[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AArch64 / MCTargetDesc / AArch64AsmBackend.cpp
blobe7593be35247c3d61fabfa7ed1ccf1ea5ec401ea
1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/AArch64FixupKinds.h"
10 #include "MCTargetDesc/AArch64MCExpr.h"
11 #include "MCTargetDesc/AArch64MCTargetDesc.h"
12 #include "Utils/AArch64BaseInfo.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSectionELF.h"
24 #include "llvm/MC/MCSectionMachO.h"
25 #include "llvm/MC/MCTargetOptions.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TargetRegistry.h"
29 using namespace llvm;
31 namespace {
33 class AArch64AsmBackend : public MCAsmBackend {
34 static const unsigned PCRelFlagVal =
35 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
36 Triple TheTriple;
38 public:
39 AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
40 : MCAsmBackend(IsLittleEndian ? support::little : support::big),
41 TheTriple(TT) {}
43 unsigned getNumFixupKinds() const override {
44 return AArch64::NumTargetFixupKinds;
47 Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
49 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
50 const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
51 // This table *must* be in the order that the fixup_* kinds are defined
52 // in AArch64FixupKinds.h.
54 // Name Offset (bits) Size (bits) Flags
55 {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
56 {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
57 {"fixup_aarch64_add_imm12", 10, 12, 0},
58 {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
59 {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
60 {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
61 {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
62 {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
63 {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
64 {"fixup_aarch64_movw", 5, 16, 0},
65 {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
66 {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
67 {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
68 {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal},
69 {"fixup_aarch64_tlsdesc_call", 0, 0, 0}};
71 if (Kind < FirstTargetFixupKind)
72 return MCAsmBackend::getFixupKindInfo(Kind);
74 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
75 "Invalid kind!");
76 return Infos[Kind - FirstTargetFixupKind];
79 void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
80 const MCValue &Target, MutableArrayRef<char> Data,
81 uint64_t Value, bool IsResolved,
82 const MCSubtargetInfo *STI) const override;
84 bool mayNeedRelaxation(const MCInst &Inst,
85 const MCSubtargetInfo &STI) const override;
86 bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
87 const MCRelaxableFragment *DF,
88 const MCAsmLayout &Layout) const override;
89 void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
90 MCInst &Res) const override;
91 bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
93 void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
95 unsigned getPointerSize() const { return 8; }
97 unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
99 bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
100 const MCValue &Target) override;
103 } // end anonymous namespace
105 /// The number of bytes the fixup may change.
106 static unsigned getFixupKindNumBytes(unsigned Kind) {
107 switch (Kind) {
108 default:
109 llvm_unreachable("Unknown fixup kind!");
111 case FK_NONE:
112 case AArch64::fixup_aarch64_tlsdesc_call:
113 return 0;
115 case FK_Data_1:
116 return 1;
118 case FK_Data_2:
119 case FK_SecRel_2:
120 return 2;
122 case AArch64::fixup_aarch64_movw:
123 case AArch64::fixup_aarch64_pcrel_branch14:
124 case AArch64::fixup_aarch64_add_imm12:
125 case AArch64::fixup_aarch64_ldst_imm12_scale1:
126 case AArch64::fixup_aarch64_ldst_imm12_scale2:
127 case AArch64::fixup_aarch64_ldst_imm12_scale4:
128 case AArch64::fixup_aarch64_ldst_imm12_scale8:
129 case AArch64::fixup_aarch64_ldst_imm12_scale16:
130 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
131 case AArch64::fixup_aarch64_pcrel_branch19:
132 return 3;
134 case AArch64::fixup_aarch64_pcrel_adr_imm21:
135 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
136 case AArch64::fixup_aarch64_pcrel_branch26:
137 case AArch64::fixup_aarch64_pcrel_call26:
138 case FK_Data_4:
139 case FK_SecRel_4:
140 return 4;
142 case FK_Data_8:
143 return 8;
147 static unsigned AdrImmBits(unsigned Value) {
148 unsigned lo2 = Value & 0x3;
149 unsigned hi19 = (Value & 0x1ffffc) >> 2;
150 return (hi19 << 5) | (lo2 << 29);
153 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
154 uint64_t Value, MCContext &Ctx,
155 const Triple &TheTriple, bool IsResolved) {
