[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AMDGPU / R600ISelLowering.cpp
blobfa1565148d1ad22e7c26603aff86e5a350c979a9
1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for R600
12 //===----------------------------------------------------------------------===//
14 #include "R600ISelLowering.h"
15 #include "AMDGPUFrameLowering.h"
16 #include "AMDGPUSubtarget.h"
17 #include "R600Defines.h"
18 #include "R600FrameLowering.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/CodeGen/CallingConvLower.h"
29 #include "llvm/CodeGen/DAGCombine.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 #include <vector>
50 using namespace llvm;
52 #include "R600GenCallingConv.inc"
54 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
55 const R600Subtarget &STI)
56 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
57 addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
58 addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
59 addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
60 addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
61 addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
62 addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
64 computeRegisterProperties(Subtarget->getRegisterInfo());
66 // Legalize loads and stores to the private address space.
67 setOperationAction(ISD::LOAD, MVT::i32, Custom);
68 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
69 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
71 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
72 // spaces, so it is custom lowered to handle those where it isn't.
73 for (MVT VT : MVT::integer_valuetypes()) {
74 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
75 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
76 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
78 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
79 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
80 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
82 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
83 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
84 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
87 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
88 setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
89 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
90 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
92 setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
93 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
94 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
96 setOperationAction(ISD::STORE, MVT::i8, Custom);
97 setOperationAction(ISD::STORE, MVT::i32, Custom);
98 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
99 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
101 setTruncStoreAction(MVT::i32, MVT::i8, Custom);
102 setTruncStoreAction(MVT::i32, MVT::i16, Custom);
103 // We need to include these since trunc STORES to PRIVATE need
104 // special handling to accommodate RMW
105 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
106 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
107 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
108 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
109 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
110 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
111 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
112 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
113 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
114 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
116 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
117 setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
118 setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
120 // Set condition code actions
121 setCondCodeAction(ISD::SETO, MVT::f32, Expand);
122 setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
123 setCondCodeAction(ISD::SETLT, MVT::f32, Expand);
124 setCondCodeAction(ISD::SETLE, MVT::f32, Expand);
125 setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
126 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
127 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
128 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
129 setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
130 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
131 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
132 setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
134 setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
135 setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
136 setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
137 setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
139 setOperationAction(ISD::FCOS, MVT::f32, Custom);
140 setOperationAction(ISD::FSIN, MVT::f32, Custom);
142 setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
143 setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
145 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
146 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
147 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
149 setOperationAction(ISD::FSUB, MVT::f32, Expand);
151 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
152 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
153 setOperationAction(ISD::FRINT, MVT::f64, Custom);
154 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
156 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
157 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
159 setOperationAction(ISD::SETCC, MVT::i32, Expand);
160 setOperationAction(ISD::SETCC, MVT::f32, Expand);
161 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
162 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
163 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
164 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
166 setOperationAction(ISD::SELECT, MVT::i32, Expand);
167 setOperationAction(ISD::SELECT, MVT::f32, Expand);
168 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
169 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
171 // ADD, SUB overflow.
172 // TODO: turn these into Legal?
173 if (Subtarget->hasCARRY())
174 setOperationAction(ISD::UADDO, MVT::i32, Custom);
176 if (Subtarget->hasBORROW())
177 setOperationAction(ISD::USUBO, MVT::i32, Custom);
179 // Expand sign extension of vectors
180 if (!Subtarget->hasBFE())
181 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
183 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
184 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
186 if (!Subtarget->hasBFE())
187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
189 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
191 if (!Subtarget->hasBFE())
192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
193 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
194 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
197 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
198 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
200 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
202 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
204 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
205 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
206 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
207 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
209 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
210 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
211 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
212 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
214 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
215 // to be Legal/Custom in order to avoid library calls.
216 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
217 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
218 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
220 if (!Subtarget->hasFMA()) {
221 setOperationAction(ISD::FMA, MVT::f32, Expand);
222 setOperationAction(ISD::FMA, MVT::f64, Expand);
225 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
226 // need it for R600.
227 if (!Subtarget->hasFP32Denormals())
228 setOperationAction(ISD::FMAD, MVT::f32, Legal);
230 if (!Subtarget->hasBFI()) {
231 // fcopysign can be done in a single instruction with BFI.
232 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
233 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
236 if (!Subtarget->hasBCNT(32))
237 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
239 if (!Subtarget->hasBCNT(64))
240 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
242 if (Subtarget->hasFFBH())
243 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
245 if (Subtarget->hasFFBL())
246 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
248 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
249 // need it for R600.
250 if (Subtarget->hasBFE())
251 setHasExtractBitsInsn(true);
253 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
255 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
256 for (MVT VT : ScalarIntVTs) {
257 setOperationAction(ISD::ADDC, VT, Expand);
258 setOperationAction(ISD::SUBC, VT, Expand);
259 setOperationAction(ISD::ADDE, VT, Expand);
260 setOperationAction(ISD::SUBE, VT, Expand);
263 // LLVM will expand these to atomic_cmp_swap(0)
264 // and atomic_swap, respectively.
265 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
266 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
268 // We need to custom lower some of the intrinsics
269 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
270 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
272 setSchedulingPreference(Sched::Source);
274 setTargetDAGCombine(ISD::FP_ROUND);
275 setTargetDAGCombine(ISD::FP_TO_SINT);
276 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
277 setTargetDAGCombine(ISD::SELECT_CC);
278 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
279 setTargetDAGCombine(ISD::LOAD);
282 static inline bool isEOP(MachineBasicBlock::iterator I) {
283 if (std::next(I) == I->getParent()->end())
284 return false;
285 return std::next(I)->getOpcode() == R600::RETURN;
288 MachineBasicBlock *
289 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
290 MachineBasicBlock *BB) const {
291 MachineFunction *MF = BB->getParent();
292 MachineRegisterInfo &MRI = MF->getRegInfo();
293 MachineBasicBlock::iterator I = MI;
294 const R600InstrInfo *TII = Subtarget->getInstrInfo();
296 switch (MI.getOpcode()) {
297 default:
298 // Replace LDS_*_RET instruction that don't have any uses with the
299 // equivalent LDS_*_NORET instruction.
300 if (TII->isLDSRetInstr(MI.getOpcode())) {
301 int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
302 assert(DstIdx != -1);
303 MachineInstrBuilder NewMI;
304 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
305 // LDS_1A2D support and remove this special case.
