[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AMDGPU / AMDGPUPrintfRuntimeBinding.cpp
blob022e8a060ed214c9bd3e7d573afd0013d3998da4
1 //=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // \file
9 //
10 // The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11 // later by the runtime.
13 // This pass traverses the functions in the module and converts
14 // each call to printf to a sequence of operations that
15 // store the following into the printf buffer:
16 // - format string (passed as a module's metadata unique ID)
17 // - bitwise copies of printf arguments
18 // The backend passes will need to store metadata in the kernel
19 //===----------------------------------------------------------------------===//
21 #include "AMDGPU.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/CodeGen/Passes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstVisitor.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 using namespace llvm;
43 #define DEBUG_TYPE "printfToRuntime"
44 #define DWORD_ALIGN 4
46 namespace {
47 class LLVM_LIBRARY_VISIBILITY AMDGPUPrintfRuntimeBinding final
48 : public ModulePass,
49 public InstVisitor<AMDGPUPrintfRuntimeBinding> {
51 public:
52 static char ID;
54 explicit AMDGPUPrintfRuntimeBinding();
56 void visitCallSite(CallSite CS) {
57 Function *F = CS.getCalledFunction();
58 if (F && F->hasName() && F->getName() == "printf")
59 Printfs.push_back(CS.getInstruction());
62 private:
63 bool runOnModule(Module &M) override;
64 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
65 StringRef fmt, size_t num_ops) const;
67 bool shouldPrintAsStr(char Specifier, Type *OpType) const;
68 bool lowerPrintfForGpu(Module &M);
70 void getAnalysisUsage(AnalysisUsage &AU) const override {
71 AU.addRequired<TargetLibraryInfoWrapperPass>();
72 AU.addRequired<DominatorTreeWrapperPass>();
75 Value *simplify(Instruction *I) {
76 return SimplifyInstruction(I, {*TD, TLI, DT});
79 const DataLayout *TD;
80 const DominatorTree *DT;
81 const TargetLibraryInfo *TLI;
82 SmallVector<Value *, 32> Printfs;
84 } // namespace
86 char AMDGPUPrintfRuntimeBinding::ID = 0;
88 INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
89 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
90 false, false)
91 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
92 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
93 INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
94 "AMDGPU Printf lowering", false, false)
96 char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
98 namespace llvm {
99 ModulePass *createAMDGPUPrintfRuntimeBinding() {
100 return new AMDGPUPrintfRuntimeBinding();
102 } // namespace llvm
104 AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
105 : ModulePass(ID), TD(nullptr), DT(nullptr), TLI(nullptr) {
106 initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
109 void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
110 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
111 size_t NumOps) const {
112 // not all format characters are collected.
113 // At this time the format characters of interest
114 // are %p and %s, which use to know if we
115 // are either storing a literal string or a
116 // pointer to the printf buffer.
117 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
118 size_t CurFmtSpecifierIdx = 0;
119 size_t PrevFmtSpecifierIdx = 0;
121 while ((CurFmtSpecifierIdx = Fmt.find_first_of(
122 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
123 bool ArgDump = false;
124 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
125 CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
126 size_t pTag = CurFmt.find_last_of("%");
127 if (pTag != StringRef::npos) {
128 ArgDump = true;
129 while (pTag && CurFmt[--pTag] == '%') {
130 ArgDump = !ArgDump;
134 if (ArgDump)
135 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
137 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
141 bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
142 Type *OpType) const {
143 if (Specifier != 's')
144 return false;
145 const PointerType *PT = dyn_cast<PointerType>(OpType);
146 if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
147 return false;
148 Type *ElemType = PT->getContainedType(0);
149 if (ElemType->getTypeID() != Type::IntegerTyID)
150 return false;
151 IntegerType *ElemIType = cast<IntegerType>(ElemType);
152 return ElemIType->getBitWidth() == 8;
155 bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(Module &M) {
156 LLVMContext &Ctx = M.getContext();
157 IRBuilder<> Builder(Ctx);
