[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AMDGPU / R600Packetizer.cpp
blob176269f9b68cfed43d76a20ebd3895b20d709ef4
1 //===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass implements instructions packetization for R600. It unsets isLast
11 /// bit of instructions inside a bundle and substitutes src register with
12 /// PreviousVector when applicable.
14 //===----------------------------------------------------------------------===//
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600InstrInfo.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "llvm/CodeGen/DFAPacketizer.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
29 using namespace llvm;
31 #define DEBUG_TYPE "packets"
33 namespace {
35 class R600Packetizer : public MachineFunctionPass {
37 public:
38 static char ID;
39 R600Packetizer() : MachineFunctionPass(ID) {}
41 void getAnalysisUsage(AnalysisUsage &AU) const override {
42 AU.setPreservesCFG();
43 AU.addRequired<MachineDominatorTree>();
44 AU.addPreserved<MachineDominatorTree>();
45 AU.addRequired<MachineLoopInfo>();
46 AU.addPreserved<MachineLoopInfo>();
47 MachineFunctionPass::getAnalysisUsage(AU);
50 StringRef getPassName() const override { return "R600 Packetizer"; }
52 bool runOnMachineFunction(MachineFunction &Fn) override;
55 class R600PacketizerList : public VLIWPacketizerList {
56 private:
57 const R600InstrInfo *TII;
58 const R600RegisterInfo &TRI;
59 bool VLIW5;
60 bool ConsideredInstUsesAlreadyWrittenVectorElement;
62 unsigned getSlot(const MachineInstr &MI) const {
63 return TRI.getHWRegChan(MI.getOperand(0).getReg());
66 /// \returns register to PV chan mapping for bundle/single instructions that
67 /// immediately precedes I.
68 DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
69 const {
70 DenseMap<unsigned, unsigned> Result;
71 I--;
72 if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
73 return Result;
74 MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
75 if (I->isBundle())
76 BI++;
77 int LastDstChan = -1;
78 do {
79 bool isTrans = false;
80 int BISlot = getSlot(*BI);
81 if (LastDstChan >= BISlot)
82 isTrans = true;
83 LastDstChan = BISlot;
84 if (TII->isPredicated(*BI))
85 continue;
86 int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::write);
87 if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
88 continue;
89 int DstIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::dst);
90 if (DstIdx == -1) {
91 continue;
93 Register Dst = BI->getOperand(DstIdx).getReg();
94 if (isTrans || TII->isTransOnly(*BI)) {
95 Result[Dst] = R600::PS;
96 continue;
98 if (BI->getOpcode() == R600::DOT4_r600 ||
99 BI->getOpcode() == R600::DOT4_eg) {
100 Result[Dst] = R600::PV_X;
101 continue;
103 if (Dst == R600::OQAP) {
104 continue;
106 unsigned PVReg = 0;
107 switch (TRI.getHWRegChan(Dst)) {
108 case 0:
109 PVReg = R600::PV_X;
110 break;
111 case 1:
112 PVReg = R600::PV_Y;
113 break;
114 case 2:
115 PVReg = R600::PV_Z;
116 break;
117 case 3:
118 PVReg = R600::PV_W;
119 break;
120 default:
121 llvm_unreachable("Invalid Chan");
123 Result[Dst] = PVReg;
124 } while ((++BI)->isBundledWithPred());
125 return Result;
128 void substitutePV(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PVs)
129 const {
130 unsigned Ops[] = {
131 R600::OpName::src0,
132 R600::OpName::src1,
133 R600::OpName::src2
135 for (unsigned i = 0; i < 3; i++) {
136 int OperandIdx = TII->getOperandIdx(MI.getOpcode(), Ops[i]);
137 if (OperandIdx < 0)
138 continue;
139 Register Src = MI.getOperand(OperandIdx).getReg();
140 const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
141 if (It != PVs.end())
142 MI.getOperand(OperandIdx).setReg(It->second);
145 public:
146 // Ctor.
147 R600PacketizerList(MachineFunction &MF, const R600Subtarget &ST,
148 MachineLoopInfo &MLI)
149 : VLIWPacketizerList(MF, MLI, nullptr),
150 TII(ST.getInstrInfo()),
151 TRI(TII->getRegisterInfo()) {
152 VLIW5 = !ST.hasCaymanISA();
155 // initPacketizerState - initialize some internal flags.
