1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the ARM target.
11 //===----------------------------------------------------------------------===//
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMTargetMachine.h"
16 #include "MCTargetDesc/ARMAddressingModes.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGISel.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Target/TargetOptions.h"
39 #define DEBUG_TYPE "arm-isel"
42 DisableShifterOp("disable-shifter-op", cl::Hidden
,
43 cl::desc("Disable isel of shifter-op"),
46 //===--------------------------------------------------------------------===//
47 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
48 /// instructions for SelectionDAG operations.
52 class ARMDAGToDAGISel
: public SelectionDAGISel
{
53 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
54 /// make the right decision when generating code for different targets.
55 const ARMSubtarget
*Subtarget
;
58 explicit ARMDAGToDAGISel(ARMBaseTargetMachine
&tm
, CodeGenOpt::Level OptLevel
)
59 : SelectionDAGISel(tm
, OptLevel
) {}
61 bool runOnMachineFunction(MachineFunction
&MF
) override
{
62 // Reset the subtarget each time through.
63 Subtarget
= &MF
.getSubtarget
<ARMSubtarget
>();
64 SelectionDAGISel::runOnMachineFunction(MF
);
68 StringRef
getPassName() const override
{ return "ARM Instruction Selection"; }
70 void PreprocessISelDAG() override
;
72 /// getI32Imm - Return a target constant of type i32 with the specified
74 inline SDValue
getI32Imm(unsigned Imm
, const SDLoc
&dl
) {
75 return CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
);
78 void Select(SDNode
*N
) override
;
80 bool hasNoVMLxHazardUse(SDNode
*N
) const;
81 bool isShifterOpProfitable(const SDValue
&Shift
,
82 ARM_AM::ShiftOpc ShOpcVal
, unsigned ShAmt
);
83 bool SelectRegShifterOperand(SDValue N
, SDValue
&A
,
84 SDValue
&B
, SDValue
&C
,
85 bool CheckProfitability
= true);
86 bool SelectImmShifterOperand(SDValue N
, SDValue
&A
,
87 SDValue
&B
, bool CheckProfitability
= true);
88 bool SelectShiftRegShifterOperand(SDValue N
, SDValue
&A
,
89 SDValue
&B
, SDValue
&C
) {
90 // Don't apply the profitability check
91 return SelectRegShifterOperand(N
, A
, B
, C
, false);
93 bool SelectShiftImmShifterOperand(SDValue N
, SDValue
&A
,
95 // Don't apply the profitability check
96 return SelectImmShifterOperand(N
, A
, B
, false);
99 bool SelectAddLikeOr(SDNode
*Parent
, SDValue N
, SDValue
&Out
);
101 bool SelectAddrModeImm12(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
102 bool SelectLdStSOReg(SDValue N
, SDValue
&Base
, SDValue
&Offset
, SDValue
&Opc
);
104 bool SelectCMOVPred(SDValue N
, SDValue
&Pred
, SDValue
&Reg
) {
105 const ConstantSDNode
*CN
= cast
<ConstantSDNode
>(N
);
106 Pred
= CurDAG
->getTargetConstant(CN
->getZExtValue(), SDLoc(N
), MVT::i32
);
107 Reg
= CurDAG
->getRegister(ARM::CPSR
, MVT::i32
);
111 bool SelectAddrMode2OffsetReg(SDNode
*Op
, SDValue N
,
112 SDValue
&Offset
, SDValue
&Opc
);
113 bool SelectAddrMode2OffsetImm(SDNode
*Op
, SDValue N
,
114 SDValue
&Offset
, SDValue
&Opc
);
115 bool SelectAddrMode2OffsetImmPre(SDNode
*Op
, SDValue N
,
116 SDValue
&Offset
, SDValue
&Opc
);
117 bool SelectAddrOffsetNone(SDValue N
, SDValue
&Base
);
118 bool SelectAddrMode3(SDValue N
, SDValue
&Base
,
119 SDValue
&Offset
, SDValue
&Opc
);
120 bool SelectAddrMode3Offset(SDNode
*Op
, SDValue N
,
121 SDValue
&Offset
, SDValue
&Opc
);
122 bool IsAddressingMode5(SDValue N
, SDValue
&Base
, SDValue
&Offset
, bool FP16
);
123 bool SelectAddrMode5(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
124 bool SelectAddrMode5FP16(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
125 bool SelectAddrMode6(SDNode
*Parent
, SDValue N
, SDValue
&Addr
,SDValue
&Align
);
126 bool SelectAddrMode6Offset(SDNode
*Op
, SDValue N
, SDValue
&Offset
);
128 bool SelectAddrModePC(SDValue N
, SDValue
&Offset
, SDValue
&Label
);
130 // Thumb Addressing Modes:
131 bool SelectThumbAddrModeRR(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
132 bool SelectThumbAddrModeRRSext(SDValue N
, SDValue
&Base
, SDValue
&Offset
);
133 bool SelectThumbAddrModeImm5S(SDValue N
, unsigned Scale
, SDValue
&Base
,
135 bool SelectThumbAddrModeImm5S1(SDValue N
, SDValue
&Base
,
137 bool SelectThumbAddrModeImm5S2(SDValue N
, SDValue
&Base
,
139 bool SelectThumbAddrModeImm5S4(SDValue N
, SDValue
&Base
,
141 bool SelectThumbAddrModeSP(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
143 // Thumb 2 Addressing Modes:
144 bool SelectT2AddrModeImm12(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
145 bool SelectT2AddrModeImm8(SDValue N
, SDValue
&Base
,
147 bool SelectT2AddrModeImm8Offset(SDNode
*Op
, SDValue N
,
149 template <unsigned Shift
>
150 bool SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
, SDValue
&OffImm
);
151 bool SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
, SDValue
&OffImm
,
153 template <unsigned Shift
>
154 bool SelectT2AddrModeImm7(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
155 bool SelectT2AddrModeSoReg(SDValue N
, SDValue
&Base
,
156 SDValue
&OffReg
, SDValue
&ShImm
);
157 bool SelectT2AddrModeExclusive(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
159 inline bool is_so_imm(unsigned Imm
) const {
160 return ARM_AM::getSOImmVal(Imm
) != -1;
163 inline bool is_so_imm_not(unsigned Imm
) const {
164 return ARM_AM::getSOImmVal(~Imm
) != -1;
167 inline bool is_t2_so_imm(unsigned Imm
) const {
168 return ARM_AM::getT2SOImmVal(Imm
) != -1;
171 inline bool is_t2_so_imm_not(unsigned Imm
) const {
172 return ARM_AM::getT2SOImmVal(~Imm
) != -1;
175 // Include the pieces autogenerated from the target description.
176 #include "ARMGenDAGISel.inc"
179 void transferMemOperands(SDNode
*Src
, SDNode
*Dst
);
181 /// Indexed (pre/post inc/dec) load matching code for ARM.
182 bool tryARMIndexedLoad(SDNode
*N
);
183 bool tryT1IndexedLoad(SDNode
*N
);
184 bool tryT2IndexedLoad(SDNode
*N
);
185 bool tryMVEIndexedLoad(SDNode
*N
);
187 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
188 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
189 /// loads of D registers and even subregs and odd subregs of Q registers.
190 /// For NumVecs <= 2, QOpcodes1 is not used.
191 void SelectVLD(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
192 const uint16_t *DOpcodes
, const uint16_t *QOpcodes0
,
193 const uint16_t *QOpcodes1
);
195 /// SelectVST - Select NEON store intrinsics. NumVecs should
196 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
197 /// stores of D registers and even subregs and odd subregs of Q registers.
198 /// For NumVecs <= 2, QOpcodes1 is not used.
199 void SelectVST(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
200 const uint16_t *DOpcodes
, const uint16_t *QOpcodes0
,
201 const uint16_t *QOpcodes1
);
203 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
204 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
205 /// load/store of D registers and Q registers.
206 void SelectVLDSTLane(SDNode
*N
, bool IsLoad
, bool isUpdating
,
207 unsigned NumVecs
, const uint16_t *DOpcodes
,
208 const uint16_t *QOpcodes
);
210 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
211 /// should be 1, 2, 3 or 4. The opcode array specifies the instructions used
212 /// for loading D registers.
213 void SelectVLDDup(SDNode
*N
, bool IsIntrinsic
, bool isUpdating
,
214 unsigned NumVecs
, const uint16_t *DOpcodes
,
215 const uint16_t *QOpcodes0
= nullptr,
216 const uint16_t *QOpcodes1
= nullptr);
218 /// Try to select SBFX/UBFX instructions for ARM.
219 bool tryV6T2BitfieldExtractOp(SDNode
*N
, bool isSigned
);
221 // Select special operations if node forms integer ABS pattern
222 bool tryABSOp(SDNode
*N
);
224 bool tryReadRegister(SDNode
*N
);
225 bool tryWriteRegister(SDNode
*N
);
227 bool tryInlineAsm(SDNode
*N
);
229 void SelectCMPZ(SDNode
*N
, bool &SwitchEQNEToPLMI
);
231 void SelectCMP_SWAP(SDNode
*N
);
233 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
234 /// inline asm expressions.
235 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
236 std::vector
<SDValue
> &OutOps
) override
;
238 // Form pairs of consecutive R, S, D, or Q registers.
239 SDNode
*createGPRPairNode(EVT VT
, SDValue V0
, SDValue V1
);
240 SDNode
*createSRegPairNode(EVT VT
, SDValue V0
, SDValue V1
);
241 SDNode
*createDRegPairNode(EVT VT
, SDValue V0
, SDValue V1
);
242 SDNode
*createQRegPairNode(EVT VT
, SDValue V0
, SDValue V1
);
244 // Form sequences of 4 consecutive S, D, or Q registers.
245 SDNode
*createQuadSRegsNode(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
246 SDNode
*createQuadDRegsNode(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
247 SDNode
*createQuadQRegsNode(EVT VT
, SDValue V0
, SDValue V1
, SDValue V2
, SDValue V3
);
249 // Get the alignment operand for a NEON VLD or VST instruction.
250 SDValue
GetVLDSTAlign(SDValue Align
, const SDLoc
&dl
, unsigned NumVecs
,
253 /// Checks if N is a multiplication by a constant where we can extract out a
254 /// power of two from the constant so that it can be used in a shift, but only
255 /// if it simplifies the materialization of the constant. Returns true if it
256 /// is, and assigns to PowerOfTwo the power of two that should be extracted
257 /// out and to NewMulConst the new constant to be multiplied by.
258 bool canExtractShiftFromMul(const SDValue
&N
, unsigned MaxShift
,
259 unsigned &PowerOfTwo
, SDValue
&NewMulConst
) const;
261 /// Replace N with M in CurDAG, in a way that also ensures that M gets
262 /// selected when N would have been selected.
263 void replaceDAGValue(const SDValue
&N
, SDValue M
);
267 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
268 /// operand. If so Imm will receive the 32-bit value.
269 static bool isInt32Immediate(SDNode
*N
, unsigned &Imm
) {
270 if (N
->getOpcode() == ISD::Constant
&& N
->getValueType(0) == MVT::i32
) {
271 Imm
= cast
<ConstantSDNode
>(N
)->getZExtValue();
277 // isInt32Immediate - This method tests to see if a constant operand.
278 // If so Imm will receive the 32 bit value.
279 static bool isInt32Immediate(SDValue N
, unsigned &Imm
) {
280 return isInt32Immediate(N
.getNode(), Imm
);
283 // isOpcWithIntImmediate - This method tests to see if the node is a specific
284 // opcode and that it has a immediate integer right operand.
285 // If so Imm will receive the 32 bit value.
286 static bool isOpcWithIntImmediate(SDNode
*N
, unsigned Opc
, unsigned& Imm
) {
287 return N
->getOpcode() == Opc
&&
288 isInt32Immediate(N
->getOperand(1).getNode(), Imm
);
291 /// Check whether a particular node is a constant value representable as
292 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
294 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
295 static bool isScaledConstantInRange(SDValue Node
, int Scale
,
296 int RangeMin
, int RangeMax
,
297 int &ScaledConstant
) {
298 assert(Scale
> 0 && "Invalid scale!");
300 // Check that this is a constant.
301 const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Node
);
305 ScaledConstant
= (int) C
->getZExtValue();
306 if ((ScaledConstant
% Scale
) != 0)
309 ScaledConstant
/= Scale
;
310 return ScaledConstant
>= RangeMin
&& ScaledConstant
< RangeMax
;
313 void ARMDAGToDAGISel::PreprocessISelDAG() {
314 if (!Subtarget
->hasV6T2Ops())
317 bool isThumb2
= Subtarget
->isThumb();
318 for (SelectionDAG::allnodes_iterator I
= CurDAG
->allnodes_begin(),
319 E
= CurDAG
->allnodes_end(); I
!= E
; ) {
320 SDNode
*N
= &*I
++; // Preincrement iterator to avoid invalidation issues.
322 if (N
->getOpcode() != ISD::ADD
)
325 // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
326 // leading zeros, followed by consecutive set bits, followed by 1 or 2
327 // trailing zeros, e.g. 1020.
328 // Transform the expression to
329 // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
330 // of trailing zeros of c2. The left shift would be folded as an shifter
331 // operand of 'add' and the 'and' and 'srl' would become a bits extraction
334 SDValue N0
= N
->getOperand(0);
335 SDValue N1
= N
->getOperand(1);
336 unsigned And_imm
= 0;
337 if (!isOpcWithIntImmediate(N1
.getNode(), ISD::AND
, And_imm
)) {
338 if (isOpcWithIntImmediate(N0
.getNode(), ISD::AND
, And_imm
))
344 // Check if the AND mask is an immediate of the form: 000.....1111111100
345 unsigned TZ
= countTrailingZeros(And_imm
);
346 if (TZ
!= 1 && TZ
!= 2)
347 // Be conservative here. Shifter operands aren't always free. e.g. On
348 // Swift, left shifter operand of 1 / 2 for free but others are not.
350 // ubfx r3, r1, #16, #8
351 // ldr.w r3, [r0, r3, lsl #2]
354 // and.w r2, r9, r1, lsr #14
358 if (And_imm
& (And_imm
+ 1))
361 // Look for (and (srl X, c1), c2).
362 SDValue Srl
= N1
.getOperand(0);
363 unsigned Srl_imm
= 0;
364 if (!isOpcWithIntImmediate(Srl
.getNode(), ISD::SRL
, Srl_imm
) ||
368 // Make sure first operand is not a shifter operand which would prevent
369 // folding of the left shift.
374 if (SelectImmShifterOperand(N0
, CPTmp0
, CPTmp1
))
377 if (SelectImmShifterOperand(N0
, CPTmp0
, CPTmp1
) ||
378 SelectRegShifterOperand(N0
, CPTmp0
, CPTmp1
, CPTmp2
))
382 // Now make the transformation.
383 Srl
= CurDAG
->getNode(ISD::SRL
, SDLoc(Srl
), MVT::i32
,
385 CurDAG
->getConstant(Srl_imm
+ TZ
, SDLoc(Srl
),
387 N1
= CurDAG
->getNode(ISD::AND
, SDLoc(N1
), MVT::i32
,
389 CurDAG
->getConstant(And_imm
, SDLoc(Srl
), MVT::i32
));
390 N1
= CurDAG
->getNode(ISD::SHL
, SDLoc(N1
), MVT::i32
,
391 N1
, CurDAG
->getConstant(TZ
, SDLoc(Srl
), MVT::i32
));
392 CurDAG
->UpdateNodeOperands(N
, N0
, N1
);
396 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
397 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
398 /// least on current ARM implementations) which should be avoidded.
399 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode
*N
) const {
400 if (OptLevel
== CodeGenOpt::None
)
403 if (!Subtarget
->hasVMLxHazards())
409 SDNode
*Use
= *N
->use_begin();
410 if (Use
->getOpcode() == ISD::CopyToReg
)
412 if (Use
->isMachineOpcode()) {
413 const ARMBaseInstrInfo
*TII
= static_cast<const ARMBaseInstrInfo
*>(
414 CurDAG
->getSubtarget().getInstrInfo());
416 const MCInstrDesc
&MCID
= TII
->get(Use
->getMachineOpcode());
419 unsigned Opcode
= MCID
.getOpcode();
420 if (Opcode
== ARM::VMOVRS
|| Opcode
== ARM::VMOVRRD
)
422 // vmlx feeding into another vmlx. We actually want to unfold
423 // the use later in the MLxExpansion pass. e.g.
425 // vmla (stall 8 cycles)
430 // This adds up to about 18 - 19 cycles.
433 // vmul (stall 4 cycles)
434 // vadd adds up to about 14 cycles.
435 return TII
->isFpMLxInstruction(Opcode
);
441 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue
&Shift
,
442 ARM_AM::ShiftOpc ShOpcVal
,
444 if (!Subtarget
->isLikeA9() && !Subtarget
->isSwift())
446 if (Shift
.hasOneUse())
449 return ShOpcVal
== ARM_AM::lsl
&&
450 (ShAmt
== 2 || (Subtarget
->isSwift() && ShAmt
== 1));
453 bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue
&N
,
455 unsigned &PowerOfTwo
,
456 SDValue
&NewMulConst
) const {
457 assert(N
.getOpcode() == ISD::MUL
);
458 assert(MaxShift
> 0);
460 // If the multiply is used in more than one place then changing the constant
461 // will make other uses incorrect, so don't.
462 if (!N
.hasOneUse()) return false;
463 // Check if the multiply is by a constant
464 ConstantSDNode
*MulConst
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
465 if (!MulConst
) return false;
466 // If the constant is used in more than one place then modifying it will mean
467 // we need to materialize two constants instead of one, which is a bad idea.
468 if (!MulConst
->hasOneUse()) return false;
469 unsigned MulConstVal
= MulConst
->getZExtValue();
470 if (MulConstVal
== 0) return false;
472 // Find the largest power of 2 that MulConstVal is a multiple of
473 PowerOfTwo
= MaxShift
;
474 while ((MulConstVal
% (1 << PowerOfTwo
)) != 0) {
476 if (PowerOfTwo
== 0) return false;
479 // Only optimise if the new cost is better
480 unsigned NewMulConstVal
= MulConstVal
/ (1 << PowerOfTwo
);
481 NewMulConst
= CurDAG
->getConstant(NewMulConstVal
, SDLoc(N
), MVT::i32
);
482 unsigned OldCost
= ConstantMaterializationCost(MulConstVal
, Subtarget
);
483 unsigned NewCost
= ConstantMaterializationCost(NewMulConstVal
, Subtarget
);
484 return NewCost
< OldCost
;
487 void ARMDAGToDAGISel::replaceDAGValue(const SDValue
&N
, SDValue M
) {
488 CurDAG
->RepositionNode(N
.getNode()->getIterator(), M
.getNode());
492 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N
,
495 bool CheckProfitability
) {
496 if (DisableShifterOp
)
499 // If N is a multiply-by-constant and it's profitable to extract a shift and
500 // use it in a shifted operand do so.
501 if (N
.getOpcode() == ISD::MUL
) {
502 unsigned PowerOfTwo
= 0;
504 if (canExtractShiftFromMul(N
, 31, PowerOfTwo
, NewMulConst
)) {
505 HandleSDNode
Handle(N
);
507 replaceDAGValue(N
.getOperand(1), NewMulConst
);
508 BaseReg
= Handle
.getValue();
509 Opc
= CurDAG
->getTargetConstant(
510 ARM_AM::getSORegOpc(ARM_AM::lsl
, PowerOfTwo
), Loc
, MVT::i32
);
515 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOpcode());
517 // Don't match base register only case. That is matched to a separate
518 // lower complexity pattern with explicit register operand.