158 Type *I32Ty = Type::getInt32Ty(Ctx);
159 unsigned UniqID = 0;
160 // NB: This is important for this string size to be divizable by 4
161 const char NonLiteralStr[4] = "???";
163 for (auto P : Printfs) {
164 CallInst *CI = dyn_cast<CallInst>(P);
166 unsigned NumOps = CI->getNumArgOperands();
168 SmallString<16> OpConvSpecifiers;
169 Value *Op = CI->getArgOperand(0);
171 if (auto LI = dyn_cast<LoadInst>(Op)) {
172 Op = LI->getPointerOperand();
173 for (auto Use : Op->users()) {
174 if (auto SI = dyn_cast<StoreInst>(Use)) {
175 Op = SI->getValueOperand();
176 break;
181 if (auto I = dyn_cast<Instruction>(Op)) {
182 Value *Op_simplified = simplify(I);
183 if (Op_simplified)
184 Op = Op_simplified;
187 ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
189 if (ConstExpr) {
190 GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
192 StringRef Str("unknown");
193 if (GVar && GVar->hasInitializer()) {
194 auto Init = GVar->getInitializer();
195 if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
196 if (CA->isString())
197 Str = CA->getAsCString();
198 } else if (isa<ConstantAggregateZero>(Init)) {
199 Str = "";
202 // we need this call to ascertain
203 // that we are printing a string
204 // or a pointer. It takes out the
205 // specifiers and fills up the first
206 // arg
207 getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
209 // Add metadata for the string
210 std::string AStreamHolder;
211 raw_string_ostream Sizes(AStreamHolder);
212 int Sum = DWORD_ALIGN;
213 Sizes << CI->getNumArgOperands() - 1;
214 Sizes << ':';
215 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
216 ArgCount <= OpConvSpecifiers.size();
217 ArgCount++) {
218 Value *Arg = CI->getArgOperand(ArgCount);
219 Type *ArgType = Arg->getType();
220 unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
221 ArgSize = ArgSize / 8;
223 // ArgSize by design should be a multiple of DWORD_ALIGN,
224 // expand the arguments that do not follow this rule.
226 if (ArgSize % DWORD_ALIGN != 0) {
227 llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
228 VectorType *LLVMVecType = llvm::dyn_cast<llvm::VectorType>(ArgType);
229 int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
230 if (LLVMVecType && NumElem > 1)
231 ResType = llvm::VectorType::get(ResType, NumElem);
232 Builder.SetInsertPoint(CI);
233 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
234 if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
235 OpConvSpecifiers[ArgCount - 1] == 'X' ||
236 OpConvSpecifiers[ArgCount - 1] == 'u' ||
237 OpConvSpecifiers[ArgCount - 1] == 'o')
238 Arg = Builder.CreateZExt(Arg, ResType);
239 else
240 Arg = Builder.CreateSExt(Arg, ResType);
241 ArgType = Arg->getType();
242 ArgSize = TD->getTypeAllocSizeInBits(ArgType);
243 ArgSize = ArgSize / 8;
244 CI->setOperand(ArgCount, Arg);
246 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
247 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
248 if (FpCons)
249 ArgSize = 4;
250 else {
251 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
252 if (FpExt && FpExt->getType()->isDoubleTy() &&
253 FpExt->getOperand(0)->getType()->isFloatTy())
254 ArgSize = 4;
257 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
258 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
259 GlobalVariable *GV =
260 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
261 if (GV && GV->hasInitializer()) {
262 Constant *Init = GV->getInitializer();
263 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
264 if (Init->isZeroValue() || CA->isString()) {
265 size_t SizeStr = Init->isZeroValue()
267 : (strlen(CA->getAsCString().data()) + 1);
268 size_t Rem = SizeStr % DWORD_ALIGN;
269 size_t NSizeStr = 0;
270 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
271 << '\n');
272 if (Rem) {
273 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
274 } else {
275 NSizeStr = SizeStr;
277 ArgSize = NSizeStr;
279 } else {
280 ArgSize = sizeof(NonLiteralStr);
282 } else {
283 ArgSize = sizeof(NonLiteralStr);
286 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
287 << " for type: " << *ArgType << '\n');
288 Sizes << ArgSize << ':';
289 Sum += ArgSize;
291 LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
292 << '\n');
293 for (size_t I = 0; I < Str.size(); ++I) {
294 // Rest of the C escape sequences (e.g. \') are handled correctly
295 // by the MDParser
296 switch (Str[I]) {
297 case '\a':
298 Sizes << "\\a";
299 break;
300 case '\b':
301 Sizes << "\\b";
302 break;
303 case '\f':
304 Sizes << "\\f";
305 break;
306 case '\n':
307 Sizes << "\\n";
