[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AArch64 / MCTargetDesc / AArch64AddressingModes.h
blob05a909f1780a0e0db469fe000a7cc8cece8f0b3f
1 //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 addressing mode implementation stuff.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
14 #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/bit.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
23 namespace llvm {
25 /// AArch64_AM - AArch64 Addressing Mode Stuff
26 namespace AArch64_AM {
28 //===----------------------------------------------------------------------===//
29 // Shifts
32 enum ShiftExtendType {
33 InvalidShiftExtend = -1,
34 LSL = 0,
35 LSR,
36 ASR,
37 ROR,
38 MSL,
40 UXTB,
41 UXTH,
42 UXTW,
43 UXTX,
45 SXTB,
46 SXTH,
47 SXTW,
48 SXTX,
51 /// getShiftName - Get the string encoding for the shift type.
52 static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53 switch (ST) {
54 default: llvm_unreachable("unhandled shift type!");
55 case AArch64_AM::LSL: return "lsl";
56 case AArch64_AM::LSR: return "lsr";
57 case AArch64_AM::ASR: return "asr";
58 case AArch64_AM::ROR: return "ror";
59 case AArch64_AM::MSL: return "msl";
60 case AArch64_AM::UXTB: return "uxtb";
61 case AArch64_AM::UXTH: return "uxth";
62 case AArch64_AM::UXTW: return "uxtw";
63 case AArch64_AM::UXTX: return "uxtx";
64 case AArch64_AM::SXTB: return "sxtb";
65 case AArch64_AM::SXTH: return "sxth";
66 case AArch64_AM::SXTW: return "sxtw";
67 case AArch64_AM::SXTX: return "sxtx";
69 return nullptr;
72 /// getShiftType - Extract the shift type.
73 static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74 switch ((Imm >> 6) & 0x7) {
75 default: return AArch64_AM::InvalidShiftExtend;
76 case 0: return AArch64_AM::LSL;
77 case 1: return AArch64_AM::LSR;
78 case 2: return AArch64_AM::ASR;
79 case 3: return AArch64_AM::ROR;
80 case 4: return AArch64_AM::MSL;
84 /// getShiftValue - Extract the shift value.
85 static inline unsigned getShiftValue(unsigned Imm) {
86 return Imm & 0x3f;
89 /// getShifterImm - Encode the shift type and amount:
90 /// imm: 6-bit shift amount
91 /// shifter: 000 ==> lsl
92 /// 001 ==> lsr
93 /// 010 ==> asr
94 /// 011 ==> ror
95 /// 100 ==> msl
96 /// {8-6} = shifter
97 /// {5-0} = imm
98 static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99 unsigned Imm) {
100 assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
101 unsigned STEnc = 0;
102 switch (ST) {
103 default: llvm_unreachable("Invalid shift requested");
104 case AArch64_AM::LSL: STEnc = 0; break;
105 case AArch64_AM::LSR: STEnc = 1; break;
106 case AArch64_AM::ASR: STEnc = 2; break;
107 case AArch64_AM::ROR: STEnc = 3; break;
108 case AArch64_AM::MSL: STEnc = 4; break;
110 return (STEnc << 6) | (Imm & 0x3f);
113 //===----------------------------------------------------------------------===//
114 // Extends
117 /// getArithShiftValue - get the arithmetic shift value.
118 static inline unsigned getArithShiftValue(unsigned Imm) {
119 return Imm & 0x7;
122 /// getExtendType - Extract the extend type for operands of arithmetic ops.
