[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AArch64 / AArch64SIMDInstrOpt.cpp
blob28a7e680849b0ac70af3c83a85b4dad1521c64c5
1 //
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file contains a pass that performs optimization on SIMD instructions
9 // with high latency by splitting them into more efficient series of
10 // instructions.
12 // 1. Rewrite certain SIMD instructions with vector element due to their
13 // inefficiency on some targets.
15 // For example:
16 // fmla v0.4s, v1.4s, v2.s[1]
18 // Is rewritten into:
19 // dup v3.4s, v2.s[1]
20 // fmla v0.4s, v1.4s, v3.4s
22 // 2. Rewrite interleaved memory access instructions due to their
23 // inefficiency on some targets.
25 // For example:
26 // st2 {v0.4s, v1.4s}, addr
28 // Is rewritten into:
29 // zip1 v2.4s, v0.4s, v1.4s
30 // zip2 v3.4s, v0.4s, v1.4s
31 // stp q2, q3, addr
33 //===----------------------------------------------------------------------===//
35 #include "AArch64InstrInfo.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include <unordered_map>
54 using namespace llvm;
56 #define DEBUG_TYPE "aarch64-simdinstr-opt"
58 STATISTIC(NumModifiedInstr,
59 "Number of SIMD instructions modified");
61 #define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \
62 "AArch64 SIMD instructions optimization pass"
64 namespace {
66 struct AArch64SIMDInstrOpt : public MachineFunctionPass {
67 static char ID;
69 const TargetInstrInfo *TII;
70 MachineRegisterInfo *MRI;
71 TargetSchedModel SchedModel;
73 // The two maps below are used to cache decisions instead of recomputing:
74 // This is used to cache instruction replacement decisions within function
75 // units and across function units.
76 std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
77 // This is used to cache the decision of whether to leave the interleaved
78 // store instructions replacement pass early or not for a particular target.
79 std::unordered_map<std::string, bool> InterlEarlyExit;
81 typedef enum {
82 VectorElem,
83 Interleave
84 } Subpass;
86 // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
87 struct InstReplInfo {
88 unsigned OrigOpc;
89 std::vector<unsigned> ReplOpc;
90 const TargetRegisterClass RC;
93 #define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
94 {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
95 #define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
96 OpcR7, OpcR8, OpcR9, RC) \
97 {OpcOrg, \
98 {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
100 // The Instruction Replacement Table:
101 std::vector<InstReplInfo> IRT = {
102 // ST2 instructions
103 RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
104 AArch64::STPQi, AArch64::FPR128RegClass),
105 RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
106 AArch64::STPQi, AArch64::FPR128RegClass),
107 RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
108 AArch64::STPDi, AArch64::FPR64RegClass),
109 RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
110 AArch64::STPQi, AArch64::FPR128RegClass),
111 RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
112 AArch64::STPDi, AArch64::FPR64RegClass),
113 RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
114 AArch64::STPQi, AArch64::FPR128RegClass),
115 RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
116 AArch64::STPDi, AArch64::FPR64RegClass),
117 // ST4 instructions
118 RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
119 AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
120 AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
121 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
122 RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
123 AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
124 AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
125 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
126 RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
127 AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
128 AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
129 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
130 RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
131 AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
132 AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
133 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
134 RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
135 AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
136 AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
137 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
138 RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
139 AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
140 AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
141 AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
142 RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
143 AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
144 AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
145 AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
148 // A costly instruction is replaced in this work by N efficient instructions
149 // The maximum of N is curently 10 and it is for ST4 case.
150 static const unsigned MaxNumRepl = 10;
152 AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
153 initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
156 /// Based only on latency of instructions, determine if it is cost efficient
157 /// to replace the instruction InstDesc by the instructions stored in the
158 /// array InstDescRepl.
159 /// Return true if replacement is expected to be faster.
160 bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
161 SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
163 /// Determine if we need to exit the instruction replacement optimization
164 /// passes early. This makes sure that no compile time is spent in this pass
165 /// for targets with no need for any of these optimizations.
