1 //===-- SIInstrFormats.td - SI Instruction Encodings ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // SI Instruction format definitions.
11 //===----------------------------------------------------------------------===//
13 class InstSI <dag outs, dag ins, string asm = "",
14 list<dag> pattern = []> :
15 AMDGPUInst<outs, ins, asm, pattern>, GCNPredicateControl {
16 // Low bits - basic encoding information.
20 // SALU instruction formats.
27 // VALU instruction formats.
37 // Memory instruction formats.
46 // Pseudo instruction formats.
47 field bit VGPRSpill = 0;
48 field bit SGPRSpill = 0;
50 // High bits - other information.
52 field bit EXP_CNT = 0;
53 field bit LGKM_CNT = 0;
55 // Whether WQM _must_ be enabled for this instruction.
58 // Whether WQM _must_ be disabled for this instruction.
59 field bit DisableWQM = 0;
61 field bit Gather4 = 0;
63 // Most sopk treat the immediate as a signed 16-bit, however some
64 // use it as unsigned.
65 field bit SOPKZext = 0;
67 // This is an s_store_dword* instruction that requires a cache flush
68 // on wave termination. It is necessary to distinguish from mayStore
69 // SMEM instructions like the cache flush ones.
70 field bit ScalarStore = 0;
72 // Whether the operands can be ignored when computing the
74 field bit FixedSize = 0;
76 // This bit tells the assembler to use the 32-bit encoding in case it
77 // is unable to infer the encoding from the operands.
78 field bit VOPAsmPrefer32Bit = 0;
80 // This bit indicates that this is a VOP3 opcode which supports op_sel
81 // modifier (gfx9 only).
82 field bit VOP3_OPSEL = 0;
84 // Is it possible for this instruction to be atomic?
85 field bit maybeAtomic = 0;
87 // This bit indicates that this is a VI instruction which is renamed
88 // in GFX9. Required for correct mapping from pseudo to MC.
89 field bit renamedInGFX9 = 0;
91 // This bit indicates that this has a floating point result type, so
92 // the clamp modifier has floating point semantics.
93 field bit FPClamp = 0;
95 // This bit indicates that instruction may support integer clamping
96 // which depends on GPU features.
97 field bit IntClamp = 0;
99 // This field indicates that the clamp applies to the low component
100 // of a packed output register.
101 field bit ClampLo = 0;
103 // This field indicates that the clamp applies to the high component
104 // of a packed output register.
105 field bit ClampHi = 0;
107 // This bit indicates that this is a packed VOP3P instruction
108 field bit IsPacked = 0;
110 // This bit indicates that this is a D16 buffer instruction.
111 field bit D16Buf = 0;
113 // This field indicates that FLAT instruction accesses FLAT_GLBL or
114 // FLAT_SCRATCH segment. Must be 0 for non-FLAT instructions.
115 field bit IsNonFlatSeg = 0;
117 // This bit indicates that this uses the floating point double precision
118 // rounding mode flags
119 field bit FPDPRounding = 0;
121 // Instruction is FP atomic.
122 field bit FPAtomic = 0;
124 // This bit indicates that this is one of MFMA instructions.
127 // These need to be kept in sync with the enum in SIInstrFlags.
128 let TSFlags{0} = SALU;
129 let TSFlags{1} = VALU;
131 let TSFlags{2} = SOP1;
132 let TSFlags{3} = SOP2;
133 let TSFlags{4} = SOPC;
134 let TSFlags{5} = SOPK;
135 let TSFlags{6} = SOPP;
137 let TSFlags{7} = VOP1;
138 let TSFlags{8} = VOP2;
139 let TSFlags{9} = VOPC;
140 let TSFlags{10} = VOP3;
141 let TSFlags{12} = VOP3P;
143 let TSFlags{13} = VINTRP;
144 let TSFlags{14} = SDWA;
145 let TSFlags{15} = DPP;
147 let TSFlags{16} = MUBUF;
148 let TSFlags{17} = MTBUF;
149 let TSFlags{18} = SMRD;
150 let TSFlags{19} = MIMG;
151 let TSFlags{20} = EXP;
152 let TSFlags{21} = FLAT;
153 let TSFlags{22} = DS;
155 let TSFlags{23} = VGPRSpill;
156 let TSFlags{24} = SGPRSpill;
158 let TSFlags{32} = VM_CNT;
159 let TSFlags{33} = EXP_CNT;
160 let TSFlags{34} = LGKM_CNT;
162 let TSFlags{35} = WQM;
163 let TSFlags{36} = DisableWQM;
164 let TSFlags{37} = Gather4;
166 let TSFlags{38} = SOPKZext;
167 let TSFlags{39} = ScalarStore;
168 let TSFlags{40} = FixedSize;
169 let TSFlags{41} = VOPAsmPrefer32Bit;
170 let TSFlags{42} = VOP3_OPSEL;
172 let TSFlags{43} = maybeAtomic;
173 let TSFlags{44} = renamedInGFX9;
175 let TSFlags{45} = FPClamp;
176 let TSFlags{46} = IntClamp;
177 let TSFlags{47} = ClampLo;
178 let TSFlags{48} = ClampHi;
180 let TSFlags{49} = IsPacked;
182 let TSFlags{50} = D16Buf;
184 let TSFlags{51} = IsNonFlatSeg;
186 let TSFlags{52} = FPDPRounding;
188 let TSFlags{53} = FPAtomic;
190 let TSFlags{54} = IsMAI;
192 let SchedRW = [Write32Bit];
194 field bits<1> DisableSIDecoder = 0;
195 field bits<1> DisableVIDecoder = 0;
196 field bits<1> DisableDecoder = 0;
198 let isAsmParserOnly = !if(!eq(DisableDecoder{0}, {0}), 0, 1);
199 let AsmVariantName = AMDGPUAsmVariants.Default;
201 // Avoid changing source registers in a way that violates constant bus read limitations.