123 static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124 assert((Imm & 0x7) == Imm && "invalid immediate!");
125 switch (Imm) {
126 default: llvm_unreachable("Compiler bug!");
127 case 0: return AArch64_AM::UXTB;
128 case 1: return AArch64_AM::UXTH;
129 case 2: return AArch64_AM::UXTW;
130 case 3: return AArch64_AM::UXTX;
131 case 4: return AArch64_AM::SXTB;
132 case 5: return AArch64_AM::SXTH;
133 case 6: return AArch64_AM::SXTW;
134 case 7: return AArch64_AM::SXTX;
138 static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139 return getExtendType((Imm >> 3) & 0x7);
142 /// Mapping from extend bits to required operation:
143 /// shifter: 000 ==> uxtb
144 /// 001 ==> uxth
145 /// 010 ==> uxtw
146 /// 011 ==> uxtx
147 /// 100 ==> sxtb
148 /// 101 ==> sxth
149 /// 110 ==> sxtw
150 /// 111 ==> sxtx
151 inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152 switch (ET) {
153 default: llvm_unreachable("Invalid extend type requested");
154 case AArch64_AM::UXTB: return 0; break;
155 case AArch64_AM::UXTH: return 1; break;
156 case AArch64_AM::UXTW: return 2; break;
157 case AArch64_AM::UXTX: return 3; break;
158 case AArch64_AM::SXTB: return 4; break;
159 case AArch64_AM::SXTH: return 5; break;
160 case AArch64_AM::SXTW: return 6; break;
161 case AArch64_AM::SXTX: return 7; break;
165 /// getArithExtendImm - Encode the extend type and shift amount for an
166 /// arithmetic instruction:
167 /// imm: 3-bit extend amount
168 /// {5-3} = shifter
169 /// {2-0} = imm3
170 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171 unsigned Imm) {
172 assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
173 return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
176 /// getMemDoShift - Extract the "do shift" flag value for load/store
177 /// instructions.
178 static inline bool getMemDoShift(unsigned Imm) {
179 return (Imm & 0x1) != 0;
182 /// getExtendType - Extract the extend type for the offset operand of
183 /// loads/stores.
184 static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185 return getExtendType((Imm >> 1) & 0x7);
188 /// getExtendImm - Encode the extend type and amount for a load/store inst:
189 /// doshift: should the offset be scaled by the access size
190 /// shifter: 000 ==> uxtb
191 /// 001 ==> uxth
192 /// 010 ==> uxtw
193 /// 011 ==> uxtx
194 /// 100 ==> sxtb
195 /// 101 ==> sxth
196 /// 110 ==> sxtw
197 /// 111 ==> sxtx
198 /// {3-1} = shifter
199 /// {0} = doshift
200 static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201 bool DoShift) {
202 return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
205 static inline uint64_t ror(uint64_t elt, unsigned size) {
206 return ((elt & 1) << (size-1)) | (elt >> 1);
209 /// processLogicalImmediate - Determine if an immediate value can be encoded
210 /// as the immediate operand of a logical instruction for the given register
211 /// size. If so, return true with "encoding" set to the encoded value in
212 /// the form N:immr:imms.
213 static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214 uint64_t &Encoding) {
215 if (Imm == 0ULL || Imm == ~0ULL ||
216 (RegSize != 64 &&
217 (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
218 return false;
220 // First, determine the element size.
221 unsigned Size = RegSize;
223 do {
224 Size /= 2;
225 uint64_t Mask = (1ULL << Size) - 1;
227 if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
228 Size *= 2;
229 break;
231 } while (Size > 2);
233 // Second, determine the rotation to make the element be: 0^m 1^n.
234 uint32_t CTO, I;
235 uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
236 Imm &= Mask;
238 if (isShiftedMask_64(Imm)) {
239 I = countTrailingZeros(Imm);
240 assert(I < 64 && "undefined behavior");
241 CTO = countTrailingOnes(Imm >> I);
242 } else {
243 Imm |= ~Mask;
244 if (!isShiftedMask_64(~Imm))
245 return false;
247 unsigned CLO = countLeadingOnes(Imm);
248 I = 64 - CLO;
249 CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
252 // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
253 // to our target value, where I is the number of RORs to go the opposite
254 // direction.