306 if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
307 MI.getOpcode() == R600::LDS_CMPST_RET)
308 return BB;
310 NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
311 TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
312 for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
313 NewMI.add(MI.getOperand(i));
315 } else {
316 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
318 break;
320 case R600::FABS_R600: {
321 MachineInstr *NewMI = TII->buildDefaultInstruction(
322 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
323 MI.getOperand(1).getReg());
324 TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
325 break;
328 case R600::FNEG_R600: {
329 MachineInstr *NewMI = TII->buildDefaultInstruction(
330 *BB, I, R600::MOV, MI.getOperand(0).getReg(),
331 MI.getOperand(1).getReg());
332 TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
333 break;
336 case R600::MASK_WRITE: {
337 Register maskedRegister = MI.getOperand(0).getReg();
338 assert(Register::isVirtualRegister(maskedRegister));
339 MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
340 TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
341 break;
344 case R600::MOV_IMM_F32:
345 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
346 .getFPImm()
347 ->getValueAPF()
348 .bitcastToAPInt()
349 .getZExtValue());
350 break;
352 case R600::MOV_IMM_I32:
353 TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
354 MI.getOperand(1).getImm());
355 break;
357 case R600::MOV_IMM_GLOBAL_ADDR: {
358 //TODO: Perhaps combine this instruction with the next if possible
359 auto MIB = TII->buildDefaultInstruction(
360 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
361 int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
362 //TODO: Ugh this is rather ugly
363 MIB->getOperand(Idx) = MI.getOperand(1);
364 break;
367 case R600::CONST_COPY: {
368 MachineInstr *NewMI = TII->buildDefaultInstruction(
369 *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
370 TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
371 MI.getOperand(1).getImm());
372 break;
375 case R600::RAT_WRITE_CACHELESS_32_eg:
376 case R600::RAT_WRITE_CACHELESS_64_eg:
377 case R600::RAT_WRITE_CACHELESS_128_eg:
378 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
379 .add(MI.getOperand(0))
380 .add(MI.getOperand(1))
381 .addImm(isEOP(I)); // Set End of program bit
382 break;
384 case R600::RAT_STORE_TYPED_eg:
385 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
386 .add(MI.getOperand(0))
387 .add(MI.getOperand(1))
388 .add(MI.getOperand(2))
389 .addImm(isEOP(I)); // Set End of program bit
390 break;
392 case R600::BRANCH:
393 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
394 .add(MI.getOperand(0));
395 break;
397 case R600::BRANCH_COND_f32: {
398 MachineInstr *NewMI =
399 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
400 R600::PREDICATE_BIT)
401 .add(MI.getOperand(1))
402 .addImm(R600::PRED_SETNE)
403 .addImm(0); // Flags
404 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
405 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
406 .add(MI.getOperand(0))
407 .addReg(R600::PREDICATE_BIT, RegState::Kill);
408 break;
411 case R600::BRANCH_COND_i32: {
412 MachineInstr *NewMI =
413 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
414 R600::PREDICATE_BIT)
415 .add(MI.getOperand(1))
416 .addImm(R600::PRED_SETNE_INT)
417 .addImm(0); // Flags
418 TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
419 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
420 .add(MI.getOperand(0))
421 .addReg(R600::PREDICATE_BIT, RegState::Kill);
422 break;
425 case R600::EG_ExportSwz:
426 case R600::R600_ExportSwz: {
427 // Instruction is left unmodified if its not the last one of its type
428 bool isLastInstructionOfItsType = true;
429 unsigned InstExportType = MI.getOperand(1).getImm();
430 for (MachineBasicBlock::iterator NextExportInst = std::next(I),
431 EndBlock = BB->end(); NextExportInst != EndBlock;
432 NextExportInst = std::next(NextExportInst)) {
433 if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
434 NextExportInst->getOpcode() == R600::R600_ExportSwz) {
435 unsigned CurrentInstExportType = NextExportInst->getOperand(1)
436 .getImm();
437 if (CurrentInstExportType == InstExportType) {
438 isLastInstructionOfItsType = false;
439 break;
443 bool EOP = isEOP(I);
444 if (!EOP && !isLastInstructionOfItsType)
445 return BB;
446 unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
447 BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
448 .add(MI.getOperand(0))
449 .add(MI.getOperand(1))
450 .add(MI.getOperand(2))
451 .add(MI.getOperand(3))
452 .add(MI.getOperand(4))
453 .add(MI.getOperand(5))
454 .add(MI.getOperand(6))
455 .addImm(CfInst)
456 .addImm(EOP);
457 break;
459 case R600::RETURN: {
460 return BB;
464 MI.eraseFromParent();
465 return BB;
468 //===----------------------------------------------------------------------===//
469 // Custom DAG Lowering Operations
470 //===----------------------------------------------------------------------===//
472 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
473 MachineFunction &MF = DAG.getMachineFunction();
474 R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
475 switch (Op.getOpcode()) {
476 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
477 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
478 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
479 case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
480 case ISD::SRA_PARTS:
481 case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
482 case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
483 case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
484 case ISD::FCOS:
485 case ISD::FSIN: return LowerTrig(Op, DAG);
486 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
487 case ISD::STORE: return LowerSTORE(Op, DAG);
488 case ISD::LOAD: {
489 SDValue Result = LowerLOAD(Op, DAG);
490 assert((!Result.getNode() ||
491 Result.getNode()->getNumValues() == 2) &&
492 "Load should return a value and a chain");
493 return Result;
496 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
497 case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
498 case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
499 case ISD::INTRINSIC_VOID: {
500 SDValue Chain = Op.getOperand(0);
501 unsigned IntrinsicID =
502 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
503 switch (IntrinsicID) {
504 case Intrinsic::r600_store_swizzle: {
505 SDLoc DL(Op);
506 const SDValue Args[8] = {
507 Chain,
508 Op.getOperand(2), // Export Value
509 Op.getOperand(3), // ArrayBase
510 Op.getOperand(4), // Type
511 DAG.getConstant(0, DL, MVT::i32), // SWZ_X
512 DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
513 DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
514 DAG.getConstant(3, DL, MVT::i32) // SWZ_W
516 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
519 // default for switch(IntrinsicID)
520 default: break;
522 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
523 break;
525 case ISD::INTRINSIC_WO_CHAIN: {
526 unsigned IntrinsicID =
527 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
528 EVT VT = Op.getValueType();
529 SDLoc DL(Op);
530 switch (IntrinsicID) {
531 case Intrinsic::r600_tex:
532 case Intrinsic::r600_texc: {
533 unsigned TextureOp;
534 switch (IntrinsicID) {
535 case Intrinsic::r600_tex:
536 TextureOp = 0;
537 break;
538 case Intrinsic::r600_texc:
539 TextureOp = 1;
540 break;
541 default:
542 llvm_unreachable("unhandled texture operation");
545 SDValue TexArgs[19] = {
546 DAG.getConstant(TextureOp, DL, MVT::i32),
547 Op.getOperand(1),
548 DAG.getConstant(0, DL, MVT::i32),
549 DAG.getConstant(1, DL, MVT::i32),
550 DAG.getConstant(2, DL, MVT::i32),
551 DAG.getConstant(3, DL, MVT::i32),
552 Op.getOperand(2),
553 Op.getOperand(3),
554 Op.getOperand(4),
555 DAG.getConstant(0, DL, MVT::i32),
556 DAG.getConstant(1, DL, MVT::i32),
557 DAG.getConstant(2, DL, MVT::i32),
558 DAG.getConstant(3, DL, MVT::i32),
559 Op.getOperand(5),
560 Op.getOperand(6),
561 Op.getOperand(7),
562 Op.getOperand(8),
563 Op.getOperand(9),
564 Op.getOperand(10)
566 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
568 case Intrinsic::r600_dot4: {
569 SDValue Args[8] = {
570 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
571 DAG.getConstant(0, DL, MVT::i32)),
572 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
573 DAG.getConstant(0, DL, MVT::i32)),
574 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
575 DAG.getConstant(1, DL, MVT::i32)),
576 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
577 DAG.getConstant(1, DL, MVT::i32)),
578 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
579 DAG.getConstant(2, DL, MVT::i32)),
580 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
581 DAG.getConstant(2, DL, MVT::i32)),
582 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
583 DAG.getConstant(3, DL, MVT::i32)),
584 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
585 DAG.getConstant(3, DL, MVT::i32))
587 return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
590 case Intrinsic::r600_implicitarg_ptr: {
591 MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
592 uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
593 return DAG.getConstant(ByteOffset, DL, PtrVT);
595 case Intrinsic::r600_read_ngroups_x:
596 return LowerImplicitParameter(DAG, VT, DL, 0);
597 case Intrinsic::r600_read_ngroups_y:
598 return LowerImplicitParameter(DAG, VT, DL, 1);
599 case Intrinsic::r600_read_ngroups_z:
600 return LowerImplicitParameter(DAG, VT, DL, 2);
601 case Intrinsic::r600_read_global_size_x:
602 return LowerImplicitParameter(DAG, VT, DL, 3);
603 case Intrinsic::r600_read_global_size_y:
604 return LowerImplicitParameter(DAG, VT, DL, 4);
605 case Intrinsic::r600_read_global_size_z:
606 return LowerImplicitParameter(DAG, VT, DL, 5);
607 case Intrinsic::r600_read_local_size_x:
608 return LowerImplicitParameter(DAG, VT, DL, 6);
609 case Intrinsic::r600_read_local_size_y:
610 return LowerImplicitParameter(DAG, VT, DL, 7);
611 case Intrinsic::r600_read_local_size_z:
612 return LowerImplicitParameter(DAG, VT, DL, 8);
614 case Intrinsic::r600_read_tgid_x:
615 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
616 R600::T1_X, VT);
617 case Intrinsic::r600_read_tgid_y:
618 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
619 R600::T1_Y, VT);
620 case Intrinsic::r600_read_tgid_z:
621 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
622 R600::T1_Z, VT);
623 case Intrinsic::r600_read_tidig_x:
624 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
625 R600::T0_X, VT);
626 case Intrinsic::r600_read_tidig_y:
627 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
628 R600::T0_Y, VT);
629 case Intrinsic::r600_read_tidig_z:
630 return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
631 R600::T0_Z, VT);
633 case Intrinsic::r600_recipsqrt_ieee:
634 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
636 case Intrinsic::r600_recipsqrt_clamped:
637 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
638 default:
639 return Op;
642 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
643 break;
645 } // end switch(Op.getOpcode())
646 return SDValue();
649 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
650 SmallVectorImpl<SDValue> &Results,
651 SelectionDAG &DAG) const {
652 switch (N->getOpcode()) {
653 default:
654 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
655 return;
656 case ISD::FP_TO_UINT:
657 if (N->getValueType(0) == MVT::i1) {
658 Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
659 return;
661 // Since we don't care about out of bounds values we can use FP_TO_SINT for
662 // uints too. The DAGLegalizer code for uint considers some extra cases
663 // which are not necessary here.
