[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
blobb2491ebc6f48fdac2609f8b60a7e9c9331b5d0bb
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #ifdef EXPENSIVE_CHECKS
43 #include "llvm/IR/Dominators.h"
44 #endif
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <new>
55 #include <vector>
57 #define DEBUG_TYPE "isel"
59 using namespace llvm;
61 namespace llvm {
63 class R600InstrInfo;
65 } // end namespace llvm
67 //===----------------------------------------------------------------------===//
68 // Instruction Selector Implementation
69 //===----------------------------------------------------------------------===//
71 namespace {
73 static bool isNullConstantOrUndef(SDValue V) {
74 if (V.isUndef())
75 return true;
77 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
78 return Const != nullptr && Const->isNullValue();
81 static bool getConstantValue(SDValue N, uint32_t &Out) {
82 // This is only used for packed vectors, where ussing 0 for undef should
83 // always be good.
84 if (N.isUndef()) {
85 Out = 0;
86 return true;
89 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
90 Out = C->getAPIntValue().getSExtValue();
91 return true;
94 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
95 Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
96 return true;
99 return false;
102 // TODO: Handle undef as zero
103 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
104 bool Negate = false) {
105 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
106 uint32_t LHSVal, RHSVal;
107 if (getConstantValue(N->getOperand(0), LHSVal) &&
108 getConstantValue(N->getOperand(1), RHSVal)) {
109 SDLoc SL(N);
110 uint32_t K = Negate ?
111 (-LHSVal & 0xffff) | (-RHSVal << 16) :
112 (LHSVal & 0xffff) | (RHSVal << 16);
113 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
114 DAG.getTargetConstant(K, SL, MVT::i32));
117 return nullptr;
120 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
121 return packConstantV2I16(N, DAG, true);
124 /// AMDGPU specific code to select AMDGPU machine instructions for
125 /// SelectionDAG operations.
126 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
127 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
128 // make the right decision when generating code for different targets.
129 const GCNSubtarget *Subtarget;
130 bool EnableLateStructurizeCFG;
132 public:
133 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
134 CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
135 : SelectionDAGISel(*TM, OptLevel) {
136 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
138 ~AMDGPUDAGToDAGISel() override = default;
140 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 AU.addRequired<AMDGPUArgumentUsageInfo>();
142 AU.addRequired<LegacyDivergenceAnalysis>();
143 #ifdef EXPENSIVE_CHECKS
144 AU.addRequired<DominatorTreeWrapperPass>();
145 AU.addRequired<LoopInfoWrapperPass>();
146 #endif
147 SelectionDAGISel::getAnalysisUsage(AU);
150 bool matchLoadD16FromBuildVector(SDNode *N) const;
152 bool runOnMachineFunction(MachineFunction &MF) override;
153 void PreprocessISelDAG() override;
154 void Select(SDNode *N) override;
155 StringRef getPassName() const override;
156 void PostprocessISelDAG() override;
158 protected:
159 void SelectBuildVector(SDNode *N, unsigned RegClassID);
161 private:
162 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
163 bool isNoNanSrc(SDValue N) const;
164 bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
165 bool isNegInlineImmediate(const SDNode *N) const {
166 return isInlineImmediate(N, true);
169 bool isVGPRImm(const SDNode *N) const;
170 bool isUniformLoad(const SDNode *N) const;
171 bool isUniformBr(const SDNode *N) const;
173 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
175 SDNode *glueCopyToM0LDSInit(SDNode *N) const;
176 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
178 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
179 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
180 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
181 bool isDSOffsetLegal(SDValue Base, unsigned Offset,
182 unsigned OffsetBits) const;
183 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
184 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
185 SDValue &Offset1) const;
186 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
187 SDValue &SOffset, SDValue &Offset, SDValue &Offen,
188 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
189 SDValue &TFE, SDValue &DLC) const;
190 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
191 SDValue &SOffset, SDValue &Offset, SDValue &GLC,
192 SDValue &SLC, SDValue &TFE, SDValue &DLC) const;
193 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
194 SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
195 SDValue &SLC) const;
196 bool SelectMUBUFScratchOffen(SDNode *Parent,
197 SDValue Addr, SDValue &RSrc, SDValue &VAddr,
198 SDValue &SOffset, SDValue &ImmOffset) const;
199 bool SelectMUBUFScratchOffset(SDNode *Parent,
200 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
201 SDValue &Offset) const;
203 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
204 SDValue &Offset, SDValue &GLC, SDValue &SLC,
205 SDValue &TFE, SDValue &DLC) const;
206 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
207 SDValue &Offset, SDValue &SLC) const;
208 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
209 SDValue &Offset) const;
211 bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
212 SDValue &Offset, SDValue &SLC) const;
213 bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
214 SDValue &Offset, SDValue &SLC) const;
216 template <bool IsSigned>
217 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
218 SDValue &Offset, SDValue &SLC) const;
220 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
221 bool &Imm) const;
222 SDValue Expand32BitAddress(SDValue Addr) const;
223 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
224 bool &Imm) const;
225 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
226 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
227 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
228 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
229 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
230 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
232 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
233 bool SelectVOP3Mods_f32(SDValue In, SDValue &Src, SDValue &SrcMods) const;
234 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
235 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
236 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
237 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
238 SDValue &Clamp, SDValue &Omod) const;
239 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
240 SDValue &Clamp, SDValue &Omod) const;
242 bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods,
243 SDValue &Clamp,
244 SDValue &Omod) const;
246 bool SelectVOP3OMods(SDValue In, SDValue &Src,
247 SDValue &Clamp, SDValue &Omod) const;
249 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
250 bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
251 SDValue &Clamp) const;
253 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
254 bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
255 SDValue &Clamp) const;
257 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
258 bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
259 SDValue &Clamp) const;
260 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
261 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
263 SDValue getHi16Elt(SDValue In) const;
265 void SelectADD_SUB_I64(SDNode *N);
266 void SelectAddcSubb(SDNode *N);
267 void SelectUADDO_USUBO(SDNode *N);
268 void SelectDIV_SCALE(SDNode *N);
269 void SelectDIV_FMAS(SDNode *N);
270 void SelectMAD_64_32(SDNode *N);
271 void SelectFMA_W_CHAIN(SDNode *N);
272 void SelectFMUL_W_CHAIN(SDNode *N);
274 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
275 uint32_t Offset, uint32_t Width);
276 void SelectS_BFEFromShifts(SDNode *N);
277 void SelectS_BFE(SDNode *N);
278 bool isCBranchSCC(const SDNode *N) const;
279 void SelectBRCOND(SDNode *N);
280 void SelectFMAD_FMA(SDNode *N);
281 void SelectATOMIC_CMP_SWAP(SDNode *N);
282 void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
283 void SelectDS_GWS(SDNode *N, unsigned IntrID);
284 void SelectINTRINSIC_W_CHAIN(SDNode *N);
285 void SelectINTRINSIC_WO_CHAIN(SDNode *N);
286 void SelectINTRINSIC_VOID(SDNode *N);
288 protected:
289 // Include the pieces autogenerated from the target description.
290 #include "AMDGPUGenDAGISel.inc"
293 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
294 const R600Subtarget *Subtarget;
296 bool isConstantLoad(const MemSDNode *N, int cbID) const;
297 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
298 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
299 SDValue& Offset);
300 public:
301 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
302 AMDGPUDAGToDAGISel(TM, OptLevel) {}
304 void Select(SDNode *N) override;
306 bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
307 SDValue &Offset) override;
308 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
309 SDValue &Offset) override;
311 bool runOnMachineFunction(MachineFunction &MF) override;
313 void PreprocessISelDAG() override {}
315 protected:
316 // Include the pieces autogenerated from the target description.
317 #include "R600GenDAGISel.inc"
320 static SDValue stripBitcast(SDValue Val) {
321 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
324 // Figure out if this is really an extract of the high 16-bits of a dword.
325 static bool isExtractHiElt(SDValue In, SDValue &Out) {
326 In = stripBitcast(In);
327 if (In.getOpcode() != ISD::TRUNCATE)
328 return false;
330 SDValue Srl = In.getOperand(0);
331 if (Srl.getOpcode() == ISD::SRL) {
332 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
333 if (ShiftAmt->getZExtValue() == 16) {
334 Out = stripBitcast(Srl.getOperand(0));
335 return true;
340 return false;
343 // Look through operations that obscure just looking at the low 16-bits of the
344 // same register.
