[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / AMDGPU / SIFoldOperands.cpp
blobe8f7fdb57fb9c829682c9a812e54535ff4857180
1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 /// \file
8 //===----------------------------------------------------------------------===//
9 //
11 #include "AMDGPU.h"
12 #include "AMDGPUSubtarget.h"
13 #include "SIInstrInfo.h"
14 #include "SIMachineFunctionInfo.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
28 namespace {
30 struct FoldCandidate {
31 MachineInstr *UseMI;
32 union {
33 MachineOperand *OpToFold;
34 uint64_t ImmToFold;
35 int FrameIndexToFold;
37 int ShrinkOpcode;
38 unsigned char UseOpNo;
39 MachineOperand::MachineOperandType Kind;
40 bool Commuted;
42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
43 bool Commuted_ = false,
44 int ShrinkOp = -1) :
45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
46 Kind(FoldOp->getType()),
47 Commuted(Commuted_) {
48 if (FoldOp->isImm()) {
49 ImmToFold = FoldOp->getImm();
50 } else if (FoldOp->isFI()) {
51 FrameIndexToFold = FoldOp->getIndex();
52 } else {
53 assert(FoldOp->isReg() || FoldOp->isGlobal());
54 OpToFold = FoldOp;
58 bool isFI() const {
59 return Kind == MachineOperand::MO_FrameIndex;
62 bool isImm() const {
63 return Kind == MachineOperand::MO_Immediate;
66 bool isReg() const {
67 return Kind == MachineOperand::MO_Register;
70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
72 bool isCommuted() const {
73 return Commuted;
76 bool needsShrink() const {
77 return ShrinkOpcode != -1;
80 int getShrinkOpcode() const {
81 return ShrinkOpcode;
85 class SIFoldOperands : public MachineFunctionPass {
86 public:
87 static char ID;
88 MachineRegisterInfo *MRI;
89 const SIInstrInfo *TII;
90 const SIRegisterInfo *TRI;
91 const GCNSubtarget *ST;
92 const SIMachineFunctionInfo *MFI;
94 void foldOperand(MachineOperand &OpToFold,
95 MachineInstr *UseMI,
96 int UseOpIdx,
97 SmallVectorImpl<FoldCandidate> &FoldList,
98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
102 const MachineOperand *isClamp(const MachineInstr &MI) const;
103 bool tryFoldClamp(MachineInstr &MI);
105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
106 bool tryFoldOMod(MachineInstr &MI);
108 public:
109 SIFoldOperands() : MachineFunctionPass(ID) {
110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
113 bool runOnMachineFunction(MachineFunction &MF) override;
115 StringRef getPassName() const override { return "SI Fold Operands"; }
117 void getAnalysisUsage(AnalysisUsage &AU) const override {
118 AU.setPreservesCFG();
119 MachineFunctionPass::getAnalysisUsage(AU);
123 } // End anonymous namespace.
125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
126 "SI Fold Operands", false, false)
128 char SIFoldOperands::ID = 0;
130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
132 // Wrapper around isInlineConstant that understands special cases when
133 // instruction types are replaced during operand folding.
134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
135 const MachineInstr &UseMI,
136 unsigned OpNo,
137 const MachineOperand &OpToFold) {
138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
139 return true;
141 unsigned Opc = UseMI.getOpcode();
142 switch (Opc) {
143 case AMDGPU::V_MAC_F32_e64:
144 case AMDGPU::V_MAC_F16_e64:
145 case AMDGPU::V_FMAC_F32_e64: {
146 // Special case for mac. Since this is replaced with mad when folded into
147 // src2, we need to check the legality for the final instruction.
148 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
149 if (static_cast<int>(OpNo) == Src2Idx) {
150 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
151 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
153 unsigned Opc = IsFMA ?
154 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
155 const MCInstrDesc &MadDesc = TII->get(Opc);
156 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
158 return false;
160 default:
161 return false;
165 // TODO: Add heuristic that the frame index might not fit in the addressing mode
166 // immediate offset to avoid materializing in loops.
167 static bool frameIndexMayFold(const SIInstrInfo *TII,
168 const MachineInstr &UseMI,
169 int OpNo,
170 const MachineOperand &OpToFold) {
171 return OpToFold.isFI() &&
172 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) &&
173 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
176 FunctionPass *llvm::createSIFoldOperandsPass() {
177 return new SIFoldOperands();
180 static bool updateOperand(FoldCandidate &Fold,
181 const SIInstrInfo &TII,
182 const TargetRegisterInfo &TRI,
183 const GCNSubtarget &ST) {
184 MachineInstr *MI = Fold.UseMI;
185 MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
186 assert(Old.isReg());
188 if (Fold.isImm()) {
189 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
190 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
191 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold),
192 ST.hasInv2PiInlineImm())) {
193 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
194 // already set.