156 void initPacketizerState() override {
157 ConsideredInstUsesAlreadyWrittenVectorElement = false;
160 // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
161 bool ignorePseudoInstruction(const MachineInstr &MI,
162 const MachineBasicBlock *MBB) override {
163 return false;
166 // isSoloInstruction - return true if instruction MI can not be packetized
167 // with any other instruction, which means that MI itself is a packet.
168 bool isSoloInstruction(const MachineInstr &MI) override {
169 if (TII->isVector(MI))
170 return true;
171 if (!TII->isALUInstr(MI.getOpcode()))
172 return true;
173 if (MI.getOpcode() == R600::GROUP_BARRIER)
174 return true;
175 // XXX: This can be removed once the packetizer properly handles all the
176 // LDS instruction group restrictions.
177 return TII->isLDSInstr(MI.getOpcode());
180 // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
181 // together.
182 bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
183 MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
184 if (getSlot(*MII) == getSlot(*MIJ))
185 ConsideredInstUsesAlreadyWrittenVectorElement = true;
186 // Does MII and MIJ share the same pred_sel ?
187 int OpI = TII->getOperandIdx(MII->getOpcode(), R600::OpName::pred_sel),
188 OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600::OpName::pred_sel);
189 Register PredI = (OpI > -1)?MII->getOperand(OpI).getReg() : Register(),
190 PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg() : Register();
191 if (PredI != PredJ)
192 return false;
193 if (SUJ->isSucc(SUI)) {
194 for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
195 const SDep &Dep = SUJ->Succs[i];
196 if (Dep.getSUnit() != SUI)
197 continue;
198 if (Dep.getKind() == SDep::Anti)
199 continue;
200 if (Dep.getKind() == SDep::Output)
201 if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
202 continue;
203 return false;
207 bool ARDef =
208 TII->definesAddressRegister(*MII) || TII->definesAddressRegister(*MIJ);
209 bool ARUse =
210 TII->usesAddressRegister(*MII) || TII->usesAddressRegister(*MIJ);
212 return !ARDef || !ARUse;
215 // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
216 // and SUJ.
217 bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
218 return false;
221 void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
222 unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600::OpName::last);
223 MI->getOperand(LastOp).setImm(Bit);
226 bool isBundlableWithCurrentPMI(MachineInstr &MI,
227 const DenseMap<unsigned, unsigned> &PV,
228 std::vector<R600InstrInfo::BankSwizzle> &BS,
229 bool &isTransSlot) {
230 isTransSlot = TII->isTransOnly(MI);
231 assert (!isTransSlot || VLIW5);
233 // Is the dst reg sequence legal ?
234 if (!isTransSlot && !CurrentPacketMIs.empty()) {
235 if (getSlot(MI) <= getSlot(*CurrentPacketMIs.back())) {
236 if (ConsideredInstUsesAlreadyWrittenVectorElement &&
237 !TII->isVectorOnly(MI) && VLIW5) {
238 isTransSlot = true;
239 LLVM_DEBUG({
240 dbgs() << "Considering as Trans Inst :";
241 MI.dump();
244 else
245 return false;
249 // Are the Constants limitations met ?
250 CurrentPacketMIs.push_back(&MI);
251 if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
252 LLVM_DEBUG({
253 dbgs() << "Couldn't pack :\n";
254 MI.dump();
255 dbgs() << "with the following packets :\n";
256 for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
257 CurrentPacketMIs[i]->dump();
258 dbgs() << "\n";
260 dbgs() << "because of Consts read limitations\n";
262 CurrentPacketMIs.pop_back();
263 return false;
266 // Is there a BankSwizzle set that meet Read Port limitations ?
267 if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
268 PV, BS, isTransSlot)) {
269 LLVM_DEBUG({
270 dbgs() << "Couldn't pack :\n";
271 MI.dump();
272 dbgs() << "with the following packets :\n";
273 for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
274 CurrentPacketMIs[i]->dump();
275 dbgs() << "\n";
277 dbgs() << "because of Read port limitations\n";
279 CurrentPacketMIs.pop_back();
280 return false;
283 // We cannot read LDS source registers from the Trans slot.