156 int64_t SignedValue = static_cast<int64_t>(Value);
157 switch (Fixup.getTargetKind()) {
158 default:
159 llvm_unreachable("Unknown fixup kind!");
160 case AArch64::fixup_aarch64_pcrel_adr_imm21:
161 if (SignedValue > 2097151 || SignedValue < -2097152)
162 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
163 return AdrImmBits(Value & 0x1fffffULL);
164 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
165 assert(!IsResolved);
166 if (TheTriple.isOSBinFormatCOFF())
167 return AdrImmBits(Value & 0x1fffffULL);
168 return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
169 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
170 case AArch64::fixup_aarch64_pcrel_branch19:
171 // Signed 21-bit immediate
172 if (SignedValue > 2097151 || SignedValue < -2097152)
173 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
174 if (Value & 0x3)
175 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
176 // Low two bits are not encoded.
177 return (Value >> 2) & 0x7ffff;
178 case AArch64::fixup_aarch64_add_imm12:
179 case AArch64::fixup_aarch64_ldst_imm12_scale1:
180 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
181 Value &= 0xfff;
182 // Unsigned 12-bit immediate
183 if (Value >= 0x1000)
184 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
185 return Value;
186 case AArch64::fixup_aarch64_ldst_imm12_scale2:
187 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
188 Value &= 0xfff;
189 // Unsigned 12-bit immediate which gets multiplied by 2
190 if (Value >= 0x2000)
191 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
192 if (Value & 0x1)
193 Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
194 return Value >> 1;
195 case AArch64::fixup_aarch64_ldst_imm12_scale4:
196 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
197 Value &= 0xfff;
198 // Unsigned 12-bit immediate which gets multiplied by 4
199 if (Value >= 0x4000)
200 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
201 if (Value & 0x3)
202 Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
203 return Value >> 2;
204 case AArch64::fixup_aarch64_ldst_imm12_scale8:
205 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
206 Value &= 0xfff;
207 // Unsigned 12-bit immediate which gets multiplied by 8
208 if (Value >= 0x8000)
209 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
210 if (Value & 0x7)
211 Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
212 return Value >> 3;
213 case AArch64::fixup_aarch64_ldst_imm12_scale16:
214 if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
215 Value &= 0xfff;
216 // Unsigned 12-bit immediate which gets multiplied by 16
217 if (Value >= 0x10000)
218 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
219 if (Value & 0xf)
220 Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
221 return Value >> 4;
222 case AArch64::fixup_aarch64_movw: {
223 AArch64MCExpr::VariantKind RefKind =
224 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
225 if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
226 AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
227 // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
228 // ever be resolved in the assembler.
229 Ctx.reportError(Fixup.getLoc(),
230 "relocation for a thread-local variable points to an "
231 "absolute symbol");
232 return Value;
235 if (!IsResolved) {
236 // FIXME: Figure out when this can actually happen, and verify our
237 // behavior.
238 Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
239 "implemented");
240 return Value;
243 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
244 switch (AArch64MCExpr::getAddressFrag(RefKind)) {
245 case AArch64MCExpr::VK_G0:
246 break;
247 case AArch64MCExpr::VK_G1:
248 SignedValue = SignedValue >> 16;
249 break;
250 case AArch64MCExpr::VK_G2:
251 SignedValue = SignedValue >> 32;
252 break;
253 case AArch64MCExpr::VK_G3:
254 SignedValue = SignedValue >> 48;
255 break;
256 default:
257 llvm_unreachable("Variant kind doesn't correspond to fixup");
260 } else {
261 switch (AArch64MCExpr::getAddressFrag(RefKind)) {
262 case AArch64MCExpr::VK_G0:
263 break;
264 case AArch64MCExpr::VK_G1:
265 Value = Value >> 16;
266 break;
267 case AArch64MCExpr::VK_G2:
268 Value = Value >> 32;
269 break;
270 case AArch64MCExpr::VK_G3:
271 Value = Value >> 48;
272 break;
273 default:
274 llvm_unreachable("Variant kind doesn't correspond to fixup");
278 if (RefKind & AArch64MCExpr::VK_NC) {
279 Value &= 0xFFFF;
281 else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
282 if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
283 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
285 // Invert the negative immediate because it will feed into a MOVN.