195 unsigned Opcode = MI->getOpcode();
196 int OpNo = MI->getOperandNo(&Old);
197 int ModIdx = -1;
198 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
199 ModIdx = AMDGPU::OpName::src0_modifiers;
200 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
201 ModIdx = AMDGPU::OpName::src1_modifiers;
202 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
203 ModIdx = AMDGPU::OpName::src2_modifiers;
204 assert(ModIdx != -1);
205 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
206 MachineOperand &Mod = MI->getOperand(ModIdx);
207 unsigned Val = Mod.getImm();
208 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
209 return false;
210 // Only apply the following transformation if that operand requries
211 // a packed immediate.
212 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
213 case AMDGPU::OPERAND_REG_IMM_V2FP16:
214 case AMDGPU::OPERAND_REG_IMM_V2INT16:
215 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
216 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
217 // If upper part is all zero we do not need op_sel_hi.
218 if (!isUInt<16>(Fold.ImmToFold)) {
219 if (!(Fold.ImmToFold & 0xffff)) {
220 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
221 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
222 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
223 return true;
225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
226 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
227 return true;
229 break;
230 default:
231 break;
236 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
237 MachineBasicBlock *MBB = MI->getParent();
238 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI);
239 if (Liveness != MachineBasicBlock::LQR_Dead)
240 return false;
242 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
243 int Op32 = Fold.getShrinkOpcode();
244 MachineOperand &Dst0 = MI->getOperand(0);
245 MachineOperand &Dst1 = MI->getOperand(1);
246 assert(Dst0.isDef() && Dst1.isDef());
248 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
250 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
251 Register NewReg0 = MRI.createVirtualRegister(Dst0RC);
253 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
255 if (HaveNonDbgCarryUse) {
256 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
257 .addReg(AMDGPU::VCC, RegState::Kill);
260 // Keep the old instruction around to avoid breaking iterators, but
261 // replace it with a dummy instruction to remove uses.
263 // FIXME: We should not invert how this pass looks at operands to avoid
264 // this. Should track set of foldable movs instead of looking for uses
265 // when looking at a use.
266 Dst0.setReg(NewReg0);
267 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
268 MI->RemoveOperand(I);
269 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
271 if (Fold.isCommuted())
272 TII.commuteInstruction(*Inst32, false);
273 return true;
276 assert(!Fold.needsShrink() && "not handled");
278 if (Fold.isImm()) {
279 Old.ChangeToImmediate(Fold.ImmToFold);
280 return true;
283 if (Fold.isGlobal()) {
284 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
285 Fold.OpToFold->getTargetFlags());
286 return true;
289 if (Fold.isFI()) {
290 Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
291 return true;
294 MachineOperand *New = Fold.OpToFold;
295 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
296 Old.setIsUndef(New->isUndef());
297 return true;
300 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
301 const MachineInstr *MI) {
302 for (auto Candidate : FoldList) {
303 if (Candidate.UseMI == MI)
304 return true;
306 return false;
309 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
310 MachineInstr *MI, unsigned OpNo,
311 MachineOperand *OpToFold,
312 const SIInstrInfo *TII) {
313 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
314 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
315 unsigned Opc = MI->getOpcode();
316 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
317 Opc == AMDGPU::V_FMAC_F32_e64) &&
318 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
319 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
320 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
321 unsigned NewOpc = IsFMA ?
322 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
324 // Check if changing this to a v_mad_{f16, f32} instruction will allow us
325 // to fold the operand.
326 MI->setDesc(TII->get(NewOpc));
327 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
328 if (FoldAsMAD) {
329 MI->untieRegOperand(OpNo);
330 return true;
332 MI->setDesc(TII->get(Opc));
335 // Special case for s_setreg_b32
336 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
337 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
338 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
339 return true;
342 // If we are already folding into another operand of MI, then
343 // we can't commute the instruction, otherwise we risk making the
344 // other fold illegal.
345 if (isUseMIInFoldList(FoldList, MI))
346 return false;
348 unsigned CommuteOpNo = OpNo;
350 // Operand is not legal, so try to commute the instruction to
351 // see if this makes it possible to fold.
352 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
353 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
354 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
356 if (CanCommute) {
357 if (CommuteIdx0 == OpNo)
358 CommuteOpNo = CommuteIdx1;
359 else if (CommuteIdx1 == OpNo)
360 CommuteOpNo = CommuteIdx0;
364 // One of operands might be an Imm operand, and OpNo may refer to it after
365 // the call of commuteInstruction() below. Such situations are avoided
366 // here explicitly as OpNo must be a register operand to be a candidate
367 // for memory folding.
368 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
369 !MI->getOperand(CommuteIdx1).isReg()))
370 return false;
372 if (!CanCommute ||
373 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
374 return false;
376 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
377 if ((Opc == AMDGPU::V_ADD_I32_e64 ||
378 Opc == AMDGPU::V_SUB_I32_e64 ||
379 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
380 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
381 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
383 // Verify the other operand is a VGPR, otherwise we would violate the
384 // constant bus restriction.