664 LLVM_FALLTHROUGH;
665 case ISD::FP_TO_SINT: {
666 if (N->getValueType(0) == MVT::i1) {
667 Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
668 return;
671 SDValue Result;
672 if (expandFP_TO_SINT(N, Result, DAG))
673 Results.push_back(Result);
674 return;
676 case ISD::SDIVREM: {
677 SDValue Op = SDValue(N, 1);
678 SDValue RES = LowerSDIVREM(Op, DAG);
679 Results.push_back(RES);
680 Results.push_back(RES.getValue(1));
681 break;
683 case ISD::UDIVREM: {
684 SDValue Op = SDValue(N, 0);
685 LowerUDIVREM64(Op, DAG, Results);
686 break;
691 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
692 SDValue Vector) const {
693 SDLoc DL(Vector);
694 EVT VecVT = Vector.getValueType();
695 EVT EltVT = VecVT.getVectorElementType();
696 SmallVector<SDValue, 8> Args;
698 for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
699 Args.push_back(DAG.getNode(
700 ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
701 DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
704 return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
707 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
708 SelectionDAG &DAG) const {
709 SDLoc DL(Op);
710 SDValue Vector = Op.getOperand(0);
711 SDValue Index = Op.getOperand(1);
713 if (isa<ConstantSDNode>(Index) ||
714 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
715 return Op;
717 Vector = vectorToVerticalVector(DAG, Vector);
718 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
719 Vector, Index);
722 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
723 SelectionDAG &DAG) const {
724 SDLoc DL(Op);
725 SDValue Vector = Op.getOperand(0);
726 SDValue Value = Op.getOperand(1);
727 SDValue Index = Op.getOperand(2);
729 if (isa<ConstantSDNode>(Index) ||
730 Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
731 return Op;
733 Vector = vectorToVerticalVector(DAG, Vector);
734 SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
735 Vector, Value, Index);
736 return vectorToVerticalVector(DAG, Insert);
739 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
740 SDValue Op,
741 SelectionDAG &DAG) const {
742 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
743 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
744 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
746 const DataLayout &DL = DAG.getDataLayout();
747 const GlobalValue *GV = GSD->getGlobal();
748 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
750 SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
751 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
754 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
755 // On hw >= R700, COS/SIN input must be between -1. and 1.
756 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
757 EVT VT = Op.getValueType();
758 SDValue Arg = Op.getOperand(0);
759 SDLoc DL(Op);
761 // TODO: Should this propagate fast-math-flags?
762 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
763 DAG.getNode(ISD::FADD, DL, VT,
764 DAG.getNode(ISD::FMUL, DL, VT, Arg,
765 DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
766 DAG.getConstantFP(0.5, DL, MVT::f32)));
767 unsigned TrigNode;
768 switch (Op.getOpcode()) {
769 case ISD::FCOS:
770 TrigNode = AMDGPUISD::COS_HW;
771 break;
772 case ISD::FSIN:
773 TrigNode = AMDGPUISD::SIN_HW;
774 break;
775 default:
776 llvm_unreachable("Wrong trig opcode");
778 SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
779 DAG.getNode(ISD::FADD, DL, VT, FractPart,
780 DAG.getConstantFP(-0.5, DL, MVT::f32)));
781 if (Gen >= AMDGPUSubtarget::R700)
782 return TrigVal;
783 // On R600 hw, COS/SIN input must be between -Pi and Pi.
784 return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
785 DAG.getConstantFP(3.14159265359, DL, MVT::f32));
788 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
789 SDLoc DL(Op);
790 EVT VT = Op.getValueType();
792 SDValue Lo = Op.getOperand(0);
793 SDValue Hi = Op.getOperand(1);
794 SDValue Shift = Op.getOperand(2);
795 SDValue Zero = DAG.getConstant(0, DL, VT);
796 SDValue One = DAG.getConstant(1, DL, VT);
798 SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT);
799 SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
800 SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
801 SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
803 // The dance around Width1 is necessary for 0 special case.
804 // Without it the CompShift might be 32, producing incorrect results in
805 // Overflow. So we do the shift in two steps, the alternative is to
806 // add a conditional to filter the special case.
808 SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
809 Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
811 SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
812 HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
813 SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
815 SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
816 SDValue LoBig = Zero;
818 Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
819 Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
821 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
824 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
825 SDLoc DL(Op);
826 EVT VT = Op.getValueType();
828 SDValue Lo = Op.getOperand(0);
829 SDValue Hi = Op.getOperand(1);
830 SDValue Shift = Op.getOperand(2);
831 SDValue Zero = DAG.getConstant(0, DL, VT);
832 SDValue One = DAG.getConstant(1, DL, VT);
834 const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
836 SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT);
837 SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
838 SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
839 SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
841 // The dance around Width1 is necessary for 0 special case.
842 // Without it the CompShift might be 32, producing incorrect results in
843 // Overflow. So we do the shift in two steps, the alternative is to
844 // add a conditional to filter the special case.
846 SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
847 Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
849 SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
850 SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
851 LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
853 SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
854 SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
856 Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
857 Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
859 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
862 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
863 unsigned mainop, unsigned ovf) const {
864 SDLoc DL(Op);
865 EVT VT = Op.getValueType();
867 SDValue Lo = Op.getOperand(0);
868 SDValue Hi = Op.getOperand(1);
870 SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
871 // Extend sign.
