1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "AArch64ExpandImm.h"
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/LoopInfo.h"
13 #include "llvm/Analysis/TargetTransformInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/TargetLowering.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/Support/Debug.h"
22 #define DEBUG_TYPE "aarch64tti"
24 static cl::opt
<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
25 cl::init(true), cl::Hidden
);
27 bool AArch64TTIImpl::areInlineCompatible(const Function
*Caller
,
28 const Function
*Callee
) const {
29 const TargetMachine
&TM
= getTLI()->getTargetMachine();
31 const FeatureBitset
&CallerBits
=
32 TM
.getSubtargetImpl(*Caller
)->getFeatureBits();
33 const FeatureBitset
&CalleeBits
=
34 TM
.getSubtargetImpl(*Callee
)->getFeatureBits();
36 // Inline a callee if its target-features are a subset of the callers
38 return (CallerBits
& CalleeBits
) == CalleeBits
;
41 /// Calculate the cost of materializing a 64-bit value. This helper
42 /// method might only calculate a fraction of a larger immediate. Therefore it
43 /// is valid to return a cost of ZERO.
44 int AArch64TTIImpl::getIntImmCost(int64_t Val
) {
45 // Check if the immediate can be encoded within an instruction.
46 if (Val
== 0 || AArch64_AM::isLogicalImmediate(Val
, 64))
52 // Calculate how many moves we will need to materialize this constant.
53 SmallVector
<AArch64_IMM::ImmInsnModel
, 4> Insn
;
54 AArch64_IMM::expandMOVImm(Val
, 64, Insn
);
58 /// Calculate the cost of materializing the given constant.
59 int AArch64TTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
) {
60 assert(Ty
->isIntegerTy());
62 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
66 // Sign-extend all constants to a multiple of 64-bit.
69 ImmVal
= Imm
.sext((BitSize
+ 63) & ~0x3fU
);
71 // Split the constant into 64-bit chunks and calculate the cost for each
74 for (unsigned ShiftVal
= 0; ShiftVal
< BitSize
; ShiftVal
+= 64) {
75 APInt Tmp
= ImmVal
.ashr(ShiftVal
).sextOrTrunc(64);
76 int64_t Val
= Tmp
.getSExtValue();
77 Cost
+= getIntImmCost(Val
);
79 // We need at least one instruction to materialze the constant.
80 return std::max(1, Cost
);
83 int AArch64TTIImpl::getIntImmCost(unsigned Opcode
, unsigned Idx
,
84 const APInt
&Imm
, Type
*Ty
) {
85 assert(Ty
->isIntegerTy());
87 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
88 // There is no cost model for constants with a bit size of 0. Return TCC_Free
89 // here, so that constant hoisting will ignore this constant.
93 unsigned ImmIdx
= ~0U;
97 case Instruction::GetElementPtr
:
98 // Always hoist the base address of a GetElementPtr.
100 return 2 * TTI::TCC_Basic
;
101 return TTI::TCC_Free
;
102 case Instruction::Store
:
105 case Instruction::Add
:
106 case Instruction::Sub
:
107 case Instruction::Mul
:
108 case Instruction::UDiv
:
109 case Instruction::SDiv
:
110 case Instruction::URem
:
111 case Instruction::SRem
:
112 case Instruction::And
:
113 case Instruction::Or
:
114 case Instruction::Xor
:
115 case Instruction::ICmp
:
118 // Always return TCC_Free for the shift value of a shift instruction.
119 case Instruction::Shl
:
120 case Instruction::LShr
:
121 case Instruction::AShr
:
123 return TTI::TCC_Free
;
125 case Instruction::Trunc
:
126 case Instruction::ZExt
:
127 case Instruction::SExt
:
128 case Instruction::IntToPtr
:
129 case Instruction::PtrToInt
:
130 case Instruction::BitCast
:
131 case Instruction::PHI
:
132 case Instruction::Call
:
133 case Instruction::Select
:
134 case Instruction::Ret
:
135 case Instruction::Load
:
140 int NumConstants
= (BitSize
+ 63) / 64;
141 int Cost
= AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
142 return (Cost
<= NumConstants
* TTI::TCC_Basic
)
143 ? static_cast<int>(TTI::TCC_Free
)
146 return AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
149 int AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID
, unsigned Idx
,
150 const APInt
&Imm
, Type
*Ty
) {
151 assert(Ty
->isIntegerTy());
153 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
154 // There is no cost model for constants with a bit size of 0. Return TCC_Free
155 // here, so that constant hoisting will ignore this constant.