345 static SDValue stripExtractLoElt(SDValue In) {
346 if (In.getOpcode() == ISD::TRUNCATE) {
347 SDValue Src = In.getOperand(0);
348 if (Src.getValueType().getSizeInBits() == 32)
349 return stripBitcast(Src);
352 return In;
355 } // end anonymous namespace
357 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
358 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
359 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
360 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
361 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
362 #ifdef EXPENSIVE_CHECKS
363 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
364 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
365 #endif
366 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
367 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
369 /// This pass converts a legalized DAG into a AMDGPU-specific
370 // DAG, ready for instruction scheduling.
371 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
372 CodeGenOpt::Level OptLevel) {
373 return new AMDGPUDAGToDAGISel(TM, OptLevel);
376 /// This pass converts a legalized DAG into a R600-specific
377 // DAG, ready for instruction scheduling.
378 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
379 CodeGenOpt::Level OptLevel) {
380 return new R600DAGToDAGISel(TM, OptLevel);
383 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
384 #ifdef EXPENSIVE_CHECKS
385 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
386 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
387 for (auto &L : LI->getLoopsInPreorder()) {
388 assert(L->isLCSSAForm(DT));
390 #endif
391 Subtarget = &MF.getSubtarget<GCNSubtarget>();
392 return SelectionDAGISel::runOnMachineFunction(MF);
395 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
396 assert(Subtarget->d16PreservesUnusedBits());
397 MVT VT = N->getValueType(0).getSimpleVT();
398 if (VT != MVT::v2i16 && VT != MVT::v2f16)
399 return false;
401 SDValue Lo = N->getOperand(0);
402 SDValue Hi = N->getOperand(1);
404 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
406 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
407 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
408 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
410 // Need to check for possible indirect dependencies on the other half of the
411 // vector to avoid introducing a cycle.
412 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
413 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
415 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
416 SDValue Ops[] = {
417 LdHi->getChain(), LdHi->getBasePtr(), TiedIn
420 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
421 if (LdHi->getMemoryVT() == MVT::i8) {
422 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
423 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
424 } else {
425 assert(LdHi->getMemoryVT() == MVT::i16);
428 SDValue NewLoadHi =
429 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
430 Ops, LdHi->getMemoryVT(),
431 LdHi->getMemOperand());
433 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
434 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
435 return true;
438 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
439 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
440 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
441 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
442 if (LdLo && Lo.hasOneUse()) {
443 SDValue TiedIn = getHi16Elt(Hi);
444 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
445 return false;
447 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
448 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
449 if (LdLo->getMemoryVT() == MVT::i8) {
450 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
451 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
452 } else {
453 assert(LdLo->getMemoryVT() == MVT::i16);
456 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
458 SDValue Ops[] = {
459 LdLo->getChain(), LdLo->getBasePtr(), TiedIn
462 SDValue NewLoadLo =
463 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
464 Ops, LdLo->getMemoryVT(),
465 LdLo->getMemOperand());
467 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
468 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
469 return true;
472 return false;
475 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
476 if (!Subtarget->d16PreservesUnusedBits())
477 return;
479 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
481 bool MadeChange = false;
482 while (Position != CurDAG->allnodes_begin()) {
483 SDNode *N = &*--Position;
484 if (N->use_empty())
485 continue;
487 switch (N->getOpcode()) {
488 case ISD::BUILD_VECTOR:
489 MadeChange |= matchLoadD16FromBuildVector(N);
490 break;
491 default:
492 break;
496 if (MadeChange) {
497 CurDAG->RemoveDeadNodes();
498 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
499 CurDAG->dump(););
503 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
504 if (TM.Options.NoNaNsFPMath)
505 return true;
507 // TODO: Move into isKnownNeverNaN
508 if (N->getFlags().isDefined())
509 return N->getFlags().hasNoNaNs();
511 return CurDAG->isKnownNeverNaN(N);
514 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
515 bool Negated) const {
516 if (N->isUndef())
517 return true;
519 const SIInstrInfo *TII = Subtarget->getInstrInfo();
520 if (Negated) {
521 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
522 return TII->isInlineConstant(-C->getAPIntValue());
524 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
525 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
527 } else {
528 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
529 return TII->isInlineConstant(C->getAPIntValue());
531 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
532 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
535 return false;
538 /// Determine the register class for \p OpNo
539 /// \returns The register class of the virtual register that will be used for
540 /// the given operand number \OpNo or NULL if the register class cannot be
541 /// determined.
542 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
543 unsigned OpNo) const {
544 if (!N->isMachineOpcode()) {
545 if (N->getOpcode() == ISD::CopyToReg) {
546 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
547 if (Register::isVirtualRegister(Reg)) {
548 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
549 return MRI.getRegClass(Reg);
552 const SIRegisterInfo *TRI
553 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
554 return TRI->getPhysRegClass(Reg);
557 return nullptr;
560 switch (N->getMachineOpcode()) {
561 default: {
562 const MCInstrDesc &Desc =
563 Subtarget->getInstrInfo()->get(N->getMachineOpcode());
564 unsigned OpIdx = Desc.getNumDefs() + OpNo;
565 if (OpIdx >= Desc.getNumOperands())
566 return nullptr;
567 int RegClass = Desc.OpInfo[OpIdx].RegClass;
568 if (RegClass == -1)
569 return nullptr;
571 return Subtarget->getRegisterInfo()->getRegClass(RegClass);
573 case AMDGPU::REG_SEQUENCE: {
574 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
575 const TargetRegisterClass *SuperRC =
576 Subtarget->getRegisterInfo()->getRegClass(RCID);
578 SDValue SubRegOp = N->getOperand(OpNo + 1);
579 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
580 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
581 SubRegIdx);
586 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
587 const SITargetLowering& Lowering =
588 *static_cast<const SITargetLowering*>(getTargetLowering());
590 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
592 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N),
593 Val);
595 SDValue Glue = M0.getValue(1);
597 SmallVector <SDValue, 8> Ops;
598 Ops.push_back(M0); // Replace the chain.
599 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
600 Ops.push_back(N->getOperand(i));
602 Ops.push_back(Glue);
603 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
606 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
607 unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
608 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
609 if (Subtarget->ldsRequiresM0Init())
610 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
611 } else if (AS == AMDGPUAS::REGION_ADDRESS) {
612 MachineFunction &MF = CurDAG->getMachineFunction();
613 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
614 return
615 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
617 return N;
620 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
621 EVT VT) const {
622 SDNode *Lo = CurDAG->getMachineNode(
623 AMDGPU::S_MOV_B32, DL, MVT::i32,
624 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
625 SDNode *Hi =
626 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
627 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
628 const SDValue Ops[] = {
629 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
630 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
631 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
633 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
636 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
637 switch (NumVectorElts) {
638 case 1:
639 return AMDGPU::SReg_32_XM0RegClassID;
640 case 2:
641 return AMDGPU::SReg_64RegClassID;
642 case 3:
643 return AMDGPU::SGPR_96RegClassID;
644 case 4:
645 return AMDGPU::SReg_128RegClassID;
646 case 5:
647 return AMDGPU::SGPR_160RegClassID;
648 case 8:
649 return AMDGPU::SReg_256RegClassID;
650 case 16:
651 return AMDGPU::SReg_512RegClassID;
652 case 32:
653 return AMDGPU::SReg_1024RegClassID;
656 llvm_unreachable("invalid vector size");
659 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
660 EVT VT = N->getValueType(0);
661 unsigned NumVectorElts = VT.getVectorNumElements();
662 EVT EltVT = VT.getVectorElementType();
663 SDLoc DL(N);
664 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
666 if (NumVectorElts == 1) {
667 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
668 RegClass);
669 return;
672 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
673 "supported yet");
674 // 32 = Max Num Vector Elements
675 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
676 // 1 = Vector Register Class
677 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
679 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
680 bool IsRegSeq = true;
681 unsigned NOps = N->getNumOperands();
682 for (unsigned i = 0; i < NOps; i++) {
683 // XXX: Why is this here?
684 if (isa<RegisterSDNode>(N->getOperand(i))) {
685 IsRegSeq = false;
686 break;
688 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
689 RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
690 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
692 if (NOps != NumVectorElts) {
693 // Fill in the missing undef elements if this was a scalar_to_vector.