519 if (ShOpcVal
== ARM_AM::no_shift
) return false;
521 BaseReg
= N
.getOperand(0);
522 unsigned ShImmVal
= 0;
523 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
524 if (!RHS
) return false;
525 ShImmVal
= RHS
->getZExtValue() & 31;
526 Opc
= CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, ShImmVal
),
531 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N
,
535 bool CheckProfitability
) {
536 if (DisableShifterOp
)
539 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOpcode());
541 // Don't match base register only case. That is matched to a separate
542 // lower complexity pattern with explicit register operand.
543 if (ShOpcVal
== ARM_AM::no_shift
) return false;
545 BaseReg
= N
.getOperand(0);
546 unsigned ShImmVal
= 0;
547 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
548 if (RHS
) return false;
550 ShReg
= N
.getOperand(1);
551 if (CheckProfitability
&& !isShifterOpProfitable(N
, ShOpcVal
, ShImmVal
))
553 Opc
= CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, ShImmVal
),
558 // Determine whether an ISD::OR's operands are suitable to turn the operation
559 // into an addition, which often has more compact encodings.
560 bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode
*Parent
, SDValue N
, SDValue
&Out
) {
561 assert(Parent
->getOpcode() == ISD::OR
&& "unexpected parent");
563 return CurDAG
->haveNoCommonBitsSet(N
, Parent
->getOperand(1));
567 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N
,
570 // Match simple R + imm12 operands.
573 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
574 !CurDAG
->isBaseWithConstantOffset(N
)) {
575 if (N
.getOpcode() == ISD::FrameIndex
) {
576 // Match frame index.
577 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
578 Base
= CurDAG
->getTargetFrameIndex(
579 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
580 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
584 if (N
.getOpcode() == ARMISD::Wrapper
&&
585 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
586 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
587 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
588 Base
= N
.getOperand(0);
591 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
595 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
596 int RHSC
= (int)RHS
->getSExtValue();
597 if (N
.getOpcode() == ISD::SUB
)
600 if (RHSC
> -0x1000 && RHSC
< 0x1000) { // 12 bits
601 Base
= N
.getOperand(0);
602 if (Base
.getOpcode() == ISD::FrameIndex
) {
603 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
604 Base
= CurDAG
->getTargetFrameIndex(
605 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
607 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
614 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
620 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
622 if (N
.getOpcode() == ISD::MUL
&&
623 ((!Subtarget
->isLikeA9() && !Subtarget
->isSwift()) || N
.hasOneUse())) {
624 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
625 // X * [3,5,9] -> X + X * [2,4,8] etc.
626 int RHSC
= (int)RHS
->getZExtValue();
629 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
631 AddSub
= ARM_AM::sub
;
634 if (isPowerOf2_32(RHSC
)) {
635 unsigned ShAmt
= Log2_32(RHSC
);
636 Base
= Offset
= N
.getOperand(0);
637 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
,
646 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
647 // ISD::OR that is equivalent to an ISD::ADD.
648 !CurDAG
->isBaseWithConstantOffset(N
))
651 // Leave simple R +/- imm12 operands for LDRi12
652 if (N
.getOpcode() == ISD::ADD
|| N
.getOpcode() == ISD::OR
) {
654 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
655 -0x1000+1, 0x1000, RHSC
)) // 12 bits.
659 // Otherwise this is R +/- [possibly shifted] R.
660 ARM_AM::AddrOpc AddSub
= N
.getOpcode() == ISD::SUB
? ARM_AM::sub
:ARM_AM::add
;
661 ARM_AM::ShiftOpc ShOpcVal
=
662 ARM_AM::getShiftOpcForNode(N
.getOperand(1).getOpcode());
665 Base
= N
.getOperand(0);
666 Offset
= N
.getOperand(1);
668 if (ShOpcVal
!= ARM_AM::no_shift
) {
669 // Check to see if the RHS of the shift is a constant, if not, we can't fold
671 if (ConstantSDNode
*Sh
=
672 dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))) {
673 ShAmt
= Sh
->getZExtValue();
674 if (isShifterOpProfitable(Offset
, ShOpcVal
, ShAmt
))
675 Offset
= N
.getOperand(1).getOperand(0);
678 ShOpcVal
= ARM_AM::no_shift
;
681 ShOpcVal
= ARM_AM::no_shift
;
685 // Try matching (R shl C) + (R).
686 if (N
.getOpcode() != ISD::SUB
&& ShOpcVal
== ARM_AM::no_shift
&&
687 !(Subtarget
->isLikeA9() || Subtarget
->isSwift() ||
688 N
.getOperand(0).hasOneUse())) {
689 ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOperand(0).getOpcode());
690 if (ShOpcVal
!= ARM_AM::no_shift
) {
691 // Check to see if the RHS of the shift is a constant, if not, we can't
693 if (ConstantSDNode
*Sh
=
694 dyn_cast
<ConstantSDNode
>(N
.getOperand(0).getOperand(1))) {
695 ShAmt
= Sh
->getZExtValue();
696 if (isShifterOpProfitable(N
.getOperand(0), ShOpcVal
, ShAmt
)) {
697 Offset
= N
.getOperand(0).getOperand(0);
698 Base
= N
.getOperand(1);
701 ShOpcVal
= ARM_AM::no_shift
;
704 ShOpcVal
= ARM_AM::no_shift
;
709 // If Offset is a multiply-by-constant and it's profitable to extract a shift
710 // and use it in a shifted operand do so.
711 if (Offset
.getOpcode() == ISD::MUL
&& N
.hasOneUse()) {
712 unsigned PowerOfTwo
= 0;
714 if (canExtractShiftFromMul(Offset
, 31, PowerOfTwo
, NewMulConst
)) {
715 HandleSDNode
Handle(Offset
);
716 replaceDAGValue(Offset
.getOperand(1), NewMulConst
);
717 Offset
= Handle
.getValue();
719 ShOpcVal
= ARM_AM::lsl
;
723 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
728 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode
*Op
, SDValue N
,
729 SDValue
&Offset
, SDValue
&Opc
) {
730 unsigned Opcode
= Op
->getOpcode();
731 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
732 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
733 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
734 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
735 ? ARM_AM::add
: ARM_AM::sub
;
737 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
))
741 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(N
.getOpcode());
743 if (ShOpcVal
!= ARM_AM::no_shift
) {
744 // Check to see if the RHS of the shift is a constant, if not, we can't fold
746 if (ConstantSDNode
*Sh
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
747 ShAmt
= Sh
->getZExtValue();
748 if (isShifterOpProfitable(N
, ShOpcVal
, ShAmt
))
749 Offset
= N
.getOperand(0);
752 ShOpcVal
= ARM_AM::no_shift
;
755 ShOpcVal
= ARM_AM::no_shift
;
759 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, ShAmt
, ShOpcVal
),
764 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode
*Op
, SDValue N
,
765 SDValue
&Offset
, SDValue
&Opc
) {
766 unsigned Opcode
= Op
->getOpcode();
767 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
768 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
769 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
770 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
771 ? ARM_AM::add
: ARM_AM::sub
;
773 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
)) { // 12 bits.
774 if (AddSub
== ARM_AM::sub
) Val
*= -1;
775 Offset
= CurDAG
->getRegister(0, MVT::i32
);
776 Opc
= CurDAG
->getTargetConstant(Val
, SDLoc(Op
), MVT::i32
);
784 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode
*Op
, SDValue N
,
785 SDValue
&Offset
, SDValue
&Opc
) {
786 unsigned Opcode
= Op
->getOpcode();
787 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
788 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
789 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
790 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
791 ? ARM_AM::add
: ARM_AM::sub
;
793 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x1000, Val
)) { // 12 bits.
794 Offset
= CurDAG
->getRegister(0, MVT::i32
);
795 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM2Opc(AddSub
, Val
,
797 SDLoc(Op
), MVT::i32
);
804 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N
, SDValue
&Base
) {
809 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N
,
810 SDValue
&Base
, SDValue
&Offset
,
812 if (N
.getOpcode() == ISD::SUB
) {
813 // X - C is canonicalize to X + -C, no need to handle it here.
814 Base
= N
.getOperand(0);
815 Offset
= N
.getOperand(1);
816 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub
, 0), SDLoc(N
),
821 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
823 if (N
.getOpcode() == ISD::FrameIndex
) {
824 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
825 Base
= CurDAG
->getTargetFrameIndex(
826 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
828 Offset
= CurDAG
->getRegister(0, MVT::i32
);
829 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add
, 0), SDLoc(N
),
834 // If the RHS is +/- imm8, fold into addr mode.
836 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/1,
837 -256 + 1, 256, RHSC
)) { // 8 bits.
838 Base
= N
.getOperand(0);
839 if (Base
.getOpcode() == ISD::FrameIndex
) {
840 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
841 Base
= CurDAG
->getTargetFrameIndex(
842 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
844 Offset
= CurDAG
->getRegister(0, MVT::i32
);
846 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
848 AddSub
= ARM_AM::sub
;
851 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, RHSC
), SDLoc(N
),
856 Base
= N
.getOperand(0);
857 Offset
= N
.getOperand(1);
858 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add
, 0), SDLoc(N
),
863 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode
*Op
, SDValue N
,
864 SDValue
&Offset
, SDValue
&Opc
) {
865 unsigned Opcode
= Op
->getOpcode();
866 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
867 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
868 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
869 ARM_AM::AddrOpc AddSub
= (AM
== ISD::PRE_INC
|| AM
== ISD::POST_INC
)
870 ? ARM_AM::add
: ARM_AM::sub
;
872 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 256, Val
)) { // 12 bits.
873 Offset
= CurDAG
->getRegister(0, MVT::i32
);
874 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, Val
), SDLoc(Op
),
880 Opc
= CurDAG
->getTargetConstant(ARM_AM::getAM3Opc(AddSub
, 0), SDLoc(Op
),
885 bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
887 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
889 if (N
.getOpcode() == ISD::FrameIndex
) {
890 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
891 Base
= CurDAG
->getTargetFrameIndex(
892 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
893 } else if (N
.getOpcode() == ARMISD::Wrapper
&&
894 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
895 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
896 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
897 Base
= N
.getOperand(0);
899 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add
, 0),
904 // If the RHS is +/- imm8, fold into addr mode.
906 const int Scale
= FP16
? 2 : 4;
908 if (isScaledConstantInRange(N
.getOperand(1), Scale
, -255, 256, RHSC
)) {
909 Base
= N
.getOperand(0);
910 if (Base
.getOpcode() == ISD::FrameIndex
) {
911 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
912 Base
= CurDAG
->getTargetFrameIndex(
913 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
916 ARM_AM::AddrOpc AddSub
= ARM_AM::add
;
918 AddSub
= ARM_AM::sub
;
923 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub
, RHSC
),
926 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(AddSub
, RHSC
),
935 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add
, 0),
938 Offset
= CurDAG
->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add
, 0),
944 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N
,
945 SDValue
&Base
, SDValue
&Offset
) {
946 return IsAddressingMode5(N
, Base
, Offset
, /*FP16=*/ false);
949 bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N
,
950 SDValue
&Base
, SDValue
&Offset
) {
951 return IsAddressingMode5(N
, Base
, Offset
, /*FP16=*/ true);
954 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode
*Parent
, SDValue N
, SDValue
&Addr
,
958 unsigned Alignment
= 0;
960 MemSDNode
*MemN
= cast
<MemSDNode
>(Parent
);
962 if (isa
<LSBaseSDNode
>(MemN
) ||
963 ((MemN
->getOpcode() == ARMISD::VST1_UPD
||
964 MemN
->getOpcode() == ARMISD::VLD1_UPD
) &&
965 MemN
->getConstantOperandVal(MemN
->getNumOperands() - 1) == 1)) {
966 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
967 // The maximum alignment is equal to the memory size being referenced.
968 unsigned MMOAlign
= MemN
->getAlignment();
969 unsigned MemSize
= MemN
->getMemoryVT().getSizeInBits() / 8;
970 if (MMOAlign
>= MemSize
&& MemSize
> 1)
973 // All other uses of addrmode6 are for intrinsics. For now just record
974 // the raw alignment value; it will be refined later based on the legal
975 // alignment operands for the intrinsic.
976 Alignment
= MemN
->getAlignment();
979 Align
= CurDAG
->getTargetConstant(Alignment
, SDLoc(N
), MVT::i32
);
983 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode
*Op
, SDValue N
,
985 LSBaseSDNode
*LdSt
= cast
<LSBaseSDNode
>(Op
);
986 ISD::MemIndexedMode AM
= LdSt
->getAddressingMode();
987 if (AM
!= ISD::POST_INC
)
990 if (ConstantSDNode
*NC
= dyn_cast
<ConstantSDNode
>(N
)) {
991 if (NC
->getZExtValue() * 8 == LdSt
->getMemoryVT().getSizeInBits())
992 Offset
= CurDAG
->getRegister(0, MVT::i32
);
997 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N
,
998 SDValue
&Offset
, SDValue
&Label
) {
999 if (N
.getOpcode() == ARMISD::PIC_ADD
&& N
.hasOneUse()) {
1000 Offset
= N
.getOperand(0);
1001 SDValue N1
= N
.getOperand(1);
1002 Label
= CurDAG
->getTargetConstant(cast
<ConstantSDNode
>(N1
)->getZExtValue(),
1003 SDLoc(N
), MVT::i32
);
1011 //===----------------------------------------------------------------------===//
1012 // Thumb Addressing Modes
1013 //===----------------------------------------------------------------------===//
1015 static bool shouldUseZeroOffsetLdSt(SDValue N
) {
1016 // Negative numbers are difficult to materialise in thumb1. If we are
1017 // selecting the add of a negative, instead try to select ri with a zero
1018 // offset, so create the add node directly which will become a sub.
1019 if (N
.getOpcode() != ISD::ADD
)
1022 // Look for an imm which is not legal for ld/st, but is legal for sub.
1023 if (auto C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1)))
1024 return C
->getSExtValue() < 0 && C
->getSExtValue() >= -255;
1029 bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N
, SDValue
&Base
,
1031 if (N
.getOpcode() != ISD::ADD
&& !CurDAG
->isBaseWithConstantOffset(N
)) {
1032 ConstantSDNode
*NC
= dyn_cast
<ConstantSDNode
>(N
);
1033 if (!NC
|| !NC
->isNullValue())
1040 Base
= N
.getOperand(0);
1041 Offset
= N
.getOperand(1);
1045 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N
, SDValue
&Base
,
1047 if (shouldUseZeroOffsetLdSt(N
))
1048 return false; // Select ri instead
1049 return SelectThumbAddrModeRRSext(N
, Base
, Offset
);
1053 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N
, unsigned Scale
,
1054 SDValue
&Base
, SDValue
&OffImm
) {
1055 if (shouldUseZeroOffsetLdSt(N
)) {
1057 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1061 if (!CurDAG
->isBaseWithConstantOffset(N
)) {
1062 if (N
.getOpcode() == ISD::ADD
) {
1063 return false; // We want to select register offset instead
1064 } else if (N
.getOpcode() == ARMISD::Wrapper
&&
1065 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
1066 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
1067 N
.getOperand(0).getOpcode() != ISD::TargetConstantPool
&&
1068 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
1069 Base
= N
.getOperand(0);
1074 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1078 // If the RHS is + imm5 * scale, fold into addr mode.
1080 if (isScaledConstantInRange(N
.getOperand(1), Scale
, 0, 32, RHSC
)) {
1081 Base
= N
.getOperand(0);
1082 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1086 // Offset is too large, so use register offset instead.
1091 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N
, SDValue
&Base
,
1093 return SelectThumbAddrModeImm5S(N
, 4, Base
, OffImm
);
1097 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N
, SDValue
&Base
,
1099 return SelectThumbAddrModeImm5S(N
, 2, Base
, OffImm
);
1103 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N
, SDValue
&Base
,
1105 return SelectThumbAddrModeImm5S(N
, 1, Base
, OffImm
);
1108 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N
,
1109 SDValue
&Base
, SDValue
&OffImm
) {
1110 if (N
.getOpcode() == ISD::FrameIndex
) {
1111 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1112 // Only multiples of 4 are allowed for the offset, so the frame object
1113 // alignment must be at least 4.
1114 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1115 if (MFI
.getObjectAlignment(FI
) < 4)
1116 MFI
.setObjectAlignment(FI
, 4);
1117 Base
= CurDAG
->getTargetFrameIndex(
1118 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1119 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1123 if (!CurDAG
->isBaseWithConstantOffset(N
))
1126 if (N
.getOperand(0).getOpcode() == ISD::FrameIndex
) {
1127 // If the RHS is + imm8 * scale, fold into addr mode.
1129 if (isScaledConstantInRange(N
.getOperand(1), /*Scale=*/4, 0, 256, RHSC
)) {
1130 Base
= N
.getOperand(0);
1131 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1132 // Make sure the offset is inside the object, or we might fail to
1133 // allocate an emergency spill slot. (An out-of-range access is UB, but
1134 // it could show up anyway.)
1135 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1136 if (RHSC
* 4 < MFI
.getObjectSize(FI
)) {
1137 // For LHS+RHS to result in an offset that's a multiple of 4 the object
1138 // indexed by the LHS must be 4-byte aligned.
1139 if (!MFI
.isFixedObjectIndex(FI
) && MFI
.getObjectAlignment(FI
) < 4)
1140 MFI
.setObjectAlignment(FI
, 4);
1141 if (MFI
.getObjectAlignment(FI
) >= 4) {
1142 Base
= CurDAG
->getTargetFrameIndex(
1143 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1144 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1155 //===----------------------------------------------------------------------===//
1156 // Thumb 2 Addressing Modes
1157 //===----------------------------------------------------------------------===//
1160 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N
,
1161 SDValue
&Base
, SDValue
&OffImm
) {
1162 // Match simple R + imm12 operands.
1165 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
1166 !CurDAG
->isBaseWithConstantOffset(N
)) {
1167 if (N
.getOpcode() == ISD::FrameIndex
) {
1168 // Match frame index.
1169 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
1170 Base
= CurDAG
->getTargetFrameIndex(
1171 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1172 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1176 if (N
.getOpcode() == ARMISD::Wrapper
&&
1177 N
.getOperand(0).getOpcode() != ISD::TargetGlobalAddress
&&
1178 N
.getOperand(0).getOpcode() != ISD::TargetExternalSymbol
&&
1179 N
.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress
) {
1180 Base
= N
.getOperand(0);
1181 if (Base
.getOpcode() == ISD::TargetConstantPool
)
1182 return false; // We want to select t2LDRpci instead.
1185 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1189 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1190 if (SelectT2AddrModeImm8(N
, Base
, OffImm
))
1191 // Let t2LDRi8 handle (R - imm8).
1194 int RHSC
= (int)RHS
->getZExtValue();
1195 if (N
.getOpcode() == ISD::SUB
)
1198 if (RHSC
>= 0 && RHSC
< 0x1000) { // 12 bits (unsigned)
1199 Base
= N
.getOperand(0);
1200 if (Base
.getOpcode() == ISD::FrameIndex
) {
1201 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1202 Base
= CurDAG
->getTargetFrameIndex(
1203 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1205 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1212 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1216 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N
,
1217 SDValue
&Base
, SDValue
&OffImm
) {
1218 // Match simple R - imm8 operands.
1219 if (N
.getOpcode() != ISD::ADD
&& N
.getOpcode() != ISD::SUB
&&
1220 !CurDAG
->isBaseWithConstantOffset(N
))
1223 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1224 int RHSC
= (int)RHS
->getSExtValue();
1225 if (N
.getOpcode() == ISD::SUB
)
1228 if ((RHSC
>= -255) && (RHSC
< 0)) { // 8 bits (always negative)
1229 Base
= N
.getOperand(0);
1230 if (Base
.getOpcode() == ISD::FrameIndex
) {
1231 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1232 Base
= CurDAG
->getTargetFrameIndex(
1233 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1235 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
);
1243 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode
*Op
, SDValue N
,
1245 unsigned Opcode
= Op
->getOpcode();
1246 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
1247 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
1248 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
1250 if (isScaledConstantInRange(N
, /*Scale=*/1, 0, 0x100, RHSC
)) { // 8 bits.