157 return TTI::TCC_Free
;
161 return TTI::TCC_Free
;
162 case Intrinsic::sadd_with_overflow
:
163 case Intrinsic::uadd_with_overflow
:
164 case Intrinsic::ssub_with_overflow
:
165 case Intrinsic::usub_with_overflow
:
166 case Intrinsic::smul_with_overflow
:
167 case Intrinsic::umul_with_overflow
:
169 int NumConstants
= (BitSize
+ 63) / 64;
170 int Cost
= AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
171 return (Cost
<= NumConstants
* TTI::TCC_Basic
)
172 ? static_cast<int>(TTI::TCC_Free
)
176 case Intrinsic::experimental_stackmap
:
177 if ((Idx
< 2) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
178 return TTI::TCC_Free
;
180 case Intrinsic::experimental_patchpoint_void
:
181 case Intrinsic::experimental_patchpoint_i64
:
182 if ((Idx
< 4) || (Imm
.getBitWidth() <= 64 && isInt
<64>(Imm
.getSExtValue())))
183 return TTI::TCC_Free
;
186 return AArch64TTIImpl::getIntImmCost(Imm
, Ty
);
189 TargetTransformInfo::PopcntSupportKind
190 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth
) {
191 assert(isPowerOf2_32(TyWidth
) && "Ty width must be power of 2");
192 if (TyWidth
== 32 || TyWidth
== 64)
193 return TTI::PSK_FastHardware
;
194 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
195 return TTI::PSK_Software
;
198 bool AArch64TTIImpl::isWideningInstruction(Type
*DstTy
, unsigned Opcode
,
199 ArrayRef
<const Value
*> Args
) {
201 // A helper that returns a vector type from the given type. The number of
202 // elements in type Ty determine the vector width.
203 auto toVectorTy
= [&](Type
*ArgTy
) {
204 return VectorType::get(ArgTy
->getScalarType(),
205 DstTy
->getVectorNumElements());
208 // Exit early if DstTy is not a vector type whose elements are at least
210 if (!DstTy
->isVectorTy() || DstTy
->getScalarSizeInBits() < 16)
213 // Determine if the operation has a widening variant. We consider both the
214 // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
217 // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
218 // verify that their extending operands are eliminated during code
221 case Instruction::Add
: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
222 case Instruction::Sub
: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
228 // To be a widening instruction (either the "wide" or "long" versions), the
229 // second operand must be a sign- or zero extend having a single user. We
230 // only consider extends having a single user because they may otherwise not
232 if (Args
.size() != 2 ||
233 (!isa
<SExtInst
>(Args
[1]) && !isa
<ZExtInst
>(Args
[1])) ||
234 !Args
[1]->hasOneUse())
236 auto *Extend
= cast
<CastInst
>(Args
[1]);
238 // Legalize the destination type and ensure it can be used in a widening
240 auto DstTyL
= TLI
->getTypeLegalizationCost(DL
, DstTy
);
241 unsigned DstElTySize
= DstTyL
.second
.getScalarSizeInBits();
242 if (!DstTyL
.second
.isVector() || DstElTySize
!= DstTy
->getScalarSizeInBits())
245 // Legalize the source type and ensure it can be used in a widening
247 Type
*SrcTy
= toVectorTy(Extend
->getSrcTy());
248 auto SrcTyL
= TLI
->getTypeLegalizationCost(DL
, SrcTy
);
249 unsigned SrcElTySize
= SrcTyL
.second
.getScalarSizeInBits();
250 if (!SrcTyL
.second
.isVector() || SrcElTySize
!= SrcTy
->getScalarSizeInBits())
253 // Get the total number of vector elements in the legalized types.
254 unsigned NumDstEls
= DstTyL
.first
* DstTyL
.second
.getVectorNumElements();
255 unsigned NumSrcEls
= SrcTyL
.first
* SrcTyL
.second
.getVectorNumElements();
257 // Return true if the legalized types have the same number of vector elements
258 // and the destination element type size is twice that of the source type.
259 return NumDstEls
== NumSrcEls
&& 2 * SrcElTySize
== DstElTySize
;
262 int AArch64TTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
263 const Instruction
*I
) {
264 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
265 assert(ISD
&& "Invalid opcode");
267 // If the cast is observable, and it is used by a widening instruction (e.g.,
268 // uaddl, saddw, etc.), it may be free.
269 if (I
&& I
->hasOneUse()) {
270 auto *SingleUser
= cast
<Instruction
>(*I
->user_begin());
271 SmallVector
<const Value
*, 4> Operands(SingleUser
->operand_values());
272 if (isWideningInstruction(Dst
, SingleUser
->getOpcode(), Operands
)) {
273 // If the cast is the second operand, it is free. We will generate either
274 // a "wide" or "long" version of the widening instruction.
275 if (I
== SingleUser
->getOperand(1))
277 // If the cast is not the second operand, it will be free if it looks the
278 // same as the second operand. In this case, we will generate a "long"
279 // version of the widening instruction.
280 if (auto *Cast
= dyn_cast
<CastInst
>(SingleUser
->getOperand(1)))
281 if (I
->getOpcode() == unsigned(Cast
->getOpcode()) &&
282 cast
<CastInst
>(I
)->getSrcTy() == Cast
->getSrcTy())
287 EVT SrcTy
= TLI
->getValueType(DL
, Src
);
288 EVT DstTy
= TLI
->getValueType(DL
, Dst
);
290 if (!SrcTy
.isSimple() || !DstTy
.isSimple())
291 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
293 static const TypeConversionCostTblEntry
295 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i32
, 1 },
296 { ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i64
, 0 },
297 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 3 },
298 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i32
, 6 },
300 // The number of shll instructions for the extension.