255 assert(Size > I && "I should be smaller than element size");
256 unsigned Immr = (Size - I) & (Size - 1);
258 // If size has a 1 in the n'th bit, create a value that has zeroes in
259 // bits [0, n] and ones above that.
260 uint64_t NImms = ~(Size-1) << 1;
262 // Or the CTO value into the low bits, which must be below the Nth bit
263 // bit mentioned above.
264 NImms |= (CTO-1);
266 // Extract the seventh bit and toggle it to create the N field.
267 unsigned N = ((NImms >> 6) & 1) ^ 1;
269 Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
270 return true;
273 /// isLogicalImmediate - Return true if the immediate is valid for a logical
274 /// immediate instruction of the given register size. Return false otherwise.
275 static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
276 uint64_t encoding;
277 return processLogicalImmediate(imm, regSize, encoding);
280 /// encodeLogicalImmediate - Return the encoded immediate value for a logical
281 /// immediate instruction of the given register size.
282 static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
283 uint64_t encoding = 0;
284 bool res = processLogicalImmediate(imm, regSize, encoding);
285 assert(res && "invalid logical immediate");
286 (void)res;
287 return encoding;
290 /// decodeLogicalImmediate - Decode a logical immediate value in the form
291 /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
292 /// integer value it represents with regSize bits.
293 static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
294 // Extract the N, imms, and immr fields.
295 unsigned N = (val >> 12) & 1;
296 unsigned immr = (val >> 6) & 0x3f;
297 unsigned imms = val & 0x3f;
299 assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
300 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
301 assert(len >= 0 && "undefined logical immediate encoding");
302 unsigned size = (1 << len);
303 unsigned R = immr & (size - 1);
304 unsigned S = imms & (size - 1);
305 assert(S != size - 1 && "undefined logical immediate encoding");
306 uint64_t pattern = (1ULL << (S + 1)) - 1;
307 for (unsigned i = 0; i < R; ++i)
308 pattern = ror(pattern, size);
310 // Replicate the pattern to fill the regSize.
311 while (size != regSize) {
312 pattern |= (pattern << size);
313 size *= 2;
315 return pattern;
318 /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
319 /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
320 /// is a valid encoding for an integer value with regSize bits.
321 static inline bool isValidDecodeLogicalImmediate(uint64_t val,
322 unsigned regSize) {
323 // Extract the N and imms fields needed for checking.
324 unsigned N = (val >> 12) & 1;
325 unsigned imms = val & 0x3f;
327 if (regSize == 32 && N != 0) // undefined logical immediate encoding
328 return false;
329 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
330 if (len < 0) // undefined logical immediate encoding
331 return false;
332 unsigned size = (1 << len);
333 unsigned S = imms & (size - 1);
334 if (S == size - 1) // undefined logical immediate encoding
335 return false;
337 return true;
340 //===----------------------------------------------------------------------===//
341 // Floating-point Immediates
343 static inline float getFPImmFloat(unsigned Imm) {
344 // We expect an 8-bit binary encoding of a floating-point number here.
346 uint8_t Sign = (Imm >> 7) & 0x1;
347 uint8_t Exp = (Imm >> 4) & 0x7;
348 uint8_t Mantissa = Imm & 0xf;
350 // 8-bit FP IEEE Float Encoding
351 // abcd efgh aBbbbbbc defgh000 00000000 00000000
353 // where B = NOT(b);
355 uint32_t I = 0;
356 I |= Sign << 31;
357 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
358 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
359 I |= (Exp & 0x3) << 23;
360 I |= Mantissa << 19;
361 return bit_cast<float>(I);
364 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
365 /// floating-point value. If the value cannot be represented as an 8-bit
366 /// floating-point value, then return -1.
367 static inline int getFP16Imm(const APInt &Imm) {
368 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
369 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
370 int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
372 // We can handle 4 bits of mantissa.
373 // mantissa = (16+UInt(e:f:g:h))/16.