1251 OffImm
= ((AM
== ISD::PRE_INC
) || (AM
== ISD::POST_INC
))
1252 ? CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i32
)
1253 : CurDAG
->getTargetConstant(-RHSC
, SDLoc(N
), MVT::i32
);
1260 template <unsigned Shift
>
1261 bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N
, SDValue
&Base
,
1263 if (N
.getOpcode() == ISD::SUB
|| CurDAG
->isBaseWithConstantOffset(N
)) {
1265 if (isScaledConstantInRange(N
.getOperand(1), 1 << Shift
, -0x7f, 0x80,
1267 Base
= N
.getOperand(0);
1268 if (Base
.getOpcode() == ISD::FrameIndex
) {
1269 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1270 Base
= CurDAG
->getTargetFrameIndex(
1271 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1274 if (N
.getOpcode() == ISD::SUB
)
1277 CurDAG
->getTargetConstant(RHSC
* (1 << Shift
), SDLoc(N
), MVT::i32
);
1284 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1288 template <unsigned Shift
>
1289 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
,
1291 return SelectT2AddrModeImm7Offset(Op
, N
, OffImm
, Shift
);
1294 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode
*Op
, SDValue N
,
1297 unsigned Opcode
= Op
->getOpcode();
1298 ISD::MemIndexedMode AM
= (Opcode
== ISD::LOAD
)
1299 ? cast
<LoadSDNode
>(Op
)->getAddressingMode()
1300 : cast
<StoreSDNode
>(Op
)->getAddressingMode();
1302 if (isScaledConstantInRange(N
, 1 << Shift
, 0, 0x80, RHSC
)) { // 7 bits.
1304 ((AM
== ISD::PRE_INC
) || (AM
== ISD::POST_INC
))
1305 ? CurDAG
->getTargetConstant(RHSC
* (1 << Shift
), SDLoc(N
), MVT::i32
)
1306 : CurDAG
->getTargetConstant(-RHSC
* (1 << Shift
), SDLoc(N
),
1313 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N
,
1315 SDValue
&OffReg
, SDValue
&ShImm
) {
1316 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1317 if (N
.getOpcode() != ISD::ADD
&& !CurDAG
->isBaseWithConstantOffset(N
))
1320 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1321 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
1322 int RHSC
= (int)RHS
->getZExtValue();
1323 if (RHSC
>= 0 && RHSC
< 0x1000) // 12 bits (unsigned)
1325 else if (RHSC
< 0 && RHSC
>= -255) // 8 bits
1329 // Look for (R + R) or (R + (R << [1,2,3])).
1331 Base
= N
.getOperand(0);
1332 OffReg
= N
.getOperand(1);
1334 // Swap if it is ((R << c) + R).
1335 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(OffReg
.getOpcode());
1336 if (ShOpcVal
!= ARM_AM::lsl
) {
1337 ShOpcVal
= ARM_AM::getShiftOpcForNode(Base
.getOpcode());
1338 if (ShOpcVal
== ARM_AM::lsl
)
1339 std::swap(Base
, OffReg
);
1342 if (ShOpcVal
== ARM_AM::lsl
) {
1343 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1345 if (ConstantSDNode
*Sh
= dyn_cast
<ConstantSDNode
>(OffReg
.getOperand(1))) {
1346 ShAmt
= Sh
->getZExtValue();
1347 if (ShAmt
< 4 && isShifterOpProfitable(OffReg
, ShOpcVal
, ShAmt
))
1348 OffReg
= OffReg
.getOperand(0);
1355 // If OffReg is a multiply-by-constant and it's profitable to extract a shift
1356 // and use it in a shifted operand do so.
1357 if (OffReg
.getOpcode() == ISD::MUL
&& N
.hasOneUse()) {
1358 unsigned PowerOfTwo
= 0;
1359 SDValue NewMulConst
;
1360 if (canExtractShiftFromMul(OffReg
, 3, PowerOfTwo
, NewMulConst
)) {
1361 HandleSDNode
Handle(OffReg
);
1362 replaceDAGValue(OffReg
.getOperand(1), NewMulConst
);
1363 OffReg
= Handle
.getValue();
1368 ShImm
= CurDAG
->getTargetConstant(ShAmt
, SDLoc(N
), MVT::i32
);
1373 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N
, SDValue
&Base
,
1375 // This *must* succeed since it's used for the irreplaceable ldrex and strex
1378 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i32
);
1380 if (N
.getOpcode() != ISD::ADD
|| !CurDAG
->isBaseWithConstantOffset(N
))
1383 ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
1387 uint32_t RHSC
= (int)RHS
->getZExtValue();
1388 if (RHSC
> 1020 || RHSC
% 4 != 0)
1391 Base
= N
.getOperand(0);
1392 if (Base
.getOpcode() == ISD::FrameIndex
) {
1393 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1394 Base
= CurDAG
->getTargetFrameIndex(
1395 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1398 OffImm
= CurDAG
->getTargetConstant(RHSC
/4, SDLoc(N
), MVT::i32
);
1402 //===--------------------------------------------------------------------===//
1404 /// getAL - Returns a ARMCC::AL immediate node.
1405 static inline SDValue
getAL(SelectionDAG
*CurDAG
, const SDLoc
&dl
) {
1406 return CurDAG
->getTargetConstant((uint64_t)ARMCC::AL
, dl
, MVT::i32
);
1409 void ARMDAGToDAGISel::transferMemOperands(SDNode
*N
, SDNode
*Result
) {
1410 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
1411 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Result
), {MemOp
});
1414 bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode
*N
) {
1415 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1416 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1417 if (AM
== ISD::UNINDEXED
)
1420 EVT LoadedVT
= LD
->getMemoryVT();
1421 SDValue Offset
, AMOpc
;
1422 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1423 unsigned Opcode
= 0;
1425 if (LoadedVT
== MVT::i32
&& isPre
&&
1426 SelectAddrMode2OffsetImmPre(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1427 Opcode
= ARM::LDR_PRE_IMM
;
1429 } else if (LoadedVT
== MVT::i32
&& !isPre
&&
1430 SelectAddrMode2OffsetImm(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1431 Opcode
= ARM::LDR_POST_IMM
;
1433 } else if (LoadedVT
== MVT::i32
&&
1434 SelectAddrMode2OffsetReg(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1435 Opcode
= isPre
? ARM::LDR_PRE_REG
: ARM::LDR_POST_REG
;
1438 } else if (LoadedVT
== MVT::i16
&&
1439 SelectAddrMode3Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1441 Opcode
= (LD
->getExtensionType() == ISD::SEXTLOAD
)
1442 ? (isPre
? ARM::LDRSH_PRE
: ARM::LDRSH_POST
)
1443 : (isPre
? ARM::LDRH_PRE
: ARM::LDRH_POST
);
1444 } else if (LoadedVT
== MVT::i8
|| LoadedVT
== MVT::i1
) {
1445 if (LD
->getExtensionType() == ISD::SEXTLOAD
) {
1446 if (SelectAddrMode3Offset(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1448 Opcode
= isPre
? ARM::LDRSB_PRE
: ARM::LDRSB_POST
;
1452 SelectAddrMode2OffsetImmPre(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1454 Opcode
= ARM::LDRB_PRE_IMM
;
1455 } else if (!isPre
&&
1456 SelectAddrMode2OffsetImm(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1458 Opcode
= ARM::LDRB_POST_IMM
;
1459 } else if (SelectAddrMode2OffsetReg(N
, LD
->getOffset(), Offset
, AMOpc
)) {
1461 Opcode
= isPre
? ARM::LDRB_PRE_REG
: ARM::LDRB_POST_REG
;
1467 if (Opcode
== ARM::LDR_PRE_IMM
|| Opcode
== ARM::LDRB_PRE_IMM
) {
1468 SDValue Chain
= LD
->getChain();
1469 SDValue Base
= LD
->getBasePtr();
1470 SDValue Ops
[]= { Base
, AMOpc
, getAL(CurDAG
, SDLoc(N
)),
1471 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1472 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), MVT::i32
, MVT::i32
,
1474 transferMemOperands(N
, New
);
1475 ReplaceNode(N
, New
);
1478 SDValue Chain
= LD
->getChain();
1479 SDValue Base
= LD
->getBasePtr();
1480 SDValue Ops
[]= { Base
, Offset
, AMOpc
, getAL(CurDAG
, SDLoc(N
)),
1481 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1482 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), MVT::i32
, MVT::i32
,
1484 transferMemOperands(N
, New
);
1485 ReplaceNode(N
, New
);
1493 bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode
*N
) {
1494 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1495 EVT LoadedVT
= LD
->getMemoryVT();
1496 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1497 if (AM
!= ISD::POST_INC
|| LD
->getExtensionType() != ISD::NON_EXTLOAD
||
1498 LoadedVT
.getSimpleVT().SimpleTy
!= MVT::i32
)
1501 auto *COffs
= dyn_cast
<ConstantSDNode
>(LD
->getOffset());
1502 if (!COffs
|| COffs
->getZExtValue() != 4)
1505 // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
1506 // The encoding of LDM is not how the rest of ISel expects a post-inc load to
1507 // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
1509 SDValue Chain
= LD
->getChain();
1510 SDValue Base
= LD
->getBasePtr();
1511 SDValue Ops
[]= { Base
, getAL(CurDAG
, SDLoc(N
)),
1512 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1513 SDNode
*New
= CurDAG
->getMachineNode(ARM::tLDR_postidx
, SDLoc(N
), MVT::i32
,
1514 MVT::i32
, MVT::Other
, Ops
);
1515 transferMemOperands(N
, New
);
1516 ReplaceNode(N
, New
);
1520 bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode
*N
) {
1521 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1522 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1523 if (AM
== ISD::UNINDEXED
)
1526 EVT LoadedVT
= LD
->getMemoryVT();
1527 bool isSExtLd
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1529 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1530 unsigned Opcode
= 0;
1532 if (SelectT2AddrModeImm8Offset(N
, LD
->getOffset(), Offset
)) {
1533 switch (LoadedVT
.getSimpleVT().SimpleTy
) {
1535 Opcode
= isPre
? ARM::t2LDR_PRE
: ARM::t2LDR_POST
;
1539 Opcode
= isPre
? ARM::t2LDRSH_PRE
: ARM::t2LDRSH_POST
;
1541 Opcode
= isPre
? ARM::t2LDRH_PRE
: ARM::t2LDRH_POST
;
1546 Opcode
= isPre
? ARM::t2LDRSB_PRE
: ARM::t2LDRSB_POST
;
1548 Opcode
= isPre
? ARM::t2LDRB_PRE
: ARM::t2LDRB_POST
;
1557 SDValue Chain
= LD
->getChain();
1558 SDValue Base
= LD
->getBasePtr();
1559 SDValue Ops
[]= { Base
, Offset
, getAL(CurDAG
, SDLoc(N
)),
1560 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1561 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), MVT::i32
, MVT::i32
,
1563 transferMemOperands(N
, New
);
1564 ReplaceNode(N
, New
);
1571 bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode
*N
) {
1572 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1573 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1574 if (AM
== ISD::UNINDEXED
)
1576 EVT LoadedVT
= LD
->getMemoryVT();
1577 if (!LoadedVT
.isVector())
1579 bool isSExtLd
= LD
->getExtensionType() == ISD::SEXTLOAD
;
1581 bool isPre
= (AM
== ISD::PRE_INC
) || (AM
== ISD::PRE_DEC
);
1582 unsigned Opcode
= 0;
1583 unsigned Align
= LD
->getAlignment();
1584 bool IsLE
= Subtarget
->isLittle();
1586 if (Align
>= 2 && LoadedVT
== MVT::v4i16
&&
1587 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 1)) {
1589 Opcode
= isPre
? ARM::MVE_VLDRHS32_pre
: ARM::MVE_VLDRHS32_post
;
1591 Opcode
= isPre
? ARM::MVE_VLDRHU32_pre
: ARM::MVE_VLDRHU32_post
;
1592 } else if (LoadedVT
== MVT::v8i8
&&
1593 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 0)) {
1595 Opcode
= isPre
? ARM::MVE_VLDRBS16_pre
: ARM::MVE_VLDRBS16_post
;
1597 Opcode
= isPre
? ARM::MVE_VLDRBU16_pre
: ARM::MVE_VLDRBU16_post
;
1598 } else if (LoadedVT
== MVT::v4i8
&&
1599 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 0)) {
1601 Opcode
= isPre
? ARM::MVE_VLDRBS32_pre
: ARM::MVE_VLDRBS32_post
;
1603 Opcode
= isPre
? ARM::MVE_VLDRBU32_pre
: ARM::MVE_VLDRBU32_post
;
1604 } else if (Align
>= 4 &&
1605 (IsLE
|| LoadedVT
== MVT::v4i32
|| LoadedVT
== MVT::v4f32
) &&
1606 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 2))
1607 Opcode
= isPre
? ARM::MVE_VLDRWU32_pre
: ARM::MVE_VLDRWU32_post
;
1608 else if (Align
>= 2 &&
1609 (IsLE
|| LoadedVT
== MVT::v8i16
|| LoadedVT
== MVT::v8f16
) &&
1610 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 1))
1611 Opcode
= isPre
? ARM::MVE_VLDRHU16_pre
: ARM::MVE_VLDRHU16_post
;
1612 else if ((IsLE
|| LoadedVT
== MVT::v16i8
) &&
1613 SelectT2AddrModeImm7Offset(N
, LD
->getOffset(), Offset
, 0))
1614 Opcode
= isPre
? ARM::MVE_VLDRBU8_pre
: ARM::MVE_VLDRBU8_post
;
1618 SDValue Chain
= LD
->getChain();
1619 SDValue Base
= LD
->getBasePtr();
1620 SDValue Ops
[] = {Base
, Offset
,
1621 CurDAG
->getTargetConstant(ARMVCC::None
, SDLoc(N
), MVT::i32
),
1622 CurDAG
->getRegister(0, MVT::i32
), Chain
};
1623 SDNode
*New
= CurDAG
->getMachineNode(Opcode
, SDLoc(N
), LD
->getValueType(0),
1624 MVT::i32
, MVT::Other
, Ops
);
1625 transferMemOperands(N
, New
);
1626 ReplaceUses(SDValue(N
, 0), SDValue(New
, 1));
1627 ReplaceUses(SDValue(N
, 1), SDValue(New
, 0));
1628 ReplaceUses(SDValue(N
, 2), SDValue(New
, 2));
1629 CurDAG
->RemoveDeadNode(N
);
1633 /// Form a GPRPair pseudo register from a pair of GPR regs.
1634 SDNode
*ARMDAGToDAGISel::createGPRPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1635 SDLoc
dl(V0
.getNode());
1637 CurDAG
->getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
1638 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
1639 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
1640 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1641 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1644 /// Form a D register from a pair of S registers.
1645 SDNode
*ARMDAGToDAGISel::createSRegPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1646 SDLoc
dl(V0
.getNode());
1648 CurDAG
->getTargetConstant(ARM::DPR_VFP2RegClassID
, dl
, MVT::i32
);
1649 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::ssub_0
, dl
, MVT::i32
);
1650 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::ssub_1
, dl
, MVT::i32
);
1651 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1652 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1655 /// Form a quad register from a pair of D registers.
1656 SDNode
*ARMDAGToDAGISel::createDRegPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1657 SDLoc
dl(V0
.getNode());
1658 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QPRRegClassID
, dl
,
1660 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::dsub_0
, dl
, MVT::i32
);
1661 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::dsub_1
, dl
, MVT::i32
);
1662 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1663 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1666 /// Form 4 consecutive D registers from a pair of Q registers.
1667 SDNode
*ARMDAGToDAGISel::createQRegPairNode(EVT VT
, SDValue V0
, SDValue V1
) {
1668 SDLoc
dl(V0
.getNode());
1669 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQPRRegClassID
, dl
,
1671 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::qsub_0
, dl
, MVT::i32
);
1672 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::qsub_1
, dl
, MVT::i32
);
1673 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
};
1674 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1677 /// Form 4 consecutive S registers.
1678 SDNode
*ARMDAGToDAGISel::createQuadSRegsNode(EVT VT
, SDValue V0
, SDValue V1
,
1679 SDValue V2
, SDValue V3
) {
1680 SDLoc
dl(V0
.getNode());
1682 CurDAG
->getTargetConstant(ARM::QPR_VFP2RegClassID
, dl
, MVT::i32
);
1683 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::ssub_0
, dl
, MVT::i32
);
1684 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::ssub_1
, dl
, MVT::i32
);
1685 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::ssub_2
, dl
, MVT::i32
);
1686 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::ssub_3
, dl
, MVT::i32
);
1687 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1688 V2
, SubReg2
, V3
, SubReg3
};
1689 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1692 /// Form 4 consecutive D registers.
1693 SDNode
*ARMDAGToDAGISel::createQuadDRegsNode(EVT VT
, SDValue V0
, SDValue V1
,
1694 SDValue V2
, SDValue V3
) {
1695 SDLoc
dl(V0
.getNode());
1696 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQPRRegClassID
, dl
,
1698 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::dsub_0
, dl
, MVT::i32
);
1699 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::dsub_1
, dl
, MVT::i32
);
1700 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::dsub_2
, dl
, MVT::i32
);
1701 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::dsub_3
, dl
, MVT::i32
);
1702 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1703 V2
, SubReg2
, V3
, SubReg3
};
1704 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1707 /// Form 4 consecutive Q registers.
1708 SDNode
*ARMDAGToDAGISel::createQuadQRegsNode(EVT VT
, SDValue V0
, SDValue V1
,
1709 SDValue V2
, SDValue V3
) {
1710 SDLoc
dl(V0
.getNode());
1711 SDValue RegClass
= CurDAG
->getTargetConstant(ARM::QQQQPRRegClassID
, dl
,
1713 SDValue SubReg0
= CurDAG
->getTargetConstant(ARM::qsub_0
, dl
, MVT::i32
);
1714 SDValue SubReg1
= CurDAG
->getTargetConstant(ARM::qsub_1
, dl
, MVT::i32
);
1715 SDValue SubReg2
= CurDAG
->getTargetConstant(ARM::qsub_2
, dl
, MVT::i32
);
1716 SDValue SubReg3
= CurDAG
->getTargetConstant(ARM::qsub_3
, dl
, MVT::i32
);
1717 const SDValue Ops
[] = { RegClass
, V0
, SubReg0
, V1
, SubReg1
,
1718 V2
, SubReg2
, V3
, SubReg3
};
1719 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, VT
, Ops
);
1722 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1723 /// of a NEON VLD or VST instruction. The supported values depend on the
1724 /// number of registers being loaded.
