctionProperties getRequiredProperties() const override {
140 return MachineFunctionProperties().set(
141 MachineFunctionProperties::Property::NoVRegs);
144 StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
146 void getAnalysisUsage(AnalysisUsage &AU) const override {
147 MachineFunctionPass::getAnalysisUsage(AU);
148 AU.setPreservesAll();
152 char AArch64CollectLOH::ID = 0;
154 } // end anonymous namespace.
156 INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
157 AARCH64_COLLECT_LOH_NAME, false, false)
159 static bool canAddBePartOfLOH(const MachineInstr &MI) {
160 // Check immediate to see if the immediate is an address.
161 switch (MI.getOperand(2).getType()) {
162 default:
163 return false;
164 case MachineOperand::MO_GlobalAddress:
165 case MachineOperand::MO_JumpTableIndex:
166 case MachineOperand::MO_ConstantPoolIndex:
167 case MachineOperand::MO_BlockAddress:
168 return true;
172 /// Answer the following question: Can Def be one of the definition
173 /// involved in a part of a LOH?
174 static bool canDefBePartOfLOH(const MachineInstr &MI) {
175 // Accept ADRP, ADDLow and LOADGot.
176 switch (MI.getOpcode()) {
177 default:
178 return false;
179 case AArch64::ADRP:
180 return true;
181 case AArch64::ADDXri:
182 return canAddBePartOfLOH(MI);
183 case AArch64::LDRXui:
184 // Check immediate to see if the immediate is an address.
185 switch (MI.getOperand(2).getType()) {
186 default:
187 return false;
188 case MachineOperand::MO_GlobalAddress:
189 return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
194 /// Check whether the given instruction can the end of a LOH chain involving a
195 /// store.
196 static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
197 switch (MI.getOpcode()) {
198 default:
199 return false;
200 case AArch64::STRBBui:
201 case AArch64::STRHHui:
202 case AArch64::STRBui:
203 case AArch64::STRHui:
204 case AArch64::STRWui:
205 case AArch64::STRXui:
206 case AArch64::STRSui:
207 case AArch64::STRDui:
208 case AArch64::STRQui:
209 // We can only optimize the index operand.
210 // In case we have str xA, [xA, #imm], this is two different uses
211 // of xA and we cannot fold, otherwise the xA stored may be wrong,
212 // even if #imm == 0.
213 return MI.getOperandNo(&MO) == 1 &&
214 MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
218 /// Check whether the given instruction can be the end of a LOH chain
219 /// involving a load.
220 static bool isCandidateLoad(const MachineInstr &MI) {
221 switch (MI.getOpcode()) {
222 default:
223 return false;
224 case AArch64::LDRSBWui:
225 case AArch64::LDRSBXui:
226 case AArch64::LDRSHWui:
227 case AArch64::LDRSHXui:
228 case AArch64::LDRSWui:
229 case AArch64::LDRBui:
230 case AArch64::LDRHui:
231 case AArch64::LDRWui:
232 case AArch64::LDRXui:
233 case AArch64::LDRSui:
234 case AArch64::LDRDui:
235 case AArch64::LDRQui:
236 return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
240 /// Check whether the given instruction can load a litteral.
241 static bool supportLoadFromLiteral(const MachineInstr &MI) {
242 switch (MI.getOpcode()) {
243 default:
244 return false;
245 case AArch64::LDRSWui:
246 case AArch64::LDRWui:
247 case AArch64::LDRXui:
248 case AArch64::LDRSui:
249 case AArch64::LDRDui:
250 case AArch64::LDRQui:
251 return true;
255 /// Number of GPR registers traked by mapRegToGPRIndex()
256 static const unsigned N_GPR_REGS = 31;
257 /// Map register number to index from 0-30.
258 static int mapRegToGPRIndex(MCPhysReg Reg) {
259 static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
260 static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
261 if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
262 return Reg - AArch64::X0;
263 if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
264 return Reg - AArch64::W0;
265 // TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
266 // handle them as special cases.
267 if (Reg == AArch64::FP)
268 return 29;
269 if (Reg == AArch64::LR)
270 return 30;
271 return -1;
274 /// State tracked per register.
275 /// The main algorithm walks backwards over a basic block maintaining this
276 /// datastructure for each tracked general purpose register.
277 struct LOHInfo {
278 MCLOHType Type : 8; ///< "Best" type of LOH possible.
279 bool IsCandidate : 1; ///< Possible LOH candidate.
280 bool OneUser : 1; ///< Found exactly one user (yet).
281 bool MultiUsers : 1; ///< Found multiple users.