166 /// Return true if early exit of the pass is recommended.
167 bool shouldExitEarly(MachineFunction *MF, Subpass SP);
169 /// Check whether an equivalent DUP instruction has already been
170 /// created or not.
171 /// Return true when the DUP instruction already exists. In this case,
172 /// DestReg will point to the destination of the already created DUP.
173 bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
174 unsigned LaneNumber, unsigned *DestReg) const;
176 /// Certain SIMD instructions with vector element operand are not efficient.
177 /// Rewrite them into SIMD instructions with vector operands. This rewrite
178 /// is driven by the latency of the instructions.
179 /// Return true if the SIMD instruction is modified.
180 bool optimizeVectElement(MachineInstr &MI);
182 /// Process The REG_SEQUENCE instruction, and extract the source
183 /// operands of the ST2/4 instruction from it.
184 /// Example of such instructions.
185 /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
186 /// Return true when the instruction is processed successfully.
187 bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
188 unsigned* StRegKill, unsigned NumArg) const;
190 /// Load/Store Interleaving instructions are not always beneficial.
191 /// Replace them by ZIP instructionand classical load/store.
192 /// Return true if the SIMD instruction is modified.
193 bool optimizeLdStInterleave(MachineInstr &MI);
195 /// Return the number of useful source registers for this
196 /// instruction (2 for ST2 and 4 for ST4).
197 unsigned determineSrcReg(MachineInstr &MI) const;
199 bool runOnMachineFunction(MachineFunction &Fn) override;
201 StringRef getPassName() const override {
202 return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
206 char AArch64SIMDInstrOpt::ID = 0;
208 } // end anonymous namespace
210 INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
211 AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
213 /// Based only on latency of instructions, determine if it is cost efficient
214 /// to replace the instruction InstDesc by the instructions stored in the
215 /// array InstDescRepl.
216 /// Return true if replacement is expected to be faster.
217 bool AArch64SIMDInstrOpt::
218 shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
219 SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
220 // Check if replacement decision is already available in the cached table.
221 // if so, return it.
222 std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
223 auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
224 if (SIMDInstrTable.find(InstID) != SIMDInstrTable.end())
225 return SIMDInstrTable[InstID];
227 unsigned SCIdx = InstDesc->getSchedClass();
228 const MCSchedClassDesc *SCDesc =
229 SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
231 // If a target does not define resources for the instructions
232 // of interest, then return false for no replacement.
233 const MCSchedClassDesc *SCDescRepl;
234 if (!SCDesc->isValid() || SCDesc->isVariant())
236 SIMDInstrTable[InstID] = false;
237 return false;
239 for (auto IDesc : InstDescRepl)
241 SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
242 IDesc->getSchedClass());
243 if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
245 SIMDInstrTable[InstID] = false;
246 return false;
250 // Replacement cost.
251 unsigned ReplCost = 0;
252 for (auto IDesc :InstDescRepl)
253 ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
255 if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
257 SIMDInstrTable[InstID] = true;
258 return true;
260 else
262 SIMDInstrTable[InstID] = false;
263 return false;
267 /// Determine if we need to exit this pass for a kind of instruction replacement
268 /// early. This makes sure that no compile time is spent in this pass for
269 /// targets with no need for any of these optimizations beyond performing this
270 /// check.
271 /// Return true if early exit of this pass for a kind of instruction
272 /// replacement is recommended for a target.
273 bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
274 const MCInstrDesc* OriginalMCID;
275 SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
277 switch (SP) {
278 // For this optimization, check by comparing the latency of a representative
279 // instruction to that of the replacement instructions.
280 // TODO: check for all concerned instructions.
281 case VectorElem:
282 OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
283 ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
284 ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
285 if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
286 return false;
287 break;
289 // For this optimization, check for all concerned instructions.