301 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
302 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
303 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i32
, 2 },
304 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i32
, 2 },
305 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
306 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
307 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i16
, 2 },
308 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i16
, 2 },
309 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
310 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
311 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
312 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
313 { ISD::SIGN_EXTEND
, MVT::v16i16
, MVT::v16i8
, 2 },
314 { ISD::ZERO_EXTEND
, MVT::v16i16
, MVT::v16i8
, 2 },
315 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
316 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
318 // LowerVectorINT_TO_FP:
319 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
320 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
321 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 1 },
322 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
323 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
324 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i64
, 1 },
327 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
328 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 3 },
329 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 2 },
330 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
331 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 3 },
332 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i64
, 2 },
335 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 4 },
336 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
337 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
338 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
341 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 10 },
342 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
343 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i8
, 10 },
344 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
346 // Complex: to v16f32
347 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i8
, 21 },
348 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i8
, 21 },
351 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
352 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 4 },
353 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
354 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
355 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 4 },
356 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
359 // LowerVectorFP_TO_INT
360 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f32
, 1 },
361 { ISD::FP_TO_SINT
, MVT::v4i32
, MVT::v4f32
, 1 },
362 { ISD::FP_TO_SINT
, MVT::v2i64
, MVT::v2f64
, 1 },
363 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f32
, 1 },
364 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f32
, 1 },
365 { ISD::FP_TO_UINT
, MVT::v2i64
, MVT::v2f64
, 1 },
367 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
368 { ISD::FP_TO_SINT
, MVT::v2i64
, MVT::v2f32
, 2 },
369 { ISD::FP_TO_SINT
, MVT::v2i16
, MVT::v2f32
, 1 },
370 { ISD::FP_TO_SINT
, MVT::v2i8
, MVT::v2f32
, 1 },
371 { ISD::FP_TO_UINT
, MVT::v2i64
, MVT::v2f32
, 2 },
372 { ISD::FP_TO_UINT
, MVT::v2i16
, MVT::v2f32
, 1 },
373 { ISD::FP_TO_UINT
, MVT::v2i8
, MVT::v2f32
, 1 },
375 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
376 { ISD::FP_TO_SINT
, MVT::v4i16
, MVT::v4f32
, 2 },
377 { ISD::FP_TO_SINT
, MVT::v4i8
, MVT::v4f32
, 2 },
378 { ISD::FP_TO_UINT
, MVT::v4i16
, MVT::v4f32
, 2 },
379 { ISD::FP_TO_UINT
, MVT::v4i8
, MVT::v4f32
, 2 },
381 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
382 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f64
, 2 },
383 { ISD::FP_TO_SINT
, MVT::v2i16
, MVT::v2f64
, 2 },
384 { ISD::FP_TO_SINT
, MVT::v2i8
, MVT::v2f64
, 2 },
385 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f64
, 2 },
386 { ISD::FP_TO_UINT
, MVT::v2i16
, MVT::v2f64
, 2 },
387 { ISD::FP_TO_UINT
, MVT::v2i8
, MVT::v2f64
, 2 },
390 if (const auto *Entry
= ConvertCostTableLookup(ConversionTbl
, ISD
,
392 SrcTy
.getSimpleVT()))
395 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
398 int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
402 // Make sure we were given a valid extend opcode.
403 assert((Opcode
== Instruction::SExt
|| Opcode
== Instruction::ZExt
) &&
406 // We are extending an element we extract from a vector, so the source type
407 // of the extend is the element type of the vector.
408 auto *Src
= VecTy
->getElementType();
410 // Sign- and zero-extends are for integer types only.
411 assert(isa
<IntegerType
>(Dst
) && isa
<IntegerType
>(Src
) && "Invalid type");
413 // Get the cost for the extract. We compute the cost (if any) for the extend
415 auto Cost
= getVectorInstrCost(Instruction::ExtractElement
, VecTy
, Index
);
417 // Legalize the types.
418 auto VecLT
= TLI
->getTypeLegalizationCost(DL
, VecTy
);
419 auto DstVT
= TLI
->getValueType(DL
, Dst
);
420 auto SrcVT
= TLI
->getValueType(DL
, Src
);
422 // If the resulting type is still a vector and the destination type is legal,
423 // we may get the extension for free. If not, get the default cost for the
425 if (!VecLT
.second
.isVector() || !TLI
->isTypeLegal(DstVT
))
426 return Cost
+ getCastInstrCost(Opcode
, Dst
, Src
);
428 // The destination type should be larger than the element type. If not, get
429 // the default cost for the extend.