374 if (Mantissa & 0x3f)
375 return -1;
376 Mantissa >>= 6;
378 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
379 if (Exp < -3 || Exp > 4)
380 return -1;
381 Exp = ((Exp+3) & 0x7) ^ 4;
383 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
386 static inline int getFP16Imm(const APFloat &FPImm) {
387 return getFP16Imm(FPImm.bitcastToAPInt());
390 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
391 /// floating-point value. If the value cannot be represented as an 8-bit
392 /// floating-point value, then return -1.
393 static inline int getFP32Imm(const APInt &Imm) {
394 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
395 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
396 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
398 // We can handle 4 bits of mantissa.
399 // mantissa = (16+UInt(e:f:g:h))/16.
400 if (Mantissa & 0x7ffff)
401 return -1;
402 Mantissa >>= 19;
403 if ((Mantissa & 0xf) != Mantissa)
404 return -1;
406 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
407 if (Exp < -3 || Exp > 4)
408 return -1;
409 Exp = ((Exp+3) & 0x7) ^ 4;
411 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
414 static inline int getFP32Imm(const APFloat &FPImm) {
415 return getFP32Imm(FPImm.bitcastToAPInt());
418 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
419 /// floating-point value. If the value cannot be represented as an 8-bit
420 /// floating-point value, then return -1.
421 static inline int getFP64Imm(const APInt &Imm) {
422 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
423 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
424 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
426 // We can handle 4 bits of mantissa.
427 // mantissa = (16+UInt(e:f:g:h))/16.
428 if (Mantissa & 0xffffffffffffULL)
429 return -1;
430 Mantissa >>= 48;
431 if ((Mantissa & 0xf) != Mantissa)
432 return -1;
434 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
435 if (Exp < -3 || Exp > 4)
436 return -1;
437 Exp = ((Exp+3) & 0x7) ^ 4;
439 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
442 static inline int getFP64Imm(const APFloat &FPImm) {
443 return getFP64Imm(FPImm.bitcastToAPInt());
446 //===--------------------------------------------------------------------===//
447 // AdvSIMD Modified Immediates
448 //===--------------------------------------------------------------------===//
450 // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
451 static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
452 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
453 ((Imm & 0xffffff00ffffff00ULL) == 0);
456 static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
457 return (Imm & 0xffULL);
460 static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
461 uint64_t EncVal = Imm;
462 return (EncVal << 32) | EncVal;
465 // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
466 static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
467 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
468 ((Imm & 0xffff00ffffff00ffULL) == 0);
471 static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
472 return (Imm & 0xff00ULL) >> 8;
475 static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
476 uint64_t EncVal = Imm;
477 return (EncVal << 40) | (EncVal << 8);
480 // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
481 static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
482 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
483 ((Imm & 0xff00ffffff00ffffULL) == 0);
486 static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
487 return (Imm & 0xff0000ULL) >> 16;
490 static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
491 uint64_t EncVal = Imm;
492 return (EncVal << 48) | (EncVal << 16);
495 // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
496 static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
497 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
498 ((Imm & 0x00ffffff00ffffffULL) == 0);
501 static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
502 return (Imm & 0xff000000ULL) >> 24;
505 static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
506 uint64_t EncVal = Imm;
507 return (EncVal << 56) | (EncVal << 24);
510 // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
511 static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
512 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
513 (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
514 ((Imm & 0xff00ff00ff00ff00ULL) == 0);
517 static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
518 return (Imm & 0xffULL);
521 static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
522 uint64_t EncVal = Imm;
523 return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
526 // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
527 static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
528 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
529 (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
530 ((Imm & 0x00ff00ff00ff00ffULL) == 0);
533 static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
534 return (Imm & 0xff00ULL) >> 8;
537 static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