1725 SDValue
ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align
, const SDLoc
&dl
,
1726 unsigned NumVecs
, bool is64BitVector
) {
1727 unsigned NumRegs
= NumVecs
;
1728 if (!is64BitVector
&& NumVecs
< 3)
1731 unsigned Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
1732 if (Alignment
>= 32 && NumRegs
== 4)
1734 else if (Alignment
>= 16 && (NumRegs
== 2 || NumRegs
== 4))
1736 else if (Alignment
>= 8)
1741 return CurDAG
->getTargetConstant(Alignment
, dl
, MVT::i32
);
1744 static bool isVLDfixed(unsigned Opc
)
1747 default: return false;
1748 case ARM::VLD1d8wb_fixed
: return true;
1749 case ARM::VLD1d16wb_fixed
: return true;
1750 case ARM::VLD1d64Qwb_fixed
: return true;
1751 case ARM::VLD1d32wb_fixed
: return true;
1752 case ARM::VLD1d64wb_fixed
: return true;
1753 case ARM::VLD1d64TPseudoWB_fixed
: return true;
1754 case ARM::VLD1d64QPseudoWB_fixed
: return true;
1755 case ARM::VLD1q8wb_fixed
: return true;
1756 case ARM::VLD1q16wb_fixed
: return true;
1757 case ARM::VLD1q32wb_fixed
: return true;
1758 case ARM::VLD1q64wb_fixed
: return true;
1759 case ARM::VLD1DUPd8wb_fixed
: return true;
1760 case ARM::VLD1DUPd16wb_fixed
: return true;
1761 case ARM::VLD1DUPd32wb_fixed
: return true;
1762 case ARM::VLD1DUPq8wb_fixed
: return true;
1763 case ARM::VLD1DUPq16wb_fixed
: return true;
1764 case ARM::VLD1DUPq32wb_fixed
: return true;
1765 case ARM::VLD2d8wb_fixed
: return true;
1766 case ARM::VLD2d16wb_fixed
: return true;
1767 case ARM::VLD2d32wb_fixed
: return true;
1768 case ARM::VLD2q8PseudoWB_fixed
: return true;
1769 case ARM::VLD2q16PseudoWB_fixed
: return true;
1770 case ARM::VLD2q32PseudoWB_fixed
: return true;
1771 case ARM::VLD2DUPd8wb_fixed
: return true;
1772 case ARM::VLD2DUPd16wb_fixed
: return true;
1773 case ARM::VLD2DUPd32wb_fixed
: return true;
1777 static bool isVSTfixed(unsigned Opc
)
1780 default: return false;
1781 case ARM::VST1d8wb_fixed
: return true;
1782 case ARM::VST1d16wb_fixed
: return true;
1783 case ARM::VST1d32wb_fixed
: return true;
1784 case ARM::VST1d64wb_fixed
: return true;
1785 case ARM::VST1q8wb_fixed
: return true;
1786 case ARM::VST1q16wb_fixed
: return true;
1787 case ARM::VST1q32wb_fixed
: return true;
1788 case ARM::VST1q64wb_fixed
: return true;
1789 case ARM::VST1d64TPseudoWB_fixed
: return true;
1790 case ARM::VST1d64QPseudoWB_fixed
: return true;
1791 case ARM::VST2d8wb_fixed
: return true;
1792 case ARM::VST2d16wb_fixed
: return true;
1793 case ARM::VST2d32wb_fixed
: return true;
1794 case ARM::VST2q8PseudoWB_fixed
: return true;
1795 case ARM::VST2q16PseudoWB_fixed
: return true;
1796 case ARM::VST2q32PseudoWB_fixed
: return true;
1800 // Get the register stride update opcode of a VLD/VST instruction that
1801 // is otherwise equivalent to the given fixed stride updating instruction.
1802 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc
) {
1803 assert((isVLDfixed(Opc
) || isVSTfixed(Opc
))
1804 && "Incorrect fixed stride updating instruction.");
1807 case ARM::VLD1d8wb_fixed
: return ARM::VLD1d8wb_register
;
1808 case ARM::VLD1d16wb_fixed
: return ARM::VLD1d16wb_register
;
1809 case ARM::VLD1d32wb_fixed
: return ARM::VLD1d32wb_register
;
1810 case ARM::VLD1d64wb_fixed
: return ARM::VLD1d64wb_register
;
1811 case ARM::VLD1q8wb_fixed
: return ARM::VLD1q8wb_register
;
1812 case ARM::VLD1q16wb_fixed
: return ARM::VLD1q16wb_register
;
1813 case ARM::VLD1q32wb_fixed
: return ARM::VLD1q32wb_register
;
1814 case ARM::VLD1q64wb_fixed
: return ARM::VLD1q64wb_register
;
1815 case ARM::VLD1d64Twb_fixed
: return ARM::VLD1d64Twb_register
;
1816 case ARM::VLD1d64Qwb_fixed
: return ARM::VLD1d64Qwb_register
;
1817 case ARM::VLD1d64TPseudoWB_fixed
: return ARM::VLD1d64TPseudoWB_register
;
1818 case ARM::VLD1d64QPseudoWB_fixed
: return ARM::VLD1d64QPseudoWB_register
;
1819 case ARM::VLD1DUPd8wb_fixed
: return ARM::VLD1DUPd8wb_register
;
1820 case ARM::VLD1DUPd16wb_fixed
: return ARM::VLD1DUPd16wb_register
;
1821 case ARM::VLD1DUPd32wb_fixed
: return ARM::VLD1DUPd32wb_register
;
1822 case ARM::VLD1DUPq8wb_fixed
: return ARM::VLD1DUPq8wb_register
;
1823 case ARM::VLD1DUPq16wb_fixed
: return ARM::VLD1DUPq16wb_register
;
1824 case ARM::VLD1DUPq32wb_fixed
: return ARM::VLD1DUPq32wb_register
;
1826 case ARM::VST1d8wb_fixed
: return ARM::VST1d8wb_register
;
1827 case ARM::VST1d16wb_fixed
: return ARM::VST1d16wb_register
;
1828 case ARM::VST1d32wb_fixed
: return ARM::VST1d32wb_register
;
1829 case ARM::VST1d64wb_fixed
: return ARM::VST1d64wb_register
;
1830 case ARM::VST1q8wb_fixed
: return ARM::VST1q8wb_register
;
1831 case ARM::VST1q16wb_fixed
: return ARM::VST1q16wb_register
;
1832 case ARM::VST1q32wb_fixed
: return ARM::VST1q32wb_register
;
1833 case ARM::VST1q64wb_fixed
: return ARM::VST1q64wb_register
;
1834 case ARM::VST1d64TPseudoWB_fixed
: return ARM::VST1d64TPseudoWB_register
;
1835 case ARM::VST1d64QPseudoWB_fixed
: return ARM::VST1d64QPseudoWB_register
;
1837 case ARM::VLD2d8wb_fixed
: return ARM::VLD2d8wb_register
;
1838 case ARM::VLD2d16wb_fixed
: return ARM::VLD2d16wb_register
;
1839 case ARM::VLD2d32wb_fixed
: return ARM::VLD2d32wb_register
;
1840 case ARM::VLD2q8PseudoWB_fixed
: return ARM::VLD2q8PseudoWB_register
;
1841 case ARM::VLD2q16PseudoWB_fixed
: return ARM::VLD2q16PseudoWB_register
;
1842 case ARM::VLD2q32PseudoWB_fixed
: return ARM::VLD2q32PseudoWB_register
;
1844 case ARM::VST2d8wb_fixed
: return ARM::VST2d8wb_register
;
1845 case ARM::VST2d16wb_fixed
: return ARM::VST2d16wb_register
;
1846 case ARM::VST2d32wb_fixed
: return ARM::VST2d32wb_register
;
1847 case ARM::VST2q8PseudoWB_fixed
: return ARM::VST2q8PseudoWB_register
;
1848 case ARM::VST2q16PseudoWB_fixed
: return ARM::VST2q16PseudoWB_register
;
1849 case ARM::VST2q32PseudoWB_fixed
: return ARM::VST2q32PseudoWB_register
;
1851 case ARM::VLD2DUPd8wb_fixed
: return ARM::VLD2DUPd8wb_register
;
1852 case ARM::VLD2DUPd16wb_fixed
: return ARM::VLD2DUPd16wb_register
;
1853 case ARM::VLD2DUPd32wb_fixed
: return ARM::VLD2DUPd32wb_register
;
1855 return Opc
; // If not one we handle, return it unchanged.
1858 /// Returns true if the given increment is a Constant known to be equal to the
1859 /// access size performed by a NEON load/store. This means the "[rN]!" form can
1861 static bool isPerfectIncrement(SDValue Inc
, EVT VecTy
, unsigned NumVecs
) {
1862 auto C
= dyn_cast
<ConstantSDNode
>(Inc
);
1863 return C
&& C
->getZExtValue() == VecTy
.getSizeInBits() / 8 * NumVecs
;
1866 void ARMDAGToDAGISel::SelectVLD(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
1867 const uint16_t *DOpcodes
,
1868 const uint16_t *QOpcodes0
,
1869 const uint16_t *QOpcodes1
) {
1870 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VLD NumVecs out-of-range");
1873 SDValue MemAddr
, Align
;
1874 bool IsIntrinsic
= !isUpdating
; // By coincidence, all supported updating
1875 // nodes are not intrinsics.
1876 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
1877 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
1880 SDValue Chain
= N
->getOperand(0);
1881 EVT VT
= N
->getValueType(0);
1882 bool is64BitVector
= VT
.is64BitVector();
1883 Align
= GetVLDSTAlign(Align
, dl
, NumVecs
, is64BitVector
);
1885 unsigned OpcodeIndex
;
1886 switch (VT
.getSimpleVT().SimpleTy
) {
1887 default: llvm_unreachable("unhandled vld type");
1888 // Double-register operations:
1889 case MVT::v8i8
: OpcodeIndex
= 0; break;
1891 case MVT::v4i16
: OpcodeIndex
= 1; break;
1893 case MVT::v2i32
: OpcodeIndex
= 2; break;
1894 case MVT::v1i64
: OpcodeIndex
= 3; break;
1895 // Quad-register operations:
1896 case MVT::v16i8
: OpcodeIndex
= 0; break;
1898 case MVT::v8i16
: OpcodeIndex
= 1; break;
1900 case MVT::v4i32
: OpcodeIndex
= 2; break;
1902 case MVT::v2i64
: OpcodeIndex
= 3; break;
1909 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
1912 ResTy
= EVT::getVectorVT(*CurDAG
->getContext(), MVT::i64
, ResTyElts
);
1914 std::vector
<EVT
> ResTys
;
1915 ResTys
.push_back(ResTy
);
1917 ResTys
.push_back(MVT::i32
);
1918 ResTys
.push_back(MVT::Other
);
1920 SDValue Pred
= getAL(CurDAG
, dl
);
1921 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
1923 SmallVector
<SDValue
, 7> Ops
;
1925 // Double registers and VLD1/VLD2 quad registers are directly supported.
1926 if (is64BitVector
|| NumVecs
<= 2) {
1927 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
1928 QOpcodes0
[OpcodeIndex
]);
1929 Ops
.push_back(MemAddr
);
1930 Ops
.push_back(Align
);
1932 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1933 bool IsImmUpdate
= isPerfectIncrement(Inc
, VT
, NumVecs
);
1935 // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
1936 // check for the opcode rather than the number of vector elements.
1937 if (isVLDfixed(Opc
))
1938 Opc
= getVLDSTRegisterUpdateOpcode(Opc
);
1940 // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
1941 // the operands if not such an opcode.
1942 } else if (!isVLDfixed(Opc
))
1943 Ops
.push_back(Reg0
);
1945 Ops
.push_back(Pred
);
1946 Ops
.push_back(Reg0
);
1947 Ops
.push_back(Chain
);
1948 VLd
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1951 // Otherwise, quad registers are loaded with two separate instructions,
1952 // where one loads the even registers and the other loads the odd registers.
1953 EVT AddrTy
= MemAddr
.getValueType();
1955 // Load the even subregs. This is always an updating load, so that it
1956 // provides the address to the second load for the odd subregs.
1958 SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, ResTy
), 0);
1959 const SDValue OpsA
[] = { MemAddr
, Align
, Reg0
, ImplDef
, Pred
, Reg0
, Chain
};
1960 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
], dl
,
1961 ResTy
, AddrTy
, MVT::Other
, OpsA
);
1962 Chain
= SDValue(VLdA
, 2);
1964 // Load the odd subregs.
1965 Ops
.push_back(SDValue(VLdA
, 1));
1966 Ops
.push_back(Align
);
1968 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
1969 assert(isa
<ConstantSDNode
>(Inc
.getNode()) &&
1970 "only constant post-increment update allowed for VLD3/4");
1972 Ops
.push_back(Reg0
);
1974 Ops
.push_back(SDValue(VLdA
, 0));
1975 Ops
.push_back(Pred
);
1976 Ops
.push_back(Reg0
);
1977 Ops
.push_back(Chain
);
1978 VLd
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
, Ops
);
1981 // Transfer memoperands.
1982 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1983 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VLd
), {MemOp
});
1986 ReplaceNode(N
, VLd
);
1990 // Extract out the subregisters.
1991 SDValue SuperReg
= SDValue(VLd
, 0);
1992 static_assert(ARM::dsub_7
== ARM::dsub_0
+ 7 &&
1993 ARM::qsub_3
== ARM::qsub_0
+ 3,
1994 "Unexpected subreg numbering");
1995 unsigned Sub0
= (is64BitVector
? ARM::dsub_0
: ARM::qsub_0
);
1996 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
1997 ReplaceUses(SDValue(N
, Vec
),
1998 CurDAG
->getTargetExtractSubreg(Sub0
+ Vec
, dl
, VT
, SuperReg
));
1999 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLd
, 1));
2001 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLd
, 2));
2002 CurDAG
->RemoveDeadNode(N
);
2005 void ARMDAGToDAGISel::SelectVST(SDNode
*N
, bool isUpdating
, unsigned NumVecs
,
2006 const uint16_t *DOpcodes
,
2007 const uint16_t *QOpcodes0
,
2008 const uint16_t *QOpcodes1
) {
2009 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VST NumVecs out-of-range");
2012 SDValue MemAddr
, Align
;
2013 bool IsIntrinsic
= !isUpdating
; // By coincidence, all supported updating
2014 // nodes are not intrinsics.
2015 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
2016 unsigned Vec0Idx
= 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2017 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
2020 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2022 SDValue Chain
= N
->getOperand(0);
2023 EVT VT
= N
->getOperand(Vec0Idx
).getValueType();
2024 bool is64BitVector
= VT
.is64BitVector();
2025 Align
= GetVLDSTAlign(Align
, dl
, NumVecs
, is64BitVector
);
2027 unsigned OpcodeIndex
;
2028 switch (VT
.getSimpleVT().SimpleTy
) {
2029 default: llvm_unreachable("unhandled vst type");
2030 // Double-register operations:
2031 case MVT::v8i8
: OpcodeIndex
= 0; break;
2033 case MVT::v4i16
: OpcodeIndex
= 1; break;
2035 case MVT::v2i32
: OpcodeIndex
= 2; break;
2036 case MVT::v1i64
: OpcodeIndex
= 3; break;
2037 // Quad-register operations:
2038 case MVT::v16i8
: OpcodeIndex
= 0; break;
2040 case MVT::v8i16
: OpcodeIndex
= 1; break;
2042 case MVT::v4i32
: OpcodeIndex
= 2; break;
2044 case MVT::v2i64
: OpcodeIndex
= 3; break;
2047 std::vector
<EVT
> ResTys
;
2049 ResTys
.push_back(MVT::i32
);
2050 ResTys
.push_back(MVT::Other
);
2052 SDValue Pred
= getAL(CurDAG
, dl
);
2053 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2054 SmallVector
<SDValue
, 7> Ops
;
2056 // Double registers and VST1/VST2 quad registers are directly supported.
2057 if (is64BitVector
|| NumVecs
<= 2) {
2060 SrcReg
= N
->getOperand(Vec0Idx
);
2061 } else if (is64BitVector
) {
2062 // Form a REG_SEQUENCE to force register allocation.
2063 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
2064 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
2066 SrcReg
= SDValue(createDRegPairNode(MVT::v2i64
, V0
, V1
), 0);
2068 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
2069 // If it's a vst3, form a quad D-register and leave the last part as
2071 SDValue V3
= (NumVecs
== 3)
2072 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
,dl
,VT
), 0)
2073 : N
->getOperand(Vec0Idx
+ 3);
2074 SrcReg
= SDValue(createQuadDRegsNode(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
2077 // Form a QQ register.
2078 SDValue Q0
= N
->getOperand(Vec0Idx
);
2079 SDValue Q1
= N
->getOperand(Vec0Idx
+ 1);
2080 SrcReg
= SDValue(createQRegPairNode(MVT::v4i64
, Q0
, Q1
), 0);
2083 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
2084 QOpcodes0
[OpcodeIndex
]);
2085 Ops
.push_back(MemAddr
);
2086 Ops
.push_back(Align
);
2088 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
2089 bool IsImmUpdate
= isPerfectIncrement(Inc
, VT
, NumVecs
);
2091 // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
2092 // check for the opcode rather than the number of vector elements.
2093 if (isVSTfixed(Opc
))
2094 Opc
= getVLDSTRegisterUpdateOpcode(Opc
);
2097 // VST1/VST2 fixed increment does not need Reg0 so only include it in
2098 // the operands if not such an opcode.
2099 else if (!isVSTfixed(Opc
))
2100 Ops
.push_back(Reg0
);
2102 Ops
.push_back(SrcReg
);
2103 Ops
.push_back(Pred
);
2104 Ops
.push_back(Reg0
);
2105 Ops
.push_back(Chain
);
2106 SDNode
*VSt
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
2108 // Transfer memoperands.
2109 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VSt
), {MemOp
});
2111 ReplaceNode(N
, VSt
);
2115 // Otherwise, quad registers are stored with two separate instructions,
2116 // where one stores the even registers and the other stores the odd registers.
2118 // Form the QQQQ REG_SEQUENCE.
2119 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
2120 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
2121 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
2122 SDValue V3
= (NumVecs
== 3)
2123 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
2124 : N
->getOperand(Vec0Idx
+ 3);
2125 SDValue RegSeq
= SDValue(createQuadQRegsNode(MVT::v8i64
, V0
, V1
, V2
, V3
), 0);
2127 // Store the even D registers. This is always an updating store, so that it
2128 // provides the address to the second store for the odd subregs.
2129 const SDValue OpsA
[] = { MemAddr
, Align
, Reg0
, RegSeq
, Pred
, Reg0
, Chain
};
2130 SDNode
*VStA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
], dl
,
2131 MemAddr
.getValueType(),
2133 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VStA
), {MemOp
});
2134 Chain
= SDValue(VStA
, 1);
2136 // Store the odd D registers.
2137 Ops
.push_back(SDValue(VStA
, 0));
2138 Ops
.push_back(Align
);
2140 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
2141 assert(isa
<ConstantSDNode
>(Inc
.getNode()) &&
2142 "only constant post-increment update allowed for VST3/4");
2144 Ops
.push_back(Reg0
);
2146 Ops
.push_back(RegSeq
);
2147 Ops
.push_back(Pred
);
2148 Ops
.push_back(Reg0
);
2149 Ops
.push_back(Chain
);
2150 SDNode
*VStB
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
,
2152 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VStB
), {MemOp
});
2153 ReplaceNode(N
, VStB
);
2156 void ARMDAGToDAGISel::SelectVLDSTLane(SDNode
*N
, bool IsLoad
, bool isUpdating
,
2158 const uint16_t *DOpcodes
,
2159 const uint16_t *QOpcodes
) {
2160 assert(NumVecs
>=2 && NumVecs
<= 4 && "VLDSTLane NumVecs out-of-range");
2163 SDValue MemAddr
, Align
;
2164 bool IsIntrinsic
= !isUpdating
; // By coincidence, all supported updating
2165 // nodes are not intrinsics.
2166 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
2167 unsigned Vec0Idx
= 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2168 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
2171 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2173 SDValue Chain
= N
->getOperand(0);
2175 cast
<ConstantSDNode
>(N
->getOperand(Vec0Idx
+ NumVecs
))->getZExtValue();
2176 EVT VT
= N
->getOperand(Vec0Idx
).getValueType();
2177 bool is64BitVector
= VT
.is64BitVector();
2179 unsigned Alignment
= 0;
2181 Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
2182 unsigned NumBytes
= NumVecs
* VT
.getScalarSizeInBits() / 8;
2183 if (Alignment
> NumBytes
)
2184 Alignment
= NumBytes
;
2185 if (Alignment
< 8 && Alignment
< NumBytes
)
2187 // Alignment must be a power of two; make sure of that.