202 let hasExtraSrcRegAllocReq = !if(VOP1,1,!if(VOP2,1,!if(VOP3,1,!if(VOPC,1,!if(SDWA,1, !if(VALU,1,0))))));
205 class PseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = "">
206 : InstSI<outs, ins, asm, pattern> {
208 let isCodeGenOnly = 1;
211 class SPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = "">
212 : PseudoInstSI<outs, ins, pattern, asm> {
216 class VPseudoInstSI<dag outs, dag ins, list<dag> pattern = [], string asm = "">
217 : PseudoInstSI<outs, ins, pattern, asm> {
222 class CFPseudoInstSI<dag outs, dag ins, list<dag> pattern = [],
223 bit UseExec = 0, bit DefExec = 0> :
224 SPseudoInstSI<outs, ins, pattern> {
226 let Uses = !if(UseExec, [EXEC], []);
227 let Defs = !if(DefExec, [EXEC, SCC], [SCC]);
230 let hasSideEffects = 0;
243 class VOPDstOperand <RegisterClass rc> : RegisterOperand <rc, "printVOPDst">;
245 class VINTRPe <bits<2> op> : Enc32 {
251 let Inst{7-0} = vsrc;
252 let Inst{9-8} = attrchan;
253 let Inst{15-10} = attr;
254 let Inst{17-16} = op;
255 let Inst{25-18} = vdst;
256 let Inst{31-26} = 0x32; // encoding
259 class MIMGe : Enc64 {
272 let Inst{11-8} = dmask;
273 let Inst{12} = unorm;
279 let Inst{31-26} = 0x3c;
280 let Inst{47-40} = vdata;
281 let Inst{52-48} = srsrc{6-2};
282 let Inst{57-53} = ssamp{6-2};
286 class MIMGe_gfx6789 <bits<8> op> : MIMGe {
292 let Inst{24-18} = op{6-0};
293 let Inst{39-32} = vaddr;
296 class MIMGe_gfx10 <bits<8> op> : MIMGe {
301 bits<1> a16 = 0; // TODO: this should be an operand
307 let Inst{24-18} = op{6-0};
308 let Inst{39-32} = vaddr0;
325 let Inst{10} = compr;
328 let Inst{31-26} = 0x3e;
329 let Inst{39-32} = src0;
330 let Inst{47-40} = src1;
331 let Inst{55-48} = src2;
332 let Inst{63-56} = src3;
335 let Uses = [EXEC] in {
337 class VINTRPCommon <dag outs, dag ins, string asm, list<dag> pattern> :
338 InstSI <outs, ins, asm, pattern> {
340 // VINTRP instructions read parameter values from LDS, but these parameter
341 // values are stored outside of the LDS memory that is allocated to the
342 // shader for general purpose use.
344 // While it may be possible for ds_read/ds_write instructions to access
345 // the parameter values in LDS, this would essentially be an out-of-bounds
346 // memory access which we consider to be undefined behavior.
348 // So even though these instructions read memory, this memory is outside the
349 // addressable memory space for the shader, and we consider these instructions
353 let hasSideEffects = 0;
357 class EXPCommon<dag outs, dag ins, string asm, list<dag> pattern> :
358 InstSI<outs, ins, asm, pattern> {
361 let mayLoad = 0; // Set to 1 if done bit is set.
363 let UseNamedOperandTable = 1;
365 let SchedRW = [WriteExport];
368 } // End Uses = [EXEC]