290 case Interleave:
291 std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
292 if (InterlEarlyExit.find(Subtarget) != InterlEarlyExit.end())
293 return InterlEarlyExit[Subtarget];
295 for (auto &I : IRT) {
296 OriginalMCID = &TII->get(I.OrigOpc);
297 for (auto &Repl : I.ReplOpc)
298 ReplInstrMCID.push_back(&TII->get(Repl));
299 if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
300 InterlEarlyExit[Subtarget] = false;
301 return false;
303 ReplInstrMCID.clear();
305 InterlEarlyExit[Subtarget] = true;
306 break;
309 return true;
312 /// Check whether an equivalent DUP instruction has already been
313 /// created or not.
314 /// Return true when the DUP instruction already exists. In this case,
315 /// DestReg will point to the destination of the already created DUP.
316 bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
317 unsigned SrcReg, unsigned LaneNumber,
318 unsigned *DestReg) const {
319 for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
320 MII != MIE;) {
321 MII--;
322 MachineInstr *CurrentMI = &*MII;
324 if (CurrentMI->getOpcode() == DupOpcode &&
325 CurrentMI->getNumOperands() == 3 &&
326 CurrentMI->getOperand(1).getReg() == SrcReg &&
327 CurrentMI->getOperand(2).getImm() == LaneNumber) {
328 *DestReg = CurrentMI->getOperand(0).getReg();
329 return true;
333 return false;
336 /// Certain SIMD instructions with vector element operand are not efficient.
337 /// Rewrite them into SIMD instructions with vector operands. This rewrite
338 /// is driven by the latency of the instructions.
339 /// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
340 /// and FMULX and hence they are hardcoded.
342 /// For example:
343 /// fmla v0.4s, v1.4s, v2.s[1]
345 /// Is rewritten into
346 /// dup v3.4s, v2.s[1] // DUP not necessary if redundant
347 /// fmla v0.4s, v1.4s, v3.4s
349 /// Return true if the SIMD instruction is modified.
350 bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
351 const MCInstrDesc *MulMCID, *DupMCID;
352 const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
354 switch (MI.getOpcode()) {
355 default:
356 return false;
358 // 4X32 instructions
359 case AArch64::FMLAv4i32_indexed:
360 DupMCID = &TII->get(AArch64::DUPv4i32lane);
361 MulMCID = &TII->get(AArch64::FMLAv4f32);
362 break;
363 case AArch64::FMLSv4i32_indexed:
364 DupMCID = &TII->get(AArch64::DUPv4i32lane);
365 MulMCID = &TII->get(AArch64::FMLSv4f32);
366 break;
367 case AArch64::FMULXv4i32_indexed:
368 DupMCID = &TII->get(AArch64::DUPv4i32lane);
369 MulMCID = &TII->get(AArch64::FMULXv4f32);
370 break;
371 case AArch64::FMULv4i32_indexed:
372 DupMCID = &TII->get(AArch64::DUPv4i32lane);
373 MulMCID = &TII->get(AArch64::FMULv4f32);
374 break;
376 // 2X64 instructions
377 case AArch64::FMLAv2i64_indexed:
378 DupMCID = &TII->get(AArch64::DUPv2i64lane);
379 MulMCID = &TII->get(AArch64::FMLAv2f64);
380 break;
381 case AArch64::FMLSv2i64_indexed:
382 DupMCID = &TII->get(AArch64::DUPv2i64lane);
383 MulMCID = &TII->get(AArch64::FMLSv2f64);
384 break;
385 case AArch64::FMULXv2i64_indexed:
386 DupMCID = &TII->get(AArch64::DUPv2i64lane);
387 MulMCID = &TII->get(AArch64::FMULXv2f64);
388 break;
389 case AArch64::FMULv2i64_indexed:
390 DupMCID = &TII->get(AArch64::DUPv2i64lane);
391 MulMCID = &TII->get(AArch64::FMULv2f64);
392 break;
394 // 2X32 instructions
395 case AArch64::FMLAv2i32_indexed:
396 RC = &AArch64::FPR64RegClass;
397 DupMCID = &TII->get(AArch64::DUPv2i32lane);