694 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
695 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
696 DL, EltVT);
697 for (unsigned i = NOps; i < NumVectorElts; ++i) {
698 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
699 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
700 RegSeqArgs[1 + (2 * i) + 1] =
701 CurDAG->getTargetConstant(Sub, DL, MVT::i32);
705 if (!IsRegSeq)
706 SelectCode(N);
707 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
710 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
711 unsigned int Opc = N->getOpcode();
712 if (N->isMachineOpcode()) {
713 N->setNodeId(-1);
714 return; // Already selected.
717 if (isa<AtomicSDNode>(N) ||
718 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
719 Opc == ISD::ATOMIC_LOAD_FADD ||
720 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
721 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX))
722 N = glueCopyToM0LDSInit(N);
724 switch (Opc) {
725 default:
726 break;
727 // We are selecting i64 ADD here instead of custom lower it during
728 // DAG legalization, so we can fold some i64 ADDs used for address
729 // calculation into the LOAD and STORE instructions.
730 case ISD::ADDC:
731 case ISD::ADDE:
732 case ISD::SUBC:
733 case ISD::SUBE: {
734 if (N->getValueType(0) != MVT::i64)
735 break;
737 SelectADD_SUB_I64(N);
738 return;
740 case ISD::ADDCARRY:
741 case ISD::SUBCARRY:
742 if (N->getValueType(0) != MVT::i32)
743 break;
745 SelectAddcSubb(N);
746 return;
747 case ISD::UADDO:
748 case ISD::USUBO: {
749 SelectUADDO_USUBO(N);
750 return;
752 case AMDGPUISD::FMUL_W_CHAIN: {
753 SelectFMUL_W_CHAIN(N);
754 return;
756 case AMDGPUISD::FMA_W_CHAIN: {
757 SelectFMA_W_CHAIN(N);
758 return;
761 case ISD::SCALAR_TO_VECTOR:
762 case ISD::BUILD_VECTOR: {
763 EVT VT = N->getValueType(0);
764 unsigned NumVectorElts = VT.getVectorNumElements();
765 if (VT.getScalarSizeInBits() == 16) {
766 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
767 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
768 ReplaceNode(N, Packed);
769 return;
773 break;
776 assert(VT.getVectorElementType().bitsEq(MVT::i32));
777 unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
778 SelectBuildVector(N, RegClassID);
779 return;
781 case ISD::BUILD_PAIR: {
782 SDValue RC, SubReg0, SubReg1;
783 SDLoc DL(N);
784 if (N->getValueType(0) == MVT::i128) {
785 RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32);
786 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
787 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
788 } else if (N->getValueType(0) == MVT::i64) {
789 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
790 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
791 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
792 } else {
793 llvm_unreachable("Unhandled value type for BUILD_PAIR");
795 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
796 N->getOperand(1), SubReg1 };
797 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
798 N->getValueType(0), Ops));
799 return;
802 case ISD::Constant:
803 case ISD::ConstantFP: {
804 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
805 break;
807 uint64_t Imm;
808 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
809 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
810 else {
811 ConstantSDNode *C = cast<ConstantSDNode>(N);
812 Imm = C->getZExtValue();
815 SDLoc DL(N);
816 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
817 return;
819 case ISD::LOAD:
820 case ISD::STORE:
821 case ISD::ATOMIC_LOAD:
822 case ISD::ATOMIC_STORE: {
823 N = glueCopyToM0LDSInit(N);
824 break;
827 case AMDGPUISD::BFE_I32:
828 case AMDGPUISD::BFE_U32: {
829 // There is a scalar version available, but unlike the vector version which
830 // has a separate operand for the offset and width, the scalar version packs
831 // the width and offset into a single operand. Try to move to the scalar
832 // version if the offsets are constant, so that we can try to keep extended
833 // loads of kernel arguments in SGPRs.
835 // TODO: Technically we could try to pattern match scalar bitshifts of
836 // dynamic values, but it's probably not useful.
837 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
838 if (!Offset)
839 break;
841 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
842 if (!Width)
843 break;
845 bool Signed = Opc == AMDGPUISD::BFE_I32;
847 uint32_t OffsetVal = Offset->getZExtValue();
848 uint32_t WidthVal = Width->getZExtValue();
850 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
851 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
852 return;
854 case AMDGPUISD::DIV_SCALE: {
855 SelectDIV_SCALE(N);
856 return;
858 case AMDGPUISD::DIV_FMAS: {
859 SelectDIV_FMAS(N);
860 return;
862 case AMDGPUISD::MAD_I64_I32:
863 case AMDGPUISD::MAD_U64_U32: {
864 SelectMAD_64_32(N);
865 return;
867 case ISD::CopyToReg: {
868 const SITargetLowering& Lowering =
869 *static_cast<const SITargetLowering*>(getTargetLowering());
870 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
871 break;
873 case ISD::AND:
874 case ISD::SRL:
875 case ISD::SRA:
876 case ISD::SIGN_EXTEND_INREG:
877 if (N->getValueType(0) != MVT::i32)
878 break;
880 SelectS_BFE(N);
881 return;
882 case ISD::BRCOND:
883 SelectBRCOND(N);
884 return;
885 case ISD::FMAD:
886 case ISD::FMA:
887 SelectFMAD_FMA(N);
888 return;
889 case AMDGPUISD::ATOMIC_CMP_SWAP:
890 SelectATOMIC_CMP_SWAP(N);
891 return;
892 case AMDGPUISD::CVT_PKRTZ_F16_F32:
893 case AMDGPUISD::CVT_PKNORM_I16_F32:
894 case AMDGPUISD::CVT_PKNORM_U16_F32:
895 case AMDGPUISD::CVT_PK_U16_U32:
896 case AMDGPUISD::CVT_PK_I16_I32: {
897 // Hack around using a legal type if f16 is illegal.
898 if (N->getValueType(0) == MVT::i32) {
899 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
900 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
901 { N->getOperand(0), N->getOperand(1) });
902 SelectCode(N);
903 return;
906 break;
908 case ISD::INTRINSIC_W_CHAIN: {
909 SelectINTRINSIC_W_CHAIN(N);
910 return;
912 case ISD::INTRINSIC_WO_CHAIN: {
913 SelectINTRINSIC_WO_CHAIN(N);
914 return;
916 case ISD::INTRINSIC_VOID: {
917 SelectINTRINSIC_VOID(N);
918 return;
922 SelectCode(N);
925 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
926 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
927 const Instruction *Term = BB->getTerminator();
928 return Term->getMetadata("amdgpu.uniform") ||
929 Term->getMetadata("structurizecfg.uniform");
932 StringRef AMDGPUDAGToDAGISel::getPassName() const {
933 return "AMDGPU DAG->DAG Pattern Instruction Selection";
936 //===----------------------------------------------------------------------===//
937 // Complex Patterns
938 //===----------------------------------------------------------------------===//
940 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
941 SDValue &Offset) {
942 return false;
945 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
946 SDValue &Offset) {
947 ConstantSDNode *C;
948 SDLoc DL(Addr);
950 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
951 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
952 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
953 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
954 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
955 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
956 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
957 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
958 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
959 Base = Addr.getOperand(0);
960 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
961 } else {
962 Base = Addr;
963 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
966 return true;
969 // FIXME: Should only handle addcarry/subcarry
970 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
971 SDLoc DL(N);
972 SDValue LHS = N->getOperand(0);
973 SDValue RHS = N->getOperand(1);
975 unsigned Opcode = N->getOpcode();
976 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
977 bool ProduceCarry =
978 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
979 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
981 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
982 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
984 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
985 DL, MVT::i32, LHS, Sub0);
986 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
987 DL, MVT::i32, LHS, Sub1);
989 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
990 DL, MVT::i32, RHS, Sub0);
991 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
992 DL, MVT::i32, RHS, Sub1);
994 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
996 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
997 unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
999 SDNode *AddLo;
1000 if (!ConsumeCarry) {
1001 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1002 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1003 } else {
1004 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1005 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1007 SDValue AddHiArgs[] = {
1008 SDValue(Hi0, 0),
1009 SDValue(Hi1, 0),
1010 SDValue(AddLo, 1)
1012 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1014 SDValue RegSequenceArgs[] = {
1015 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1016 SDValue(AddLo,0),
1017 Sub0,
1018 SDValue(AddHi,0),
1019 Sub1,
1021 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1022 MVT::i64, RegSequenceArgs);
1024 if (ProduceCarry) {
1025 // Replace the carry-use
1026 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1029 // Replace the remaining uses.