872 OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
873 DAG.getValueType(MVT::i1));
875 SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
877 return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
880 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
881 SDLoc DL(Op);
882 return DAG.getNode(
883 ISD::SETCC,
885 MVT::i1,
886 Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
887 DAG.getCondCode(ISD::SETEQ));
890 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
891 SDLoc DL(Op);
892 return DAG.getNode(
893 ISD::SETCC,
895 MVT::i1,
896 Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
897 DAG.getCondCode(ISD::SETEQ));
900 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
901 const SDLoc &DL,
902 unsigned DwordOffset) const {
903 unsigned ByteOffset = DwordOffset * 4;
904 PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
905 AMDGPUAS::PARAM_I_ADDRESS);
907 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
908 assert(isInt<16>(ByteOffset));
910 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
911 DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
912 MachinePointerInfo(ConstantPointerNull::get(PtrType)));
915 bool R600TargetLowering::isZero(SDValue Op) const {
916 if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
917 return Cst->isNullValue();
918 } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
919 return CstFP->isZero();
920 } else {
921 return false;
925 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
926 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
927 return CFP->isExactlyValue(1.0);
929 return isAllOnesConstant(Op);
932 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
933 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
934 return CFP->getValueAPF().isZero();
936 return isNullConstant(Op);
939 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
940 SDLoc DL(Op);
941 EVT VT = Op.getValueType();
943 SDValue LHS = Op.getOperand(0);
944 SDValue RHS = Op.getOperand(1);
945 SDValue True = Op.getOperand(2);
946 SDValue False = Op.getOperand(3);
947 SDValue CC = Op.getOperand(4);
948 SDValue Temp;
950 if (VT == MVT::f32) {
951 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
952 SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
953 if (MinMax)
954 return MinMax;
957 // LHS and RHS are guaranteed to be the same value type
958 EVT CompareVT = LHS.getValueType();
960 // Check if we can lower this to a native operation.
962 // Try to lower to a SET* instruction:
964 // SET* can match the following patterns:
966 // select_cc f32, f32, -1, 0, cc_supported
967 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
968 // select_cc i32, i32, -1, 0, cc_supported
971 // Move hardware True/False values to the correct operand.
972 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
973 ISD::CondCode InverseCC =
974 ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
975 if (isHWTrueValue(False) && isHWFalseValue(True)) {
976 if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
977 std::swap(False, True);
978 CC = DAG.getCondCode(InverseCC);
979 } else {
980 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
981 if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
982 std::swap(False, True);
983 std::swap(LHS, RHS);
984 CC = DAG.getCondCode(SwapInvCC);
989 if (isHWTrueValue(True) && isHWFalseValue(False) &&
990 (CompareVT == VT || VT == MVT::i32)) {
991 // This can be matched by a SET* instruction.
992 return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
995 // Try to lower to a CND* instruction:
997 // CND* can match the following patterns:
999 // select_cc f32, 0.0, f32, f32, cc_supported
1000 // select_cc f32, 0.0, i32, i32, cc_supported
1001 // select_cc i32, 0, f32, f32, cc_supported
1002 // select_cc i32, 0, i32, i32, cc_supported
1005 // Try to move the zero value to the RHS
1006 if (isZero(LHS)) {
1007 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1008 // Try swapping the operands
1009 ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1010 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1011 std::swap(LHS, RHS);
1012 CC = DAG.getCondCode(CCSwapped);
1013 } else {
1014 // Try inverting the conditon and then swapping the operands
1015 ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
1016 CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1017 if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1018 std::swap(True, False);
1019 std::swap(LHS, RHS);
1020 CC = DAG.getCondCode(CCSwapped);
1024 if (isZero(RHS)) {
1025 SDValue Cond = LHS;
1026 SDValue Zero = RHS;
1027 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1028 if (CompareVT != VT) {
1029 // Bitcast True / False to the correct types. This will end up being
1030 // a nop, but it allows us to define only a single pattern in the
1031 // .TD files for each CND* instruction rather than having to have
1032 // one pattern for integer True/False and one for fp True/False
1033 True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1034 False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1037 switch (CCOpcode) {
1038 case ISD::SETONE:
1039 case ISD::SETUNE:
1040 case ISD::SETNE:
1041 CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
1042 Temp = True;
1043 True = False;
1044 False = Temp;
1045 break;
1046 default:
1047 break;
1049 SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1050 Cond, Zero,
1051 True, False,
1052 DAG.getCondCode(CCOpcode));
1053 return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1056 // If we make it this for it means we have no native instructions to handle
1057 // this SELECT_CC, so we must lower it.
1058 SDValue HWTrue, HWFalse;
1060 if (CompareVT == MVT::f32) {
1061 HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1062 HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1063 } else if (CompareVT == MVT::i32) {
1064 HWTrue = DAG.getConstant(-1, DL, CompareVT);
1065 HWFalse = DAG.getConstant(0, DL, CompareVT);
1067 else {
1068 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1071 // Lower this unsupported SELECT_CC into a combination of two supported
1072 // SELECT_CC operations.
1073 SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1075 return DAG.getNode(ISD::SELECT_CC, DL, VT,
1076 Cond, HWFalse,
1077 True, False,
1078 DAG.getCondCode(ISD::SETNE));
1081 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to
1082 /// convert these pointers to a register index. Each register holds
1083 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1084 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1085 /// for indirect addressing.
1086 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1087 unsigned StackWidth,
1088 SelectionDAG &DAG) const {
1089 unsigned SRLPad;
1090 switch(StackWidth) {
1091 case 1:
1092 SRLPad = 2;
1093 break;
1094 case 2:
1095 SRLPad = 3;
1096 break;
1097 case 4:
1098 SRLPad = 4;
1099 break;
1100 default: llvm_unreachable("Invalid stack width");
1103 SDLoc DL(Ptr);
1104 return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1105 DAG.getConstant(SRLPad, DL, MVT::i32));
1108 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1109 unsigned ElemIdx,
1110 unsigned &Channel,
1111 unsigned &PtrIncr) const {
1112 switch (StackWidth) {
1113 default:
1114 case 1:
1115 Channel = 0;
1116 if (ElemIdx > 0) {
1117 PtrIncr = 1;
1118 } else {
1119 PtrIncr = 0;
1121 break;
1122 case 2:
1123 Channel = ElemIdx % 2;
1124 if (ElemIdx == 2) {
1125 PtrIncr = 1;
1126 } else {
1127 PtrIncr = 0;
1129 break;
1130 case 4:
1131 Channel = ElemIdx;
1132 PtrIncr = 0;
1133 break;
1137 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1138 SelectionDAG &DAG) const {
1139 SDLoc DL(Store);
1140 //TODO: Who creates the i8 stores?
1141 assert(Store->isTruncatingStore()
1142 || Store->getValue().getValueType() == MVT::i8);
1143 assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);
1145 SDValue Mask;
1146 if (Store->getMemoryVT() == MVT::i8) {
1147 assert(Store->getAlignment() >= 1);
1148 Mask = DAG.getConstant(0xff, DL, MVT::i32);
1149 } else if (Store->getMemoryVT() == MVT::i16) {
1150 assert(Store->getAlignment() >= 2);
1151 Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1152 } else {
1153 llvm_unreachable("Unsupported private trunc store");
1156 SDValue OldChain = Store->getChain();
1157 bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1158 // Skip dummy
1159 SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1160 SDValue BasePtr = Store->getBasePtr();
1161 SDValue Offset = Store->getOffset();
1162 EVT MemVT = Store->getMemoryVT();
1164 SDValue LoadPtr = BasePtr;
1165 if (!Offset.isUndef()) {
1166 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1169 // Get dword location
1170 // TODO: this should be eliminated by the future SHR ptr, 2
1171 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1172 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1174 // Load dword
1175 // TODO: can we be smarter about machine pointer info?
1176 MachinePointerInfo PtrInfo(UndefValue::get(
1177 Type::getInt32PtrTy(*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)));
1178 SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1180 Chain = Dst.getValue(1);
1182 // Get offset in dword
1183 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1184 DAG.getConstant(0x3, DL, MVT::i32));
1186 // Convert byte offset to bit shift
1187 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1188 DAG.getConstant(3, DL, MVT::i32));
1190 // TODO: Contrary to the name of the functiom,
1191 // it also handles sub i32 non-truncating stores (like i1)
1192 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1193 Store->getValue());
1195 // Mask the value to the right type
1196 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1198 // Shift the value in place
1199 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1200 MaskedValue, ShiftAmt);
1202 // Shift the mask in place
1203 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1205 // Invert the mask. NOTE: if we had native ROL instructions we could
1206 // use inverted mask
1207 DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1209 // Cleanup the target bits
1210 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1212 // Add the new bits
1213 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1215 // Store dword
1216 // TODO: Can we be smarter about MachinePointerInfo?