398 MulMCID = &TII->get(AArch64::FMLAv2f32);
399 break;
400 case AArch64::FMLSv2i32_indexed:
401 RC = &AArch64::FPR64RegClass;
402 DupMCID = &TII->get(AArch64::DUPv2i32lane);
403 MulMCID = &TII->get(AArch64::FMLSv2f32);
404 break;
405 case AArch64::FMULXv2i32_indexed:
406 RC = &AArch64::FPR64RegClass;
407 DupMCID = &TII->get(AArch64::DUPv2i32lane);
408 MulMCID = &TII->get(AArch64::FMULXv2f32);
409 break;
410 case AArch64::FMULv2i32_indexed:
411 RC = &AArch64::FPR64RegClass;
412 DupMCID = &TII->get(AArch64::DUPv2i32lane);
413 MulMCID = &TII->get(AArch64::FMULv2f32);
414 break;
417 SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
418 ReplInstrMCID.push_back(DupMCID);
419 ReplInstrMCID.push_back(MulMCID);
420 if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
421 ReplInstrMCID))
422 return false;
424 const DebugLoc &DL = MI.getDebugLoc();
425 MachineBasicBlock &MBB = *MI.getParent();
426 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
428 // Get the operands of the current SIMD arithmetic instruction.
429 Register MulDest = MI.getOperand(0).getReg();
430 Register SrcReg0 = MI.getOperand(1).getReg();
431 unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
432 Register SrcReg1 = MI.getOperand(2).getReg();
433 unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
434 unsigned DupDest;
436 // Instructions of interest have either 4 or 5 operands.
437 if (MI.getNumOperands() == 5) {
438 Register SrcReg2 = MI.getOperand(3).getReg();
439 unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
440 unsigned LaneNumber = MI.getOperand(4).getImm();
441 // Create a new DUP instruction. Note that if an equivalent DUP instruction
442 // has already been created before, then use that one instead of creating
443 // a new one.
444 if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
445 DupDest = MRI.createVirtualRegister(RC);
446 BuildMI(MBB, MI, DL, *DupMCID, DupDest)
447 .addReg(SrcReg2, Src2IsKill)
448 .addImm(LaneNumber);
450 BuildMI(MBB, MI, DL, *MulMCID, MulDest)
451 .addReg(SrcReg0, Src0IsKill)
452 .addReg(SrcReg1, Src1IsKill)
453 .addReg(DupDest, Src2IsKill);
454 } else if (MI.getNumOperands() == 4) {
455 unsigned LaneNumber = MI.getOperand(3).getImm();
456 if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
457 DupDest = MRI.createVirtualRegister(RC);
458 BuildMI(MBB, MI, DL, *DupMCID, DupDest)
459 .addReg(SrcReg1, Src1IsKill)
460 .addImm(LaneNumber);
462 BuildMI(MBB, MI, DL, *MulMCID, MulDest)
463 .addReg(SrcReg0, Src0IsKill)
464 .addReg(DupDest, Src1IsKill);
465 } else {
466 return false;
469 ++NumModifiedInstr;
470 return true;
473 /// Load/Store Interleaving instructions are not always beneficial.
474 /// Replace them by ZIP instructions and classical load/store.
476 /// For example:
477 /// st2 {v0.4s, v1.4s}, addr
479 /// Is rewritten into:
480 /// zip1 v2.4s, v0.4s, v1.4s
481 /// zip2 v3.4s, v0.4s, v1.4s
482 /// stp q2, q3, addr
484 /// For example:
485 /// st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
487 /// Is rewritten into:
488 /// zip1 v4.4s, v0.4s, v2.4s
489 /// zip2 v5.4s, v0.4s, v2.4s
490 /// zip1 v6.4s, v1.4s, v3.4s
491 /// zip2 v7.4s, v1.4s, v3.4s
492 /// zip1 v8.4s, v4.4s, v6.4s
493 /// zip2 v9.4s, v4.4s, v6.4s
494 /// zip1 v10.4s, v5.4s, v7.4s
495 /// zip2 v11.4s, v5.4s, v7.4s
496 /// stp q8, q9, addr
497 /// stp q10, q11, addr+32
499 /// Currently only instructions related to ST2 and ST4 are considered.