1030 ReplaceNode(N, RegSequence);
1033 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1034 SDLoc DL(N);
1035 SDValue LHS = N->getOperand(0);
1036 SDValue RHS = N->getOperand(1);
1037 SDValue CI = N->getOperand(2);
1039 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1040 : AMDGPU::V_SUBB_U32_e64;
1041 CurDAG->SelectNodeTo(
1042 N, Opc, N->getVTList(),
1043 {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1046 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1047 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1048 // carry out despite the _i32 name. These were renamed in VI to _U32.
1049 // FIXME: We should probably rename the opcodes here.
1050 unsigned Opc = N->getOpcode() == ISD::UADDO ?
1051 AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1053 CurDAG->SelectNodeTo(
1054 N, Opc, N->getVTList(),
1055 {N->getOperand(0), N->getOperand(1),
1056 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1059 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1060 SDLoc SL(N);
1061 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1062 SDValue Ops[10];
1064 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1065 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1066 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1067 Ops[8] = N->getOperand(0);
1068 Ops[9] = N->getOperand(4);
1070 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1073 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1074 SDLoc SL(N);
1075 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
1076 SDValue Ops[8];
1078 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1079 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1080 Ops[6] = N->getOperand(0);
1081 Ops[7] = N->getOperand(3);
1083 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1086 // We need to handle this here because tablegen doesn't support matching
1087 // instructions with multiple outputs.
1088 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1089 SDLoc SL(N);
1090 EVT VT = N->getValueType(0);
1092 assert(VT == MVT::f32 || VT == MVT::f64);
1094 unsigned Opc
1095 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1097 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1098 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1101 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) {
1102 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1103 const SIRegisterInfo *TRI = ST->getRegisterInfo();
1105 SDLoc SL(N);
1106 EVT VT = N->getValueType(0);
1108 assert(VT == MVT::f32 || VT == MVT::f64);
1110 unsigned Opc
1111 = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32;
1113 SDValue CarryIn = N->getOperand(3);
1114 // V_DIV_FMAS implicitly reads VCC.
1115 SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL,
1116 TRI->getVCC(), CarryIn, SDValue());
1118 SDValue Ops[10];
1120 SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1121 SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]);
1122 SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]);
1124 Ops[8] = VCC;
1125 Ops[9] = VCC.getValue(1);
1127 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1130 // We need to handle this here because tablegen doesn't support matching
1131 // instructions with multiple outputs.
1132 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1133 SDLoc SL(N);
1134 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1135 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1137 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1138 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1139 Clamp };
1140 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1143 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1144 unsigned OffsetBits) const {
1145 if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1146 (OffsetBits == 8 && !isUInt<8>(Offset)))
1147 return false;
1149 if (Subtarget->hasUsableDSOffset() ||
1150 Subtarget->unsafeDSOffsetFoldingEnabled())
1151 return true;
1153 // On Southern Islands instruction with a negative base value and an offset
1154 // don't seem to work.
1155 return CurDAG->SignBitIsZero(Base);
1158 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1159 SDValue &Offset) const {
1160 SDLoc DL(Addr);
1161 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1162 SDValue N0 = Addr.getOperand(0);
1163 SDValue N1 = Addr.getOperand(1);
1164 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1165 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1166 // (add n0, c0)
1167 Base = N0;
1168 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1169 return true;
1171 } else if (Addr.getOpcode() == ISD::SUB) {
1172 // sub C, x -> add (sub 0, x), C
1173 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1174 int64_t ByteOffset = C->getSExtValue();
1175 if (isUInt<16>(ByteOffset)) {
1176 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1178 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1179 // the known bits in isDSOffsetLegal. We need to emit the selected node
1180 // here, so this is thrown away.
1181 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1182 Zero, Addr.getOperand(1));
1184 if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1185 SmallVector<SDValue, 3> Opnds;
1186 Opnds.push_back(Zero);
1187 Opnds.push_back(Addr.getOperand(1));
1189 // FIXME: Select to VOP3 version for with-carry.
1190 unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1191 if (Subtarget->hasAddNoCarry()) {
1192 SubOp = AMDGPU::V_SUB_U32_e64;
1193 Opnds.push_back(
1194 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1197 MachineSDNode *MachineSub =
1198 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1200 Base = SDValue(MachineSub, 0);
1201 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1202 return true;
1206 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1207 // If we have a constant address, prefer to put the constant into the
1208 // offset. This can save moves to load the constant address since multiple
1209 // operations can share the zero base address register, and enables merging
1210 // into read2 / write2 instructions.
1212 SDLoc DL(Addr);
1214 if (isUInt<16>(CAddr->getZExtValue())) {
1215 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1216 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1217 DL, MVT::i32, Zero);
1218 Base = SDValue(MovZero, 0);
1219 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1220 return true;
1224 // default case
1225 Base = Addr;
1226 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1227 return true;
1230 // TODO: If offset is too big, put low 16-bit into offset.
1231 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1232 SDValue &Offset0,
1233 SDValue &Offset1) const {
1234 SDLoc DL(Addr);
1236 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1237 SDValue N0 = Addr.getOperand(0);
1238 SDValue N1 = Addr.getOperand(1);
1239 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1240 unsigned DWordOffset0 = C1->getZExtValue() / 4;
1241 unsigned DWordOffset1 = DWordOffset0 + 1;
1242 // (add n0, c0)
1243 if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1244 Base = N0;
1245 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1246 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1247 return true;
1249 } else if (Addr.getOpcode() == ISD::SUB) {
1250 // sub C, x -> add (sub 0, x), C
1251 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1252 unsigned DWordOffset0 = C->getZExtValue() / 4;
1253 unsigned DWordOffset1 = DWordOffset0 + 1;
1255 if (isUInt<8>(DWordOffset0)) {
1256 SDLoc DL(Addr);
1257 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1259 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1260 // the known bits in isDSOffsetLegal. We need to emit the selected node
1261 // here, so this is thrown away.
1262 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1263 Zero, Addr.getOperand(1));
1265 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1266 SmallVector<SDValue, 3> Opnds;
1267 Opnds.push_back(Zero);
1268 Opnds.push_back(Addr.getOperand(1));
1269 unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1270 if (Subtarget->hasAddNoCarry()) {
1271 SubOp = AMDGPU::V_SUB_U32_e64;
1272 Opnds.push_back(
1273 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1276 MachineSDNode *MachineSub
1277 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1279 Base = SDValue(MachineSub, 0);
1280 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1281 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1282 return true;
1286 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1287 unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1288 unsigned DWordOffset1 = DWordOffset0 + 1;
1289 assert(4 * DWordOffset0 == CAddr->getZExtValue());
1291 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1292 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1293 MachineSDNode *MovZero
1294 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1295 DL, MVT::i32, Zero);
1296 Base = SDValue(MovZero, 0);
1297 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1298 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1299 return true;
1303 // default case
1305 Base = Addr;
1306 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1307 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1308 return true;
1311 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1312 SDValue &VAddr, SDValue &SOffset,
1313 SDValue &Offset, SDValue &Offen,
1314 SDValue &Idxen, SDValue &Addr64,
1315 SDValue &GLC, SDValue &SLC,
1316 SDValue &TFE, SDValue &DLC) const {
1317 // Subtarget prefers to use flat instruction
1318 if (Subtarget->useFlatForGlobal())
1319 return false;
1321 SDLoc DL(Addr);
1323 if (!GLC.getNode())
1324 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1325 if (!SLC.getNode())
1326 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1327 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1328 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1330 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1331 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1332 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1333 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1335 ConstantSDNode *C1 = nullptr;
1336 SDValue N0 = Addr;
1337 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1338 C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1339 if (isUInt<32>(C1->getZExtValue()))
1340 N0 = Addr.getOperand(0);
1341 else
1342 C1 = nullptr;
1345 if (N0.getOpcode() == ISD::ADD) {
1346 // (add N2, N3) -> addr64, or
1347 // (add (add N2, N3), C1) -> addr64
1348 SDValue N2 = N0.getOperand(0);
1349 SDValue N3 = N0.getOperand(1);
1350 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1352 if (N2->isDivergent()) {
1353 if (N3->isDivergent()) {
1354 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1355 // addr64, and construct the resource from a 0 address.