538 uint64_t EncVal = Imm;
539 return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
542 // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
543 static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
544 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
545 ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
548 static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
549 return (Imm & 0xff00ULL) >> 8;
552 static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
553 uint64_t EncVal = Imm;
554 return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
557 // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
558 static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
559 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
560 ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
563 static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
564 uint64_t EncVal = Imm;
565 return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
568 static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
569 return (Imm & 0x00ff0000ULL) >> 16;
572 // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
573 static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
574 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
575 ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
576 ((Imm >> 56) == (Imm & 0x000000ffULL));
579 static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
580 return (Imm & 0xffULL);
583 static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
584 uint64_t EncVal = Imm;
585 EncVal |= (EncVal << 8);
586 EncVal |= (EncVal << 16);
587 EncVal |= (EncVal << 32);
588 return EncVal;
591 // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
592 // cmode: 1110, op: 1
593 static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
594 uint64_t ByteA = Imm & 0xff00000000000000ULL;
595 uint64_t ByteB = Imm & 0x00ff000000000000ULL;
596 uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
597 uint64_t ByteD = Imm & 0x000000ff00000000ULL;
598 uint64_t ByteE = Imm & 0x00000000ff000000ULL;
599 uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
600 uint64_t ByteG = Imm & 0x000000000000ff00ULL;
601 uint64_t ByteH = Imm & 0x00000000000000ffULL;
603 return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
604 (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
605 (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
606 (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
607 (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
608 (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
609 (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
610 (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
613 static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
614 uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
615 uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
616 uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
617 uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
618 uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
619 uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
620 uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
621 uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
623 uint8_t EncVal = BitA;
624 EncVal <<= 1;
625 EncVal |= BitB;
626 EncVal <<= 1;
627 EncVal |= BitC;
628 EncVal <<= 1;
629 EncVal |= BitD;
630 EncVal <<= 1;
631 EncVal |= BitE;
632 EncVal <<= 1;
633 EncVal |= BitF;
634 EncVal <<= 1;
635 EncVal |= BitG;
636 EncVal <<= 1;
637 EncVal |= BitH;
638 return EncVal;
641 static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
642 uint64_t EncVal = 0;
643 if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
644 if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
645 if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
646 if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
647 if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
648 if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
649 if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
650 if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
651 return EncVal;
654 // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
655 static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
656 uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
657 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
658 (BString == 0x1f || BString == 0x20) &&
659 ((Imm & 0x0007ffff0007ffffULL) == 0);
662 static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
663 uint8_t BitA = (Imm & 0x80000000ULL) != 0;
664 uint8_t BitB = (Imm & 0x20000000ULL) != 0;
665 uint8_t BitC = (Imm & 0x01000000ULL) != 0;
666 uint8_t BitD = (Imm & 0x00800000ULL) != 0;
667 uint8_t BitE = (Imm & 0x00400000ULL) != 0;
668 uint8_t BitF = (Imm & 0x00200000ULL) != 0;
669 uint8_t BitG = (Imm & 0x00100000ULL) != 0;
670 uint8_t BitH = (Imm & 0x00080000ULL) != 0;
672 uint8_t EncVal = BitA;
673 EncVal <<= 1;
674 EncVal |= BitB;
675 EncVal <<= 1;
676 EncVal |= BitC;
677 EncVal <<= 1;
678 EncVal |= BitD;
679 EncVal <<= 1;
680 EncVal |= BitE;
681 EncVal <<= 1;
682 EncVal |= BitF;
683 EncVal <<= 1;