385 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
386 MachineOperand &OtherOp = MI->getOperand(OtherIdx);
387 if (!OtherOp.isReg() ||
388 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
389 return false;
391 assert(MI->getOperand(1).isDef());
393 // Make sure to get the 32-bit version of the commuted opcode.
394 unsigned MaybeCommutedOpc = MI->getOpcode();
395 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
397 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true,
398 Op32));
399 return true;
402 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
403 return false;
406 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true));
407 return true;
410 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
411 return true;
414 // If the use operand doesn't care about the value, this may be an operand only
415 // used for register indexing, in which case it is unsafe to fold.
416 static bool isUseSafeToFold(const SIInstrInfo *TII,
417 const MachineInstr &MI,
418 const MachineOperand &UseMO) {
419 return !UseMO.isUndef() && !TII->isSDWA(MI);
420 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
423 static bool tryToFoldACImm(const SIInstrInfo *TII,
424 const MachineOperand &OpToFold,
425 MachineInstr *UseMI,
426 unsigned UseOpIdx,
427 SmallVectorImpl<FoldCandidate> &FoldList) {
428 const MCInstrDesc &Desc = UseMI->getDesc();
429 const MCOperandInfo *OpInfo = Desc.OpInfo;
430 if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
431 return false;
433 uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
434 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
435 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
436 return false;
438 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) &&
439 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) {
440 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
441 return true;
444 if (!OpToFold.isReg())
445 return false;
447 Register UseReg = OpToFold.getReg();
448 if (!Register::isVirtualRegister(UseReg))
449 return false;
451 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
452 return FC.UseMI == UseMI; }) != FoldList.end())
453 return false;
455 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
456 const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
457 if (!Def || !Def->isRegSequence())
458 return false;
460 int64_t Imm;
461 MachineOperand *Op;
462 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
463 const MachineOperand &Sub = Def->getOperand(I);
464 if (!Sub.isReg() || Sub.getSubReg())
465 return false;
466 MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg());
467 while (SubDef && !SubDef->isMoveImmediate() &&
468 !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef))
469 SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg());
470 if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm())
471 return false;
472 Op = &SubDef->getOperand(1);
473 auto SubImm = Op->getImm();
474 if (I == 1) {
475 if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy))
476 return false;
478 Imm = SubImm;
479 continue;
481 if (Imm != SubImm)
482 return false; // Can only fold splat constants
485 if (!TII->isOperandLegal(*UseMI, UseOpIdx, Op))
486 return false;
488 FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op));
489 return true;
492 void SIFoldOperands::foldOperand(
493 MachineOperand &OpToFold,
494 MachineInstr *UseMI,
495 int UseOpIdx,
496 SmallVectorImpl<FoldCandidate> &FoldList,
497 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
498 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
500 if (!isUseSafeToFold(TII, *UseMI, UseOp))
501 return;
503 // FIXME: Fold operands with subregs.
504 if (UseOp.isReg() && OpToFold.isReg()) {
505 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
506 return;
508 // Don't fold subregister extracts into tied operands, only if it is a full
509 // copy since a subregister use tied to a full register def doesn't really
510 // make sense. e.g. don't fold:
512 // %1 = COPY %0:sub1
513 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
515 // into
516 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
517 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
518 return;
521 // Special case for REG_SEQUENCE: We can't fold literals into
522 // REG_SEQUENCE instructions, so we have to fold them into the
523 // uses of REG_SEQUENCE.
524 if (UseMI->isRegSequence()) {
525 Register RegSeqDstReg = UseMI->getOperand(0).getReg();
526 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
528 MachineRegisterInfo::use_iterator Next;
529 for (MachineRegisterInfo::use_iterator
530 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
531 RSUse != RSE; RSUse = Next) {
532 Next = std::next(RSUse);
534 MachineInstr *RSUseMI = RSUse->getParent();
536 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
537 RSUse.getOperandNo(), FoldList))
538 continue;
540 if (RSUse->getSubReg() != RegSeqDstSubReg)
541 continue;
543 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
544 CopiesToReplace);
547 return;
550 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
551 return;
553 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
554 // Sanity check that this is a stack access.
555 // FIXME: Should probably use stack pseudos before frame lowering.
556 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
557 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() &&
558 SOff->getReg() != MFI->getStackPtrOffsetReg()))
559 return;
561 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
562 MFI->getScratchRSrcReg())
563 return;
565 // A frame index will resolve to a positive constant, so it should always be
566 // safe to fold the addressing mode, even pre-GFX9.