1356 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1357 VAddr = N0;
1358 } else {
1359 // N2 is divergent, N3 is not.
1360 Ptr = N3;
1361 VAddr = N2;
1363 } else {
1364 // N2 is not divergent.
1365 Ptr = N2;
1366 VAddr = N3;
1368 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1369 } else if (N0->isDivergent()) {
1370 // N0 is divergent. Use it as the addr64, and construct the resource from a
1371 // 0 address.
1372 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1373 VAddr = N0;
1374 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1375 } else {
1376 // N0 -> offset, or
1377 // (N0 + C1) -> offset
1378 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1379 Ptr = N0;
1382 if (!C1) {
1383 // No offset.
1384 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1385 return true;
1388 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1389 // Legal offset for instruction.
1390 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1391 return true;
1394 // Illegal offset, store it in soffset.
1395 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1396 SOffset =
1397 SDValue(CurDAG->getMachineNode(
1398 AMDGPU::S_MOV_B32, DL, MVT::i32,
1399 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1401 return true;
1404 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1405 SDValue &VAddr, SDValue &SOffset,
1406 SDValue &Offset, SDValue &GLC,
1407 SDValue &SLC, SDValue &TFE,
1408 SDValue &DLC) const {
1409 SDValue Ptr, Offen, Idxen, Addr64;
1411 // addr64 bit was removed for volcanic islands.
1412 if (!Subtarget->hasAddr64())
1413 return false;
1415 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1416 GLC, SLC, TFE, DLC))
1417 return false;
1419 ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1420 if (C->getSExtValue()) {
1421 SDLoc DL(Addr);
1423 const SITargetLowering& Lowering =
1424 *static_cast<const SITargetLowering*>(getTargetLowering());
1426 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1427 return true;
1430 return false;
1433 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1434 SDValue &VAddr, SDValue &SOffset,
1435 SDValue &Offset,
1436 SDValue &SLC) const {
1437 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1438 SDValue GLC, TFE, DLC;
1440 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC);
1443 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1444 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1445 return PSV && PSV->isStack();
1448 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1449 const MachineFunction &MF = CurDAG->getMachineFunction();
1450 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1452 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1453 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1454 FI->getValueType(0));
1456 // If we can resolve this to a frame index access, this will be relative to
1457 // either the stack or frame pointer SGPR.
1458 return std::make_pair(
1459 TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1462 // If we don't know this private access is a local stack object, it needs to
1463 // be relative to the entry point's scratch wave offset register.
1464 return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
1465 MVT::i32));
1468 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1469 SDValue Addr, SDValue &Rsrc,
1470 SDValue &VAddr, SDValue &SOffset,
1471 SDValue &ImmOffset) const {
1473 SDLoc DL(Addr);
1474 MachineFunction &MF = CurDAG->getMachineFunction();
1475 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1477 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1479 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1480 unsigned Imm = CAddr->getZExtValue();
1482 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1483 MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1484 DL, MVT::i32, HighBits);
1485 VAddr = SDValue(MovHighBits, 0);
1487 // In a call sequence, stores to the argument stack area are relative to the
1488 // stack pointer.
1489 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1490 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1491 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1493 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1494 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1495 return true;
1498 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1499 // (add n0, c1)
1501 SDValue N0 = Addr.getOperand(0);
1502 SDValue N1 = Addr.getOperand(1);
1504 // Offsets in vaddr must be positive if range checking is enabled.
1506 // The total computation of vaddr + soffset + offset must not overflow. If
1507 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1508 // overflowing.
1510 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1511 // always perform a range check. If a negative vaddr base index was used,
1512 // this would fail the range check. The overall address computation would
1513 // compute a valid address, but this doesn't happen due to the range
1514 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1516 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1517 // MUBUF vaddr, but not on older subtargets which can only do this if the
1518 // sign bit is known 0.
1519 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1520 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1521 (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1522 CurDAG->SignBitIsZero(N0))) {
1523 std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1524 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1525 return true;
1529 // (node)
1530 std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1531 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1532 return true;
1535 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1536 SDValue Addr,
1537 SDValue &SRsrc,
1538 SDValue &SOffset,
1539 SDValue &Offset) const {
1540 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1541 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1542 return false;
1544 SDLoc DL(Addr);
1545 MachineFunction &MF = CurDAG->getMachineFunction();
1546 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1548 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1550 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1551 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1552 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1554 // FIXME: Get from MachinePointerInfo? We should only be using the frame
1555 // offset if we know this is in a call sequence.
1556 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1558 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1559 return true;
1562 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1563 SDValue &SOffset, SDValue &Offset,
1564 SDValue &GLC, SDValue &SLC,
1565 SDValue &TFE, SDValue &DLC) const {
1566 SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1567 const SIInstrInfo *TII =
1568 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1570 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1571 GLC, SLC, TFE, DLC))
1572 return false;
1574 if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1575 !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1576 !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1577 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1578 APInt::getAllOnesValue(32).getZExtValue(); // Size
1579 SDLoc DL(Addr);
1581 const SITargetLowering& Lowering =
1582 *static_cast<const SITargetLowering*>(getTargetLowering());
1584 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1585 return true;
1587 return false;
1590 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1591 SDValue &Soffset, SDValue &Offset
1592 ) const {
1593 SDValue GLC, SLC, TFE, DLC;
1595 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC);
1597 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1598 SDValue &Soffset, SDValue &Offset,
1599 SDValue &SLC) const {
1600 SDValue GLC, TFE, DLC;
1602 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC);
1605 template <bool IsSigned>
1606 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1607 SDValue Addr,
1608 SDValue &VAddr,
1609 SDValue &Offset,
1610 SDValue &SLC) const {
1611 return static_cast<const SITargetLowering*>(getTargetLowering())->
1612 SelectFlatOffset(IsSigned, *CurDAG, N, Addr, VAddr, Offset, SLC);
1615 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1616 SDValue Addr,
1617 SDValue &VAddr,
1618 SDValue &Offset,
1619 SDValue &SLC) const {
1620 return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1623 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1624 SDValue Addr,
1625 SDValue &VAddr,
1626 SDValue &Offset,
1627 SDValue &SLC) const {
1628 return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1631 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1632 SDValue &Offset, bool &Imm) const {
1634 // FIXME: Handle non-constant offsets.
1635 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1636 if (!C)
1637 return false;
1639 SDLoc SL(ByteOffsetNode);
1640 GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1641 int64_t ByteOffset = C->getSExtValue();
1642 int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1644 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) {
1645 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1646 Imm = true;
1647 return true;
1650 if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset))
1651 return false;
1653 if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) {
1654 // 32-bit Immediates are supported on Sea Islands.
1655 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1656 } else {
1657 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1658 Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32,
1659 C32Bit), 0);
1661 Imm = false;
1662 return true;
1665 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1666 if (Addr.getValueType() != MVT::i32)
1667 return Addr;
1669 // Zero-extend a 32-bit address.
1670 SDLoc SL(Addr);
1672 const MachineFunction &MF = CurDAG->getMachineFunction();
1673 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1674 unsigned AddrHiVal = Info->get32BitAddressHighBits();
1675 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1677 const SDValue Ops[] = {
1678 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1679 Addr,
1680 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1681 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1683 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1686 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1687 Ops), 0);
1690 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1691 SDValue &Offset, bool &Imm) const {
1692 SDLoc SL(Addr);
1694 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1695 // wraparound, because s_load instructions perform the addition in 64 bits.
1696 if ((Addr.getValueType() != MVT::i32 ||
1697 Addr->getFlags().hasNoUnsignedWrap()) &&
1698 CurDAG->isBaseWithConstantOffset(Addr)) {
1699 SDValue N0 = Addr.getOperand(0);
1700 SDValue N1 = Addr.getOperand(1);
1702 if (SelectSMRDOffset(N1, Offset, Imm)) {
1703 SBase = Expand32BitAddress(N0);
1704 return true;
1707 SBase = Expand32BitAddress(Addr);
1708 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1709 Imm = true;
1710 return true;
1713 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1714 SDValue &Offset) const {
1715 bool Imm;
1716 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1719 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1720 SDValue &Offset) const {
1722 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1723 return false;
1725 bool Imm;
1726 if (!SelectSMRD(Addr, SBase, Offset, Imm))
1727 return false;
1729 return !Imm && isa<ConstantSDNode>(Offset);
1732 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1733 SDValue &Offset) const {
1734 bool Imm;
1735 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1736 !isa<ConstantSDNode>(Offset);
1739 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1740 SDValue &Offset) const {
1741 bool Imm;
1742 return SelectSMRDOffset(Addr, Offset, Imm) && Imm;
1745 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1746 SDValue &Offset) const {
1747 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1748 return false;
1750 bool Imm;
1751 if (!SelectSMRDOffset(Addr, Offset, Imm))
1752 return false;
1754 return !Imm && isa<ConstantSDNode>(Offset);
1757 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1758 SDValue &Base,
1759 SDValue &Offset) const {
1760 SDLoc DL(Index);
1762 if (CurDAG->isBaseWithConstantOffset(Index)) {
1763 SDValue N0 = Index.getOperand(0);
1764 SDValue N1 = Index.getOperand(1);
1765 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1767 // (add n0, c0)
1768 // Don't peel off the offset (c0) if doing so could possibly lead
1769 // the base (n0) to be negative.