500 /// Other may be added later.
501 /// Return true if the SIMD instruction is modified.
502 bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
504 unsigned SeqReg, AddrReg;
505 unsigned StReg[4], StRegKill[4];
506 MachineInstr *DefiningMI;
507 const DebugLoc &DL = MI.getDebugLoc();
508 MachineBasicBlock &MBB = *MI.getParent();
509 SmallVector<unsigned, MaxNumRepl> ZipDest;
510 SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
512 // If current instruction matches any of the rewriting rules, then
513 // gather information about parameters of the new instructions.
514 bool Match = false;
515 for (auto &I : IRT) {
516 if (MI.getOpcode() == I.OrigOpc) {
517 SeqReg = MI.getOperand(0).getReg();
518 AddrReg = MI.getOperand(1).getReg();
519 DefiningMI = MRI->getUniqueVRegDef(SeqReg);
520 unsigned NumReg = determineSrcReg(MI);
521 if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
522 return false;
524 for (auto &Repl : I.ReplOpc) {
525 ReplInstrMCID.push_back(&TII->get(Repl));
526 // Generate destination registers but only for non-store instruction.
527 if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
528 ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
530 Match = true;
531 break;
535 if (!Match)
536 return false;
538 // Determine if it is profitable to replace MI by the series of instructions
539 // represented in ReplInstrMCID.
540 if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
541 ReplInstrMCID))
542 return false;
544 // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
545 // this point, the code generation is hardcoded and does not rely on the IRT
546 // table used above given that code generation for ST2 replacement is somewhat
547 // different than for ST4 replacement. We could have added more info into the
548 // table related to how we build new instructions but we may be adding more
549 // complexity with that).
550 switch (MI.getOpcode()) {
551 default:
552 return false;
554 case AArch64::ST2Twov16b:
555 case AArch64::ST2Twov8b:
556 case AArch64::ST2Twov8h:
557 case AArch64::ST2Twov4h:
558 case AArch64::ST2Twov4s:
559 case AArch64::ST2Twov2s:
560 case AArch64::ST2Twov2d:
561 // ZIP instructions
562 BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
563 .addReg(StReg[0])
564 .addReg(StReg[1]);
565 BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
566 .addReg(StReg[0], StRegKill[0])
567 .addReg(StReg[1], StRegKill[1]);
568 // STP instructions
569 BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
570 .addReg(ZipDest[0])
571 .addReg(ZipDest[1])
572 .addReg(AddrReg)
573 .addImm(0);
574 break;
576 case AArch64::ST4Fourv16b:
577 case AArch64::ST4Fourv8b:
578 case AArch64::ST4Fourv8h:
579 case AArch64::ST4Fourv4h:
580 case AArch64::ST4Fourv4s:
581 case AArch64::ST4Fourv2s:
582 case AArch64::ST4Fourv2d:
583 // ZIP instructions
584 BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
585 .addReg(StReg[0])
586 .addReg(StReg[2]);
587 BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
588 .addReg(StReg[0], StRegKill[0])
589 .addReg(StReg[2], StRegKill[2]);
590 BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
591 .addReg(StReg[1])
592 .addReg(StReg[3]);
593 BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
594 .addReg(StReg[1], StRegKill[1])
595 .addReg(StReg[3], StRegKill[3]);
596 BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
597 .addReg(ZipDest[0])
598 .addReg(ZipDest[2]);
599 BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
600 .addReg(ZipDest[0])
601 .addReg(ZipDest[2]);
602 BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
603 .addReg(ZipDest[1])
604 .addReg(ZipDest[3]);
605 BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
606 .addReg(ZipDest[1])
607 .addReg(ZipDest[3]);
608 // stp instructions
609 BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
610 .addReg(ZipDest[4])
611 .addReg(ZipDest[5])
612 .addReg(AddrReg)
613 .addImm(0);
614 BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
615 .addReg(ZipDest[6])
616 .addReg(ZipDest[7])
617 .addReg(AddrReg)
618 .addImm(2);
619 break;
622 ++NumModifiedInstr;
623 return true;
626 /// Process The REG_SEQUENCE instruction, and extract the source
627 /// operands of the ST2/4 instruction from it.