430 if (DstVT
.getSizeInBits() < SrcVT
.getSizeInBits())
431 return Cost
+ getCastInstrCost(Opcode
, Dst
, Src
);
435 llvm_unreachable("Opcode should be either SExt or ZExt");
437 // For sign-extends, we only need a smov, which performs the extension
439 case Instruction::SExt
:
442 // For zero-extends, the extend is performed automatically by a umov unless
443 // the destination type is i64 and the element type is i8 or i16.
444 case Instruction::ZExt
:
445 if (DstVT
.getSizeInBits() != 64u || SrcVT
.getSizeInBits() == 32u)
449 // If we are unable to perform the extend for free, get the default cost.
450 return Cost
+ getCastInstrCost(Opcode
, Dst
, Src
);
453 int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*Val
,
455 assert(Val
->isVectorTy() && "This must be a vector type");
458 // Legalize the type.
459 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Val
);
461 // This type is legalized to a scalar type.
462 if (!LT
.second
.isVector())
465 // The type may be split. Normalize the index to the new type.
466 unsigned Width
= LT
.second
.getVectorNumElements();
467 Index
= Index
% Width
;
469 // The element at index zero is already inside the vector.
474 // All other insert/extracts cost this much.
475 return ST
->getVectorInsertExtractBaseCost();
478 int AArch64TTIImpl::getArithmeticInstrCost(
479 unsigned Opcode
, Type
*Ty
, TTI::OperandValueKind Opd1Info
,
480 TTI::OperandValueKind Opd2Info
, TTI::OperandValueProperties Opd1PropInfo
,
481 TTI::OperandValueProperties Opd2PropInfo
, ArrayRef
<const Value
*> Args
) {
482 // Legalize the type.
483 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
485 // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
486 // add in the widening overhead specified by the sub-target. Since the
487 // extends feeding widening instructions are performed automatically, they
488 // aren't present in the generated code and have a zero cost. By adding a
489 // widening overhead here, we attach the total cost of the combined operation
490 // to the widening instruction.
492 if (isWideningInstruction(Ty
, Opcode
, Args
))
493 Cost
+= ST
->getWideningBaseCost();
495 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
499 return Cost
+ BaseT::getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
500 Opd1PropInfo
, Opd2PropInfo
);
502 if (Opd2Info
== TargetTransformInfo::OK_UniformConstantValue
&&
503 Opd2PropInfo
== TargetTransformInfo::OP_PowerOf2
) {
504 // On AArch64, scalar signed division by constants power-of-two are
505 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
506 // The OperandValue properties many not be same as that of previous
507 // operation; conservatively assume OP_None.
508 Cost
+= getArithmeticInstrCost(Instruction::Add
, Ty
, Opd1Info
, Opd2Info
,
509 TargetTransformInfo::OP_None
,
510 TargetTransformInfo::OP_None
);
511 Cost
+= getArithmeticInstrCost(Instruction::Sub
, Ty
, Opd1Info
, Opd2Info
,
512 TargetTransformInfo::OP_None
,
513 TargetTransformInfo::OP_None
);
514 Cost
+= getArithmeticInstrCost(Instruction::Select
, Ty
, Opd1Info
, Opd2Info
,
515 TargetTransformInfo::OP_None
,
516 TargetTransformInfo::OP_None
);
517 Cost
+= getArithmeticInstrCost(Instruction::AShr
, Ty
, Opd1Info
, Opd2Info
,
518 TargetTransformInfo::OP_None
,
519 TargetTransformInfo::OP_None
);
524 if (Opd2Info
== TargetTransformInfo::OK_UniformConstantValue
) {
525 auto VT
= TLI
->getValueType(DL
, Ty
);
526 if (TLI
->isOperationLegalOrCustom(ISD::MULHU
, VT
)) {
527 // Vector signed division by constant are expanded to the
528 // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
529 // to MULHS + SUB + SRL + ADD + SRL.
530 int MulCost
= getArithmeticInstrCost(Instruction::Mul
, Ty
, Opd1Info
,
532 TargetTransformInfo::OP_None
,
533 TargetTransformInfo::OP_None
);
534 int AddCost
= getArithmeticInstrCost(Instruction::Add
, Ty
, Opd1Info
,
536 TargetTransformInfo::OP_None
,
537 TargetTransformInfo::OP_None
);
538 int ShrCost
= getArithmeticInstrCost(Instruction::AShr
, Ty
, Opd1Info
,
540 TargetTransformInfo::OP_None
,
541 TargetTransformInfo::OP_None
);
542 return MulCost
* 2 + AddCost
* 2 + ShrCost
* 2 + 1;
546 Cost
+= BaseT::getArithmeticInstrCost(Opcode
, Ty
, Opd1Info
, Opd2Info
,
547 Opd1PropInfo
, Opd2PropInfo
);
548 if (Ty
->isVectorTy()) {
549 // On AArch64, vector divisions are not supported natively and are
550 // expanded into scalar divisions of each pair of elements.