567 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
568 SOff->setReg(MFI->getStackPtrOffsetReg());
569 return;
572 bool FoldingImmLike =
573 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
575 if (FoldingImmLike && UseMI->isCopy()) {
576 Register DestReg = UseMI->getOperand(0).getReg();
577 const TargetRegisterClass *DestRC = Register::isVirtualRegister(DestReg)
578 ? MRI->getRegClass(DestReg)
579 : TRI->getPhysRegClass(DestReg);
581 Register SrcReg = UseMI->getOperand(1).getReg();
582 if (Register::isVirtualRegister(DestReg) &&
583 Register::isVirtualRegister(SrcReg)) {
584 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
585 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
586 MachineRegisterInfo::use_iterator NextUse;
587 SmallVector<FoldCandidate, 4> CopyUses;
588 for (MachineRegisterInfo::use_iterator
589 Use = MRI->use_begin(DestReg), E = MRI->use_end();
590 Use != E; Use = NextUse) {
591 NextUse = std::next(Use);
592 FoldCandidate FC = FoldCandidate(Use->getParent(),
593 Use.getOperandNo(), &UseMI->getOperand(1));
594 CopyUses.push_back(FC);
596 for (auto & F : CopyUses) {
597 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
598 FoldList, CopiesToReplace);
603 if (DestRC == &AMDGPU::AGPR_32RegClass &&
604 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
605 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
606 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
607 CopiesToReplace.push_back(UseMI);
608 return;
611 // In order to fold immediates into copies, we need to change the
612 // copy to a MOV.
614 unsigned MovOp = TII->getMovOpcode(DestRC);
615 if (MovOp == AMDGPU::COPY)
616 return;
618 UseMI->setDesc(TII->get(MovOp));
619 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin();
620 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end();
621 while (ImpOpI != ImpOpE) {
622 MachineInstr::mop_iterator Tmp = ImpOpI;
623 ImpOpI++;
624 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp));
626 CopiesToReplace.push_back(UseMI);
627 } else {
628 if (UseMI->isCopy() && OpToFold.isReg() &&
629 Register::isVirtualRegister(UseMI->getOperand(0).getReg()) &&
630 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) &&
631 TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) &&
632 !UseMI->getOperand(1).getSubReg()) {
633 unsigned Size = TII->getOpSize(*UseMI, 1);
634 UseMI->getOperand(1).setReg(OpToFold.getReg());
635 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
636 UseMI->getOperand(1).setIsKill(false);
637 CopiesToReplace.push_back(UseMI);
638 OpToFold.setIsKill(false);
639 if (Size != 4)
640 return;
641 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
642 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
643 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
644 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
645 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
646 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
647 return;
650 unsigned UseOpc = UseMI->getOpcode();
651 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
652 (UseOpc == AMDGPU::V_READLANE_B32 &&
653 (int)UseOpIdx ==
654 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
655 // %vgpr = V_MOV_B32 imm
656 // %sgpr = V_READFIRSTLANE_B32 %vgpr
657 // =>
658 // %sgpr = S_MOV_B32 imm
659 if (FoldingImmLike) {
660 if (execMayBeModifiedBeforeUse(*MRI,
661 UseMI->getOperand(UseOpIdx).getReg(),
662 *OpToFold.getParent(),
663 *UseMI))
664 return;
666 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
668 // FIXME: ChangeToImmediate should clear subreg
669 UseMI->getOperand(1).setSubReg(0);
670 if (OpToFold.isImm())
671 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
672 else
673 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
674 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
675 return;
678 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
679 if (execMayBeModifiedBeforeUse(*MRI,
680 UseMI->getOperand(UseOpIdx).getReg(),
681 *OpToFold.getParent(),
682 *UseMI))
683 return;
685 // %vgpr = COPY %sgpr0
686 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
687 // =>
688 // %sgpr1 = COPY %sgpr0
689 UseMI->setDesc(TII->get(AMDGPU::COPY));
690 UseMI->getOperand(1).setReg(OpToFold.getReg());
691 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
692 UseMI->getOperand(1).setIsKill(false);
693 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
694 return;
698 const MCInstrDesc &UseDesc = UseMI->getDesc();
700 // Don't fold into target independent nodes. Target independent opcodes
701 // don't have defined register classes.
702 if (UseDesc.isVariadic() ||
703 UseOp.isImplicit() ||
704 UseDesc.OpInfo[UseOpIdx].RegClass == -1)
705 return;
708 if (!FoldingImmLike) {
709 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
711 // FIXME: We could try to change the instruction from 64-bit to 32-bit
712 // to enable more folding opportunites. The shrink operands pass
713 // already does this.
714 return;
718 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
719 const TargetRegisterClass *FoldRC =
720 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
722 // Split 64-bit constants into 32-bits for folding.