1770 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1771 Base = N0;
1772 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1773 return true;
1777 if (isa<ConstantSDNode>(Index))
1778 return false;
1780 Base = Index;
1781 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1782 return true;
1785 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1786 SDValue Val, uint32_t Offset,
1787 uint32_t Width) {
1788 // Transformation function, pack the offset and width of a BFE into
1789 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1790 // source, bits [5:0] contain the offset and bits [22:16] the width.
1791 uint32_t PackedVal = Offset | (Width << 16);
1792 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1794 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1797 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1798 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1799 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1800 // Predicate: 0 < b <= c < 32
1802 const SDValue &Shl = N->getOperand(0);
1803 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1804 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1806 if (B && C) {
1807 uint32_t BVal = B->getZExtValue();
1808 uint32_t CVal = C->getZExtValue();
1810 if (0 < BVal && BVal <= CVal && CVal < 32) {
1811 bool Signed = N->getOpcode() == ISD::SRA;
1812 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1814 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1815 32 - CVal));
1816 return;
1819 SelectCode(N);
1822 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1823 switch (N->getOpcode()) {
1824 case ISD::AND:
1825 if (N->getOperand(0).getOpcode() == ISD::SRL) {
1826 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1827 // Predicate: isMask(mask)
1828 const SDValue &Srl = N->getOperand(0);
1829 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1830 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1832 if (Shift && Mask) {
1833 uint32_t ShiftVal = Shift->getZExtValue();
1834 uint32_t MaskVal = Mask->getZExtValue();
1836 if (isMask_32(MaskVal)) {
1837 uint32_t WidthVal = countPopulation(MaskVal);
1839 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1840 Srl.getOperand(0), ShiftVal, WidthVal));
1841 return;
1845 break;
1846 case ISD::SRL:
1847 if (N->getOperand(0).getOpcode() == ISD::AND) {
1848 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1849 // Predicate: isMask(mask >> b)
1850 const SDValue &And = N->getOperand(0);
1851 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1852 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
1854 if (Shift && Mask) {
1855 uint32_t ShiftVal = Shift->getZExtValue();
1856 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
1858 if (isMask_32(MaskVal)) {
1859 uint32_t WidthVal = countPopulation(MaskVal);
1861 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1862 And.getOperand(0), ShiftVal, WidthVal));
1863 return;
1866 } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
1867 SelectS_BFEFromShifts(N);
1868 return;
1870 break;
1871 case ISD::SRA:
1872 if (N->getOperand(0).getOpcode() == ISD::SHL) {
1873 SelectS_BFEFromShifts(N);
1874 return;
1876 break;
1878 case ISD::SIGN_EXTEND_INREG: {
1879 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
1880 SDValue Src = N->getOperand(0);
1881 if (Src.getOpcode() != ISD::SRL)
1882 break;
1884 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1885 if (!Amt)
1886 break;
1888 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
1889 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
1890 Amt->getZExtValue(), Width));
1891 return;
1895 SelectCode(N);
1898 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
1899 assert(N->getOpcode() == ISD::BRCOND);
1900 if (!N->hasOneUse())
1901 return false;
1903 SDValue Cond = N->getOperand(1);
1904 if (Cond.getOpcode() == ISD::CopyToReg)
1905 Cond = Cond.getOperand(2);
1907 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
1908 return false;
1910 MVT VT = Cond.getOperand(0).getSimpleValueType();
1911 if (VT == MVT::i32)
1912 return true;
1914 if (VT == MVT::i64) {
1915 auto ST = static_cast<const GCNSubtarget *>(Subtarget);
1917 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
1918 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
1921 return false;
1924 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
1925 SDValue Cond = N->getOperand(1);
1927 if (Cond.isUndef()) {
1928 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
1929 N->getOperand(2), N->getOperand(0));
1930 return;
1933 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1934 const SIRegisterInfo *TRI = ST->getRegisterInfo();
1936 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
1937 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
1938 unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC();
1939 SDLoc SL(N);
1941 if (!UseSCCBr) {
1942 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
1943 // analyzed what generates the vcc value, so we do not know whether vcc
1944 // bits for disabled lanes are 0. Thus we need to mask out bits for
1945 // disabled lanes.
1947 // For the case that we select S_CBRANCH_SCC1 and it gets
1948 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
1949 // SIInstrInfo::moveToVALU which inserts the S_AND).
1951 // We could add an analysis of what generates the vcc value here and omit
1952 // the S_AND when is unnecessary. But it would be better to add a separate
1953 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
1954 // catches both cases.
1955 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
1956 : AMDGPU::S_AND_B64,
1957 SL, MVT::i1,
1958 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
1959 : AMDGPU::EXEC,
1960 MVT::i1),
1961 Cond),
1965 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
1966 CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
1967 N->getOperand(2), // Basic Block
1968 VCC.getValue(0));
1971 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
1972 MVT VT = N->getSimpleValueType(0);
1973 bool IsFMA = N->getOpcode() == ISD::FMA;
1974 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
1975 !Subtarget->hasFmaMixInsts()) ||
1976 ((IsFMA && Subtarget->hasMadMixInsts()) ||
1977 (!IsFMA && Subtarget->hasFmaMixInsts()))) {
1978 SelectCode(N);
1979 return;
1982 SDValue Src0 = N->getOperand(0);
1983 SDValue Src1 = N->getOperand(1);
1984 SDValue Src2 = N->getOperand(2);
1985 unsigned Src0Mods, Src1Mods, Src2Mods;
1987 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
1988 // using the conversion from f16.
1989 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
1990 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
1991 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
1993 assert((IsFMA || !Subtarget->hasFP32Denormals()) &&
1994 "fmad selected with denormals enabled");
1995 // TODO: We can select this with f32 denormals enabled if all the sources are
1996 // converted from f16 (in which case fmad isn't legal).
1998 if (Sel0 || Sel1 || Sel2) {
1999 // For dummy operands.
2000 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2001 SDValue Ops[] = {
2002 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2003 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2004 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2005 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2006 Zero, Zero
2009 CurDAG->SelectNodeTo(N,
2010 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2011 MVT::f32, Ops);
2012 } else {
2013 SelectCode(N);
2017 // This is here because there isn't a way to use the generated sub0_sub1 as the
2018 // subreg index to EXTRACT_SUBREG in tablegen.
2019 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2020 MemSDNode *Mem = cast<MemSDNode>(N);
2021 unsigned AS = Mem->getAddressSpace();
2022 if (AS == AMDGPUAS::FLAT_ADDRESS) {
2023 SelectCode(N);
2024 return;
2027 MVT VT = N->getSimpleValueType(0);
2028 bool Is32 = (VT == MVT::i32);
2029 SDLoc SL(N);
2031 MachineSDNode *CmpSwap = nullptr;
2032 if (Subtarget->hasAddr64()) {
2033 SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2035 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2036 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2037 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2038 SDValue CmpVal = Mem->getOperand(2);
2040 // XXX - Do we care about glue operands?
2042 SDValue Ops[] = {
2043 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2046 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2050 if (!CmpSwap) {
2051 SDValue SRsrc, SOffset, Offset, SLC;
2052 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2053 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2054 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2056 SDValue CmpVal = Mem->getOperand(2);
2057 SDValue Ops[] = {
2058 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2061 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2065 if (!CmpSwap) {
2066 SelectCode(N);
2067 return;
2070 MachineMemOperand *MMO = Mem->getMemOperand();
2071 CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2073 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2074 SDValue Extract
2075 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2077 ReplaceUses(SDValue(N, 0), Extract);
2078 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2079 CurDAG->RemoveDeadNode(N);
2082 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2083 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2084 // be copied to an SGPR with readfirstlane.