551 Cost
+= getArithmeticInstrCost(Instruction::ExtractElement
, Ty
, Opd1Info
,
552 Opd2Info
, Opd1PropInfo
, Opd2PropInfo
);
553 Cost
+= getArithmeticInstrCost(Instruction::InsertElement
, Ty
, Opd1Info
,
554 Opd2Info
, Opd1PropInfo
, Opd2PropInfo
);
555 // TODO: if one of the arguments is scalar, then it's not necessary to
556 // double the cost of handling the vector elements.
566 // These nodes are marked as 'custom' for combining purposes only.
567 // We know that they are legal. See LowerAdd in ISelLowering.
568 return (Cost
+ 1) * LT
.first
;
572 int AArch64TTIImpl::getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
,
574 // Address computations in vectorized code with non-consecutive addresses will
575 // likely result in more instructions compared to scalar code where the
576 // computation can more often be merged into the index mode. The resulting
577 // extra micro-ops can significantly decrease throughput.
578 unsigned NumVectorInstToHideOverhead
= 10;
579 int MaxMergeDistance
= 64;
581 if (Ty
->isVectorTy() && SE
&&
582 !BaseT::isConstantStridedAccessLessThan(SE
, Ptr
, MaxMergeDistance
+ 1))
583 return NumVectorInstToHideOverhead
;
585 // In many cases the address computation is not merged into the instruction
590 int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
,
591 Type
*CondTy
, const Instruction
*I
) {
593 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
594 // We don't lower some vector selects well that are wider than the register
596 if (ValTy
->isVectorTy() && ISD
== ISD::SELECT
) {
597 // We would need this many instructions to hide the scalarization happening.
598 const int AmortizationCost
= 20;
599 static const TypeConversionCostTblEntry
600 VectorSelectTbl
[] = {
601 { ISD::SELECT
, MVT::v16i1
, MVT::v16i16
, 16 },
602 { ISD::SELECT
, MVT::v8i1
, MVT::v8i32
, 8 },
603 { ISD::SELECT
, MVT::v16i1
, MVT::v16i32
, 16 },
604 { ISD::SELECT
, MVT::v4i1
, MVT::v4i64
, 4 * AmortizationCost
},
605 { ISD::SELECT
, MVT::v8i1
, MVT::v8i64
, 8 * AmortizationCost
},
606 { ISD::SELECT
, MVT::v16i1
, MVT::v16i64
, 16 * AmortizationCost
}
609 EVT SelCondTy
= TLI
->getValueType(DL
, CondTy
);
610 EVT SelValTy
= TLI
->getValueType(DL
, ValTy
);
611 if (SelCondTy
.isSimple() && SelValTy
.isSimple()) {
612 if (const auto *Entry
= ConvertCostTableLookup(VectorSelectTbl
, ISD
,
613 SelCondTy
.getSimpleVT(),
614 SelValTy
.getSimpleVT()))
618 return BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
621 AArch64TTIImpl::TTI::MemCmpExpansionOptions
622 AArch64TTIImpl::enableMemCmpExpansion(bool OptSize
, bool IsZeroCmp
) const {
623 TTI::MemCmpExpansionOptions Options
;
624 Options
.AllowOverlappingLoads
= !ST
->requiresStrictAlign();
625 Options
.MaxNumLoads
= TLI
->getMaxExpandSizeMemcmp(OptSize
);
626 Options
.NumLoadsPerBlock
= Options
.MaxNumLoads
;
627 // TODO: Though vector loads usually perform well on AArch64, in some targets
628 // they may wake up the FP unit, which raises the power consumption. Perhaps
629 // they could be used with no holds barred (-O3).
630 Options
.LoadSizes
= {8, 4, 2, 1};
634 int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Ty
,
635 unsigned Alignment
, unsigned AddressSpace
,
636 const Instruction
*I
) {
637 auto LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
639 if (ST
->isMisaligned128StoreSlow() && Opcode
== Instruction::Store
&&
640 LT
.second
.is128BitVector() && Alignment
< 16) {
641 // Unaligned stores are extremely inefficient. We don't split all
642 // unaligned 128-bit stores because the negative impact that has shown in
643 // practice on inlined block copy code.
644 // We make such stores expensive so that we will only vectorize if there
645 // are 6 other instructions getting vectorized.
646 const int AmortizationCost
= 6;
648 return LT
.first
* 2 * AmortizationCost
;
651 if (Ty
->isVectorTy() && Ty
->getVectorElementType()->isIntegerTy(8)) {
652 unsigned ProfitableNumElements
;
653 if (Opcode
== Instruction::Store
)
654 // We use a custom trunc store lowering so v.4b should be profitable.
655 ProfitableNumElements
= 4;
657 // We scalarize the loads because there is not v.4b register and we
658 // have to promote the elements to v.2.
659 ProfitableNumElements
= 8;
661 if (Ty
->getVectorNumElements() < ProfitableNumElements
) {
662 unsigned NumVecElts
= Ty
->getVectorNumElements();
663 unsigned NumVectorizableInstsToAmortize
= NumVecElts
* 2;
664 // We generate 2 instructions per vector element.