1217 SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1219 // If we are part of expanded vector, make our neighbors depend on this store
1220 if (VectorTrunc) {
1221 // Make all other vector elements depend on this store
1222 Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1223 DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1225 return NewStore;
1228 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1229 StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1230 unsigned AS = StoreNode->getAddressSpace();
1232 SDValue Chain = StoreNode->getChain();
1233 SDValue Ptr = StoreNode->getBasePtr();
1234 SDValue Value = StoreNode->getValue();
1236 EVT VT = Value.getValueType();
1237 EVT MemVT = StoreNode->getMemoryVT();
1238 EVT PtrVT = Ptr.getValueType();
1240 SDLoc DL(Op);
1242 const bool TruncatingStore = StoreNode->isTruncatingStore();
1244 // Neither LOCAL nor PRIVATE can do vectors at the moment
1245 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
1246 TruncatingStore) &&
1247 VT.isVector()) {
1248 if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
1249 // Add an extra level of chain to isolate this vector
1250 SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1251 // TODO: can the chain be replaced without creating a new store?
1252 SDValue NewStore = DAG.getTruncStore(
1253 NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1254 MemVT, StoreNode->getAlignment(),
1255 StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1256 StoreNode = cast<StoreSDNode>(NewStore);
1259 return scalarizeVectorStore(StoreNode, DAG);
1262 unsigned Align = StoreNode->getAlignment();
1263 if (Align < MemVT.getStoreSize() &&
1264 !allowsMisalignedMemoryAccesses(
1265 MemVT, AS, Align, StoreNode->getMemOperand()->getFlags(), nullptr)) {
1266 return expandUnalignedStore(StoreNode, DAG);
1269 SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1270 DAG.getConstant(2, DL, PtrVT));
1272 if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
1273 // It is beneficial to create MSKOR here instead of combiner to avoid
1274 // artificial dependencies introduced by RMW
1275 if (TruncatingStore) {
1276 assert(VT.bitsLE(MVT::i32));
1277 SDValue MaskConstant;
1278 if (MemVT == MVT::i8) {
1279 MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1280 } else {
1281 assert(MemVT == MVT::i16);
1282 assert(StoreNode->getAlignment() >= 2);
1283 MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1286 SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1287 DAG.getConstant(0x00000003, DL, PtrVT));
1288 SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1289 DAG.getConstant(3, DL, VT));
1291 // Put the mask in correct place
1292 SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1294 // Put the value bits in correct place
1295 SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1296 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1298 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1299 // vector instead.
1300 SDValue Src[4] = {
1301 ShiftedValue,
1302 DAG.getConstant(0, DL, MVT::i32),
1303 DAG.getConstant(0, DL, MVT::i32),
1304 Mask
1306 SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1307 SDValue Args[3] = { Chain, Input, DWordAddr };
1308 return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1309 Op->getVTList(), Args, MemVT,
1310 StoreNode->getMemOperand());
1311 } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1312 // Convert pointer from byte address to dword address.
1313 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1315 if (StoreNode->isIndexed()) {
1316 llvm_unreachable("Indexed stores not supported yet");
1317 } else {
1318 Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1320 return Chain;
1324 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1325 if (AS != AMDGPUAS::PRIVATE_ADDRESS)
1326 return SDValue();
1328 if (MemVT.bitsLT(MVT::i32))
1329 return lowerPrivateTruncStore(StoreNode, DAG);
1331 // Standard i32+ store, tag it with DWORDADDR to note that the address
1332 // has been shifted
1333 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1334 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1335 return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1338 // Tagged i32+ stores will be matched by patterns
1339 return SDValue();
1342 // return (512 + (kc_bank << 12)
1343 static int
1344 ConstantAddressBlock(unsigned AddressSpace) {
1345 switch (AddressSpace) {
1346 case AMDGPUAS::CONSTANT_BUFFER_0:
1347 return 512;
1348 case AMDGPUAS::CONSTANT_BUFFER_1:
1349 return 512 + 4096;
1350 case AMDGPUAS::CONSTANT_BUFFER_2:
1351 return 512 + 4096 * 2;
1352 case AMDGPUAS::CONSTANT_BUFFER_3:
1353 return 512 + 4096 * 3;
1354 case AMDGPUAS::CONSTANT_BUFFER_4:
1355 return 512 + 4096 * 4;
1356 case AMDGPUAS::CONSTANT_BUFFER_5:
1357 return 512 + 4096 * 5;
1358 case AMDGPUAS::CONSTANT_BUFFER_6:
1359 return 512 + 4096 * 6;
1360 case AMDGPUAS::CONSTANT_BUFFER_7:
1361 return 512 + 4096 * 7;
1362 case AMDGPUAS::CONSTANT_BUFFER_8:
1363 return 512 + 4096 * 8;
1364 case AMDGPUAS::CONSTANT_BUFFER_9:
1365 return 512 + 4096 * 9;
1366 case AMDGPUAS::CONSTANT_BUFFER_10:
1367 return 512 + 4096 * 10;
1368 case AMDGPUAS::CONSTANT_BUFFER_11:
1369 return 512 + 4096 * 11;
1370 case AMDGPUAS::CONSTANT_BUFFER_12:
1371 return 512 + 4096 * 12;
1372 case AMDGPUAS::CONSTANT_BUFFER_13:
1373 return 512 + 4096 * 13;
1374 case AMDGPUAS::CONSTANT_BUFFER_14:
1375 return 512 + 4096 * 14;
1376 case AMDGPUAS::CONSTANT_BUFFER_15:
1377 return 512 + 4096 * 15;
1378 default:
1379 return -1;
1383 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1384 SelectionDAG &DAG) const {
1385 SDLoc DL(Op);
1386 LoadSDNode *Load = cast<LoadSDNode>(Op);
1387 ISD::LoadExtType ExtType = Load->getExtensionType();
1388 EVT MemVT = Load->getMemoryVT();
1389 assert(Load->getAlignment() >= MemVT.getStoreSize());
1391 SDValue BasePtr = Load->getBasePtr();
1392 SDValue Chain = Load->getChain();
1393 SDValue Offset = Load->getOffset();
1395 SDValue LoadPtr = BasePtr;
1396 if (!Offset.isUndef()) {
1397 LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1400 // Get dword location
1401 // NOTE: this should be eliminated by the future SHR ptr, 2
1402 SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1403 DAG.getConstant(0xfffffffc, DL, MVT::i32));
1405 // Load dword
1406 // TODO: can we be smarter about machine pointer info?
1407 MachinePointerInfo PtrInfo(UndefValue::get(
1408 Type::getInt32PtrTy(*DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS)));
1409 SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1411 // Get offset within the register.
1412 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1413 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1415 // Bit offset of target byte (byteIdx * 8).
1416 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1417 DAG.getConstant(3, DL, MVT::i32));
1419 // Shift to the right.
1420 SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1422 // Eliminate the upper bits by setting them to ...
1423 EVT MemEltVT = MemVT.getScalarType();
1425 if (ExtType == ISD::SEXTLOAD) { // ... ones.
1426 SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1427 Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1428 } else { // ... or zeros.
1429 Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1432 SDValue Ops[] = {
1433 Ret,
1434 Read.getValue(1) // This should be our output chain
1437 return DAG.getMergeValues(Ops, DL);
1440 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1441 LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1442 unsigned AS = LoadNode->getAddressSpace();
1443 EVT MemVT = LoadNode->getMemoryVT();
1444 ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1446 if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
1447 ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1448 return lowerPrivateExtLoad(Op, DAG);
1451 SDLoc DL(Op);
1452 EVT VT = Op.getValueType();
1453 SDValue Chain = LoadNode->getChain();
1454 SDValue Ptr = LoadNode->getBasePtr();
1456 if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1457 LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1458 VT.isVector()) {
1459 return scalarizeVectorLoad(LoadNode, DAG);
1462 // This is still used for explicit load from addrspace(8)
1463 int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1464 if (ConstantBlock > -1 &&
1465 ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1466 (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1467 SDValue Result;
1468 if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1469 isa<ConstantSDNode>(Ptr)) {
1470 return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1471 } else {
1472 //TODO: Does this even work?