723 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
724 Register UseReg = UseOp.getReg();
725 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
727 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
728 return;
730 APInt Imm(64, OpToFold.getImm());
731 if (UseOp.getSubReg() == AMDGPU::sub0) {
732 Imm = Imm.getLoBits(32);
733 } else {
734 assert(UseOp.getSubReg() == AMDGPU::sub1);
735 Imm = Imm.getHiBits(32);
738 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
739 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
740 return;
745 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
748 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
749 uint32_t LHS, uint32_t RHS) {
750 switch (Opcode) {
751 case AMDGPU::V_AND_B32_e64:
752 case AMDGPU::V_AND_B32_e32:
753 case AMDGPU::S_AND_B32:
754 Result = LHS & RHS;
755 return true;
756 case AMDGPU::V_OR_B32_e64:
757 case AMDGPU::V_OR_B32_e32:
758 case AMDGPU::S_OR_B32:
759 Result = LHS | RHS;
760 return true;
761 case AMDGPU::V_XOR_B32_e64:
762 case AMDGPU::V_XOR_B32_e32:
763 case AMDGPU::S_XOR_B32:
764 Result = LHS ^ RHS;
765 return true;
766 case AMDGPU::V_LSHL_B32_e64:
767 case AMDGPU::V_LSHL_B32_e32:
768 case AMDGPU::S_LSHL_B32:
769 // The instruction ignores the high bits for out of bounds shifts.
770 Result = LHS << (RHS & 31);
771 return true;
772 case AMDGPU::V_LSHLREV_B32_e64:
773 case AMDGPU::V_LSHLREV_B32_e32:
774 Result = RHS << (LHS & 31);
775 return true;
776 case AMDGPU::V_LSHR_B32_e64:
777 case AMDGPU::V_LSHR_B32_e32:
778 case AMDGPU::S_LSHR_B32:
779 Result = LHS >> (RHS & 31);
780 return true;
781 case AMDGPU::V_LSHRREV_B32_e64:
782 case AMDGPU::V_LSHRREV_B32_e32:
783 Result = RHS >> (LHS & 31);
784 return true;
785 case AMDGPU::V_ASHR_I32_e64:
786 case AMDGPU::V_ASHR_I32_e32:
787 case AMDGPU::S_ASHR_I32:
788 Result = static_cast<int32_t>(LHS) >> (RHS & 31);
789 return true;
790 case AMDGPU::V_ASHRREV_I32_e64:
791 case AMDGPU::V_ASHRREV_I32_e32:
792 Result = static_cast<int32_t>(RHS) >> (LHS & 31);
793 return true;
794 default:
795 return false;
799 static unsigned getMovOpc(bool IsScalar) {
800 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
803 /// Remove any leftover implicit operands from mutating the instruction. e.g.
804 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
805 /// anymore.
806 static void stripExtraCopyOperands(MachineInstr &MI) {
807 const MCInstrDesc &Desc = MI.getDesc();
808 unsigned NumOps = Desc.getNumOperands() +
809 Desc.getNumImplicitUses() +
810 Desc.getNumImplicitDefs();
812 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
813 MI.RemoveOperand(I);
816 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
817 MI.setDesc(NewDesc);
818 stripExtraCopyOperands(MI);
821 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
822 MachineOperand &Op) {
823 if (Op.isReg()) {
824 // If this has a subregister, it obviously is a register source.
825 if (Op.getSubReg() != AMDGPU::NoSubRegister ||
826 !Register::isVirtualRegister(Op.getReg()))
827 return &Op;
829 MachineInstr *Def = MRI.getVRegDef(Op.getReg());
830 if (Def && Def->isMoveImmediate()) {
831 MachineOperand &ImmSrc = Def->getOperand(1);
832 if (ImmSrc.isImm())
833 return &ImmSrc;
837 return &Op;
840 // Try to simplify operations with a constant that may appear after instruction
841 // selection.
842 // TODO: See if a frame index with a fixed offset can fold.
843 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
844 const SIInstrInfo *TII,
845 MachineInstr *MI,
846 MachineOperand *ImmOp) {
847 unsigned Opc = MI->getOpcode();
848 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
849 Opc == AMDGPU::S_NOT_B32) {
850 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
851 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
852 return true;
855 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
856 if (Src1Idx == -1)
857 return false;
859 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
860 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
861 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
863 if (!Src0->isImm() && !Src1->isImm())
864 return false;
866 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
867 if (Src0->isImm() && Src0->getImm() == 0) {
868 // v_lshl_or_b32 0, X, Y -> copy Y
869 // v_lshl_or_b32 0, X, K -> v_mov_b32 K
870 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
871 MI->RemoveOperand(Src1Idx);
872 MI->RemoveOperand(Src0Idx);
874 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
875 return true;
879 // and k0, k1 -> v_mov_b32 (k0 & k1)
880 // or k0, k1 -> v_mov_b32 (k0 | k1)
881 // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
882 if (Src0->isImm() && Src1->isImm()) {
883 int32_t NewImm;
884 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
885 return false;
887 const SIRegisterInfo &TRI = TII->getRegisterInfo();
888 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
890 // Be careful to change the right operand, src0 may belong to a different
891 // instruction.