286 if (SignedValue < 0)
287 SignedValue = ~SignedValue;
288 Value = static_cast<uint64_t>(SignedValue);
290 else if (Value > 0xFFFF) {
291 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
293 return Value;
295 case AArch64::fixup_aarch64_pcrel_branch14:
296 // Signed 16-bit immediate
297 if (SignedValue > 32767 || SignedValue < -32768)
298 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
299 // Low two bits are not encoded (4-byte alignment assumed).
300 if (Value & 0x3)
301 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
302 return (Value >> 2) & 0x3fff;
303 case AArch64::fixup_aarch64_pcrel_branch26:
304 case AArch64::fixup_aarch64_pcrel_call26:
305 // Signed 28-bit immediate
306 if (SignedValue > 134217727 || SignedValue < -134217728)
307 Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
308 // Low two bits are not encoded (4-byte alignment assumed).
309 if (Value & 0x3)
310 Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
311 return (Value >> 2) & 0x3ffffff;
312 case FK_NONE:
313 case FK_Data_1:
314 case FK_Data_2:
315 case FK_Data_4:
316 case FK_Data_8:
317 case FK_SecRel_2:
318 case FK_SecRel_4:
319 return Value;
323 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const {
324 if (TheTriple.isOSBinFormatELF() && Name == "R_AARCH64_NONE")
325 return FK_NONE;
326 return MCAsmBackend::getFixupKind(Name);
329 /// getFixupKindContainereSizeInBytes - The number of bytes of the
330 /// container involved in big endian or 0 if the item is little endian
331 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
332 if (Endian == support::little)
333 return 0;
335 switch (Kind) {
336 default:
337 llvm_unreachable("Unknown fixup kind!");
339 case FK_Data_1:
340 return 1;
341 case FK_Data_2:
342 return 2;
343 case FK_Data_4:
344 return 4;
345 case FK_Data_8:
346 return 8;
348 case AArch64::fixup_aarch64_tlsdesc_call:
349 case AArch64::fixup_aarch64_movw:
350 case AArch64::fixup_aarch64_pcrel_branch14:
351 case AArch64::fixup_aarch64_add_imm12:
352 case AArch64::fixup_aarch64_ldst_imm12_scale1:
353 case AArch64::fixup_aarch64_ldst_imm12_scale2:
354 case AArch64::fixup_aarch64_ldst_imm12_scale4:
355 case AArch64::fixup_aarch64_ldst_imm12_scale8:
356 case AArch64::fixup_aarch64_ldst_imm12_scale16:
357 case AArch64::fixup_aarch64_ldr_pcrel_imm19:
358 case AArch64::fixup_aarch64_pcrel_branch19:
359 case AArch64::fixup_aarch64_pcrel_adr_imm21:
360 case AArch64::fixup_aarch64_pcrel_adrp_imm21:
361 case AArch64::fixup_aarch64_pcrel_branch26:
362 case AArch64::fixup_aarch64_pcrel_call26:
363 // Instructions are always little endian
364 return 0;
368 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
369 const MCValue &Target,
370 MutableArrayRef<char> Data, uint64_t Value,
371 bool IsResolved,
372 const MCSubtargetInfo *STI) const {
373 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
374 if (!Value)
375 return; // Doesn't change encoding.