1473 // non-constant ptr can't be folded, keeps it as a v4f32 load
1474 Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1475 DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1476 DAG.getConstant(4, DL, MVT::i32)),
1477 DAG.getConstant(LoadNode->getAddressSpace() -
1478 AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
1482 if (!VT.isVector()) {
1483 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1484 DAG.getConstant(0, DL, MVT::i32));
1487 SDValue MergedValues[2] = {
1488 Result,
1489 Chain
1491 return DAG.getMergeValues(MergedValues, DL);
1494 // For most operations returning SDValue() will result in the node being
1495 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1496 // need to manually expand loads that may be legal in some address spaces and
1497 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1498 // compute shaders, since the data is sign extended when it is uploaded to the
1499 // buffer. However SEXT loads from other address spaces are not supported, so
1500 // we need to expand them here.
1501 if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1502 EVT MemVT = LoadNode->getMemoryVT();
1503 assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1504 SDValue NewLoad = DAG.getExtLoad(
1505 ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1506 LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1507 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1508 DAG.getValueType(MemVT));
1510 SDValue MergedValues[2] = { Res, Chain };
1511 return DAG.getMergeValues(MergedValues, DL);
1514 if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
1515 return SDValue();
1518 // DWORDADDR ISD marks already shifted address
1519 if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1520 assert(VT == MVT::i32);
1521 Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1522 Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1523 return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1525 return SDValue();
1528 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1529 SDValue Chain = Op.getOperand(0);
1530 SDValue Cond = Op.getOperand(1);
1531 SDValue Jump = Op.getOperand(2);
1533 return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1534 Chain, Jump, Cond);
1537 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1538 SelectionDAG &DAG) const {
1539 MachineFunction &MF = DAG.getMachineFunction();
1540 const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1542 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1544 unsigned FrameIndex = FIN->getIndex();
1545 unsigned IgnoredFrameReg;
1546 unsigned Offset =
1547 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1548 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1549 Op.getValueType());
1552 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1553 bool IsVarArg) const {
1554 switch (CC) {
1555 case CallingConv::AMDGPU_KERNEL:
1556 case CallingConv::SPIR_KERNEL:
1557 case CallingConv::C:
1558 case CallingConv::Fast:
1559 case CallingConv::Cold:
1560 llvm_unreachable("kernels should not be handled here");
1561 case CallingConv::AMDGPU_VS:
1562 case CallingConv::AMDGPU_GS:
1563 case CallingConv::AMDGPU_PS:
1564 case CallingConv::AMDGPU_CS:
1565 case CallingConv::AMDGPU_HS:
1566 case CallingConv::AMDGPU_ES:
1567 case CallingConv::AMDGPU_LS:
1568 return CC_R600;
1569 default:
1570 report_fatal_error("Unsupported calling convention.");
1574 /// XXX Only kernel functions are supported, so we can assume for now that
1575 /// every function is a kernel function, but in the future we should use
1576 /// separate calling conventions for kernel and non-kernel functions.
1577 SDValue R600TargetLowering::LowerFormalArguments(
1578 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1579 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1580 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1581 SmallVector<CCValAssign, 16> ArgLocs;
1582 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1583 *DAG.getContext());
1584 MachineFunction &MF = DAG.getMachineFunction();
1585 SmallVector<ISD::InputArg, 8> LocalIns;
1587 if (AMDGPU::isShader(CallConv)) {
1588 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1589 } else {
1590 analyzeFormalArgumentsCompute(CCInfo, Ins);
1593 for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1594 CCValAssign &VA = ArgLocs[i];
1595 const ISD::InputArg &In = Ins[i];
1596 EVT VT = In.VT;
1597 EVT MemVT = VA.getLocVT();
1598 if (!VT.isVector() && MemVT.isVector()) {
1599 // Get load source type if scalarized.
1600 MemVT = MemVT.getVectorElementType();
1603 if (AMDGPU::isShader(CallConv)) {
1604 unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1605 SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1606 InVals.push_back(Register);
1607 continue;
1610 PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
1611 AMDGPUAS::PARAM_I_ADDRESS);
1613 // i64 isn't a legal type, so the register type used ends up as i32, which
1614 // isn't expected here. It attempts to create this sextload, but it ends up
1615 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1616 // for <1 x i64>.
1618 // The first 36 bytes of the input buffer contains information about
1619 // thread group and global sizes.
1620 ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1621 if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1622 // FIXME: This should really check the extload type, but the handling of
1623 // extload vector parameters seems to be broken.
1625 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1626 Ext = ISD::SEXTLOAD;
1629 // Compute the offset from the value.
1630 // XXX - I think PartOffset should give you this, but it seems to give the
1631 // size of the register which isn't useful.
1633 unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
1634 unsigned PartOffset = VA.getLocMemOffset();
1635 unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1637 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
1638 SDValue Arg = DAG.getLoad(
1639 ISD::UNINDEXED, Ext, VT, DL, Chain,
1640 DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1641 PtrInfo,
1642 MemVT, Alignment, MachineMemOperand::MONonTemporal |
1643 MachineMemOperand::MODereferenceable |
1644 MachineMemOperand::MOInvariant);
1646 InVals.push_back(Arg);
1648 return Chain;
1651 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1652 EVT VT) const {
1653 if (!VT.isVector())
1654 return MVT::i32;
1655 return VT.changeVectorElementTypeToInteger();
1658 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1659 const SelectionDAG &DAG) const {
1660 // Local and Private addresses do not handle vectors. Limit to i32
1661 if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
1662 return (MemVT.getSizeInBits() <= 32);
1664 return true;
1667 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1668 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1669 bool *IsFast) const {
1670 if (IsFast)
1671 *IsFast = false;
1673 if (!VT.isSimple() || VT == MVT::Other)
1674 return false;
1676 if (VT.bitsLT(MVT::i32))
1677 return false;
1679 // TODO: This is a rough estimate.
1680 if (IsFast)
1681 *IsFast = true;
1683 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1686 static SDValue CompactSwizzlableVector(
1687 SelectionDAG &DAG, SDValue VectorEntry,
1688 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1689 assert(RemapSwizzle.empty());
1691 SDLoc DL(VectorEntry);
1692 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1694 SDValue NewBldVec[4];
1695 for (unsigned i = 0; i < 4; i++)
1696 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1697 DAG.getIntPtrConstant(i, DL));
1699 for (unsigned i = 0; i < 4; i++) {
1700 if (NewBldVec[i].isUndef())
1701 // We mask write here to teach later passes that the ith element of this
1702 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1703 // break false dependencies and additionnaly make assembly easier to read.