892 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
893 MI->RemoveOperand(Src1Idx);
894 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
895 return true;
898 if (!MI->isCommutable())
899 return false;
901 if (Src0->isImm() && !Src1->isImm()) {
902 std::swap(Src0, Src1);
903 std::swap(Src0Idx, Src1Idx);
906 int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
907 if (Opc == AMDGPU::V_OR_B32_e64 ||
908 Opc == AMDGPU::V_OR_B32_e32 ||
909 Opc == AMDGPU::S_OR_B32) {
910 if (Src1Val == 0) {
911 // y = or x, 0 => y = copy x
912 MI->RemoveOperand(Src1Idx);
913 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
914 } else if (Src1Val == -1) {
915 // y = or x, -1 => y = v_mov_b32 -1
916 MI->RemoveOperand(Src1Idx);
917 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
918 } else
919 return false;
921 return true;
924 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
925 MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
926 MI->getOpcode() == AMDGPU::S_AND_B32) {
927 if (Src1Val == 0) {
928 // y = and x, 0 => y = v_mov_b32 0
929 MI->RemoveOperand(Src0Idx);
930 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
931 } else if (Src1Val == -1) {
932 // y = and x, -1 => y = copy x
933 MI->RemoveOperand(Src1Idx);
934 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
935 stripExtraCopyOperands(*MI);
936 } else
937 return false;
939 return true;
942 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
943 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
944 MI->getOpcode() == AMDGPU::S_XOR_B32) {
945 if (Src1Val == 0) {
946 // y = xor x, 0 => y = copy x
947 MI->RemoveOperand(Src1Idx);
948 mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
949 return true;
953 return false;
956 // Try to fold an instruction into a simpler one
957 static bool tryFoldInst(const SIInstrInfo *TII,
958 MachineInstr *MI) {
959 unsigned Opc = MI->getOpcode();
961 if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
962 Opc == AMDGPU::V_CNDMASK_B32_e64 ||
963 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
964 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
965 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
966 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
967 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
968 if (Src1->isIdenticalTo(*Src0) &&
969 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
970 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
971 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
972 auto &NewDesc =
973 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
974 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
975 if (Src2Idx != -1)
976 MI->RemoveOperand(Src2Idx);
977 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
978 if (Src1ModIdx != -1)
979 MI->RemoveOperand(Src1ModIdx);
980 if (Src0ModIdx != -1)
981 MI->RemoveOperand(Src0ModIdx);
982 mutateCopyOp(*MI, NewDesc);
983 LLVM_DEBUG(dbgs() << *MI << '\n');
984 return true;
988 return false;
991 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
992 MachineOperand &OpToFold) const {
993 // We need mutate the operands of new mov instructions to add implicit
994 // uses of EXEC, but adding them invalidates the use_iterator, so defer
995 // this.
996 SmallVector<MachineInstr *, 4> CopiesToReplace;
997 SmallVector<FoldCandidate, 4> FoldList;
998 MachineOperand &Dst = MI.getOperand(0);
1000 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1001 if (FoldingImm) {
1002 unsigned NumLiteralUses = 0;
1003 MachineOperand *NonInlineUse = nullptr;
1004 int NonInlineUseOpNo = -1;
1006 MachineRegisterInfo::use_iterator NextUse;
1007 for (MachineRegisterInfo::use_iterator
1008 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1009 Use != E; Use = NextUse) {
1010 NextUse = std::next(Use);
1011 MachineInstr *UseMI = Use->getParent();
1012 unsigned OpNo = Use.getOperandNo();
1014 // Folding the immediate may reveal operations that can be constant
1015 // folded or replaced with a copy. This can happen for example after
1016 // frame indices are lowered to constants or from splitting 64-bit
1017 // constants.
1019 // We may also encounter cases where one or both operands are
1020 // immediates materialized into a register, which would ordinarily not
1021 // be folded due to multiple uses or operand constraints.
1023 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
1024 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
1026 // Some constant folding cases change the same immediate's use to a new
1027 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
1028 // again. The same constant folded instruction could also have a second
1029 // use operand.
1030 NextUse = MRI->use_begin(Dst.getReg());
1031 FoldList.clear();
1032 continue;
1035 // Try to fold any inline immediate uses, and then only fold other
1036 // constants if they have one use.
1038 // The legality of the inline immediate must be checked based on the use
1039 // operand, not the defining instruction, because 32-bit instructions
1040 // with 32-bit inline immediate sources may be used to materialize
1041 // constants used in 16-bit operands.
1043 // e.g. it is unsafe to fold:
1044 // s_mov_b32 s0, 1.0 // materializes 0x3f800000
1045 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
1047 // Folding immediates with more than one use will increase program size.
1048 // FIXME: This will also reduce register usage, which may be better
1049 // in some cases. A better heuristic is needed.