2188 Alignment
= (Alignment
& -Alignment
);
2192 Align
= CurDAG
->getTargetConstant(Alignment
, dl
, MVT::i32
);
2194 unsigned OpcodeIndex
;
2195 switch (VT
.getSimpleVT().SimpleTy
) {
2196 default: llvm_unreachable("unhandled vld/vst lane type");
2197 // Double-register operations:
2198 case MVT::v8i8
: OpcodeIndex
= 0; break;
2200 case MVT::v4i16
: OpcodeIndex
= 1; break;
2202 case MVT::v2i32
: OpcodeIndex
= 2; break;
2203 // Quad-register operations:
2205 case MVT::v8i16
: OpcodeIndex
= 0; break;
2207 case MVT::v4i32
: OpcodeIndex
= 1; break;
2210 std::vector
<EVT
> ResTys
;
2212 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
2215 ResTys
.push_back(EVT::getVectorVT(*CurDAG
->getContext(),
2216 MVT::i64
, ResTyElts
));
2219 ResTys
.push_back(MVT::i32
);
2220 ResTys
.push_back(MVT::Other
);
2222 SDValue Pred
= getAL(CurDAG
, dl
);
2223 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2225 SmallVector
<SDValue
, 8> Ops
;
2226 Ops
.push_back(MemAddr
);
2227 Ops
.push_back(Align
);
2229 SDValue Inc
= N
->getOperand(AddrOpIdx
+ 1);
2231 isPerfectIncrement(Inc
, VT
.getVectorElementType(), NumVecs
);
2232 Ops
.push_back(IsImmUpdate
? Reg0
: Inc
);
2236 SDValue V0
= N
->getOperand(Vec0Idx
+ 0);
2237 SDValue V1
= N
->getOperand(Vec0Idx
+ 1);
2240 SuperReg
= SDValue(createDRegPairNode(MVT::v2i64
, V0
, V1
), 0);
2242 SuperReg
= SDValue(createQRegPairNode(MVT::v4i64
, V0
, V1
), 0);
2244 SDValue V2
= N
->getOperand(Vec0Idx
+ 2);
2245 SDValue V3
= (NumVecs
== 3)
2246 ? SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, VT
), 0)
2247 : N
->getOperand(Vec0Idx
+ 3);
2249 SuperReg
= SDValue(createQuadDRegsNode(MVT::v4i64
, V0
, V1
, V2
, V3
), 0);
2251 SuperReg
= SDValue(createQuadQRegsNode(MVT::v8i64
, V0
, V1
, V2
, V3
), 0);
2253 Ops
.push_back(SuperReg
);
2254 Ops
.push_back(getI32Imm(Lane
, dl
));
2255 Ops
.push_back(Pred
);
2256 Ops
.push_back(Reg0
);
2257 Ops
.push_back(Chain
);
2259 unsigned Opc
= (is64BitVector
? DOpcodes
[OpcodeIndex
] :
2260 QOpcodes
[OpcodeIndex
]);
2261 SDNode
*VLdLn
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
2262 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VLdLn
), {MemOp
});
2264 ReplaceNode(N
, VLdLn
);
2268 // Extract the subregisters.
2269 SuperReg
= SDValue(VLdLn
, 0);
2270 static_assert(ARM::dsub_7
== ARM::dsub_0
+ 7 &&
2271 ARM::qsub_3
== ARM::qsub_0
+ 3,
2272 "Unexpected subreg numbering");
2273 unsigned Sub0
= is64BitVector
? ARM::dsub_0
: ARM::qsub_0
;
2274 for (unsigned Vec
= 0; Vec
< NumVecs
; ++Vec
)
2275 ReplaceUses(SDValue(N
, Vec
),
2276 CurDAG
->getTargetExtractSubreg(Sub0
+ Vec
, dl
, VT
, SuperReg
));
2277 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLdLn
, 1));
2279 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLdLn
, 2));
2280 CurDAG
->RemoveDeadNode(N
);
2283 void ARMDAGToDAGISel::SelectVLDDup(SDNode
*N
, bool IsIntrinsic
,
2284 bool isUpdating
, unsigned NumVecs
,
2285 const uint16_t *DOpcodes
,
2286 const uint16_t *QOpcodes0
,
2287 const uint16_t *QOpcodes1
) {
2288 assert(NumVecs
>= 1 && NumVecs
<= 4 && "VLDDup NumVecs out-of-range");
2291 SDValue MemAddr
, Align
;
2292 unsigned AddrOpIdx
= IsIntrinsic
? 2 : 1;
2293 if (!SelectAddrMode6(N
, N
->getOperand(AddrOpIdx
), MemAddr
, Align
))
2296 SDValue Chain
= N
->getOperand(0);
2297 EVT VT
= N
->getValueType(0);
2298 bool is64BitVector
= VT
.is64BitVector();
2300 unsigned Alignment
= 0;
2302 Alignment
= cast
<ConstantSDNode
>(Align
)->getZExtValue();
2303 unsigned NumBytes
= NumVecs
* VT
.getScalarSizeInBits() / 8;
2304 if (Alignment
> NumBytes
)
2305 Alignment
= NumBytes
;
2306 if (Alignment
< 8 && Alignment
< NumBytes
)
2308 // Alignment must be a power of two; make sure of that.
2309 Alignment
= (Alignment
& -Alignment
);
2313 Align
= CurDAG
->getTargetConstant(Alignment
, dl
, MVT::i32
);
2315 unsigned OpcodeIndex
;
2316 switch (VT
.getSimpleVT().SimpleTy
) {
2317 default: llvm_unreachable("unhandled vld-dup type");
2319 case MVT::v16i8
: OpcodeIndex
= 0; break;
2324 OpcodeIndex
= 1; break;
2328 case MVT::v4i32
: OpcodeIndex
= 2; break;
2330 case MVT::v1i64
: OpcodeIndex
= 3; break;
2333 unsigned ResTyElts
= (NumVecs
== 3) ? 4 : NumVecs
;
2336 EVT ResTy
= EVT::getVectorVT(*CurDAG
->getContext(), MVT::i64
, ResTyElts
);
2338 std::vector
<EVT
> ResTys
;
2339 ResTys
.push_back(ResTy
);
2341 ResTys
.push_back(MVT::i32
);
2342 ResTys
.push_back(MVT::Other
);
2344 SDValue Pred
= getAL(CurDAG
, dl
);
2345 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2348 if (is64BitVector
|| NumVecs
== 1) {
2349 SmallVector
<SDValue
, 6> Ops
;
2350 Ops
.push_back(MemAddr
);
2351 Ops
.push_back(Align
);
2352 unsigned Opc
= is64BitVector
? DOpcodes
[OpcodeIndex
] :
2353 QOpcodes0
[OpcodeIndex
];
2355 // fixed-stride update instructions don't have an explicit writeback
2356 // operand. It's implicit in the opcode itself.
2357 SDValue Inc
= N
->getOperand(2);
2359 isPerfectIncrement(Inc
, VT
.getVectorElementType(), NumVecs
);
2360 if (NumVecs
<= 2 && !IsImmUpdate
)
2361 Opc
= getVLDSTRegisterUpdateOpcode(Opc
);
2364 // FIXME: VLD3 and VLD4 haven't been updated to that form yet.
2365 else if (NumVecs
> 2)
2366 Ops
.push_back(Reg0
);
2368 Ops
.push_back(Pred
);
2369 Ops
.push_back(Reg0
);
2370 Ops
.push_back(Chain
);
2371 VLdDup
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
2372 } else if (NumVecs
== 2) {
2373 const SDValue OpsA
[] = { MemAddr
, Align
, Pred
, Reg0
, Chain
};
2374 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
],
2377 Chain
= SDValue(VLdA
, 1);
2378 const SDValue OpsB
[] = { MemAddr
, Align
, Pred
, Reg0
, Chain
};
2379 VLdDup
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
, OpsB
);
2382 SDValue(CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, ResTy
), 0);
2383 const SDValue OpsA
[] = { MemAddr
, Align
, ImplDef
, Pred
, Reg0
, Chain
};
2384 SDNode
*VLdA
= CurDAG
->getMachineNode(QOpcodes0
[OpcodeIndex
],
2387 SDValue SuperReg
= SDValue(VLdA
, 0);
2388 Chain
= SDValue(VLdA
, 1);
2389 const SDValue OpsB
[] = { MemAddr
, Align
, SuperReg
, Pred
, Reg0
, Chain
};
2390 VLdDup
= CurDAG
->getMachineNode(QOpcodes1
[OpcodeIndex
], dl
, ResTys
, OpsB
);
2393 // Transfer memoperands.
2394 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
2395 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(VLdDup
), {MemOp
});
2397 // Extract the subregisters.
2399 ReplaceUses(SDValue(N
, 0), SDValue(VLdDup
, 0));
2401 SDValue SuperReg
= SDValue(VLdDup
, 0);
2402 static_assert(ARM::dsub_7
== ARM::dsub_0
+ 7, "Unexpected subreg numbering");
2403 unsigned SubIdx
= is64BitVector
? ARM::dsub_0
: ARM::qsub_0
;
2404 for (unsigned Vec
= 0; Vec
!= NumVecs
; ++Vec
) {
2405 ReplaceUses(SDValue(N
, Vec
),
2406 CurDAG
->getTargetExtractSubreg(SubIdx
+Vec
, dl
, VT
, SuperReg
));
2409 ReplaceUses(SDValue(N
, NumVecs
), SDValue(VLdDup
, 1));
2411 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(VLdDup
, 2));
2412 CurDAG
->RemoveDeadNode(N
);
2415 bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode
*N
, bool isSigned
) {
2416 if (!Subtarget
->hasV6T2Ops())
2419 unsigned Opc
= isSigned
2420 ? (Subtarget
->isThumb() ? ARM::t2SBFX
: ARM::SBFX
)
2421 : (Subtarget
->isThumb() ? ARM::t2UBFX
: ARM::UBFX
);
2424 // For unsigned extracts, check for a shift right and mask
2425 unsigned And_imm
= 0;
2426 if (N
->getOpcode() == ISD::AND
) {
2427 if (isOpcWithIntImmediate(N
, ISD::AND
, And_imm
)) {
2429 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
2430 if (And_imm
& (And_imm
+ 1))
2433 unsigned Srl_imm
= 0;
2434 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRL
,
2436 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
2438 // Mask off the unnecessary bits of the AND immediate; normally
2439 // DAGCombine will do this, but that might not happen if
2440 // targetShrinkDemandedConstant chooses a different immediate.
2441 And_imm
&= -1U >> Srl_imm
;
2443 // Note: The width operand is encoded as width-1.
2444 unsigned Width
= countTrailingOnes(And_imm
) - 1;
2445 unsigned LSB
= Srl_imm
;
2447 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2449 if ((LSB
+ Width
+ 1) == N
->getValueType(0).getSizeInBits()) {
2450 // It's cheaper to use a right shift to extract the top bits.
2451 if (Subtarget
->isThumb()) {
2452 Opc
= isSigned
? ARM::t2ASRri
: ARM::t2LSRri
;
2453 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2454 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2455 getAL(CurDAG
, dl
), Reg0
, Reg0
};
2456 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2460 // ARM models shift instructions as MOVsi with shifter operand.
2461 ARM_AM::ShiftOpc ShOpcVal
= ARM_AM::getShiftOpcForNode(ISD::SRL
);
2463 CurDAG
->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal
, LSB
), dl
,
2465 SDValue Ops
[] = { N
->getOperand(0).getOperand(0), ShOpc
,
2466 getAL(CurDAG
, dl
), Reg0
, Reg0
};
2467 CurDAG
->SelectNodeTo(N
, ARM::MOVsi
, MVT::i32
, Ops
);
2471 assert(LSB
+ Width
+ 1 <= 32 && "Shouldn't create an invalid ubfx");
2472 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2473 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2474 CurDAG
->getTargetConstant(Width
, dl
, MVT::i32
),
2475 getAL(CurDAG
, dl
), Reg0
};
2476 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2483 // Otherwise, we're looking for a shift of a shift
2484 unsigned Shl_imm
= 0;
2485 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SHL
, Shl_imm
)) {
2486 assert(Shl_imm
> 0 && Shl_imm
< 32 && "bad amount in shift node!");
2487 unsigned Srl_imm
= 0;
2488 if (isInt32Immediate(N
->getOperand(1), Srl_imm
)) {
2489 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
2490 // Note: The width operand is encoded as width-1.
2491 unsigned Width
= 32 - Srl_imm
- 1;
2492 int LSB
= Srl_imm
- Shl_imm
;
2495 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2496 assert(LSB
+ Width
+ 1 <= 32 && "Shouldn't create an invalid ubfx");
2497 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2498 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2499 CurDAG
->getTargetConstant(Width
, dl
, MVT::i32
),
2500 getAL(CurDAG
, dl
), Reg0
};
2501 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2506 // Or we are looking for a shift of an and, with a mask operand
2507 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, And_imm
) &&
2508 isShiftedMask_32(And_imm
)) {
2509 unsigned Srl_imm
= 0;
2510 unsigned LSB
= countTrailingZeros(And_imm
);
2511 // Shift must be the same as the ands lsb
2512 if (isInt32Immediate(N
->getOperand(1), Srl_imm
) && Srl_imm
== LSB
) {
2513 assert(Srl_imm
> 0 && Srl_imm
< 32 && "bad amount in shift node!");
2514 unsigned MSB
= 31 - countLeadingZeros(And_imm
);
2515 // Note: The width operand is encoded as width-1.
2516 unsigned Width
= MSB
- LSB
;
2517 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2518 assert(Srl_imm
+ Width
+ 1 <= 32 && "Shouldn't create an invalid ubfx");
2519 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2520 CurDAG
->getTargetConstant(Srl_imm
, dl
, MVT::i32
),
2521 CurDAG
->getTargetConstant(Width
, dl
, MVT::i32
),
2522 getAL(CurDAG
, dl
), Reg0
};
2523 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2528 if (N
->getOpcode() == ISD::SIGN_EXTEND_INREG
) {
2529 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
2531 if (!isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRL
, LSB
) &&
2532 !isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SRA
, LSB
))
2535 if (LSB
+ Width
> 32)
2538 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2539 assert(LSB
+ Width
<= 32 && "Shouldn't create an invalid ubfx");
2540 SDValue Ops
[] = { N
->getOperand(0).getOperand(0),
2541 CurDAG
->getTargetConstant(LSB
, dl
, MVT::i32
),
2542 CurDAG
->getTargetConstant(Width
- 1, dl
, MVT::i32
),
2543 getAL(CurDAG
, dl
), Reg0
};
2544 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2551 /// Target-specific DAG combining for ISD::XOR.
2552 /// Target-independent combining lowers SELECT_CC nodes of the form
2553 /// select_cc setg[ge] X, 0, X, -X
2554 /// select_cc setgt X, -1, X, -X
2555 /// select_cc setl[te] X, 0, -X, X
2556 /// select_cc setlt X, 1, -X, X
2557 /// which represent Integer ABS into:
2558 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
2559 /// ARM instruction selection detects the latter and matches it to
2560 /// ARM::ABS or ARM::t2ABS machine node.
2561 bool ARMDAGToDAGISel::tryABSOp(SDNode
*N
){
2562 SDValue XORSrc0
= N
->getOperand(0);
2563 SDValue XORSrc1
= N
->getOperand(1);
2564 EVT VT
= N
->getValueType(0);
2566 if (Subtarget
->isThumb1Only())
2569 if (XORSrc0
.getOpcode() != ISD::ADD
|| XORSrc1
.getOpcode() != ISD::SRA
)
2572 SDValue ADDSrc0
= XORSrc0
.getOperand(0);
2573 SDValue ADDSrc1
= XORSrc0
.getOperand(1);
2574 SDValue SRASrc0
= XORSrc1
.getOperand(0);
2575 SDValue SRASrc1
= XORSrc1
.getOperand(1);
2576 ConstantSDNode
*SRAConstant
= dyn_cast
<ConstantSDNode
>(SRASrc1
);
2577 EVT XType
= SRASrc0
.getValueType();
2578 unsigned Size
= XType
.getSizeInBits() - 1;
2580 if (ADDSrc1
== XORSrc1
&& ADDSrc0
== SRASrc0
&&
2581 XType
.isInteger() && SRAConstant
!= nullptr &&
2582 Size
== SRAConstant
->getZExtValue()) {
2583 unsigned Opcode
= Subtarget
->isThumb2() ? ARM::t2ABS
: ARM::ABS
;
2584 CurDAG
->SelectNodeTo(N
, Opcode
, VT
, ADDSrc0
);
2591 /// We've got special pseudo-instructions for these
2592 void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode
*N
) {
2594 EVT MemTy
= cast
<MemSDNode
>(N
)->getMemoryVT();
2595 if (MemTy
== MVT::i8
)
2596 Opcode
= ARM::CMP_SWAP_8
;
2597 else if (MemTy
== MVT::i16
)
2598 Opcode
= ARM::CMP_SWAP_16
;
2599 else if (MemTy
== MVT::i32
)
2600 Opcode
= ARM::CMP_SWAP_32
;
2602 llvm_unreachable("Unknown AtomicCmpSwap type");
2604 SDValue Ops
[] = {N
->getOperand(1), N
->getOperand(2), N
->getOperand(3),
2606 SDNode
*CmpSwap
= CurDAG
->getMachineNode(
2608 CurDAG
->getVTList(MVT::i32
, MVT::i32
, MVT::Other
), Ops
);
2610 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
2611 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
2613 ReplaceUses(SDValue(N
, 0), SDValue(CmpSwap
, 0));
2614 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 2));
2615 CurDAG
->RemoveDeadNode(N
);
2618 static Optional
<std::pair
<unsigned, unsigned>>
2619 getContiguousRangeOfSetBits(const APInt
&A
) {
2620 unsigned FirstOne
= A
.getBitWidth() - A
.countLeadingZeros() - 1;
2621 unsigned LastOne
= A
.countTrailingZeros();
2622 if (A
.countPopulation() != (FirstOne
- LastOne
+ 1))
2623 return Optional
<std::pair
<unsigned,unsigned>>();
2624 return std::make_pair(FirstOne
, LastOne
);
2627 void ARMDAGToDAGISel::SelectCMPZ(SDNode
*N
, bool &SwitchEQNEToPLMI
) {
2628 assert(N
->getOpcode() == ARMISD::CMPZ
);
2629 SwitchEQNEToPLMI
= false;
2631 if (!Subtarget
->isThumb())
2632 // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
2633 // LSR don't exist as standalone instructions - they need the barrel shifter.