376 MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
377 MCContext &Ctx = Asm.getContext();
378 int64_t SignedValue = static_cast<int64_t>(Value);
379 // Apply any target-specific value adjustments.
380 Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
382 // Shift the value into position.
383 Value <<= Info.TargetOffset;
385 unsigned Offset = Fixup.getOffset();
386 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
388 // Used to point to big endian bytes.
389 unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
391 // For each byte of the fragment that the fixup touches, mask in the
392 // bits from the fixup value.
393 if (FulleSizeInBytes == 0) {
394 // Handle as little-endian
395 for (unsigned i = 0; i != NumBytes; ++i) {
396 Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
398 } else {
399 // Handle as big-endian
400 assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
401 assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
402 for (unsigned i = 0; i != NumBytes; ++i) {
403 unsigned Idx = FulleSizeInBytes - 1 - i;
404 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
408 // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
409 // handle this more cleanly. This may affect the output of -show-mc-encoding.
410 AArch64MCExpr::VariantKind RefKind =
411 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
412 if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
413 // If the immediate is negative, generate MOVN else MOVZ.
414 // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
415 if (SignedValue < 0)
416 Data[Offset + 3] &= ~(1 << 6);
417 else
418 Data[Offset + 3] |= (1 << 6);
422 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst,
423 const MCSubtargetInfo &STI) const {
424 return false;
427 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
428 uint64_t Value,
429 const MCRelaxableFragment *DF,
430 const MCAsmLayout &Layout) const {
431 // FIXME: This isn't correct for AArch64. Just moving the "generic" logic
432 // into the targets for now.
434 // Relax if the value is too big for a (signed) i8.
435 return int64_t(Value) != int64_t(int8_t(Value));
438 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
439 const MCSubtargetInfo &STI,
440 MCInst &Res) const {
441 llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
444 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
445 // If the count is not 4-byte aligned, we must be writing data into the text
446 // section (otherwise we have unaligned instructions, and thus have far
447 // bigger problems), so just write zeros instead.
448 OS.write_zeros(Count % 4);
450 // We are properly aligned, so write NOPs as requested.
451 Count /= 4;
452 for (uint64_t i = 0; i != Count; ++i)
453 support::endian::write<uint32_t>(OS, 0xd503201f, Endian);
454 return true;
457 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
458 const MCFixup &Fixup,
459 const MCValue &Target) {
460 unsigned Kind = Fixup.getKind();
461 if (Kind == FK_NONE)
462 return true;
464 // The ADRP instruction adds some multiple of 0x1000 to the current PC &
465 // ~0xfff. This means that the required offset to reach a symbol can vary by
466 // up to one step depending on where the ADRP is in memory. For example:
468 // ADRP x0, there
469 // there:
471 // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
472 // we'll need that as an offset. At any other address "there" will be in the
473 // same page as the ADRP and the instruction should encode 0x0. Assuming the
474 // section isn't 0x1000-aligned, we therefore need to delegate this decision
475 // to the linker -- a relocation!
476 if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
477 return true;
479 AArch64MCExpr::VariantKind RefKind =
480 static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
481 AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind);
482 // LDR GOT relocations need a relocation
483 if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 &&
484 SymLoc == AArch64MCExpr::VK_GOT)
485 return true;
486 return false;
489 namespace {
491 namespace CU {
493 /// Compact unwind encoding values.
494 enum CompactUnwindEncodings {
495 /// A "frameless" leaf function, where no non-volatile registers are
496 /// saved. The return remains in LR throughout the function.
497 UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
499 /// No compact unwind encoding available. Instead the low 23-bits of
500 /// the compact unwind encoding is the offset of the DWARF FDE in the
501 /// __eh_frame section. This mode is never used in object files. It is only
502 /// generated by the linker in final linked images, which have only DWARF info
503 /// for a function.