2085 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2086 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2088 SDValue Chain = N->getOperand(0);
2089 SDValue Ptr = N->getOperand(2);
2090 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2091 MachineMemOperand *MMO = M->getMemOperand();
2092 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2094 SDValue Offset;
2095 if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2096 SDValue PtrBase = Ptr.getOperand(0);
2097 SDValue PtrOffset = Ptr.getOperand(1);
2099 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2100 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2101 N = glueCopyToM0(N, PtrBase);
2102 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2106 if (!Offset) {
2107 N = glueCopyToM0(N, Ptr);
2108 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2111 SDValue Ops[] = {
2112 Offset,
2113 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2114 Chain,
2115 N->getOperand(N->getNumOperands() - 1) // New glue
2118 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2119 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2122 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2123 switch (IntrID) {
2124 case Intrinsic::amdgcn_ds_gws_init:
2125 return AMDGPU::DS_GWS_INIT;
2126 case Intrinsic::amdgcn_ds_gws_barrier:
2127 return AMDGPU::DS_GWS_BARRIER;
2128 case Intrinsic::amdgcn_ds_gws_sema_v:
2129 return AMDGPU::DS_GWS_SEMA_V;
2130 case Intrinsic::amdgcn_ds_gws_sema_br:
2131 return AMDGPU::DS_GWS_SEMA_BR;
2132 case Intrinsic::amdgcn_ds_gws_sema_p:
2133 return AMDGPU::DS_GWS_SEMA_P;
2134 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2135 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2136 default:
2137 llvm_unreachable("not a gws intrinsic");
2141 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2142 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2143 !Subtarget->hasGWSSemaReleaseAll()) {
2144 // Let this error.
2145 SelectCode(N);
2146 return;
2149 // Chain, intrinsic ID, vsrc, offset
2150 const bool HasVSrc = N->getNumOperands() == 4;
2151 assert(HasVSrc || N->getNumOperands() == 3);
2153 SDLoc SL(N);
2154 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2155 int ImmOffset = 0;
2156 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2157 MachineMemOperand *MMO = M->getMemOperand();
2159 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2160 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2162 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2163 // offset field) % 64. Some versions of the programming guide omit the m0
2164 // part, or claim it's from offset 0.
2165 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2166 // If we have a constant offset, try to use the 0 in m0 as the base.
2167 // TODO: Look into changing the default m0 initialization value. If the
2168 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2169 // the immediate offset.
2170 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2171 ImmOffset = ConstOffset->getZExtValue();
2172 } else {
2173 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2174 ImmOffset = BaseOffset.getConstantOperandVal(1);
2175 BaseOffset = BaseOffset.getOperand(0);
2178 // Prefer to do the shift in an SGPR since it should be possible to use m0
2179 // as the result directly. If it's already an SGPR, it will be eliminated
2180 // later.
2181 SDNode *SGPROffset
2182 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2183 BaseOffset);
2184 // Shift to offset in m0
2185 SDNode *M0Base
2186 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2187 SDValue(SGPROffset, 0),
2188 CurDAG->getTargetConstant(16, SL, MVT::i32));
2189 glueCopyToM0(N, SDValue(M0Base, 0));
2192 SDValue Chain = N->getOperand(0);
2193 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2195 // TODO: Can this just be removed from the instruction?
2196 SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2198 const unsigned Opc = gwsIntrinToOpcode(IntrID);
2199 SmallVector<SDValue, 5> Ops;
2200 if (HasVSrc)
2201 Ops.push_back(N->getOperand(2));
2202 Ops.push_back(OffsetField);
2203 Ops.push_back(GDS);
2204 Ops.push_back(Chain);
2206 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2207 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2210 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2211 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2212 switch (IntrID) {
2213 case Intrinsic::amdgcn_ds_append:
2214 case Intrinsic::amdgcn_ds_consume: {
2215 if (N->getValueType(0) != MVT::i32)
2216 break;
2217 SelectDSAppendConsume(N, IntrID);
2218 return;
2222 SelectCode(N);
2225 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2226 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2227 unsigned Opcode;
2228 switch (IntrID) {
2229 case Intrinsic::amdgcn_wqm:
2230 Opcode = AMDGPU::WQM;
2231 break;
2232 case Intrinsic::amdgcn_softwqm:
2233 Opcode = AMDGPU::SOFT_WQM;
2234 break;
2235 case Intrinsic::amdgcn_wwm:
2236 Opcode = AMDGPU::WWM;
2237 break;
2238 default:
2239 SelectCode(N);
2240 return;
2243 SDValue Src = N->getOperand(1);
2244 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2247 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2248 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2249 switch (IntrID) {
2250 case Intrinsic::amdgcn_ds_gws_init:
2251 case Intrinsic::amdgcn_ds_gws_barrier:
2252 case Intrinsic::amdgcn_ds_gws_sema_v:
2253 case Intrinsic::amdgcn_ds_gws_sema_br:
2254 case Intrinsic::amdgcn_ds_gws_sema_p:
2255 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2256 SelectDS_GWS(N, IntrID);
2257 return;
2258 default:
2259 break;
2262 SelectCode(N);
2265 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2266 unsigned &Mods) const {
2267 Mods = 0;
2268 Src = In;
2270 if (Src.getOpcode() == ISD::FNEG) {
2271 Mods |= SISrcMods::NEG;
2272 Src = Src.getOperand(0);
2275 if (Src.getOpcode() == ISD::FABS) {
2276 Mods |= SISrcMods::ABS;
2277 Src = Src.getOperand(0);
2280 return true;
2283 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2284 SDValue &SrcMods) const {
2285 unsigned Mods;
2286 if (SelectVOP3ModsImpl(In, Src, Mods)) {
2287 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2288 return true;
2291 return false;
2294 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2295 SDValue &SrcMods) const {
2296 SelectVOP3Mods(In, Src, SrcMods);
2297 return isNoNanSrc(Src);
2300 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_f32(SDValue In, SDValue &Src,
2301 SDValue &SrcMods) const {
2302 if (In.getValueType() == MVT::f32)
2303 return SelectVOP3Mods(In, Src, SrcMods);
2304 Src = In;
2305 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);;
2306 return true;
2309 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2310 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2311 return false;
2313 Src = In;
2314 return true;
2317 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2318 SDValue &SrcMods, SDValue &Clamp,
2319 SDValue &Omod) const {
2320 SDLoc DL(In);
2321 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2322 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2324 return SelectVOP3Mods(In, Src, SrcMods);
2327 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src,
2328 SDValue &SrcMods,
2329 SDValue &Clamp,
2330 SDValue &Omod) const {
2331 Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2332 return SelectVOP3Mods(In, Src, SrcMods);
2335 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2336 SDValue &Clamp, SDValue &Omod) const {
2337 Src = In;
2339 SDLoc DL(In);
2340 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2341 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2343 return true;
2346 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2347 SDValue &SrcMods) const {
2348 unsigned Mods = 0;
2349 Src = In;
2351 if (Src.getOpcode() == ISD::FNEG) {
2352 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2353 Src = Src.getOperand(0);
2356 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2357 unsigned VecMods = Mods;
2359 SDValue Lo = stripBitcast(Src.getOperand(0));
2360 SDValue Hi = stripBitcast(Src.getOperand(1));
2362 if (Lo.getOpcode() == ISD::FNEG) {
2363 Lo = stripBitcast(Lo.getOperand(0));
2364 Mods ^= SISrcMods::NEG;
2367 if (Hi.getOpcode() == ISD::FNEG) {
2368 Hi = stripBitcast(Hi.getOperand(0));
2369 Mods ^= SISrcMods::NEG_HI;
2372 if (isExtractHiElt(Lo, Lo))
2373 Mods |= SISrcMods::OP_SEL_0;
2375 if (isExtractHiElt(Hi, Hi))
2376 Mods |= SISrcMods::OP_SEL_1;
2378 Lo = stripExtractLoElt(Lo);
2379 Hi = stripExtractLoElt(Hi);
2381 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2382 // Really a scalar input. Just select from the low half of the register to
2383 // avoid packing.
2385 Src = Lo;
2386 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2387 return true;
2390 Mods = VecMods;
2393 // Packed instructions do not have abs modifiers.