308 break;
309 case '\r':
310 Sizes << "\\r";
311 break;
312 case '\v':
313 Sizes << "\\v";
314 break;
315 case ':':
316 // ':' cannot be scanned by Flex, as it is defined as a delimiter
317 // Replace it with it's octal representation \72
318 Sizes << "\\72";
319 break;
320 default:
321 Sizes << Str[I];
322 break;
326 // Insert the printf_alloc call
327 Builder.SetInsertPoint(CI);
328 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
330 AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
331 Attribute::NoUnwind);
333 Type *SizetTy = Type::getInt32Ty(Ctx);
335 Type *Tys_alloc[1] = {SizetTy};
336 Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
337 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
338 FunctionCallee PrintfAllocFn =
339 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
341 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
342 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
343 MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
345 // Instead of creating global variables, the
346 // printf format strings are extracted
347 // and passed as metadata. This avoids
348 // polluting llvm's symbol tables in this module.
349 // Metadata is going to be extracted
350 // by the backend passes and inserted
351 // into the OpenCL binary as appropriate.
352 StringRef amd("llvm.printf.fmts");
353 NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
354 MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
355 metaD->addOperand(myMD);
356 Value *sumC = ConstantInt::get(SizetTy, Sum, false);
357 SmallVector<Value *, 1> alloc_args;
358 alloc_args.push_back(sumC);
359 CallInst *pcall =
360 CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
363 // Insert code to split basicblock with a
364 // piece of hammock code.
365 // basicblock splits after buffer overflow check
367 ConstantPointerNull *zeroIntPtr =
368 ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
369 ICmpInst *cmp =
370 dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
371 if (!CI->use_empty()) {
372 Value *result =
373 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
374 CI->replaceAllUsesWith(result);
376 SplitBlock(CI->getParent(), cmp);
377 Instruction *Brnch =
378 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
380 Builder.SetInsertPoint(Brnch);
382 // store unique printf id in the buffer
384 SmallVector<Value *, 1> ZeroIdxList;
385 ConstantInt *zeroInt =
386 ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
387 ZeroIdxList.push_back(zeroInt);
389 GetElementPtrInst *BufferIdx =
390 dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
391 nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));
393 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
394 Value *id_gep_cast =
395 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
397 StoreInst *stbuff =
398 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast);
399 stbuff->insertBefore(Brnch); // to Remove unused variable warning
401 SmallVector<Value *, 2> FourthIdxList;
402 ConstantInt *fourInt =
403 ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
405 FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
406 // the following GEP is the buffer pointer
407 BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
408 nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));
410 Type *Int32Ty = Type::getInt32Ty(Ctx);
411 Type *Int64Ty = Type::getInt64Ty(Ctx);
412 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
413 ArgCount <= OpConvSpecifiers.size();
414 ArgCount++) {
415 Value *Arg = CI->getArgOperand(ArgCount);
416 Type *ArgType = Arg->getType();
417 SmallVector<Value *, 32> WhatToStore;
418 if (ArgType->isFPOrFPVectorTy() &&
419 (ArgType->getTypeID() != Type::VectorTyID)) {
420 Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
421 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
422 ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
423 if (fpCons) {
424 APFloat Val(fpCons->getValueAPF());
425 bool Lost = false;
426 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
427 &Lost);
428 Arg = ConstantFP::get(Ctx, Val);
429 IType = Int32Ty;
430 } else {
431 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
432 if (FpExt && FpExt->getType()->isDoubleTy() &&
433 FpExt->getOperand(0)->getType()->isFloatTy()) {
434 Arg = FpExt->getOperand(0);
435 IType = Int32Ty;
439 Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
440 WhatToStore.push_back(Arg);
441 } else if (ArgType->getTypeID() == Type::PointerTyID) {
442 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