504 UNWIND_ARM64_MODE_DWARF = 0x03000000,
506 /// This is a standard arm64 prologue where FP/LR are immediately
507 /// pushed on the stack, then SP is copied to FP. If there are any
508 /// non-volatile register saved, they are copied into the stack fame in pairs
509 /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
510 /// five X pairs and four D pairs can be saved, but the memory layout must be
511 /// in register number order.
512 UNWIND_ARM64_MODE_FRAME = 0x04000000,
514 /// Frame register pair encodings.
515 UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
516 UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
517 UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
518 UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
519 UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
520 UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
521 UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
522 UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
523 UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
526 } // end CU namespace
528 // FIXME: This should be in a separate file.
529 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
530 const MCRegisterInfo &MRI;
531 bool IsILP32;
533 /// Encode compact unwind stack adjustment for frameless functions.
534 /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
535 /// The stack size always needs to be 16 byte aligned.
536 uint32_t encodeStackAdjustment(uint32_t StackSize) const {
537 return (StackSize / 16) << 12;
540 public:
541 DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
542 const MCRegisterInfo &MRI, bool IsILP32)
543 : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI),
544 IsILP32(IsILP32) {}
546 std::unique_ptr<MCObjectTargetWriter>
547 createObjectTargetWriter() const override {
548 if (IsILP32)
549 return createAArch64MachObjectWriter(
550 MachO::CPU_TYPE_ARM64_32, MachO::CPU_SUBTYPE_ARM64_32_V8, true);
551 else
552 return createAArch64MachObjectWriter(MachO::CPU_TYPE_ARM64,
553 MachO::CPU_SUBTYPE_ARM64_ALL, false);
556 /// Generate the compact unwind encoding from the CFI directives.
557 uint32_t generateCompactUnwindEncoding(
558 ArrayRef<MCCFIInstruction> Instrs) const override {
559 if (Instrs.empty())
560 return CU::UNWIND_ARM64_MODE_FRAMELESS;
562 bool HasFP = false;
563 unsigned StackSize = 0;
565 uint32_t CompactUnwindEncoding = 0;
566 for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
567 const MCCFIInstruction &Inst = Instrs[i];
569 switch (Inst.getOperation()) {
570 default:
571 // Cannot handle this directive: bail out.
572 return CU::UNWIND_ARM64_MODE_DWARF;
573 case MCCFIInstruction::OpDefCfa: {
574 // Defines a frame pointer.
575 unsigned XReg =
576 getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true));
578 // Other CFA registers than FP are not supported by compact unwind.
579 // Fallback on DWARF.
580 // FIXME: When opt-remarks are supported in MC, add a remark to notify
581 // the user.
582 if (XReg != AArch64::FP)
583 return CU::UNWIND_ARM64_MODE_DWARF;
585 assert(XReg == AArch64::FP && "Invalid frame pointer!");
586 assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
588 const MCCFIInstruction &LRPush = Instrs[++i];
589 assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
590 "Link register not pushed!");
591 const MCCFIInstruction &FPPush = Instrs[++i];
592 assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
593 "Frame pointer not pushed!");
595 unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
596 unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
598 LRReg = getXRegFromWReg(LRReg);
599 FPReg = getXRegFromWReg(FPReg);
601 assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
602 "Pushing invalid registers for frame!");
604 // Indicate that the function has a frame.
605 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
606 HasFP = true;
607 break;
609 case MCCFIInstruction::OpDefCfaOffset: {
610 assert(StackSize == 0 && "We already have the CFA offset!");
611 StackSize = std::abs(Inst.getOffset());
612 break;
614 case MCCFIInstruction::OpOffset: {
615 // Registers are saved in pairs. We expect there to be two consecutive
616 // `.cfi_offset' instructions with the appropriate registers specified.
617 unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
618 if (i + 1 == e)
619 return CU::UNWIND_ARM64_MODE_DWARF;
621 const MCCFIInstruction &Inst2 = Instrs[++i];
622 if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
623 return CU::UNWIND_ARM64_MODE_DWARF;
624 unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
626 // N.B. The encodings must be in register number order, and the X
627 // registers before the D registers.