665 return NumVectorizableInstsToAmortize
* NumVecElts
* 2;
672 int AArch64TTIImpl::getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
674 ArrayRef
<unsigned> Indices
,
676 unsigned AddressSpace
,
678 bool UseMaskForGaps
) {
679 assert(Factor
>= 2 && "Invalid interleave factor");
680 assert(isa
<VectorType
>(VecTy
) && "Expect a vector type");
682 if (!UseMaskForCond
&& !UseMaskForGaps
&&
683 Factor
<= TLI
->getMaxSupportedInterleaveFactor()) {
684 unsigned NumElts
= VecTy
->getVectorNumElements();
685 auto *SubVecTy
= VectorType::get(VecTy
->getScalarType(), NumElts
/ Factor
);
687 // ldN/stN only support legal vector types of size 64 or 128 in bits.
688 // Accesses having vector types that are a multiple of 128 bits can be
689 // matched to more than one ldN/stN instruction.
690 if (NumElts
% Factor
== 0 &&
691 TLI
->isLegalInterleavedAccessType(SubVecTy
, DL
))
692 return Factor
* TLI
->getNumInterleavedAccesses(SubVecTy
, DL
);
695 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
696 Alignment
, AddressSpace
,
697 UseMaskForCond
, UseMaskForGaps
);
700 int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef
<Type
*> Tys
) {
702 for (auto *I
: Tys
) {
703 if (!I
->isVectorTy())
705 if (I
->getScalarSizeInBits() * I
->getVectorNumElements() == 128)
706 Cost
+= getMemoryOpCost(Instruction::Store
, I
, 128, 0) +
707 getMemoryOpCost(Instruction::Load
, I
, 128, 0);
712 unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF
) {
713 return ST
->getMaxInterleaveFactor();
716 // For Falkor, we want to avoid having too many strided loads in a loop since
717 // that can exhaust the HW prefetcher resources. We adjust the unroller
718 // MaxCount preference below to attempt to ensure unrolling doesn't create too
719 // many strided loads.
721 getFalkorUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
722 TargetTransformInfo::UnrollingPreferences
&UP
) {
723 enum { MaxStridedLoads
= 7 };
724 auto countStridedLoads
= [](Loop
*L
, ScalarEvolution
&SE
) {
725 int StridedLoads
= 0;
726 // FIXME? We could make this more precise by looking at the CFG and
727 // e.g. not counting loads in each side of an if-then-else diamond.
728 for (const auto BB
: L
->blocks()) {
729 for (auto &I
: *BB
) {
730 LoadInst
*LMemI
= dyn_cast
<LoadInst
>(&I
);
734 Value
*PtrValue
= LMemI
->getPointerOperand();
735 if (L
->isLoopInvariant(PtrValue
))
738 const SCEV
*LSCEV
= SE
.getSCEV(PtrValue
);
739 const SCEVAddRecExpr
*LSCEVAddRec
= dyn_cast
<SCEVAddRecExpr
>(LSCEV
);
740 if (!LSCEVAddRec
|| !LSCEVAddRec
->isAffine())
743 // FIXME? We could take pairing of unrolled load copies into account
744 // by looking at the AddRec, but we would probably have to limit this
745 // to loops with no stores or other memory optimization barriers.
747 // We've seen enough strided loads that seeing more won't make a
749 if (StridedLoads
> MaxStridedLoads
/ 2)
756 int StridedLoads
= countStridedLoads(L
, SE
);
757 LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
758 << " strided loads\n");
759 // Pick the largest power of 2 unroll count that won't result in too many
762 UP
.MaxCount
= 1 << Log2_32(MaxStridedLoads
/ StridedLoads
);
763 LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
764 << UP
.MaxCount
<< '\n');
768 void AArch64TTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
769 TTI::UnrollingPreferences
&UP
) {
770 // Enable partial unrolling and runtime unrolling.
771 BaseT::getUnrollingPreferences(L
, SE
, UP
);
773 // For inner loop, it is more likely to be a hot one, and the runtime check
774 // can be promoted out from LICM pass, so the overhead is less, let's try
775 // a larger threshold to unroll more loops.
776 if (L
->getLoopDepth() > 1)
777 UP
.PartialThreshold
*= 2;
779 // Disable partial & runtime unrolling on -Os.