443 const char *S = NonLiteralStr;
444 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
445 GlobalVariable *GV =
446 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
447 if (GV && GV->hasInitializer()) {
448 Constant *Init = GV->getInitializer();
449 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
450 if (Init->isZeroValue() || CA->isString()) {
451 S = Init->isZeroValue() ? "" : CA->getAsCString().data();
455 size_t SizeStr = strlen(S) + 1;
456 size_t Rem = SizeStr % DWORD_ALIGN;
457 size_t NSizeStr = 0;
458 if (Rem) {
459 NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
460 } else {
461 NSizeStr = SizeStr;
463 if (S[0]) {
464 char *MyNewStr = new char[NSizeStr]();
465 strcpy(MyNewStr, S);
466 int NumInts = NSizeStr / 4;
467 int CharC = 0;
468 while (NumInts) {
469 int ANum = *(int *)(MyNewStr + CharC);
470 CharC += 4;
471 NumInts--;
472 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
473 WhatToStore.push_back(ANumV);
475 delete[] MyNewStr;
476 } else {
477 // Empty string, give a hint to RT it is no NULL
478 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
479 WhatToStore.push_back(ANumV);
481 } else {
482 uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
483 assert((Size == 32 || Size == 64) && "unsupported size");
484 Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
485 Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
486 WhatToStore.push_back(Arg);
488 } else if (ArgType->getTypeID() == Type::VectorTyID) {
489 Type *IType = NULL;
490 uint32_t EleCount = cast<VectorType>(ArgType)->getNumElements();
491 uint32_t EleSize = ArgType->getScalarSizeInBits();
492 uint32_t TotalSize = EleCount * EleSize;
493 if (EleCount == 3) {
494 IntegerType *Int32Ty = Type::getInt32Ty(ArgType->getContext());
495 Constant *Indices[4] = {
496 ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1),
497 ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 2)};
498 Constant *Mask = ConstantVector::get(Indices);
499 ShuffleVectorInst *Shuffle = new ShuffleVectorInst(Arg, Arg, Mask);
500 Shuffle->insertBefore(Brnch);
501 Arg = Shuffle;
502 ArgType = Arg->getType();
503 TotalSize += EleSize;
505 switch (EleSize) {
506 default:
507 EleCount = TotalSize / 64;
508 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
509 break;
510 case 8:
511 if (EleCount >= 8) {
512 EleCount = TotalSize / 64;
513 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
514 } else if (EleCount >= 3) {
515 EleCount = 1;
516 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
517 } else {
518 EleCount = 1;
519 IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
521 break;
522 case 16:
523 if (EleCount >= 3) {
524 EleCount = TotalSize / 64;
525 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
526 } else {
527 EleCount = 1;
528 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
530 break;
532 if (EleCount > 1) {
533 IType = dyn_cast<Type>(VectorType::get(IType, EleCount));
535 Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
536 WhatToStore.push_back(Arg);
537 } else {
538 WhatToStore.push_back(Arg);
540 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
541 Value *TheBtCast = WhatToStore[I];
542 unsigned ArgSize =
543 TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
544 SmallVector<Value *, 1> BuffOffset;
545 BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
547 Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
548 Value *CastedGEP =
549 new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
550 StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
551 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
552 << *StBuff << '\n');
553 (void)StBuff;
554 if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
555 break;
556 BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
557 nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
558 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
559 << *BufferIdx << '\n');
565 // erase the printf calls
566 for (auto P : Printfs) {
567 CallInst *CI = dyn_cast<CallInst>(P);
568 CI->eraseFromParent();
571 Printfs.clear();
572 return true;
575 bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
576 Triple TT(M.getTargetTriple());
577 if (TT.getArch() == Triple::r600)
578 return false;
580 visit(M);
582 if (Printfs.empty())
583 return false;
585 TD = &M.getDataLayout();
586 auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
587 DT = DTWP ? &DTWP->getDomTree() : nullptr;
588 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
590 return lowerPrintfForGpu(M);