1050 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
1051 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
1052 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
1053 foldOperand(OpToFold, UseMI, OpNo, FoldList,
1054 CopiesToReplace);
1055 } else {
1056 if (++NumLiteralUses == 1) {
1057 NonInlineUse = &*Use;
1058 NonInlineUseOpNo = OpNo;
1063 if (NumLiteralUses == 1) {
1064 MachineInstr *UseMI = NonInlineUse->getParent();
1065 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
1067 } else {
1068 // Folding register.
1069 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
1070 for (MachineRegisterInfo::use_iterator
1071 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
1072 Use != E; ++Use) {
1073 UsesToProcess.push_back(Use);
1075 for (auto U : UsesToProcess) {
1076 MachineInstr *UseMI = U->getParent();
1078 foldOperand(OpToFold, UseMI, U.getOperandNo(),
1079 FoldList, CopiesToReplace);
1083 MachineFunction *MF = MI.getParent()->getParent();
1084 // Make sure we add EXEC uses to any new v_mov instructions created.
1085 for (MachineInstr *Copy : CopiesToReplace)
1086 Copy->addImplicitDefUseOperands(*MF);
1088 for (FoldCandidate &Fold : FoldList) {
1089 if (updateOperand(Fold, *TII, *TRI, *ST)) {
1090 // Clear kill flags.
1091 if (Fold.isReg()) {
1092 assert(Fold.OpToFold && Fold.OpToFold->isReg());
1093 // FIXME: Probably shouldn't bother trying to fold if not an
1094 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
1095 // copies.
1096 MRI->clearKillFlags(Fold.OpToFold->getReg());
1098 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
1099 << static_cast<int>(Fold.UseOpNo) << " of "
1100 << *Fold.UseMI << '\n');
1101 tryFoldInst(TII, Fold.UseMI);
1102 } else if (Fold.isCommuted()) {
1103 // Restoring instruction's original operand order if fold has failed.
1104 TII->commuteInstruction(*Fold.UseMI, false);
1109 // Clamp patterns are canonically selected to v_max_* instructions, so only
1110 // handle them.
1111 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
1112 unsigned Op = MI.getOpcode();
1113 switch (Op) {
1114 case AMDGPU::V_MAX_F32_e64:
1115 case AMDGPU::V_MAX_F16_e64:
1116 case AMDGPU::V_MAX_F64:
1117 case AMDGPU::V_PK_MAX_F16: {
1118 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
1119 return nullptr;
1121 // Make sure sources are identical.
1122 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1123 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1124 if (!Src0->isReg() || !Src1->isReg() ||
1125 Src0->getReg() != Src1->getReg() ||
1126 Src0->getSubReg() != Src1->getSubReg() ||
1127 Src0->getSubReg() != AMDGPU::NoSubRegister)
1128 return nullptr;
1130 // Can't fold up if we have modifiers.
1131 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1132 return nullptr;
1134 unsigned Src0Mods
1135 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
1136 unsigned Src1Mods
1137 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
1139 // Having a 0 op_sel_hi would require swizzling the output in the source
1140 // instruction, which we can't do.
1141 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
1142 : 0u;
1143 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
1144 return nullptr;
1145 return Src0;
1147 default:
1148 return nullptr;
1152 // We obviously have multiple uses in a clamp since the register is used twice
1153 // in the same instruction.
1154 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
1155 int Count = 0;
1156 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
1157 I != E; ++I) {
1158 if (++Count > 1)
1159 return false;
1162 return true;
1165 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
1166 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
1167 const MachineOperand *ClampSrc = isClamp(MI);
1168 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
1169 return false;
1171 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
1173 // The type of clamp must be compatible.
1174 if (TII->getClampMask(*Def) != TII->getClampMask(MI))
1175 return false;
1177 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
1178 if (!DefClamp)
1179 return false;
1181 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
1182 << '\n');
1184 // Clamp is applied after omod, so it is OK if omod is set.
1185 DefClamp->setImm(1);
1186 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1187 MI.eraseFromParent();
1188 return true;
1191 static int getOModValue(unsigned Opc, int64_t Val) {
1192 switch (Opc) {
1193 case AMDGPU::V_MUL_F32_e64: {
1194 switch (static_cast<uint32_t>(Val)) {
1195 case 0x3f000000: // 0.5
1196 return SIOutMods::DIV2;
1197 case 0x40000000: // 2.0
1198 return SIOutMods::MUL2;
1199 case 0x40800000: // 4.0
1200 return SIOutMods::MUL4;
1201 default:
1202 return SIOutMods::NONE;
1205 case AMDGPU::V_MUL_F16_e64: {
1206 switch (static_cast<uint16_t>(Val)) {
1207 case 0x3800: // 0.5
1208 return SIOutMods::DIV2;
1209 case 0x4000: // 2.0
1210 return SIOutMods::MUL2;
1211 case 0x4400: // 4.0
1212 return SIOutMods::MUL4;
1213 default:
1214 return SIOutMods::NONE;
1217 default:
1218 llvm_unreachable("invalid mul opcode");
1222 // FIXME: Does this really not support denormals with f16?