780 UP
.PartialOptSizeThreshold
= 0;
782 if (ST
->getProcFamily() == AArch64Subtarget::Falkor
&&
783 EnableFalkorHWPFUnrollFix
)
784 getFalkorUnrollingPreferences(L
, SE
, UP
);
787 Value
*AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst
*Inst
,
788 Type
*ExpectedType
) {
789 switch (Inst
->getIntrinsicID()) {
792 case Intrinsic::aarch64_neon_st2
:
793 case Intrinsic::aarch64_neon_st3
:
794 case Intrinsic::aarch64_neon_st4
: {
795 // Create a struct type
796 StructType
*ST
= dyn_cast
<StructType
>(ExpectedType
);
799 unsigned NumElts
= Inst
->getNumArgOperands() - 1;
800 if (ST
->getNumElements() != NumElts
)
802 for (unsigned i
= 0, e
= NumElts
; i
!= e
; ++i
) {
803 if (Inst
->getArgOperand(i
)->getType() != ST
->getElementType(i
))
806 Value
*Res
= UndefValue::get(ExpectedType
);
807 IRBuilder
<> Builder(Inst
);
808 for (unsigned i
= 0, e
= NumElts
; i
!= e
; ++i
) {
809 Value
*L
= Inst
->getArgOperand(i
);
810 Res
= Builder
.CreateInsertValue(Res
, L
, i
);
814 case Intrinsic::aarch64_neon_ld2
:
815 case Intrinsic::aarch64_neon_ld3
:
816 case Intrinsic::aarch64_neon_ld4
:
817 if (Inst
->getType() == ExpectedType
)
823 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst
*Inst
,
824 MemIntrinsicInfo
&Info
) {
825 switch (Inst
->getIntrinsicID()) {
828 case Intrinsic::aarch64_neon_ld2
:
829 case Intrinsic::aarch64_neon_ld3
:
830 case Intrinsic::aarch64_neon_ld4
:
832 Info
.WriteMem
= false;
833 Info
.PtrVal
= Inst
->getArgOperand(0);
835 case Intrinsic::aarch64_neon_st2
:
836 case Intrinsic::aarch64_neon_st3
:
837 case Intrinsic::aarch64_neon_st4
:
838 Info
.ReadMem
= false;
839 Info
.WriteMem
= true;
840 Info
.PtrVal
= Inst
->getArgOperand(Inst
->getNumArgOperands() - 1);
844 switch (Inst
->getIntrinsicID()) {
847 case Intrinsic::aarch64_neon_ld2
:
848 case Intrinsic::aarch64_neon_st2
:
849 Info
.MatchingId
= VECTOR_LDST_TWO_ELEMENTS
;
851 case Intrinsic::aarch64_neon_ld3
:
852 case Intrinsic::aarch64_neon_st3
:
853 Info
.MatchingId
= VECTOR_LDST_THREE_ELEMENTS
;
855 case Intrinsic::aarch64_neon_ld4
:
856 case Intrinsic::aarch64_neon_st4
:
857 Info
.MatchingId
= VECTOR_LDST_FOUR_ELEMENTS
;
863 /// See if \p I should be considered for address type promotion. We check if \p
864 /// I is a sext with right type and used in memory accesses. If it used in a
865 /// "complex" getelementptr, we allow it to be promoted without finding other
866 /// sext instructions that sign extended the same initial value. A getelementptr
867 /// is considered as "complex" if it has more than 2 operands.
868 bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
869 const Instruction
&I
, bool &AllowPromotionWithoutCommonHeader
) {
870 bool Considerable
= false;
871 AllowPromotionWithoutCommonHeader
= false;
872 if (!isa
<SExtInst
>(&I
))
874 Type
*ConsideredSExtType
=
875 Type::getInt64Ty(I
.getParent()->getParent()->getContext());
876 if (I
.getType() != ConsideredSExtType
)
878 // See if the sext is the one with the right type and used in at least one
879 // GetElementPtrInst.
880 for (const User
*U
: I
.users()) {
881 if (const GetElementPtrInst
*GEPInst
= dyn_cast
<GetElementPtrInst
>(U
)) {
883 // A getelementptr is considered as "complex" if it has more than 2
884 // operands. We will promote a SExt used in such complex GEP as we
885 // expect some computation to be merged if they are done on 64 bits.
886 if (GEPInst
->getNumOperands() > 2) {
887 AllowPromotionWithoutCommonHeader
= true;
895 unsigned AArch64TTIImpl::getCacheLineSize() {
896 return ST
->getCacheLineSize();
899 unsigned AArch64TTIImpl::getPrefetchDistance() {
900 return ST
->getPrefetchDistance();
903 unsigned AArch64TTIImpl::getMinPrefetchStride() {
904 return ST
->getMinPrefetchStride();
907 unsigned AArch64TTIImpl::getMaxPrefetchIterationsAhead() {
908 return ST
->getMaxPrefetchIterationsAhead();
911 bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode
, Type
*Ty
,
912 TTI::ReductionFlags Flags
) const {
913 assert(isa
<VectorType
>(Ty
) && "Expected Ty to be a vector type");
914 unsigned ScalarBits
= Ty
->getScalarSizeInBits();
916 case Instruction::FAdd
:
917 case Instruction::FMul
:
918 case Instruction::And
:
919 case Instruction::Or
:
920 case Instruction::Xor
:
921 case Instruction::Mul
:
923 case Instruction::Add
:
924 return ScalarBits
* Ty
->getVectorNumElements() >= 128;
925 case Instruction::ICmp
:
926 return (ScalarBits
< 64) &&
927 (ScalarBits
* Ty
->getVectorNumElements() >= 128);
928 case Instruction::FCmp
:
931 llvm_unreachable("Unhandled reduction opcode");
936 int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode
, Type
*ValTy
,
937 bool IsPairwiseForm
) {
940 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, IsPairwiseForm
);
942 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
944 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
945 assert(ISD
&& "Invalid opcode");
947 // Horizontal adds can use the 'addv' instruction. We model the cost of these
948 // instructions as normal vector adds. This is the only arithmetic vector
949 // reduction operation for which we have an instruction.