2636 // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
2637 SDValue And
= N
->getOperand(0);
2638 if (!And
->hasOneUse())
2641 SDValue Zero
= N
->getOperand(1);
2642 if (!isa
<ConstantSDNode
>(Zero
) || !cast
<ConstantSDNode
>(Zero
)->isNullValue() ||
2643 And
->getOpcode() != ISD::AND
)
2645 SDValue X
= And
.getOperand(0);
2646 auto C
= dyn_cast
<ConstantSDNode
>(And
.getOperand(1));
2650 auto Range
= getContiguousRangeOfSetBits(C
->getAPIntValue());
2654 // There are several ways to lower this:
2658 auto EmitShift
= [&](unsigned Opc
, SDValue Src
, unsigned Imm
) -> SDNode
* {
2659 if (Subtarget
->isThumb2()) {
2660 Opc
= (Opc
== ARM::tLSLri
) ? ARM::t2LSLri
: ARM::t2LSRri
;
2661 SDValue Ops
[] = { Src
, CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
),
2662 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
),
2663 CurDAG
->getRegister(0, MVT::i32
) };
2664 return CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
);
2666 SDValue Ops
[] = {CurDAG
->getRegister(ARM::CPSR
, MVT::i32
), Src
,
2667 CurDAG
->getTargetConstant(Imm
, dl
, MVT::i32
),
2668 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
)};
2669 return CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
);
2673 if (Range
->second
== 0) {
2674 // 1. Mask includes the LSB -> Simply shift the top N bits off
2675 NewN
= EmitShift(ARM::tLSLri
, X
, 31 - Range
->first
);
2676 ReplaceNode(And
.getNode(), NewN
);
2677 } else if (Range
->first
== 31) {
2678 // 2. Mask includes the MSB -> Simply shift the bottom N bits off
2679 NewN
= EmitShift(ARM::tLSRri
, X
, Range
->second
);
2680 ReplaceNode(And
.getNode(), NewN
);
2681 } else if (Range
->first
== Range
->second
) {
2682 // 3. Only one bit is set. We can shift this into the sign bit and use a
2683 // PL/MI comparison.
2684 NewN
= EmitShift(ARM::tLSLri
, X
, 31 - Range
->first
);
2685 ReplaceNode(And
.getNode(), NewN
);
2687 SwitchEQNEToPLMI
= true;
2688 } else if (!Subtarget
->hasV6T2Ops()) {
2689 // 4. Do a double shift to clear bottom and top bits, but only in
2690 // thumb-1 mode as in thumb-2 we can use UBFX.
2691 NewN
= EmitShift(ARM::tLSLri
, X
, 31 - Range
->first
);
2692 NewN
= EmitShift(ARM::tLSRri
, SDValue(NewN
, 0),
2693 Range
->second
+ (31 - Range
->first
));
2694 ReplaceNode(And
.getNode(), NewN
);
2699 void ARMDAGToDAGISel::Select(SDNode
*N
) {
2702 if (N
->isMachineOpcode()) {
2704 return; // Already selected.
2707 switch (N
->getOpcode()) {
2710 // For Thumb1, match an sp-relative store in C++. This is a little
2711 // unfortunate, but I don't think I can make the chain check work
2712 // otherwise. (The chain of the store has to be the same as the chain
2713 // of the CopyFromReg, or else we can't replace the CopyFromReg with
2714 // a direct reference to "SP".)
2716 // This is only necessary on Thumb1 because Thumb1 sp-relative stores use
2717 // a different addressing mode from other four-byte stores.
2719 // This pattern usually comes up with call arguments.
2720 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
2721 SDValue Ptr
= ST
->getBasePtr();
2722 if (Subtarget
->isThumb1Only() && ST
->isUnindexed()) {
2724 if (Ptr
.getOpcode() == ISD::ADD
&&
2725 isScaledConstantInRange(Ptr
.getOperand(1), /*Scale=*/4, 0, 256, RHSC
))
2726 Ptr
= Ptr
.getOperand(0);
2728 if (Ptr
.getOpcode() == ISD::CopyFromReg
&&
2729 cast
<RegisterSDNode
>(Ptr
.getOperand(1))->getReg() == ARM::SP
&&
2730 Ptr
.getOperand(0) == ST
->getChain()) {
2731 SDValue Ops
[] = {ST
->getValue(),
2732 CurDAG
->getRegister(ARM::SP
, MVT::i32
),
2733 CurDAG
->getTargetConstant(RHSC
, dl
, MVT::i32
),
2735 CurDAG
->getRegister(0, MVT::i32
),
2737 MachineSDNode
*ResNode
=
2738 CurDAG
->getMachineNode(ARM::tSTRspi
, dl
, MVT::Other
, Ops
);
2739 MachineMemOperand
*MemOp
= ST
->getMemOperand();
2740 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(ResNode
), {MemOp
});
2741 ReplaceNode(N
, ResNode
);
2747 case ISD::WRITE_REGISTER
:
2748 if (tryWriteRegister(N
))
2751 case ISD::READ_REGISTER
:
2752 if (tryReadRegister(N
))
2755 case ISD::INLINEASM
:
2756 case ISD::INLINEASM_BR
:
2757 if (tryInlineAsm(N
))
2761 // Select special operations if XOR node forms integer ABS pattern
2764 // Other cases are autogenerated.
2766 case ISD::Constant
: {
2767 unsigned Val
= cast
<ConstantSDNode
>(N
)->getZExtValue();
2768 // If we can't materialize the constant we need to use a literal pool
2769 if (ConstantMaterializationCost(Val
, Subtarget
) > 2) {
2770 SDValue CPIdx
= CurDAG
->getTargetConstantPool(
2771 ConstantInt::get(Type::getInt32Ty(*CurDAG
->getContext()), Val
),
2772 TLI
->getPointerTy(CurDAG
->getDataLayout()));
2775 if (Subtarget
->isThumb()) {
2779 CurDAG
->getRegister(0, MVT::i32
),
2780 CurDAG
->getEntryNode()
2782 ResNode
= CurDAG
->getMachineNode(ARM::tLDRpci
, dl
, MVT::i32
, MVT::Other
,
2787 CurDAG
->getTargetConstant(0, dl
, MVT::i32
),
2789 CurDAG
->getRegister(0, MVT::i32
),
2790 CurDAG
->getEntryNode()
2792 ResNode
= CurDAG
->getMachineNode(ARM::LDRcp
, dl
, MVT::i32
, MVT::Other
,
2795 // Annotate the Node with memory operand information so that MachineInstr
2796 // queries work properly. This e.g. gives the register allocation the
2797 // required information for rematerialization.
2798 MachineFunction
& MF
= CurDAG
->getMachineFunction();
2799 MachineMemOperand
*MemOp
=
2800 MF
.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF
),
2801 MachineMemOperand::MOLoad
, 4, 4);
2803 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(ResNode
), {MemOp
});
2805 ReplaceNode(N
, ResNode
);
2809 // Other cases are autogenerated.
2812 case ISD::FrameIndex
: {
2813 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
2814 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
2815 SDValue TFI
= CurDAG
->getTargetFrameIndex(
2816 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
2817 if (Subtarget
->isThumb1Only()) {
2818 // Set the alignment of the frame object to 4, to avoid having to generate
2819 // more than one ADD
2820 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
2821 if (MFI
.getObjectAlignment(FI
) < 4)
2822 MFI
.setObjectAlignment(FI
, 4);
2823 CurDAG
->SelectNodeTo(N
, ARM::tADDframe
, MVT::i32
, TFI
,
2824 CurDAG
->getTargetConstant(0, dl
, MVT::i32
));
2827 unsigned Opc
= ((Subtarget
->isThumb() && Subtarget
->hasThumb2()) ?
2828 ARM::t2ADDri
: ARM::ADDri
);
2829 SDValue Ops
[] = { TFI
, CurDAG
->getTargetConstant(0, dl
, MVT::i32
),
2830 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
),
2831 CurDAG
->getRegister(0, MVT::i32
) };
2832 CurDAG
->SelectNodeTo(N
, Opc
, MVT::i32
, Ops
);
2837 if (tryV6T2BitfieldExtractOp(N
, false))
2840 case ISD::SIGN_EXTEND_INREG
:
2842 if (tryV6T2BitfieldExtractOp(N
, true))
2846 if (Subtarget
->isThumb1Only())
2848 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
2849 unsigned RHSV
= C
->getZExtValue();
2851 if (isPowerOf2_32(RHSV
-1)) { // 2^n+1?
2852 unsigned ShImm
= Log2_32(RHSV
-1);
2855 SDValue V
= N
->getOperand(0);
2856 ShImm
= ARM_AM::getSORegOpc(ARM_AM::lsl
, ShImm
);
2857 SDValue ShImmOp
= CurDAG
->getTargetConstant(ShImm
, dl
, MVT::i32
);
2858 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2859 if (Subtarget
->isThumb()) {
2860 SDValue Ops
[] = { V
, V
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
, Reg0
};
2861 CurDAG
->SelectNodeTo(N
, ARM::t2ADDrs
, MVT::i32
, Ops
);
2864 SDValue Ops
[] = { V
, V
, Reg0
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
,
2866 CurDAG
->SelectNodeTo(N
, ARM::ADDrsi
, MVT::i32
, Ops
);
2870 if (isPowerOf2_32(RHSV
+1)) { // 2^n-1?
2871 unsigned ShImm
= Log2_32(RHSV
+1);
2874 SDValue V
= N
->getOperand(0);
2875 ShImm
= ARM_AM::getSORegOpc(ARM_AM::lsl
, ShImm
);
2876 SDValue ShImmOp
= CurDAG
->getTargetConstant(ShImm
, dl
, MVT::i32
);
2877 SDValue Reg0
= CurDAG
->getRegister(0, MVT::i32
);
2878 if (Subtarget
->isThumb()) {
2879 SDValue Ops
[] = { V
, V
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
, Reg0
};
2880 CurDAG
->SelectNodeTo(N
, ARM::t2RSBrs
, MVT::i32
, Ops
);
2883 SDValue Ops
[] = { V
, V
, Reg0
, ShImmOp
, getAL(CurDAG
, dl
), Reg0
,
2885 CurDAG
->SelectNodeTo(N
, ARM::RSBrsi
, MVT::i32
, Ops
);
2892 // Check for unsigned bitfield extract
2893 if (tryV6T2BitfieldExtractOp(N
, false))
2896 // If an immediate is used in an AND node, it is possible that the immediate
2897 // can be more optimally materialized when negated. If this is the case we
2898 // can negate the immediate and use a BIC instead.
2899 auto *N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2900 if (N1C
&& N1C
->hasOneUse() && Subtarget
->isThumb()) {
2901 uint32_t Imm
= (uint32_t) N1C
->getZExtValue();
2903 // In Thumb2 mode, an AND can take a 12-bit immediate. If this
2904 // immediate can be negated and fit in the immediate operand of
2905 // a t2BIC, don't do any manual transform here as this can be
2906 // handled by the generic ISel machinery.
2907 bool PreferImmediateEncoding
=
2908 Subtarget
->hasThumb2() && (is_t2_so_imm(Imm
) || is_t2_so_imm_not(Imm
));
2909 if (!PreferImmediateEncoding
&&
2910 ConstantMaterializationCost(Imm
, Subtarget
) >
2911 ConstantMaterializationCost(~Imm
, Subtarget
)) {
2912 // The current immediate costs more to materialize than a negated
2913 // immediate, so negate the immediate and use a BIC.
2915 CurDAG
->getConstant(~N1C
->getZExtValue(), dl
, MVT::i32
);
2916 // If the new constant didn't exist before, reposition it in the topological
2917 // ordering so it is just before N. Otherwise, don't touch its location.
2918 if (NewImm
->getNodeId() == -1)
2919 CurDAG
->RepositionNode(N
->getIterator(), NewImm
.getNode());
2921 if (!Subtarget
->hasThumb2()) {
2922 SDValue Ops
[] = {CurDAG
->getRegister(ARM::CPSR
, MVT::i32
),
2923 N
->getOperand(0), NewImm
, getAL(CurDAG
, dl
),
2924 CurDAG
->getRegister(0, MVT::i32
)};
2925 ReplaceNode(N
, CurDAG
->getMachineNode(ARM::tBIC
, dl
, MVT::i32
, Ops
));
2928 SDValue Ops
[] = {N
->getOperand(0), NewImm
, getAL(CurDAG
, dl
),
2929 CurDAG
->getRegister(0, MVT::i32
),
2930 CurDAG
->getRegister(0, MVT::i32
)};
2932 CurDAG
->getMachineNode(ARM::t2BICrr
, dl
, MVT::i32
, Ops
));
2938 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
2939 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
2940 // are entirely contributed by c2 and lower 16-bits are entirely contributed
2941 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
2942 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
2943 EVT VT
= N
->getValueType(0);
2946 unsigned Opc
= (Subtarget
->isThumb() && Subtarget
->hasThumb2())
2948 : (Subtarget
->hasV6T2Ops() ? ARM::MOVTi16
: 0);
2951 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
2952 N1C
= dyn_cast
<ConstantSDNode
>(N1
);
2955 if (N0
.getOpcode() == ISD::OR
&& N0
.getNode()->hasOneUse()) {
2956 SDValue N2
= N0
.getOperand(1);
2957 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
2960 unsigned N1CVal
= N1C
->getZExtValue();
2961 unsigned N2CVal
= N2C
->getZExtValue();
2962 if ((N1CVal
& 0xffff0000U
) == (N2CVal
& 0xffff0000U
) &&
2963 (N1CVal
& 0xffffU
) == 0xffffU
&&
2964 (N2CVal
& 0xffffU
) == 0x0U
) {
2965 SDValue Imm16
= CurDAG
->getTargetConstant((N2CVal
& 0xFFFF0000U
) >> 16,
2967 SDValue Ops
[] = { N0
.getOperand(0), Imm16
,
2968 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
) };
2969 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
));
2976 case ARMISD::UMAAL
: {
2977 unsigned Opc
= Subtarget
->isThumb() ? ARM::t2UMAAL
: ARM::UMAAL
;
2978 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1),
2979 N
->getOperand(2), N
->getOperand(3),
2981 CurDAG
->getRegister(0, MVT::i32
) };
2982 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, MVT::i32
, Ops
));
2985 case ARMISD::UMLAL
:{
2986 if (Subtarget
->isThumb()) {
2987 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
2988 N
->getOperand(3), getAL(CurDAG
, dl
),
2989 CurDAG
->getRegister(0, MVT::i32
)};
2991 N
, CurDAG
->getMachineNode(ARM::t2UMLAL
, dl
, MVT::i32
, MVT::i32
, Ops
));
2994 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
2995 N
->getOperand(3), getAL(CurDAG
, dl
),
2996 CurDAG
->getRegister(0, MVT::i32
),
2997 CurDAG
->getRegister(0, MVT::i32
) };
2998 ReplaceNode(N
, CurDAG
->getMachineNode(
2999 Subtarget
->hasV6Ops() ? ARM::UMLAL
: ARM::UMLALv5
, dl
,
3000 MVT::i32
, MVT::i32
, Ops
));
3004 case ARMISD::SMLAL
:{
3005 if (Subtarget
->isThumb()) {
3006 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
3007 N
->getOperand(3), getAL(CurDAG
, dl
),
3008 CurDAG
->getRegister(0, MVT::i32
)};
3010 N
, CurDAG
->getMachineNode(ARM::t2SMLAL
, dl
, MVT::i32
, MVT::i32
, Ops
));
3013 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
3014 N
->getOperand(3), getAL(CurDAG
, dl
),
3015 CurDAG
->getRegister(0, MVT::i32
),
3016 CurDAG
->getRegister(0, MVT::i32
) };
3017 ReplaceNode(N
, CurDAG
->getMachineNode(
3018 Subtarget
->hasV6Ops() ? ARM::SMLAL
: ARM::SMLALv5
, dl
,
3019 MVT::i32
, MVT::i32
, Ops
));
3023 case ARMISD::SUBE
: {
3024 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
3026 // Look for a pattern to match SMMLS
3027 // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
3028 if (N
->getOperand(1).getOpcode() != ISD::SMUL_LOHI
||
3029 N
->getOperand(2).getOpcode() != ARMISD::SUBC
||
3030 !SDValue(N
, 1).use_empty())
3033 if (Subtarget
->isThumb())
3034 assert(Subtarget
->hasThumb2() &&
3035 "This pattern should not be generated for Thumb");
3037 SDValue SmulLoHi
= N
->getOperand(1);
3038 SDValue Subc
= N
->getOperand(2);
3039 auto *Zero
= dyn_cast
<ConstantSDNode
>(Subc
.getOperand(0));
3041 if (!Zero
|| Zero
->getZExtValue() != 0 ||
3042 Subc
.getOperand(1) != SmulLoHi
.getValue(0) ||
3043 N
->getOperand(1) != SmulLoHi
.getValue(1) ||
3044 N
->getOperand(2) != Subc
.getValue(1))
3047 unsigned Opc
= Subtarget
->isThumb2() ? ARM::t2SMMLS
: ARM::SMMLS
;
3048 SDValue Ops
[] = { SmulLoHi
.getOperand(0), SmulLoHi
.getOperand(1),
3049 N
->getOperand(0), getAL(CurDAG
, dl
),
3050 CurDAG
->getRegister(0, MVT::i32
) };
3051 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
));
3055 if (Subtarget
->hasMVEIntegerOps() && tryMVEIndexedLoad(N
))
3057 if (Subtarget
->isThumb() && Subtarget
->hasThumb2()) {
3058 if (tryT2IndexedLoad(N
))
3060 } else if (Subtarget
->isThumb()) {
3061 if (tryT1IndexedLoad(N
))
3063 } else if (tryARMIndexedLoad(N
))
3065 // Other cases are autogenerated.
3070 SDValue Ops
[] = { N
->getOperand(1),
3073 unsigned Opc
= N
->getOpcode() == ARMISD::WLS
?
3074 ARM::t2WhileLoopStart
: ARM::t2LoopEnd
;
3075 SDNode
*New
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
, Ops
);
3076 ReplaceUses(N
, New
);
3077 CurDAG
->RemoveDeadNode(N
);
3080 case ARMISD::LOOP_DEC
: {
3081 SDValue Ops
[] = { N
->getOperand(1),
3085 CurDAG
->getMachineNode(ARM::t2LoopDec
, dl
,
3086 CurDAG
->getVTList(MVT::i32
, MVT::Other
), Ops
);
3087 ReplaceUses(N
, Dec
);
3088 CurDAG
->RemoveDeadNode(N
);
3091 case ARMISD::BRCOND
: {
3092 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3093 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
3094 // Pattern complexity = 6 cost = 1 size = 0
3096 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3097 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
3098 // Pattern complexity = 6 cost = 1 size = 0
3100 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
3101 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
3102 // Pattern complexity = 6 cost = 1 size = 0
3104 unsigned Opc
= Subtarget
->isThumb() ?
3105 ((Subtarget
->hasThumb2()) ? ARM::t2Bcc
: ARM::tBcc
) : ARM::Bcc
;
3106 SDValue Chain
= N
->getOperand(0);
3107 SDValue N1
= N
->getOperand(1);
3108 SDValue N2
= N
->getOperand(2);
3109 SDValue N3
= N
->getOperand(3);
3110 SDValue InFlag
= N
->getOperand(4);
3111 assert(N1
.getOpcode() == ISD::BasicBlock
);
3112 assert(N2
.getOpcode() == ISD::Constant
);
3113 assert(N3
.getOpcode() == ISD::Register
);
3115 unsigned CC
= (unsigned) cast
<ConstantSDNode
>(N2
)->getZExtValue();
3117 if (InFlag
.getOpcode() == ARMISD::CMPZ
) {
3118 if (InFlag
.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN
) {
3119 SDValue Int
= InFlag
.getOperand(0);
3120 uint64_t ID
= cast
<ConstantSDNode
>(Int
->getOperand(1))->getZExtValue();
3122 // Handle low-overhead loops.