1223 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
1224 // handled, so will anything other than that break?
1225 std::pair<const MachineOperand *, int>
1226 SIFoldOperands::isOMod(const MachineInstr &MI) const {
1227 unsigned Op = MI.getOpcode();
1228 switch (Op) {
1229 case AMDGPU::V_MUL_F32_e64:
1230 case AMDGPU::V_MUL_F16_e64: {
1231 // If output denormals are enabled, omod is ignored.
1232 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
1233 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
1234 return std::make_pair(nullptr, SIOutMods::NONE);
1236 const MachineOperand *RegOp = nullptr;
1237 const MachineOperand *ImmOp = nullptr;
1238 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1239 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1240 if (Src0->isImm()) {
1241 ImmOp = Src0;
1242 RegOp = Src1;
1243 } else if (Src1->isImm()) {
1244 ImmOp = Src1;
1245 RegOp = Src0;
1246 } else
1247 return std::make_pair(nullptr, SIOutMods::NONE);
1249 int OMod = getOModValue(Op, ImmOp->getImm());
1250 if (OMod == SIOutMods::NONE ||
1251 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
1252 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
1253 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
1254 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
1255 return std::make_pair(nullptr, SIOutMods::NONE);
1257 return std::make_pair(RegOp, OMod);
1259 case AMDGPU::V_ADD_F32_e64:
1260 case AMDGPU::V_ADD_F16_e64: {
1261 // If output denormals are enabled, omod is ignored.
1262 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
1263 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
1264 return std::make_pair(nullptr, SIOutMods::NONE);
1266 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
1267 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
1268 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
1270 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
1271 Src0->getSubReg() == Src1->getSubReg() &&
1272 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
1273 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
1274 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
1275 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
1276 return std::make_pair(Src0, SIOutMods::MUL2);
1278 return std::make_pair(nullptr, SIOutMods::NONE);
1280 default:
1281 return std::make_pair(nullptr, SIOutMods::NONE);
1285 // FIXME: Does this need to check IEEE bit on function?
1286 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
1287 const MachineOperand *RegOp;
1288 int OMod;
1289 std::tie(RegOp, OMod) = isOMod(MI);
1290 if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
1291 RegOp->getSubReg() != AMDGPU::NoSubRegister ||
1292 !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
1293 return false;
1295 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
1296 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
1297 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
1298 return false;
1300 // Clamp is applied after omod. If the source already has clamp set, don't
1301 // fold it.
1302 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
1303 return false;
1305 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
1307 DefOMod->setImm(OMod);
1308 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
1309 MI.eraseFromParent();
1310 return true;
1313 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
1314 if (skipFunction(MF.getFunction()))
1315 return false;
1317 MRI = &MF.getRegInfo();
1318 ST = &MF.getSubtarget<GCNSubtarget>();
1319 TII = ST->getInstrInfo();
1320 TRI = &TII->getRegisterInfo();
1321 MFI = MF.getInfo<SIMachineFunctionInfo>();
1323 // omod is ignored by hardware if IEEE bit is enabled. omod also does not
1324 // correctly handle signed zeros.
1326 // FIXME: Also need to check strictfp
1327 bool IsIEEEMode = MFI->getMode().IEEE;
1328 bool HasNSZ = MFI->hasNoSignedZerosFPMath();
1330 for (MachineBasicBlock *MBB : depth_first(&MF)) {
1331 MachineBasicBlock::iterator I, Next;
1332 for (I = MBB->begin(); I != MBB->end(); I = Next) {
1333 Next = std::next(I);
1334 MachineInstr &MI = *I;
1336 tryFoldInst(TII, &MI);
1338 if (!TII->isFoldableCopy(MI)) {
1339 // TODO: Omod might be OK if there is NSZ only on the source
1340 // instruction, and not the omod multiply.
1341 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
1342 !tryFoldOMod(MI))
1343 tryFoldClamp(MI);
1344 continue;
1347 MachineOperand &OpToFold = MI.getOperand(1);
1348 bool FoldingImm =
1349 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
1351 // FIXME: We could also be folding things like TargetIndexes.
1352 if (!FoldingImm && !OpToFold.isReg())
1353 continue;
1355 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg()))
1356 continue;
1358 // Prevent folding operands backwards in the function. For example,
1359 // the COPY opcode must not be replaced by 1 in this example:
1361 // %3 = COPY %vgpr0; VGPR_32:%3
1362 // ...
1363 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
1364 MachineOperand &Dst = MI.getOperand(0);
1365 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg()))
1366 continue;
1368 foldInstOperand(MI, OpToFold);
1371 return false;