2394 Mods |= SISrcMods::OP_SEL_1;
2396 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2397 return true;
2400 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src,
2401 SDValue &SrcMods,
2402 SDValue &Clamp) const {
2403 SDLoc SL(In);
2405 // FIXME: Handle clamp and op_sel
2406 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2408 return SelectVOP3PMods(In, Src, SrcMods);
2411 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2412 SDValue &SrcMods) const {
2413 Src = In;
2414 // FIXME: Handle op_sel
2415 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2416 return true;
2419 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
2420 SDValue &SrcMods,
2421 SDValue &Clamp) const {
2422 SDLoc SL(In);
2424 // FIXME: Handle clamp
2425 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2427 return SelectVOP3OpSel(In, Src, SrcMods);
2430 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2431 SDValue &SrcMods) const {
2432 // FIXME: Handle op_sel
2433 return SelectVOP3Mods(In, Src, SrcMods);
2436 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
2437 SDValue &SrcMods,
2438 SDValue &Clamp) const {
2439 SDLoc SL(In);
2441 // FIXME: Handle clamp
2442 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2444 return SelectVOP3OpSelMods(In, Src, SrcMods);
2447 // The return value is not whether the match is possible (which it always is),
2448 // but whether or not it a conversion is really used.
2449 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2450 unsigned &Mods) const {
2451 Mods = 0;
2452 SelectVOP3ModsImpl(In, Src, Mods);
2454 if (Src.getOpcode() == ISD::FP_EXTEND) {
2455 Src = Src.getOperand(0);
2456 assert(Src.getValueType() == MVT::f16);
2457 Src = stripBitcast(Src);
2459 // Be careful about folding modifiers if we already have an abs. fneg is
2460 // applied last, so we don't want to apply an earlier fneg.
2461 if ((Mods & SISrcMods::ABS) == 0) {
2462 unsigned ModsTmp;
2463 SelectVOP3ModsImpl(Src, Src, ModsTmp);
2465 if ((ModsTmp & SISrcMods::NEG) != 0)
2466 Mods ^= SISrcMods::NEG;
2468 if ((ModsTmp & SISrcMods::ABS) != 0)
2469 Mods |= SISrcMods::ABS;
2472 // op_sel/op_sel_hi decide the source type and source.
2473 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2474 // If the sources's op_sel is set, it picks the high half of the source
2475 // register.
2477 Mods |= SISrcMods::OP_SEL_1;
2478 if (isExtractHiElt(Src, Src)) {
2479 Mods |= SISrcMods::OP_SEL_0;
2481 // TODO: Should we try to look for neg/abs here?
2484 return true;
2487 return false;
2490 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2491 SDValue &SrcMods) const {
2492 unsigned Mods = 0;
2493 SelectVOP3PMadMixModsImpl(In, Src, Mods);
2494 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2495 return true;
2498 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2499 if (In.isUndef())
2500 return CurDAG->getUNDEF(MVT::i32);
2502 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2503 SDLoc SL(In);
2504 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2507 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2508 SDLoc SL(In);
2509 return CurDAG->getConstant(
2510 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2513 SDValue Src;
2514 if (isExtractHiElt(In, Src))
2515 return Src;
2517 return SDValue();
2520 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2521 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2523 const SIRegisterInfo *SIRI =
2524 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2525 const SIInstrInfo * SII =
2526 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2528 unsigned Limit = 0;
2529 bool AllUsesAcceptSReg = true;
2530 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2531 Limit < 10 && U != E; ++U, ++Limit) {
2532 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2534 // If the register class is unknown, it could be an unknown
2535 // register class that needs to be an SGPR, e.g. an inline asm
2536 // constraint
2537 if (!RC || SIRI->isSGPRClass(RC))
2538 return false;
2540 if (RC != &AMDGPU::VS_32RegClass) {
2541 AllUsesAcceptSReg = false;
2542 SDNode * User = *U;
2543 if (User->isMachineOpcode()) {
2544 unsigned Opc = User->getMachineOpcode();
2545 MCInstrDesc Desc = SII->get(Opc);
2546 if (Desc.isCommutable()) {
2547 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2548 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2549 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2550 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2551 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2552 if (CommutedRC == &AMDGPU::VS_32RegClass)
2553 AllUsesAcceptSReg = true;
2557 // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2558 // commuting current user. This means have at least one use
2559 // that strictly require VGPR. Thus, we will not attempt to commute
2560 // other user instructions.
2561 if (!AllUsesAcceptSReg)
2562 break;
2565 return !AllUsesAcceptSReg && (Limit < 10);
2568 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2569 auto Ld = cast<LoadSDNode>(N);
2571 return Ld->getAlignment() >= 4 &&
2575 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2576 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2579 !N->isDivergent()
2583 Subtarget->getScalarizeGlobalBehavior() &&
2584 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2585 !Ld->isVolatile() &&
2586 !N->isDivergent() &&
2587 static_cast<const SITargetLowering *>(
2588 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2593 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2594 const AMDGPUTargetLowering& Lowering =
2595 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2596 bool IsModified = false;
2597 do {
2598 IsModified = false;
2600 // Go over all selected nodes and try to fold them a bit more
2601 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2602 while (Position != CurDAG->allnodes_end()) {
2603 SDNode *Node = &*Position++;
2604 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2605 if (!MachineNode)
2606 continue;
2608 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2609 if (ResNode != Node) {
2610 if (ResNode)
2611 ReplaceUses(Node, ResNode);
2612 IsModified = true;
2615 CurDAG->RemoveDeadNodes();
2616 } while (IsModified);
2619 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2620 Subtarget = &MF.getSubtarget<R600Subtarget>();
2621 return SelectionDAGISel::runOnMachineFunction(MF);
2624 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2625 if (!N->readMem())
2626 return false;
2627 if (CbId == -1)
2628 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2629 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2631 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2634 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2635 SDValue& IntPtr) {
2636 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2637 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2638 true);
2639 return true;
2641 return false;
2644 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2645 SDValue& BaseReg, SDValue &Offset) {
2646 if (!isa<ConstantSDNode>(Addr)) {
2647 BaseReg = Addr;
2648 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2649 return true;
2651 return false;
2654 void R600DAGToDAGISel::Select(SDNode *N) {
2655 unsigned int Opc = N->getOpcode();
2656 if (N->isMachineOpcode()) {
2657 N->setNodeId(-1);
2658 return; // Already selected.
2661 switch (Opc) {
2662 default: break;
2663 case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2664 case ISD::SCALAR_TO_VECTOR:
2665 case ISD::BUILD_VECTOR: {
2666 EVT VT = N->getValueType(0);
2667 unsigned NumVectorElts = VT.getVectorNumElements();
2668 unsigned RegClassID;
2669 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2670 // that adds a 128 bits reg copy when going through TwoAddressInstructions
2671 // pass. We want to avoid 128 bits copies as much as possible because they
2672 // can't be bundled by our scheduler.
2673 switch(NumVectorElts) {
2674 case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2675 case 4:
2676 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2677 RegClassID = R600::R600_Reg128VerticalRegClassID;
2678 else
2679 RegClassID = R600::R600_Reg128RegClassID;
2680 break;
2681 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2683 SelectBuildVector(N, RegClassID);
2684 return;
2688 SelectCode(N);
2691 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2692 SDValue &Offset) {
2693 ConstantSDNode *C;
2694 SDLoc DL(Addr);
2696 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2697 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2698 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2699 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2700 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2701 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2702 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2703 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2704 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2705 Base = Addr.getOperand(0);
2706 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2707 } else {
2708 Base = Addr;
2709 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2712 return true;
2715 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2716 SDValue &Offset) {
2717 ConstantSDNode *IMMOffset;
2719 if (Addr.getOpcode() == ISD::ADD
2720 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2721 && isInt<16>(IMMOffset->getZExtValue())) {
2723 Base = Addr.getOperand(0);
2724 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2725 MVT::i32);
2726 return true;
2727 // If the pointer address is constant, we can move it to the offset field.
2728 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2729 && isInt<16>(IMMOffset->getZExtValue())) {
2730 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2731 SDLoc(CurDAG->getEntryNode()),
2732 R600::ZERO, MVT::i32);
2733 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2734 MVT::i32);
2735 return true;
2738 // Default case, no offset
2739 Base = Addr;
2740 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2741 return true;