3123 if (ID
== Intrinsic::loop_decrement_reg
) {
3124 SDValue Elements
= Int
.getOperand(2);
3125 SDValue Size
= CurDAG
->getTargetConstant(
3126 cast
<ConstantSDNode
>(Int
.getOperand(3))->getZExtValue(), dl
,
3129 SDValue Args
[] = { Elements
, Size
, Int
.getOperand(0) };
3131 CurDAG
->getMachineNode(ARM::t2LoopDec
, dl
,
3132 CurDAG
->getVTList(MVT::i32
, MVT::Other
),
3134 ReplaceUses(Int
.getNode(), LoopDec
);
3136 SDValue EndArgs
[] = { SDValue(LoopDec
, 0), N1
, Chain
};
3138 CurDAG
->getMachineNode(ARM::t2LoopEnd
, dl
, MVT::Other
, EndArgs
);
3140 ReplaceUses(N
, LoopEnd
);
3141 CurDAG
->RemoveDeadNode(N
);
3142 CurDAG
->RemoveDeadNode(InFlag
.getNode());
3143 CurDAG
->RemoveDeadNode(Int
.getNode());
3148 bool SwitchEQNEToPLMI
;
3149 SelectCMPZ(InFlag
.getNode(), SwitchEQNEToPLMI
);
3150 InFlag
= N
->getOperand(4);
3152 if (SwitchEQNEToPLMI
) {
3153 switch ((ARMCC::CondCodes
)CC
) {
3154 default: llvm_unreachable("CMPZ must be either NE or EQ!");
3156 CC
= (unsigned)ARMCC::MI
;
3159 CC
= (unsigned)ARMCC::PL
;
3165 SDValue Tmp2
= CurDAG
->getTargetConstant(CC
, dl
, MVT::i32
);
3166 SDValue Ops
[] = { N1
, Tmp2
, N3
, Chain
, InFlag
};
3167 SDNode
*ResNode
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
,
3169 Chain
= SDValue(ResNode
, 0);
3170 if (N
->getNumValues() == 2) {
3171 InFlag
= SDValue(ResNode
, 1);
3172 ReplaceUses(SDValue(N
, 1), InFlag
);
3174 ReplaceUses(SDValue(N
, 0),
3175 SDValue(Chain
.getNode(), Chain
.getResNo()));
3176 CurDAG
->RemoveDeadNode(N
);
3180 case ARMISD::CMPZ
: {
3181 // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
3182 // This allows us to avoid materializing the expensive negative constant.
3183 // The CMPZ #0 is useless and will be peepholed away but we need to keep it
3184 // for its glue output.
3185 SDValue X
= N
->getOperand(0);
3186 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1).getNode());
3187 if (C
&& C
->getSExtValue() < 0 && Subtarget
->isThumb()) {
3188 int64_t Addend
= -C
->getSExtValue();
3190 SDNode
*Add
= nullptr;
3191 // ADDS can be better than CMN if the immediate fits in a
3192 // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
3193 // Outside that range we can just use a CMN which is 32-bit but has a
3194 // 12-bit immediate range.
3195 if (Addend
< 1<<8) {
3196 if (Subtarget
->isThumb2()) {
3197 SDValue Ops
[] = { X
, CurDAG
->getTargetConstant(Addend
, dl
, MVT::i32
),
3198 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
),
3199 CurDAG
->getRegister(0, MVT::i32
) };
3200 Add
= CurDAG
->getMachineNode(ARM::t2ADDri
, dl
, MVT::i32
, Ops
);
3202 unsigned Opc
= (Addend
< 1<<3) ? ARM::tADDi3
: ARM::tADDi8
;
3203 SDValue Ops
[] = {CurDAG
->getRegister(ARM::CPSR
, MVT::i32
), X
,
3204 CurDAG
->getTargetConstant(Addend
, dl
, MVT::i32
),
3205 getAL(CurDAG
, dl
), CurDAG
->getRegister(0, MVT::i32
)};
3206 Add
= CurDAG
->getMachineNode(Opc
, dl
, MVT::i32
, Ops
);
3210 SDValue Ops2
[] = {SDValue(Add
, 0), CurDAG
->getConstant(0, dl
, MVT::i32
)};
3211 CurDAG
->MorphNodeTo(N
, ARMISD::CMPZ
, CurDAG
->getVTList(MVT::Glue
), Ops2
);
3214 // Other cases are autogenerated.
3218 case ARMISD::CMOV
: {
3219 SDValue InFlag
= N
->getOperand(4);
3221 if (InFlag
.getOpcode() == ARMISD::CMPZ
) {
3222 bool SwitchEQNEToPLMI
;
3223 SelectCMPZ(InFlag
.getNode(), SwitchEQNEToPLMI
);
3225 if (SwitchEQNEToPLMI
) {
3226 SDValue ARMcc
= N
->getOperand(2);
3227 ARMCC::CondCodes CC
=
3228 (ARMCC::CondCodes
)cast
<ConstantSDNode
>(ARMcc
)->getZExtValue();
3231 default: llvm_unreachable("CMPZ must be either NE or EQ!");
3239 SDValue NewARMcc
= CurDAG
->getConstant((unsigned)CC
, dl
, MVT::i32
);
3240 SDValue Ops
[] = {N
->getOperand(0), N
->getOperand(1), NewARMcc
,
3241 N
->getOperand(3), N
->getOperand(4)};
3242 CurDAG
->MorphNodeTo(N
, ARMISD::CMOV
, N
->getVTList(), Ops
);
3246 // Other cases are autogenerated.
3250 case ARMISD::VZIP
: {
3252 EVT VT
= N
->getValueType(0);
3253 switch (VT
.getSimpleVT().SimpleTy
) {
3255 case MVT::v8i8
: Opc
= ARM::VZIPd8
; break;
3257 case MVT::v4i16
: Opc
= ARM::VZIPd16
; break;
3259 // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3260 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
3261 case MVT::v16i8
: Opc
= ARM::VZIPq8
; break;
3263 case MVT::v8i16
: Opc
= ARM::VZIPq16
; break;
3265 case MVT::v4i32
: Opc
= ARM::VZIPq32
; break;
3267 SDValue Pred
= getAL(CurDAG
, dl
);
3268 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
3269 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
3270 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
));
3273 case ARMISD::VUZP
: {
3275 EVT VT
= N
->getValueType(0);
3276 switch (VT
.getSimpleVT().SimpleTy
) {
3278 case MVT::v8i8
: Opc
= ARM::VUZPd8
; break;
3280 case MVT::v4i16
: Opc
= ARM::VUZPd16
; break;
3282 // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
3283 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
3284 case MVT::v16i8
: Opc
= ARM::VUZPq8
; break;
3286 case MVT::v8i16
: Opc
= ARM::VUZPq16
; break;
3288 case MVT::v4i32
: Opc
= ARM::VUZPq32
; break;
3290 SDValue Pred
= getAL(CurDAG
, dl
);
3291 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
3292 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
3293 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
));
3296 case ARMISD::VTRN
: {
3298 EVT VT
= N
->getValueType(0);
3299 switch (VT
.getSimpleVT().SimpleTy
) {
3301 case MVT::v8i8
: Opc
= ARM::VTRNd8
; break;
3303 case MVT::v4i16
: Opc
= ARM::VTRNd16
; break;
3305 case MVT::v2i32
: Opc
= ARM::VTRNd32
; break;
3306 case MVT::v16i8
: Opc
= ARM::VTRNq8
; break;
3308 case MVT::v8i16
: Opc
= ARM::VTRNq16
; break;
3310 case MVT::v4i32
: Opc
= ARM::VTRNq32
; break;
3312 SDValue Pred
= getAL(CurDAG
, dl
);
3313 SDValue PredReg
= CurDAG
->getRegister(0, MVT::i32
);
3314 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), Pred
, PredReg
};
3315 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, VT
, Ops
));
3318 case ARMISD::BUILD_VECTOR
: {
3319 EVT VecVT
= N
->getValueType(0);
3320 EVT EltVT
= VecVT
.getVectorElementType();
3321 unsigned NumElts
= VecVT
.getVectorNumElements();
3322 if (EltVT
== MVT::f64
) {
3323 assert(NumElts
== 2 && "unexpected type for BUILD_VECTOR");
3325 N
, createDRegPairNode(VecVT
, N
->getOperand(0), N
->getOperand(1)));
3328 assert(EltVT
== MVT::f32
&& "unexpected type for BUILD_VECTOR");
3331 N
, createSRegPairNode(VecVT
, N
->getOperand(0), N
->getOperand(1)));
3334 assert(NumElts
== 4 && "unexpected type for BUILD_VECTOR");
3336 createQuadSRegsNode(VecVT
, N
->getOperand(0), N
->getOperand(1),
3337 N
->getOperand(2), N
->getOperand(3)));
3341 case ARMISD::VLD1DUP
: {
3342 static const uint16_t DOpcodes
[] = { ARM::VLD1DUPd8
, ARM::VLD1DUPd16
,
3344 static const uint16_t QOpcodes
[] = { ARM::VLD1DUPq8
, ARM::VLD1DUPq16
,
3346 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 1, DOpcodes
, QOpcodes
);
3350 case ARMISD::VLD2DUP
: {
3351 static const uint16_t Opcodes
[] = { ARM::VLD2DUPd8
, ARM::VLD2DUPd16
,
3353 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 2, Opcodes
);
3357 case ARMISD::VLD3DUP
: {
3358 static const uint16_t Opcodes
[] = { ARM::VLD3DUPd8Pseudo
,
3359 ARM::VLD3DUPd16Pseudo
,
3360 ARM::VLD3DUPd32Pseudo
};
3361 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 3, Opcodes
);
3365 case ARMISD::VLD4DUP
: {
3366 static const uint16_t Opcodes
[] = { ARM::VLD4DUPd8Pseudo
,
3367 ARM::VLD4DUPd16Pseudo
,
3368 ARM::VLD4DUPd32Pseudo
};
3369 SelectVLDDup(N
, /* IsIntrinsic= */ false, false, 4, Opcodes
);
3373 case ARMISD::VLD1DUP_UPD
: {
3374 static const uint16_t DOpcodes
[] = { ARM::VLD1DUPd8wb_fixed
,
3375 ARM::VLD1DUPd16wb_fixed
,
3376 ARM::VLD1DUPd32wb_fixed
};
3377 static const uint16_t QOpcodes
[] = { ARM::VLD1DUPq8wb_fixed
,
3378 ARM::VLD1DUPq16wb_fixed
,
3379 ARM::VLD1DUPq32wb_fixed
};
3380 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 1, DOpcodes
, QOpcodes
);
3384 case ARMISD::VLD2DUP_UPD
: {
3385 static const uint16_t Opcodes
[] = { ARM::VLD2DUPd8wb_fixed
,
3386 ARM::VLD2DUPd16wb_fixed
,
3387 ARM::VLD2DUPd32wb_fixed
};
3388 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 2, Opcodes
);
3392 case ARMISD::VLD3DUP_UPD
: {
3393 static const uint16_t Opcodes
[] = { ARM::VLD3DUPd8Pseudo_UPD
,
3394 ARM::VLD3DUPd16Pseudo_UPD
,
3395 ARM::VLD3DUPd32Pseudo_UPD
};
3396 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 3, Opcodes
);
3400 case ARMISD::VLD4DUP_UPD
: {
3401 static const uint16_t Opcodes
[] = { ARM::VLD4DUPd8Pseudo_UPD
,
3402 ARM::VLD4DUPd16Pseudo_UPD
,
3403 ARM::VLD4DUPd32Pseudo_UPD
};
3404 SelectVLDDup(N
, /* IsIntrinsic= */ false, true, 4, Opcodes
);
3408 case ARMISD::VLD1_UPD
: {
3409 static const uint16_t DOpcodes
[] = { ARM::VLD1d8wb_fixed
,
3410 ARM::VLD1d16wb_fixed
,
3411 ARM::VLD1d32wb_fixed
,
3412 ARM::VLD1d64wb_fixed
};
3413 static const uint16_t QOpcodes
[] = { ARM::VLD1q8wb_fixed
,
3414 ARM::VLD1q16wb_fixed
,
3415 ARM::VLD1q32wb_fixed
,
3416 ARM::VLD1q64wb_fixed
};
3417 SelectVLD(N
, true, 1, DOpcodes
, QOpcodes
, nullptr);
3421 case ARMISD::VLD2_UPD
: {
3422 static const uint16_t DOpcodes
[] = { ARM::VLD2d8wb_fixed
,
3423 ARM::VLD2d16wb_fixed
,
3424 ARM::VLD2d32wb_fixed
,
3425 ARM::VLD1q64wb_fixed
};
3426 static const uint16_t QOpcodes
[] = { ARM::VLD2q8PseudoWB_fixed
,
3427 ARM::VLD2q16PseudoWB_fixed
,
3428 ARM::VLD2q32PseudoWB_fixed
};
3429 SelectVLD(N
, true, 2, DOpcodes
, QOpcodes
, nullptr);
3433 case ARMISD::VLD3_UPD
: {
3434 static const uint16_t DOpcodes
[] = { ARM::VLD3d8Pseudo_UPD
,
3435 ARM::VLD3d16Pseudo_UPD
,
3436 ARM::VLD3d32Pseudo_UPD
,
3437 ARM::VLD1d64TPseudoWB_fixed
};
3438 static const uint16_t QOpcodes0
[] = { ARM::VLD3q8Pseudo_UPD
,
3439 ARM::VLD3q16Pseudo_UPD
,
3440 ARM::VLD3q32Pseudo_UPD
};
3441 static const uint16_t QOpcodes1
[] = { ARM::VLD3q8oddPseudo_UPD
,
3442 ARM::VLD3q16oddPseudo_UPD
,
3443 ARM::VLD3q32oddPseudo_UPD
};
3444 SelectVLD(N
, true, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3448 case ARMISD::VLD4_UPD
: {
3449 static const uint16_t DOpcodes
[] = { ARM::VLD4d8Pseudo_UPD
,
3450 ARM::VLD4d16Pseudo_UPD
,
3451 ARM::VLD4d32Pseudo_UPD
,
3452 ARM::VLD1d64QPseudoWB_fixed
};
3453 static const uint16_t QOpcodes0
[] = { ARM::VLD4q8Pseudo_UPD
,
3454 ARM::VLD4q16Pseudo_UPD
,
3455 ARM::VLD4q32Pseudo_UPD
};
3456 static const uint16_t QOpcodes1
[] = { ARM::VLD4q8oddPseudo_UPD
,
3457 ARM::VLD4q16oddPseudo_UPD
,
3458 ARM::VLD4q32oddPseudo_UPD
};
3459 SelectVLD(N
, true, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3463 case ARMISD::VLD2LN_UPD
: {
3464 static const uint16_t DOpcodes
[] = { ARM::VLD2LNd8Pseudo_UPD
,
3465 ARM::VLD2LNd16Pseudo_UPD
,
3466 ARM::VLD2LNd32Pseudo_UPD
};
3467 static const uint16_t QOpcodes
[] = { ARM::VLD2LNq16Pseudo_UPD
,
3468 ARM::VLD2LNq32Pseudo_UPD
};
3469 SelectVLDSTLane(N
, true, true, 2, DOpcodes
, QOpcodes
);
3473 case ARMISD::VLD3LN_UPD
: {
3474 static const uint16_t DOpcodes
[] = { ARM::VLD3LNd8Pseudo_UPD
,
3475 ARM::VLD3LNd16Pseudo_UPD
,
3476 ARM::VLD3LNd32Pseudo_UPD
};
3477 static const uint16_t QOpcodes
[] = { ARM::VLD3LNq16Pseudo_UPD
,
3478 ARM::VLD3LNq32Pseudo_UPD
};
3479 SelectVLDSTLane(N
, true, true, 3, DOpcodes
, QOpcodes
);
3483 case ARMISD::VLD4LN_UPD
: {
3484 static const uint16_t DOpcodes
[] = { ARM::VLD4LNd8Pseudo_UPD
,
3485 ARM::VLD4LNd16Pseudo_UPD
,
3486 ARM::VLD4LNd32Pseudo_UPD
};
3487 static const uint16_t QOpcodes
[] = { ARM::VLD4LNq16Pseudo_UPD
,
3488 ARM::VLD4LNq32Pseudo_UPD
};
3489 SelectVLDSTLane(N
, true, true, 4, DOpcodes
, QOpcodes
);
3493 case ARMISD::VST1_UPD
: {
3494 static const uint16_t DOpcodes
[] = { ARM::VST1d8wb_fixed
,
3495 ARM::VST1d16wb_fixed
,
3496 ARM::VST1d32wb_fixed
,
3497 ARM::VST1d64wb_fixed
};
3498 static const uint16_t QOpcodes
[] = { ARM::VST1q8wb_fixed
,
3499 ARM::VST1q16wb_fixed
,
3500 ARM::VST1q32wb_fixed
,
3501 ARM::VST1q64wb_fixed
};
3502 SelectVST(N
, true, 1, DOpcodes
, QOpcodes
, nullptr);
3506 case ARMISD::VST2_UPD
: {
3507 static const uint16_t DOpcodes
[] = { ARM::VST2d8wb_fixed
,
3508 ARM::VST2d16wb_fixed
,
3509 ARM::VST2d32wb_fixed
,
3510 ARM::VST1q64wb_fixed
};
3511 static const uint16_t QOpcodes
[] = { ARM::VST2q8PseudoWB_fixed
,
3512 ARM::VST2q16PseudoWB_fixed
,
3513 ARM::VST2q32PseudoWB_fixed
};
3514 SelectVST(N
, true, 2, DOpcodes
, QOpcodes
, nullptr);
3518 case ARMISD::VST3_UPD
: {
3519 static const uint16_t DOpcodes
[] = { ARM::VST3d8Pseudo_UPD
,
3520 ARM::VST3d16Pseudo_UPD
,
3521 ARM::VST3d32Pseudo_UPD
,
3522 ARM::VST1d64TPseudoWB_fixed
};
3523 static const uint16_t QOpcodes0
[] = { ARM::VST3q8Pseudo_UPD
,
3524 ARM::VST3q16Pseudo_UPD
,
3525 ARM::VST3q32Pseudo_UPD
};
3526 static const uint16_t QOpcodes1
[] = { ARM::VST3q8oddPseudo_UPD
,
3527 ARM::VST3q16oddPseudo_UPD
,
3528 ARM::VST3q32oddPseudo_UPD
};
3529 SelectVST(N
, true, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3533 case ARMISD::VST4_UPD
: {
3534 static const uint16_t DOpcodes
[] = { ARM::VST4d8Pseudo_UPD
,
3535 ARM::VST4d16Pseudo_UPD
,
3536 ARM::VST4d32Pseudo_UPD
,
3537 ARM::VST1d64QPseudoWB_fixed
};
3538 static const uint16_t QOpcodes0
[] = { ARM::VST4q8Pseudo_UPD
,
3539 ARM::VST4q16Pseudo_UPD
,
3540 ARM::VST4q32Pseudo_UPD
};
3541 static const uint16_t QOpcodes1
[] = { ARM::VST4q8oddPseudo_UPD
,
3542 ARM::VST4q16oddPseudo_UPD
,
3543 ARM::VST4q32oddPseudo_UPD
};
3544 SelectVST(N
, true, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3548 case ARMISD::VST2LN_UPD
: {
3549 static const uint16_t DOpcodes
[] = { ARM::VST2LNd8Pseudo_UPD
,
3550 ARM::VST2LNd16Pseudo_UPD
,
3551 ARM::VST2LNd32Pseudo_UPD
};
3552 static const uint16_t QOpcodes
[] = { ARM::VST2LNq16Pseudo_UPD
,
3553 ARM::VST2LNq32Pseudo_UPD
};
3554 SelectVLDSTLane(N
, false, true, 2, DOpcodes
, QOpcodes
);
3558 case ARMISD::VST3LN_UPD
: {
3559 static const uint16_t DOpcodes
[] = { ARM::VST3LNd8Pseudo_UPD
,
3560 ARM::VST3LNd16Pseudo_UPD
,
3561 ARM::VST3LNd32Pseudo_UPD
};
3562 static const uint16_t QOpcodes
[] = { ARM::VST3LNq16Pseudo_UPD
,
3563 ARM::VST3LNq32Pseudo_UPD
};
3564 SelectVLDSTLane(N
, false, true, 3, DOpcodes
, QOpcodes
);
3568 case ARMISD::VST4LN_UPD
: {
3569 static const uint16_t DOpcodes
[] = { ARM::VST4LNd8Pseudo_UPD
,
3570 ARM::VST4LNd16Pseudo_UPD
,
3571 ARM::VST4LNd32Pseudo_UPD
};
3572 static const uint16_t QOpcodes
[] = { ARM::VST4LNq16Pseudo_UPD
,
3573 ARM::VST4LNq32Pseudo_UPD
};
3574 SelectVLDSTLane(N
, false, true, 4, DOpcodes
, QOpcodes
);
3578 case ISD::INTRINSIC_VOID
:
3579 case ISD::INTRINSIC_W_CHAIN
: {
3580 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
3585 case Intrinsic::arm_mrrc
:
3586 case Intrinsic::arm_mrrc2
: {
3588 SDValue Chain
= N
->getOperand(0);
3591 if (Subtarget
->isThumb())
3592 Opc
= (IntNo
== Intrinsic::arm_mrrc
? ARM::t2MRRC
: ARM::t2MRRC2
);
3594 Opc
= (IntNo
== Intrinsic::arm_mrrc
? ARM::MRRC
: ARM::MRRC2
);
3596 SmallVector
<SDValue
, 5> Ops
;
3597 Ops
.push_back(getI32Imm(cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue(), dl
)); /* coproc */
3598 Ops
.push_back(getI32Imm(cast
<ConstantSDNode
>(N
->getOperand(3))->getZExtValue(), dl
)); /* opc */
3599 Ops
.push_back(getI32Imm(cast
<ConstantSDNode
>(N
->getOperand(4))->getZExtValue(), dl
)); /* CRm */
3601 // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
3602 // instruction will always be '1111' but it is possible in assembly language to specify
3603 // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
3604 if (Opc
!= ARM::MRRC2
) {
3605 Ops
.push_back(getAL(CurDAG
, dl
));
3606 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
3609 Ops
.push_back(Chain
);
3611 // Writes to two registers.