284 if (isTransSlot && TII->readsLDSSrcReg(MI))
285 return false;
287 CurrentPacketMIs.pop_back();
288 return true;
291 MachineBasicBlock::iterator addToPacket(MachineInstr &MI) override {
292 MachineBasicBlock::iterator FirstInBundle =
293 CurrentPacketMIs.empty() ? &MI : CurrentPacketMIs.front();
294 const DenseMap<unsigned, unsigned> &PV =
295 getPreviousVector(FirstInBundle);
296 std::vector<R600InstrInfo::BankSwizzle> BS;
297 bool isTransSlot;
299 if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
300 for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
301 MachineInstr *MI = CurrentPacketMIs[i];
302 unsigned Op = TII->getOperandIdx(MI->getOpcode(),
303 R600::OpName::bank_swizzle);
304 MI->getOperand(Op).setImm(BS[i]);
306 unsigned Op =
307 TII->getOperandIdx(MI.getOpcode(), R600::OpName::bank_swizzle);
308 MI.getOperand(Op).setImm(BS.back());
309 if (!CurrentPacketMIs.empty())
310 setIsLastBit(CurrentPacketMIs.back(), 0);
311 substitutePV(MI, PV);
312 MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI);
313 if (isTransSlot) {
314 endPacket(std::next(It)->getParent(), std::next(It));
316 return It;
318 endPacket(MI.getParent(), MI);
319 if (TII->isTransOnly(MI))
320 return MI;
321 return VLIWPacketizerList::addToPacket(MI);
325 bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
326 const R600Subtarget &ST = Fn.getSubtarget<R600Subtarget>();
327 const R600InstrInfo *TII = ST.getInstrInfo();
329 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
331 // Instantiate the packetizer.
332 R600PacketizerList Packetizer(Fn, ST, MLI);
334 // DFA state table should not be empty.
335 assert(Packetizer.getResourceTracker() && "Empty DFA table!");
336 assert(Packetizer.getResourceTracker()->getInstrItins());
338 if (Packetizer.getResourceTracker()->getInstrItins()->isEmpty())
339 return false;
342 // Loop over all basic blocks and remove KILL pseudo-instructions
343 // These instructions confuse the dependence analysis. Consider:
344 // D0 = ... (Insn 0)
345 // R0 = KILL R0, D0 (Insn 1)
346 // R0 = ... (Insn 2)
347 // Here, Insn 1 will result in the dependence graph not emitting an output
348 // dependence between Insn 0 and Insn 2. This can lead to incorrect
349 // packetization
351 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
352 MBB != MBBe; ++MBB) {
353 MachineBasicBlock::iterator End = MBB->end();
354 MachineBasicBlock::iterator MI = MBB->begin();
355 while (MI != End) {
356 if (MI->isKill() || MI->getOpcode() == R600::IMPLICIT_DEF ||
357 (MI->getOpcode() == R600::CF_ALU && !MI->getOperand(8).getImm())) {
358 MachineBasicBlock::iterator DeleteMI = MI;
359 ++MI;
360 MBB->erase(DeleteMI);
361 End = MBB->end();
362 continue;
364 ++MI;
368 // Loop over all of the basic blocks.
369 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
370 MBB != MBBe; ++MBB) {
371 // Find scheduling regions and schedule / packetize each region.
372 unsigned RemainingCount = MBB->size();
373 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
374 RegionEnd != MBB->begin();) {
375 // The next region starts above the previous region. Look backward in the
376 // instruction stream until we find the nearest boundary.
377 MachineBasicBlock::iterator I = RegionEnd;
378 for(;I != MBB->begin(); --I, --RemainingCount) {
379 if (TII->isSchedulingBoundary(*std::prev(I), &*MBB, Fn))
380 break;
382 I = MBB->begin();
384 // Skip empty scheduling regions.
385 if (I == RegionEnd) {
386 RegionEnd = std::prev(RegionEnd);
387 --RemainingCount;
388 continue;
390 // Skip regions with one instruction.
391 if (I == std::prev(RegionEnd)) {
392 RegionEnd = std::prev(RegionEnd);
393 continue;
396 Packetizer.PacketizeMIs(&*MBB, &*I, RegionEnd);
397 RegionEnd = I;
401 return true;
405 } // end anonymous namespace
407 INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE,
408 "R600 Packetizer", false, false)
409 INITIALIZE_PASS_END(R600Packetizer, DEBUG_TYPE,
410 "R600 Packetizer", false, false)
412 char R600Packetizer::ID = 0;
414 char &llvm::R600PacketizerID = R600Packetizer::ID;
416 llvm::FunctionPass *llvm::createR600Packetizer() {
417 return new R600Packetizer();