1704 RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1705 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1706 if (C->isZero()) {
1707 RemapSwizzle[i] = 4; // SEL_0
1708 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1709 } else if (C->isExactlyValue(1.0)) {
1710 RemapSwizzle[i] = 5; // SEL_1
1711 NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1715 if (NewBldVec[i].isUndef())
1716 continue;
1717 // Fix spurious warning with gcc 7.3 -O3
1718 // warning: array subscript is above array bounds [-Warray-bounds]
1719 // if (NewBldVec[i] == NewBldVec[j]) {
1720 // ~~~~~~~~~~~^
1721 if (i >= 4)
1722 continue;
1723 for (unsigned j = 0; j < i; j++) {
1724 if (NewBldVec[i] == NewBldVec[j]) {
1725 NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1726 RemapSwizzle[i] = j;
1727 break;
1732 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1733 NewBldVec);
1736 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1737 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1738 assert(RemapSwizzle.empty());
1740 SDLoc DL(VectorEntry);
1741 EVT EltTy = VectorEntry.getValueType().getVectorElementType();
1743 SDValue NewBldVec[4];
1744 bool isUnmovable[4] = {false, false, false, false};
1745 for (unsigned i = 0; i < 4; i++)
1746 NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
1747 DAG.getIntPtrConstant(i, DL));
1749 for (unsigned i = 0; i < 4; i++) {
1750 RemapSwizzle[i] = i;
1751 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1752 unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1753 ->getZExtValue();
1754 if (i == Idx)
1755 isUnmovable[Idx] = true;
1759 for (unsigned i = 0; i < 4; i++) {
1760 if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1761 unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1762 ->getZExtValue();
1763 if (isUnmovable[Idx])
1764 continue;
1765 // Swap i and Idx
1766 std::swap(NewBldVec[Idx], NewBldVec[i]);
1767 std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1768 break;
1772 return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1773 NewBldVec);
1776 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1777 SelectionDAG &DAG,
1778 const SDLoc &DL) const {
1779 // Old -> New swizzle values
1780 DenseMap<unsigned, unsigned> SwizzleRemap;
1782 BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1783 for (unsigned i = 0; i < 4; i++) {
1784 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1785 if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1786 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1789 SwizzleRemap.clear();
1790 BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1791 for (unsigned i = 0; i < 4; i++) {
1792 unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1793 if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1794 Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1797 return BuildVector;
1800 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1801 SelectionDAG &DAG) const {
1802 SDLoc DL(LoadNode);
1803 EVT VT = LoadNode->getValueType(0);
1804 SDValue Chain = LoadNode->getChain();
1805 SDValue Ptr = LoadNode->getBasePtr();
1806 assert (isa<ConstantSDNode>(Ptr));
1808 //TODO: Support smaller loads
1809 if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1810 return SDValue();
1812 if (LoadNode->getAlignment() < 4)
1813 return SDValue();
1815 int ConstantBlock = ConstantAddressBlock(Block);
1817 SDValue Slots[4];
1818 for (unsigned i = 0; i < 4; i++) {
1819 // We want Const position encoded with the following formula :
1820 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1821 // const_index is Ptr computed by llvm using an alignment of 16.
1822 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1823 // then div by 4 at the ISel step
1824 SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1825 DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1826 Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1828 EVT NewVT = MVT::v4i32;
1829 unsigned NumElements = 4;
1830 if (VT.isVector()) {
1831 NewVT = VT;
1832 NumElements = VT.getVectorNumElements();
1834 SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1835 if (!VT.isVector()) {
1836 Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1837 DAG.getConstant(0, DL, MVT::i32));
1839 SDValue MergedValues[2] = {
1840 Result,
1841 Chain
1843 return DAG.getMergeValues(MergedValues, DL);
1846 //===----------------------------------------------------------------------===//
1847 // Custom DAG Optimizations
1848 //===----------------------------------------------------------------------===//
1850 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1851 DAGCombinerInfo &DCI) const {
1852 SelectionDAG &DAG = DCI.DAG;
1853 SDLoc DL(N);
1855 switch (N->getOpcode()) {
1856 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1857 case ISD::FP_ROUND: {
1858 SDValue Arg = N->getOperand(0);
1859 if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1860 return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1861 Arg.getOperand(0));
1863 break;
1866 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1867 // (i32 select_cc f32, f32, -1, 0 cc)
1869 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1870 // this to one of the SET*_DX10 instructions.
1871 case ISD::FP_TO_SINT: {
1872 SDValue FNeg = N->getOperand(0);
1873 if (FNeg.getOpcode() != ISD::FNEG) {
1874 return SDValue();
1876 SDValue SelectCC = FNeg.getOperand(0);
1877 if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1878 SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1879 SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1880 !isHWTrueValue(SelectCC.getOperand(2)) ||
1881 !isHWFalseValue(SelectCC.getOperand(3))) {
1882 return SDValue();
1885 return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1886 SelectCC.getOperand(0), // LHS
1887 SelectCC.getOperand(1), // RHS
1888 DAG.getConstant(-1, DL, MVT::i32), // True
1889 DAG.getConstant(0, DL, MVT::i32), // False
1890 SelectCC.getOperand(4)); // CC
1892 break;
1895 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1896 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1897 case ISD::INSERT_VECTOR_ELT: {
1898 SDValue InVec = N->getOperand(0);
1899 SDValue InVal = N->getOperand(1);
1900 SDValue EltNo = N->getOperand(2);
1902 // If the inserted element is an UNDEF, just use the input vector.
1903 if (InVal.isUndef())
1904 return InVec;
1906 EVT VT = InVec.getValueType();
1908 // If we can't generate a legal BUILD_VECTOR, exit
1909 if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1910 return SDValue();
1912 // Check that we know which element is being inserted
1913 if (!isa<ConstantSDNode>(EltNo))
1914 return SDValue();
1915 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1917 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1918 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1919 // vector elements.
1920 SmallVector<SDValue, 8> Ops;
1921 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1922 Ops.append(InVec.getNode()->op_begin(),
1923 InVec.getNode()->op_end());
1924 } else if (InVec.isUndef()) {
1925 unsigned NElts = VT.getVectorNumElements();
1926 Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1927 } else {
1928 return SDValue();
1931 // Insert the element
1932 if (Elt < Ops.size()) {
1933 // All the operands of BUILD_VECTOR must have the same type;
1934 // we enforce that here.
1935 EVT OpVT = Ops[0].getValueType();
1936 if (InVal.getValueType() != OpVT)