684 EncVal |= BitG;
685 EncVal <<= 1;
686 EncVal |= BitH;
687 return EncVal;
690 static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
691 uint64_t EncVal = 0;
692 if (Imm & 0x80) EncVal |= 0x80000000ULL;
693 if (Imm & 0x40) EncVal |= 0x3e000000ULL;
694 else EncVal |= 0x40000000ULL;
695 if (Imm & 0x20) EncVal |= 0x01000000ULL;
696 if (Imm & 0x10) EncVal |= 0x00800000ULL;
697 if (Imm & 0x08) EncVal |= 0x00400000ULL;
698 if (Imm & 0x04) EncVal |= 0x00200000ULL;
699 if (Imm & 0x02) EncVal |= 0x00100000ULL;
700 if (Imm & 0x01) EncVal |= 0x00080000ULL;
701 return (EncVal << 32) | EncVal;
704 // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
705 static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
706 uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
707 return ((BString == 0xff || BString == 0x100) &&
708 ((Imm & 0x0000ffffffffffffULL) == 0));
711 static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
712 uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
713 uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
714 uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
715 uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
716 uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
717 uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
718 uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
719 uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
721 uint8_t EncVal = BitA;
722 EncVal <<= 1;
723 EncVal |= BitB;
724 EncVal <<= 1;
725 EncVal |= BitC;
726 EncVal <<= 1;
727 EncVal |= BitD;
728 EncVal <<= 1;
729 EncVal |= BitE;
730 EncVal <<= 1;
731 EncVal |= BitF;
732 EncVal <<= 1;
733 EncVal |= BitG;
734 EncVal <<= 1;
735 EncVal |= BitH;
736 return EncVal;
739 static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
740 uint64_t EncVal = 0;
741 if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
742 if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
743 else EncVal |= 0x4000000000000000ULL;
744 if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
745 if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
746 if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
747 if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
748 if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
749 if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
750 return (EncVal << 32) | EncVal;
753 /// Returns true if Imm is the concatenation of a repeating pattern of type T.
754 template <typename T>
755 static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
756 auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
757 return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; });
760 /// Returns true if Imm is valid for CPY/DUP.
761 template <typename T>
762 static inline bool isSVECpyImm(int64_t Imm) {
763 bool IsImm8 = int8_t(Imm) == Imm;
764 bool IsImm16 = int16_t(Imm & ~0xff) == Imm;
766 if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
767 return IsImm8 || uint8_t(Imm) == Imm;
769 if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
770 return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;
772 return IsImm8 || IsImm16;
775 /// Returns true if Imm is valid for ADD/SUB.
776 template <typename T>
777 static inline bool isSVEAddSubImm(int64_t Imm) {
778 bool IsInt8t =
779 std::is_same<int8_t, typename std::make_signed<T>::type>::value;
780 return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
783 /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
784 static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
785 if (isSVECpyImm<int64_t>(Imm))
786 return false;
788 auto S = bit_cast<std::array<int32_t, 2>>(Imm);
789 auto H = bit_cast<std::array<int16_t, 4>>(Imm);
790 auto B = bit_cast<std::array<int8_t, 8>>(Imm);
792 if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
793 return false;
794 if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
795 return false;
796 if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
797 return false;
798 return isLogicalImmediate(Imm, 64);
801 inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
802 for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
803 if ((Value & ~(0xffffULL << Shift)) == 0)
804 return true;
806 return false;
809 inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
810 if (RegWidth == 32)
811 Value &= 0xffffffffULL;
813 // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
814 if (Value == 0 && Shift != 0)
815 return false;
817 return (Value & ~(0xffffULL << Shift)) == 0;
820 inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
821 // MOVZ takes precedence over MOVN.
822 if (isAnyMOVZMovAlias(Value, RegWidth))
823 return false;
825 Value = ~Value;
826 if (RegWidth == 32)
827 Value &= 0xffffffffULL;
829 return isMOVZMovAlias(Value, Shift, RegWidth);
832 inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
833 if (isAnyMOVZMovAlias(Value, RegWidth))
834 return true;
836 // It's not a MOVZ, but it might be a MOVN.
837 Value = ~Value;
838 if (RegWidth == 32)
839 Value &= 0xffffffffULL;
841 return isAnyMOVZMovAlias(Value, RegWidth);
844 } // end namespace AArch64_AM
846 } // end namespace llvm
848 #endif