629 // X19/X20 pair = 0x00000001,
630 // X21/X22 pair = 0x00000002,
631 // X23/X24 pair = 0x00000004,
632 // X25/X26 pair = 0x00000008,
633 // X27/X28 pair = 0x00000010
634 Reg1 = getXRegFromWReg(Reg1);
635 Reg2 = getXRegFromWReg(Reg2);
637 if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
638 (CompactUnwindEncoding & 0xF1E) == 0)
639 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
640 else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
641 (CompactUnwindEncoding & 0xF1C) == 0)
642 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
643 else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
644 (CompactUnwindEncoding & 0xF18) == 0)
645 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
646 else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
647 (CompactUnwindEncoding & 0xF10) == 0)
648 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
649 else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
650 (CompactUnwindEncoding & 0xF00) == 0)
651 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
652 else {
653 Reg1 = getDRegFromBReg(Reg1);
654 Reg2 = getDRegFromBReg(Reg2);
656 // D8/D9 pair = 0x00000100,
657 // D10/D11 pair = 0x00000200,
658 // D12/D13 pair = 0x00000400,
659 // D14/D15 pair = 0x00000800
660 if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
661 (CompactUnwindEncoding & 0xE00) == 0)
662 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
663 else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
664 (CompactUnwindEncoding & 0xC00) == 0)
665 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
666 else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
667 (CompactUnwindEncoding & 0x800) == 0)
668 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
669 else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
670 CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
671 else
672 // A pair was pushed which we cannot handle.
673 return CU::UNWIND_ARM64_MODE_DWARF;
676 break;
681 if (!HasFP) {
682 // With compact unwind info we can only represent stack adjustments of up
683 // to 65520 bytes.
684 if (StackSize > 65520)
685 return CU::UNWIND_ARM64_MODE_DWARF;
687 CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
688 CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
691 return CompactUnwindEncoding;
695 } // end anonymous namespace
697 namespace {
699 class ELFAArch64AsmBackend : public AArch64AsmBackend {
700 public:
701 uint8_t OSABI;
702 bool IsILP32;
704 ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
705 bool IsLittleEndian, bool IsILP32)
706 : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
707 IsILP32(IsILP32) {}
709 std::unique_ptr<MCObjectTargetWriter>
710 createObjectTargetWriter() const override {
711 return createAArch64ELFObjectWriter(OSABI, IsILP32);
717 namespace {
718 class COFFAArch64AsmBackend : public AArch64AsmBackend {
719 public:
720 COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
721 : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
723 std::unique_ptr<MCObjectTargetWriter>
724 createObjectTargetWriter() const override {
725 return createAArch64WinCOFFObjectWriter();
730 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
731 const MCSubtargetInfo &STI,
732 const MCRegisterInfo &MRI,
733 const MCTargetOptions &Options) {
734 const Triple &TheTriple = STI.getTargetTriple();
735 if (TheTriple.isOSBinFormatMachO()) {
736 const bool IsILP32 = TheTriple.isArch32Bit();
737 return new DarwinAArch64AsmBackend(T, TheTriple, MRI, IsILP32);
740 if (TheTriple.isOSBinFormatCOFF())
741 return new COFFAArch64AsmBackend(T, TheTriple);
743 assert(TheTriple.isOSBinFormatELF() && "Invalid target");
745 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
746 bool IsILP32 = Options.getABIName() == "ilp32";
747 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
748 IsILP32);
751 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
752 const MCSubtargetInfo &STI,
753 const MCRegisterInfo &MRI,
754 const MCTargetOptions &Options) {
755 const Triple &TheTriple = STI.getTargetTriple();
756 assert(TheTriple.isOSBinFormatELF() &&
757 "Big endian is only supported for ELF targets!");
758 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
759 bool IsILP32 = Options.getABIName() == "ilp32";
760 return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
761 IsILP32);