1937 InVal = OpVT.bitsGT(InVal.getValueType()) ?
1938 DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1939 DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1940 Ops[Elt] = InVal;
1943 // Return the new vector
1944 return DAG.getBuildVector(VT, DL, Ops);
1947 // Extract_vec (Build_vector) generated by custom lowering
1948 // also needs to be customly combined
1949 case ISD::EXTRACT_VECTOR_ELT: {
1950 SDValue Arg = N->getOperand(0);
1951 if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1952 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1953 unsigned Element = Const->getZExtValue();
1954 return Arg->getOperand(Element);
1957 if (Arg.getOpcode() == ISD::BITCAST &&
1958 Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1959 (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1960 Arg.getValueType().getVectorNumElements())) {
1961 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1962 unsigned Element = Const->getZExtValue();
1963 return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1964 Arg->getOperand(0).getOperand(Element));
1967 break;
1970 case ISD::SELECT_CC: {
1971 // Try common optimizations
1972 if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1973 return Ret;
1975 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1976 // selectcc x, y, a, b, inv(cc)
1978 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1979 // selectcc x, y, a, b, cc
1980 SDValue LHS = N->getOperand(0);
1981 if (LHS.getOpcode() != ISD::SELECT_CC) {
1982 return SDValue();
1985 SDValue RHS = N->getOperand(1);
1986 SDValue True = N->getOperand(2);
1987 SDValue False = N->getOperand(3);
1988 ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1990 if (LHS.getOperand(2).getNode() != True.getNode() ||
1991 LHS.getOperand(3).getNode() != False.getNode() ||
1992 RHS.getNode() != False.getNode()) {
1993 return SDValue();
1996 switch (NCC) {
1997 default: return SDValue();
1998 case ISD::SETNE: return LHS;
1999 case ISD::SETEQ: {
2000 ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
2001 LHSCC = ISD::getSetCCInverse(LHSCC,
2002 LHS.getOperand(0).getValueType().isInteger());
2003 if (DCI.isBeforeLegalizeOps() ||
2004 isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
2005 return DAG.getSelectCC(DL,
2006 LHS.getOperand(0),
2007 LHS.getOperand(1),
2008 LHS.getOperand(2),
2009 LHS.getOperand(3),
2010 LHSCC);
2011 break;
2014 return SDValue();
2017 case AMDGPUISD::R600_EXPORT: {
2018 SDValue Arg = N->getOperand(1);
2019 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2020 break;
2022 SDValue NewArgs[8] = {
2023 N->getOperand(0), // Chain
2024 SDValue(),
2025 N->getOperand(2), // ArrayBase
2026 N->getOperand(3), // Type
2027 N->getOperand(4), // SWZ_X
2028 N->getOperand(5), // SWZ_Y
2029 N->getOperand(6), // SWZ_Z
2030 N->getOperand(7) // SWZ_W
2032 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2033 return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2035 case AMDGPUISD::TEXTURE_FETCH: {
2036 SDValue Arg = N->getOperand(1);
2037 if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2038 break;
2040 SDValue NewArgs[19] = {
2041 N->getOperand(0),
2042 N->getOperand(1),
2043 N->getOperand(2),
2044 N->getOperand(3),
2045 N->getOperand(4),
2046 N->getOperand(5),
2047 N->getOperand(6),
2048 N->getOperand(7),
2049 N->getOperand(8),
2050 N->getOperand(9),
2051 N->getOperand(10),
2052 N->getOperand(11),
2053 N->getOperand(12),
2054 N->getOperand(13),
2055 N->getOperand(14),
2056 N->getOperand(15),
2057 N->getOperand(16),
2058 N->getOperand(17),
2059 N->getOperand(18),
2061 NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2062 return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2065 case ISD::LOAD: {
2066 LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2067 SDValue Ptr = LoadNode->getBasePtr();
2068 if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2069 isa<ConstantSDNode>(Ptr))
2070 return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2071 break;
2074 default: break;
2077 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2080 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2081 SDValue &Src, SDValue &Neg, SDValue &Abs,
2082 SDValue &Sel, SDValue &Imm,
2083 SelectionDAG &DAG) const {
2084 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2085 if (!Src.isMachineOpcode())
2086 return false;
2088 switch (Src.getMachineOpcode()) {
2089 case R600::FNEG_R600:
2090 if (!Neg.getNode())
2091 return false;
2092 Src = Src.getOperand(0);
2093 Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2094 return true;
2095 case R600::FABS_R600:
2096 if (!Abs.getNode())
2097 return false;
2098 Src = Src.getOperand(0);
2099 Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2100 return true;
2101 case R600::CONST_COPY: {
2102 unsigned Opcode = ParentNode->getMachineOpcode();
2103 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2105 if (!Sel.getNode())
2106 return false;
2108 SDValue CstOffset = Src.getOperand(0);
2109 if (ParentNode->getValueType(0).isVector())
2110 return false;
2112 // Gather constants values
2113 int SrcIndices[] = {
2114 TII->getOperandIdx(Opcode, R600::OpName::src0),
2115 TII->getOperandIdx(Opcode, R600::OpName::src1),
2116 TII->getOperandIdx(Opcode, R600::OpName::src2),
2117 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2118 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2119 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2120 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2121 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2122 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2123 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2124 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2126 std::vector<unsigned> Consts;
2127 for (int OtherSrcIdx : SrcIndices) {
2128 int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2129 if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2130 continue;
2131 if (HasDst) {
2132 OtherSrcIdx--;
2133 OtherSelIdx--;
2135 if (RegisterSDNode *Reg =
2136 dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2137 if (Reg->getReg() == R600::ALU_CONST) {
2138 ConstantSDNode *Cst
2139 = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2140 Consts.push_back(Cst->getZExtValue());
2145 ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2146 Consts.push_back(Cst->getZExtValue());
2147 if (!TII->fitsConstReadLimitations(Consts)) {
2148 return false;
2151 Sel = CstOffset;
2152 Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2153 return true;
2155 case R600::MOV_IMM_GLOBAL_ADDR:
2156 // Check if the Imm slot is used. Taken from below.
2157 if (cast<ConstantSDNode>(Imm)->getZExtValue())
2158 return false;
2159 Imm = Src.getOperand(0);
2160 Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2161 return true;
2162 case R600::MOV_IMM_I32:
2163 case R600::MOV_IMM_F32: {
2164 unsigned ImmReg = R600::ALU_LITERAL_X;
2165 uint64_t ImmValue = 0;
2167 if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2168 ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2169 float FloatValue = FPC->getValueAPF().convertToFloat();
2170 if (FloatValue == 0.0) {
2171 ImmReg = R600::ZERO;
2172 } else if (FloatValue == 0.5) {
2173 ImmReg = R600::HALF;
2174 } else if (FloatValue == 1.0) {
2175 ImmReg = R600::ONE;
2176 } else {
2177 ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2179 } else {
2180 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2181 uint64_t Value = C->getZExtValue();
2182 if (Value == 0) {
2183 ImmReg = R600::ZERO;
2184 } else if (Value == 1) {
2185 ImmReg = R600::ONE_INT;
2186 } else {
2187 ImmValue = Value;
2191 // Check that we aren't already using an immediate.
2192 // XXX: It's possible for an instruction to have more than one
2193 // immediate operand, but this is not supported yet.
2194 if (ImmReg == R600::ALU_LITERAL_X) {
2195 if (!Imm.getNode())
2196 return false;
2197 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2198 assert(C);
2199 if (C->getZExtValue())
2200 return false;
2201 Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2203 Src = DAG.getRegister(ImmReg, MVT::i32);
2204 return true;
2206 default:
2207 return false;
2211 /// Fold the instructions after selecting them
2212 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2213 SelectionDAG &DAG) const {
2214 const R600InstrInfo *TII = Subtarget->getInstrInfo();
2215 if (!Node->isMachineOpcode())
2216 return Node;
2218 unsigned Opcode = Node->getMachineOpcode();
2219 SDValue FakeOp;
2221 std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2223 if (Opcode == R600::DOT_4) {
2224 int OperandIdx[] = {
2225 TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2226 TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2227 TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2228 TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2229 TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2230 TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2231 TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2232 TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2234 int NegIdx[] = {
2235 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2236 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2237 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2238 TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2239 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2240 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2241 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2242 TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2244 int AbsIdx[] = {
2245 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2246 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2247 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2248 TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2249 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2250 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2251 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2252 TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2254 for (unsigned i = 0; i < 8; i++) {
2255 if (OperandIdx[i] < 0)
2256 return Node;
2257 SDValue &Src = Ops[OperandIdx[i] - 1];
2258 SDValue &Neg = Ops[NegIdx[i] - 1];
2259 SDValue &Abs = Ops[AbsIdx[i] - 1];
2260 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2261 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2262 if (HasDst)
2263 SelIdx--;
2264 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2265 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2266 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2268 } else if (Opcode == R600::REG_SEQUENCE) {
2269 for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2270 SDValue &Src = Ops[i];
2271 if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2272 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2274 } else {
2275 if (!TII->hasInstrModifiers(Opcode))
2276 return Node;
2277 int OperandIdx[] = {
2278 TII->getOperandIdx(Opcode, R600::OpName::src0),
2279 TII->getOperandIdx(Opcode, R600::OpName::src1),
2280 TII->getOperandIdx(Opcode, R600::OpName::src2)
2282 int NegIdx[] = {
2283 TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2284 TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2285 TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2287 int AbsIdx[] = {
2288 TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2289 TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2292 for (unsigned i = 0; i < 3; i++) {
2293 if (OperandIdx[i] < 0)
2294 return Node;
2295 SDValue &Src = Ops[OperandIdx[i] - 1];
2296 SDValue &Neg = Ops[NegIdx[i] - 1];
2297 SDValue FakeAbs;
2298 SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2299 bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2300 int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2301 int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2302 if (HasDst) {
2303 SelIdx--;
2304 ImmIdx--;
2306 SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2307 SDValue &Imm = Ops[ImmIdx];
2308 if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2309 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2313 return Node;