950 static const CostTblEntry CostTblNoPairwise
[]{
951 {ISD::ADD
, MVT::v8i8
, 1},
952 {ISD::ADD
, MVT::v16i8
, 1},
953 {ISD::ADD
, MVT::v4i16
, 1},
954 {ISD::ADD
, MVT::v8i16
, 1},
955 {ISD::ADD
, MVT::v4i32
, 1},
958 if (const auto *Entry
= CostTableLookup(CostTblNoPairwise
, ISD
, MTy
))
959 return LT
.first
* Entry
->Cost
;
961 return BaseT::getArithmeticReductionCost(Opcode
, ValTy
, IsPairwiseForm
);
964 int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
966 if (Kind
== TTI::SK_Broadcast
|| Kind
== TTI::SK_Transpose
||
967 Kind
== TTI::SK_Select
|| Kind
== TTI::SK_PermuteSingleSrc
) {
968 static const CostTblEntry ShuffleTbl
[] = {
969 // Broadcast shuffle kinds can be performed with 'dup'.
970 { TTI::SK_Broadcast
, MVT::v8i8
, 1 },
971 { TTI::SK_Broadcast
, MVT::v16i8
, 1 },
972 { TTI::SK_Broadcast
, MVT::v4i16
, 1 },
973 { TTI::SK_Broadcast
, MVT::v8i16
, 1 },
974 { TTI::SK_Broadcast
, MVT::v2i32
, 1 },
975 { TTI::SK_Broadcast
, MVT::v4i32
, 1 },
976 { TTI::SK_Broadcast
, MVT::v2i64
, 1 },
977 { TTI::SK_Broadcast
, MVT::v2f32
, 1 },
978 { TTI::SK_Broadcast
, MVT::v4f32
, 1 },
979 { TTI::SK_Broadcast
, MVT::v2f64
, 1 },
980 // Transpose shuffle kinds can be performed with 'trn1/trn2' and
981 // 'zip1/zip2' instructions.
982 { TTI::SK_Transpose
, MVT::v8i8
, 1 },
983 { TTI::SK_Transpose
, MVT::v16i8
, 1 },
984 { TTI::SK_Transpose
, MVT::v4i16
, 1 },
985 { TTI::SK_Transpose
, MVT::v8i16
, 1 },
986 { TTI::SK_Transpose
, MVT::v2i32
, 1 },
987 { TTI::SK_Transpose
, MVT::v4i32
, 1 },
988 { TTI::SK_Transpose
, MVT::v2i64
, 1 },
989 { TTI::SK_Transpose
, MVT::v2f32
, 1 },
990 { TTI::SK_Transpose
, MVT::v4f32
, 1 },
991 { TTI::SK_Transpose
, MVT::v2f64
, 1 },
992 // Select shuffle kinds.
993 // TODO: handle vXi8/vXi16.
994 { TTI::SK_Select
, MVT::v2i32
, 1 }, // mov.
995 { TTI::SK_Select
, MVT::v4i32
, 2 }, // rev+trn (or similar).
996 { TTI::SK_Select
, MVT::v2i64
, 1 }, // mov.
997 { TTI::SK_Select
, MVT::v2f32
, 1 }, // mov.
998 { TTI::SK_Select
, MVT::v4f32
, 2 }, // rev+trn (or similar).
999 { TTI::SK_Select
, MVT::v2f64
, 1 }, // mov.
1000 // PermuteSingleSrc shuffle kinds.
1001 // TODO: handle vXi8/vXi16.
1002 { TTI::SK_PermuteSingleSrc
, MVT::v2i32
, 1 }, // mov.
1003 { TTI::SK_PermuteSingleSrc
, MVT::v4i32
, 3 }, // perfectshuffle worst case.
1004 { TTI::SK_PermuteSingleSrc
, MVT::v2i64
, 1 }, // mov.
1005 { TTI::SK_PermuteSingleSrc
, MVT::v2f32
, 1 }, // mov.
1006 { TTI::SK_PermuteSingleSrc
, MVT::v4f32
, 3 }, // perfectshuffle worst case.
1007 { TTI::SK_PermuteSingleSrc
, MVT::v2f64
, 1 }, // mov.
1009 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
1010 if (const auto *Entry
= CostTableLookup(ShuffleTbl
, Kind
, LT
.second
))
1011 return LT
.first
* Entry
->Cost
;
1014 return BaseT::getShuffleCost(Kind
, Tp
, Index
, SubTp
);