282 const MachineInstr *MI0; ///< First instruction involved in the LOH.
283 const MachineInstr *MI1; ///< Second instruction involved in the LOH
284 /// (if any).
285 const MachineInstr *LastADRP; ///< Last ADRP in same register.
288 /// Update state \p Info given \p MI uses the tracked register.
289 static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
290 LOHInfo &Info) {
291 // We have multiple uses if we already found one before.
292 if (Info.MultiUsers || Info.OneUser) {
293 Info.IsCandidate = false;
294 Info.MultiUsers = true;
295 return;
297 Info.OneUser = true;
299 // Start new LOHInfo if applicable.
300 if (isCandidateLoad(MI)) {
301 Info.Type = MCLOH_AdrpLdr;
302 Info.IsCandidate = true;
303 Info.MI0 = &MI;
304 // Note that even this is AdrpLdr now, we can switch to a Ldr variant
305 // later.
306 } else if (isCandidateStore(MI, MO)) {
307 Info.Type = MCLOH_AdrpAddStr;
308 Info.IsCandidate = true;
309 Info.MI0 = &MI;
310 Info.MI1 = nullptr;
311 } else if (MI.getOpcode() == AArch64::ADDXri) {
312 Info.Type = MCLOH_AdrpAdd;
313 Info.IsCandidate = true;
314 Info.MI0 = &MI;
315 } else if (MI.getOpcode() == AArch64::LDRXui &&
316 MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
317 Info.Type = MCLOH_AdrpLdrGot;
318 Info.IsCandidate = true;
319 Info.MI0 = &MI;
323 /// Update state \p Info given the tracked register is clobbered.
324 static void handleClobber(LOHInfo &Info) {
325 Info.IsCandidate = false;
326 Info.OneUser = false;
327 Info.MultiUsers = false;
328 Info.LastADRP = nullptr;
331 /// Update state \p Info given that \p MI is possibly the middle instruction
332 /// of an LOH involving 3 instructions.
333 static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
334 LOHInfo &OpInfo) {
335 if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
336 return false;
337 // Copy LOHInfo for dest register to LOHInfo for source register.
338 if (&DefInfo != &OpInfo) {
339 OpInfo = DefInfo;
340 // Invalidate \p DefInfo because we track it in \p OpInfo now.
341 handleClobber(DefInfo);
342 } else
343 DefInfo.LastADRP = nullptr;
345 // Advance state machine.
346 assert(OpInfo.IsCandidate && "Expect valid state");
347 if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
348 if (OpInfo.Type == MCLOH_AdrpLdr) {
349 OpInfo.Type = MCLOH_AdrpAddLdr;
350 OpInfo.IsCandidate = true;
351 OpInfo.MI1 = &MI;
352 return true;
353 } else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
354 OpInfo.Type = MCLOH_AdrpAddStr;
355 OpInfo.IsCandidate = true;
356 OpInfo.MI1 = &MI;
357 return true;
359 } else {
360 assert(MI.getOpcode() == AArch64::LDRXui && "Expect LDRXui");
361 assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
362 "Expected GOT relocation");
363 if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
364 OpInfo.Type = MCLOH_AdrpLdrGotStr;
365 OpInfo.IsCandidate = true;
366 OpInfo.MI1 = &MI;
367 return true;
368 } else if (OpInfo.Type == MCLOH_AdrpLdr) {
369 OpInfo.Type = MCLOH_AdrpLdrGotLdr;
370 OpInfo.IsCandidate = true;
371 OpInfo.MI1 = &MI;
372 return true;
375 return false;
378 /// Update state when seeing and ADRP instruction.
379 static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
380 LOHInfo &Info) {
381 if (Info.LastADRP != nullptr) {
382 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n"
383 << '\t' << MI << '\t' << *Info.LastADRP);
384 AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
385 ++NumADRPSimpleCandidate;
388 // Produce LOH directive if possible.