628 /// Example of such instruction.
629 /// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
630 /// Return true when the instruction is processed successfully.
631 bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
632 unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
633 assert (DefiningMI != NULL);
634 if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
635 return false;
637 for (unsigned i=0; i<NumArg; i++) {
638 StReg[i] = DefiningMI->getOperand(2*i+1).getReg();
639 StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
641 // Sanity check for the other arguments.
642 if (DefiningMI->getOperand(2*i+2).isImm()) {
643 switch (DefiningMI->getOperand(2*i+2).getImm()) {
644 default:
645 return false;
647 case AArch64::dsub0:
648 case AArch64::dsub1:
649 case AArch64::dsub2:
650 case AArch64::dsub3:
651 case AArch64::qsub0:
652 case AArch64::qsub1:
653 case AArch64::qsub2:
654 case AArch64::qsub3:
655 break;
658 else
659 return false;
661 return true;
664 /// Return the number of useful source registers for this instruction
665 /// (2 for ST2 and 4 for ST4).
666 unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
667 switch (MI.getOpcode()) {
668 default:
669 llvm_unreachable("Unsupported instruction for this pass");
671 case AArch64::ST2Twov16b:
672 case AArch64::ST2Twov8b:
673 case AArch64::ST2Twov8h:
674 case AArch64::ST2Twov4h:
675 case AArch64::ST2Twov4s:
676 case AArch64::ST2Twov2s:
677 case AArch64::ST2Twov2d:
678 return 2;
680 case AArch64::ST4Fourv16b:
681 case AArch64::ST4Fourv8b:
682 case AArch64::ST4Fourv8h:
683 case AArch64::ST4Fourv4h:
684 case AArch64::ST4Fourv4s:
685 case AArch64::ST4Fourv2s:
686 case AArch64::ST4Fourv2d:
687 return 4;
691 bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
692 if (skipFunction(MF.getFunction()))
693 return false;
695 TII = MF.getSubtarget().getInstrInfo();
696 MRI = &MF.getRegInfo();
697 const TargetSubtargetInfo &ST = MF.getSubtarget();
698 const AArch64InstrInfo *AAII =
699 static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
700 if (!AAII)
701 return false;
702 SchedModel.init(&ST);
703 if (!SchedModel.hasInstrSchedModel())
704 return false;
706 bool Changed = false;
707 for (auto OptimizationKind : {VectorElem, Interleave}) {
708 if (!shouldExitEarly(&MF, OptimizationKind)) {
709 SmallVector<MachineInstr *, 8> RemoveMIs;
710 for (MachineBasicBlock &MBB : MF) {
711 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
712 MII != MIE;) {
713 MachineInstr &MI = *MII;
714 bool InstRewrite;
715 if (OptimizationKind == VectorElem)
716 InstRewrite = optimizeVectElement(MI) ;
717 else
718 InstRewrite = optimizeLdStInterleave(MI);
719 if (InstRewrite) {
720 // Add MI to the list of instructions to be removed given that it
721 // has been replaced.
722 RemoveMIs.push_back(&MI);
723 Changed = true;
725 ++MII;
728 for (MachineInstr *MI : RemoveMIs)
729 MI->eraseFromParent();
733 return Changed;
736 /// Returns an instance of the high cost ASIMD instruction replacement
737 /// optimization pass.
738 FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
739 return new AArch64SIMDInstrOpt();