389 if (Info.IsCandidate) {
390 switch (Info.Type) {
391 case MCLOH_AdrpAdd:
392 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n"
393 << '\t' << MI << '\t' << *Info.MI0);
394 AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
395 ++NumADRSimpleCandidate;
396 break;
397 case MCLOH_AdrpLdr:
398 if (supportLoadFromLiteral(*Info.MI0)) {
399 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n"
400 << '\t' << MI << '\t' << *Info.MI0);
401 AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
402 ++NumADRPToLDR;
404 break;
405 case MCLOH_AdrpAddLdr:
406 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n"
407 << '\t' << MI << '\t' << *Info.MI1 << '\t'
408 << *Info.MI0);
409 AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
410 ++NumADDToLDR;
411 break;
412 case MCLOH_AdrpAddStr:
413 if (Info.MI1 != nullptr) {
414 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n"
415 << '\t' << MI << '\t' << *Info.MI1 << '\t'
416 << *Info.MI0);
417 AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
418 ++NumADDToSTR;
420 break;
421 case MCLOH_AdrpLdrGotLdr:
422 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n"
423 << '\t' << MI << '\t' << *Info.MI1 << '\t'
424 << *Info.MI0);
425 AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
426 ++NumLDRToLDR;
427 break;
428 case MCLOH_AdrpLdrGotStr:
429 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n"
430 << '\t' << MI << '\t' << *Info.MI1 << '\t'
431 << *Info.MI0);
432 AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
433 ++NumLDRToSTR;
434 break;
435 case MCLOH_AdrpLdrGot:
436 LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n"
437 << '\t' << MI << '\t' << *Info.MI0);
438 AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
439 break;
440 case MCLOH_AdrpAdrp:
441 llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
445 handleClobber(Info);
446 Info.LastADRP = &MI;
449 static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
450 LOHInfo *LOHInfos) {
451 if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
452 return;
453 int Idx = mapRegToGPRIndex(Reg);
454 if (Idx >= 0)
455 handleClobber(LOHInfos[Idx]);
458 static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
459 // Handle defs and regmasks.
460 for (const MachineOperand &MO : MI.operands()) {
461 if (MO.isRegMask()) {
462 const uint32_t *RegMask = MO.getRegMask();
463 for (MCPhysReg Reg : AArch64::GPR32RegClass)
464 handleRegMaskClobber(RegMask, Reg, LOHInfos);
465 for (MCPhysReg Reg : AArch64::GPR64RegClass)
466 handleRegMaskClobber(RegMask, Reg, LOHInfos);
467 continue;
469 if (!MO.isReg() || !MO.isDef())
470 continue;
471 int Idx = mapRegToGPRIndex(MO.getReg());
472 if (Idx < 0)
473 continue;
474 handleClobber(LOHInfos[Idx]);
476 // Handle uses.
477 for (const MachineOperand &MO : MI.uses()) {
478 if (!MO.isReg() || !MO.readsReg())
479 continue;
480 int Idx = mapRegToGPRIndex(MO.getReg());
481 if (Idx < 0)
482 continue;
483 handleUse(MI, MO, LOHInfos[Idx]);
487 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
488 if (skipFunction(MF.getFunction()))
489 return false;
491 LLVM_DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
492 << "Looking in function " << MF.getName() << '\n');
494 LOHInfo LOHInfos[N_GPR_REGS];
495 AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
496 for (const MachineBasicBlock &MBB : MF) {
497 // Reset register tracking state.
498 memset(LOHInfos, 0, sizeof(LOHInfos));
499 // Live-out registers are used.
500 for (const MachineBasicBlock *Succ : MBB.successors()) {
501 for (const auto &LI : Succ->liveins()) {
502 int RegIdx = mapRegToGPRIndex(LI.PhysReg);
503 if (RegIdx >= 0)
504 LOHInfos[RegIdx].OneUser = true;
508 // Walk the basic block backwards and update the per register state machine
509 // in the process.
510 for (const MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
511 unsigned Opcode = MI.getOpcode();
512 switch (Opcode) {
513 case AArch64::ADDXri:
514 case AArch64::LDRXui:
515 if (canDefBePartOfLOH(MI)) {
516 const MachineOperand &Def = MI.getOperand(0);
517 const MachineOperand &Op = MI.getOperand(1);
518 assert(Def.isReg() && Def.isDef() && "Expected reg def");
519 assert(Op.isReg() && Op.isUse() && "Expected reg use");
520 int DefIdx = mapRegToGPRIndex(Def.getReg());
521 int OpIdx = mapRegToGPRIndex(Op.getReg());
522 if (DefIdx >= 0 && OpIdx >= 0 &&
523 handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
524 continue;
526 break;
527 case AArch64::ADRP:
528 const MachineOperand &Op0 = MI.getOperand(0);
529 int Idx = mapRegToGPRIndex(Op0.getReg());
530 if (Idx >= 0) {
531 handleADRP(MI, AFI, LOHInfos[Idx]);
532 continue;
534 break;
536 handleNormalInst(MI, LOHInfos);
540 // Return "no change": The pass only collects information.
541 return false;
544 FunctionPass *llvm::createAArch64CollectLOHPass() {
545 return new AArch64CollectLOH();