3612 const EVT RetType
[] = {MVT::i32
, MVT::i32
, MVT::Other
};
3614 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, RetType
, Ops
));
3617 case Intrinsic::arm_ldaexd
:
3618 case Intrinsic::arm_ldrexd
: {
3620 SDValue Chain
= N
->getOperand(0);
3621 SDValue MemAddr
= N
->getOperand(2);
3622 bool isThumb
= Subtarget
->isThumb() && Subtarget
->hasV8MBaselineOps();
3624 bool IsAcquire
= IntNo
== Intrinsic::arm_ldaexd
;
3625 unsigned NewOpc
= isThumb
? (IsAcquire
? ARM::t2LDAEXD
: ARM::t2LDREXD
)
3626 : (IsAcquire
? ARM::LDAEXD
: ARM::LDREXD
);
3628 // arm_ldrexd returns a i64 value in {i32, i32}
3629 std::vector
<EVT
> ResTys
;
3631 ResTys
.push_back(MVT::i32
);
3632 ResTys
.push_back(MVT::i32
);
3634 ResTys
.push_back(MVT::Untyped
);
3635 ResTys
.push_back(MVT::Other
);
3637 // Place arguments in the right order.
3638 SDValue Ops
[] = {MemAddr
, getAL(CurDAG
, dl
),
3639 CurDAG
->getRegister(0, MVT::i32
), Chain
};
3640 SDNode
*Ld
= CurDAG
->getMachineNode(NewOpc
, dl
, ResTys
, Ops
);
3641 // Transfer memoperands.
3642 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
3643 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
3646 SDValue OutChain
= isThumb
? SDValue(Ld
, 2) : SDValue(Ld
, 1);
3647 if (!SDValue(N
, 0).use_empty()) {
3650 Result
= SDValue(Ld
, 0);
3653 CurDAG
->getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
3654 SDNode
*ResNode
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
3655 dl
, MVT::i32
, SDValue(Ld
, 0), SubRegIdx
);
3656 Result
= SDValue(ResNode
,0);
3658 ReplaceUses(SDValue(N
, 0), Result
);
3660 if (!SDValue(N
, 1).use_empty()) {
3663 Result
= SDValue(Ld
, 1);
3666 CurDAG
->getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
3667 SDNode
*ResNode
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
3668 dl
, MVT::i32
, SDValue(Ld
, 0), SubRegIdx
);
3669 Result
= SDValue(ResNode
,0);
3671 ReplaceUses(SDValue(N
, 1), Result
);
3673 ReplaceUses(SDValue(N
, 2), OutChain
);
3674 CurDAG
->RemoveDeadNode(N
);
3677 case Intrinsic::arm_stlexd
:
3678 case Intrinsic::arm_strexd
: {
3680 SDValue Chain
= N
->getOperand(0);
3681 SDValue Val0
= N
->getOperand(2);
3682 SDValue Val1
= N
->getOperand(3);
3683 SDValue MemAddr
= N
->getOperand(4);
3685 // Store exclusive double return a i32 value which is the return status
3686 // of the issued store.
3687 const EVT ResTys
[] = {MVT::i32
, MVT::Other
};
3689 bool isThumb
= Subtarget
->isThumb() && Subtarget
->hasThumb2();
3690 // Place arguments in the right order.
3691 SmallVector
<SDValue
, 7> Ops
;
3693 Ops
.push_back(Val0
);
3694 Ops
.push_back(Val1
);
3696 // arm_strexd uses GPRPair.
3697 Ops
.push_back(SDValue(createGPRPairNode(MVT::Untyped
, Val0
, Val1
), 0));
3698 Ops
.push_back(MemAddr
);
3699 Ops
.push_back(getAL(CurDAG
, dl
));
3700 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
3701 Ops
.push_back(Chain
);
3703 bool IsRelease
= IntNo
== Intrinsic::arm_stlexd
;
3704 unsigned NewOpc
= isThumb
? (IsRelease
? ARM::t2STLEXD
: ARM::t2STREXD
)
3705 : (IsRelease
? ARM::STLEXD
: ARM::STREXD
);
3707 SDNode
*St
= CurDAG
->getMachineNode(NewOpc
, dl
, ResTys
, Ops
);
3708 // Transfer memoperands.
3709 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
3710 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
3716 case Intrinsic::arm_neon_vld1
: {
3717 static const uint16_t DOpcodes
[] = { ARM::VLD1d8
, ARM::VLD1d16
,
3718 ARM::VLD1d32
, ARM::VLD1d64
};
3719 static const uint16_t QOpcodes
[] = { ARM::VLD1q8
, ARM::VLD1q16
,
3720 ARM::VLD1q32
, ARM::VLD1q64
};
3721 SelectVLD(N
, false, 1, DOpcodes
, QOpcodes
, nullptr);
3725 case Intrinsic::arm_neon_vld1x2
: {
3726 static const uint16_t DOpcodes
[] = { ARM::VLD1q8
, ARM::VLD1q16
,
3727 ARM::VLD1q32
, ARM::VLD1q64
};
3728 static const uint16_t QOpcodes
[] = { ARM::VLD1d8QPseudo
,
3729 ARM::VLD1d16QPseudo
,
3730 ARM::VLD1d32QPseudo
,
3731 ARM::VLD1d64QPseudo
};
3732 SelectVLD(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3736 case Intrinsic::arm_neon_vld1x3
: {
3737 static const uint16_t DOpcodes
[] = { ARM::VLD1d8TPseudo
,
3738 ARM::VLD1d16TPseudo
,
3739 ARM::VLD1d32TPseudo
,
3740 ARM::VLD1d64TPseudo
};
3741 static const uint16_t QOpcodes0
[] = { ARM::VLD1q8LowTPseudo_UPD
,
3742 ARM::VLD1q16LowTPseudo_UPD
,
3743 ARM::VLD1q32LowTPseudo_UPD
,
3744 ARM::VLD1q64LowTPseudo_UPD
};
3745 static const uint16_t QOpcodes1
[] = { ARM::VLD1q8HighTPseudo
,
3746 ARM::VLD1q16HighTPseudo
,
3747 ARM::VLD1q32HighTPseudo
,
3748 ARM::VLD1q64HighTPseudo
};
3749 SelectVLD(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3753 case Intrinsic::arm_neon_vld1x4
: {
3754 static const uint16_t DOpcodes
[] = { ARM::VLD1d8QPseudo
,
3755 ARM::VLD1d16QPseudo
,
3756 ARM::VLD1d32QPseudo
,
3757 ARM::VLD1d64QPseudo
};
3758 static const uint16_t QOpcodes0
[] = { ARM::VLD1q8LowQPseudo_UPD
,
3759 ARM::VLD1q16LowQPseudo_UPD
,
3760 ARM::VLD1q32LowQPseudo_UPD
,
3761 ARM::VLD1q64LowQPseudo_UPD
};
3762 static const uint16_t QOpcodes1
[] = { ARM::VLD1q8HighQPseudo
,
3763 ARM::VLD1q16HighQPseudo
,
3764 ARM::VLD1q32HighQPseudo
,
3765 ARM::VLD1q64HighQPseudo
};
3766 SelectVLD(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3770 case Intrinsic::arm_neon_vld2
: {
3771 static const uint16_t DOpcodes
[] = { ARM::VLD2d8
, ARM::VLD2d16
,
3772 ARM::VLD2d32
, ARM::VLD1q64
};
3773 static const uint16_t QOpcodes
[] = { ARM::VLD2q8Pseudo
, ARM::VLD2q16Pseudo
,
3774 ARM::VLD2q32Pseudo
};
3775 SelectVLD(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3779 case Intrinsic::arm_neon_vld3
: {
3780 static const uint16_t DOpcodes
[] = { ARM::VLD3d8Pseudo
,
3783 ARM::VLD1d64TPseudo
};
3784 static const uint16_t QOpcodes0
[] = { ARM::VLD3q8Pseudo_UPD
,
3785 ARM::VLD3q16Pseudo_UPD
,
3786 ARM::VLD3q32Pseudo_UPD
};
3787 static const uint16_t QOpcodes1
[] = { ARM::VLD3q8oddPseudo
,
3788 ARM::VLD3q16oddPseudo
,
3789 ARM::VLD3q32oddPseudo
};
3790 SelectVLD(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3794 case Intrinsic::arm_neon_vld4
: {
3795 static const uint16_t DOpcodes
[] = { ARM::VLD4d8Pseudo
,
3798 ARM::VLD1d64QPseudo
};
3799 static const uint16_t QOpcodes0
[] = { ARM::VLD4q8Pseudo_UPD
,
3800 ARM::VLD4q16Pseudo_UPD
,
3801 ARM::VLD4q32Pseudo_UPD
};
3802 static const uint16_t QOpcodes1
[] = { ARM::VLD4q8oddPseudo
,
3803 ARM::VLD4q16oddPseudo
,
3804 ARM::VLD4q32oddPseudo
};
3805 SelectVLD(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3809 case Intrinsic::arm_neon_vld2dup
: {
3810 static const uint16_t DOpcodes
[] = { ARM::VLD2DUPd8
, ARM::VLD2DUPd16
,
3811 ARM::VLD2DUPd32
, ARM::VLD1q64
};
3812 static const uint16_t QOpcodes0
[] = { ARM::VLD2DUPq8EvenPseudo
,
3813 ARM::VLD2DUPq16EvenPseudo
,
3814 ARM::VLD2DUPq32EvenPseudo
};
3815 static const uint16_t QOpcodes1
[] = { ARM::VLD2DUPq8OddPseudo
,
3816 ARM::VLD2DUPq16OddPseudo
,
3817 ARM::VLD2DUPq32OddPseudo
};
3818 SelectVLDDup(N
, /* IsIntrinsic= */ true, false, 2,
3819 DOpcodes
, QOpcodes0
, QOpcodes1
);
3823 case Intrinsic::arm_neon_vld3dup
: {
3824 static const uint16_t DOpcodes
[] = { ARM::VLD3DUPd8Pseudo
,
3825 ARM::VLD3DUPd16Pseudo
,
3826 ARM::VLD3DUPd32Pseudo
,
3827 ARM::VLD1d64TPseudo
};
3828 static const uint16_t QOpcodes0
[] = { ARM::VLD3DUPq8EvenPseudo
,
3829 ARM::VLD3DUPq16EvenPseudo
,
3830 ARM::VLD3DUPq32EvenPseudo
};
3831 static const uint16_t QOpcodes1
[] = { ARM::VLD3DUPq8OddPseudo
,
3832 ARM::VLD3DUPq16OddPseudo
,
3833 ARM::VLD3DUPq32OddPseudo
};
3834 SelectVLDDup(N
, /* IsIntrinsic= */ true, false, 3,
3835 DOpcodes
, QOpcodes0
, QOpcodes1
);
3839 case Intrinsic::arm_neon_vld4dup
: {
3840 static const uint16_t DOpcodes
[] = { ARM::VLD4DUPd8Pseudo
,
3841 ARM::VLD4DUPd16Pseudo
,
3842 ARM::VLD4DUPd32Pseudo
,
3843 ARM::VLD1d64QPseudo
};
3844 static const uint16_t QOpcodes0
[] = { ARM::VLD4DUPq8EvenPseudo
,
3845 ARM::VLD4DUPq16EvenPseudo
,
3846 ARM::VLD4DUPq32EvenPseudo
};
3847 static const uint16_t QOpcodes1
[] = { ARM::VLD4DUPq8OddPseudo
,
3848 ARM::VLD4DUPq16OddPseudo
,
3849 ARM::VLD4DUPq32OddPseudo
};
3850 SelectVLDDup(N
, /* IsIntrinsic= */ true, false, 4,
3851 DOpcodes
, QOpcodes0
, QOpcodes1
);
3855 case Intrinsic::arm_neon_vld2lane
: {
3856 static const uint16_t DOpcodes
[] = { ARM::VLD2LNd8Pseudo
,
3857 ARM::VLD2LNd16Pseudo
,
3858 ARM::VLD2LNd32Pseudo
};
3859 static const uint16_t QOpcodes
[] = { ARM::VLD2LNq16Pseudo
,
3860 ARM::VLD2LNq32Pseudo
};
3861 SelectVLDSTLane(N
, true, false, 2, DOpcodes
, QOpcodes
);
3865 case Intrinsic::arm_neon_vld3lane
: {
3866 static const uint16_t DOpcodes
[] = { ARM::VLD3LNd8Pseudo
,
3867 ARM::VLD3LNd16Pseudo
,
3868 ARM::VLD3LNd32Pseudo
};
3869 static const uint16_t QOpcodes
[] = { ARM::VLD3LNq16Pseudo
,
3870 ARM::VLD3LNq32Pseudo
};
3871 SelectVLDSTLane(N
, true, false, 3, DOpcodes
, QOpcodes
);
3875 case Intrinsic::arm_neon_vld4lane
: {
3876 static const uint16_t DOpcodes
[] = { ARM::VLD4LNd8Pseudo
,
3877 ARM::VLD4LNd16Pseudo
,
3878 ARM::VLD4LNd32Pseudo
};
3879 static const uint16_t QOpcodes
[] = { ARM::VLD4LNq16Pseudo
,
3880 ARM::VLD4LNq32Pseudo
};
3881 SelectVLDSTLane(N
, true, false, 4, DOpcodes
, QOpcodes
);
3885 case Intrinsic::arm_neon_vst1
: {
3886 static const uint16_t DOpcodes
[] = { ARM::VST1d8
, ARM::VST1d16
,
3887 ARM::VST1d32
, ARM::VST1d64
};
3888 static const uint16_t QOpcodes
[] = { ARM::VST1q8
, ARM::VST1q16
,
3889 ARM::VST1q32
, ARM::VST1q64
};
3890 SelectVST(N
, false, 1, DOpcodes
, QOpcodes
, nullptr);
3894 case Intrinsic::arm_neon_vst1x2
: {
3895 static const uint16_t DOpcodes
[] = { ARM::VST1q8
, ARM::VST1q16
,
3896 ARM::VST1q32
, ARM::VST1q64
};
3897 static const uint16_t QOpcodes
[] = { ARM::VST1d8QPseudo
,
3898 ARM::VST1d16QPseudo
,
3899 ARM::VST1d32QPseudo
,
3900 ARM::VST1d64QPseudo
};
3901 SelectVST(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3905 case Intrinsic::arm_neon_vst1x3
: {
3906 static const uint16_t DOpcodes
[] = { ARM::VST1d8TPseudo
,
3907 ARM::VST1d16TPseudo
,
3908 ARM::VST1d32TPseudo
,
3909 ARM::VST1d64TPseudo
};
3910 static const uint16_t QOpcodes0
[] = { ARM::VST1q8LowTPseudo_UPD
,
3911 ARM::VST1q16LowTPseudo_UPD
,
3912 ARM::VST1q32LowTPseudo_UPD
,
3913 ARM::VST1q64LowTPseudo_UPD
};
3914 static const uint16_t QOpcodes1
[] = { ARM::VST1q8HighTPseudo
,
3915 ARM::VST1q16HighTPseudo
,
3916 ARM::VST1q32HighTPseudo
,
3917 ARM::VST1q64HighTPseudo
};
3918 SelectVST(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3922 case Intrinsic::arm_neon_vst1x4
: {
3923 static const uint16_t DOpcodes
[] = { ARM::VST1d8QPseudo
,
3924 ARM::VST1d16QPseudo
,
3925 ARM::VST1d32QPseudo
,
3926 ARM::VST1d64QPseudo
};
3927 static const uint16_t QOpcodes0
[] = { ARM::VST1q8LowQPseudo_UPD
,
3928 ARM::VST1q16LowQPseudo_UPD
,
3929 ARM::VST1q32LowQPseudo_UPD
,
3930 ARM::VST1q64LowQPseudo_UPD
};
3931 static const uint16_t QOpcodes1
[] = { ARM::VST1q8HighQPseudo
,
3932 ARM::VST1q16HighQPseudo
,
3933 ARM::VST1q32HighQPseudo
,
3934 ARM::VST1q64HighQPseudo
};
3935 SelectVST(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3939 case Intrinsic::arm_neon_vst2
: {
3940 static const uint16_t DOpcodes
[] = { ARM::VST2d8
, ARM::VST2d16
,
3941 ARM::VST2d32
, ARM::VST1q64
};
3942 static const uint16_t QOpcodes
[] = { ARM::VST2q8Pseudo
, ARM::VST2q16Pseudo
,
3943 ARM::VST2q32Pseudo
};
3944 SelectVST(N
, false, 2, DOpcodes
, QOpcodes
, nullptr);
3948 case Intrinsic::arm_neon_vst3
: {
3949 static const uint16_t DOpcodes
[] = { ARM::VST3d8Pseudo
,
3952 ARM::VST1d64TPseudo
};
3953 static const uint16_t QOpcodes0
[] = { ARM::VST3q8Pseudo_UPD
,
3954 ARM::VST3q16Pseudo_UPD
,
3955 ARM::VST3q32Pseudo_UPD
};
3956 static const uint16_t QOpcodes1
[] = { ARM::VST3q8oddPseudo
,
3957 ARM::VST3q16oddPseudo
,
3958 ARM::VST3q32oddPseudo
};
3959 SelectVST(N
, false, 3, DOpcodes
, QOpcodes0
, QOpcodes1
);
3963 case Intrinsic::arm_neon_vst4
: {
3964 static const uint16_t DOpcodes
[] = { ARM::VST4d8Pseudo
,
3967 ARM::VST1d64QPseudo
};
3968 static const uint16_t QOpcodes0
[] = { ARM::VST4q8Pseudo_UPD
,
3969 ARM::VST4q16Pseudo_UPD
,
3970 ARM::VST4q32Pseudo_UPD
};
3971 static const uint16_t QOpcodes1
[] = { ARM::VST4q8oddPseudo
,
3972 ARM::VST4q16oddPseudo
,
3973 ARM::VST4q32oddPseudo
};
3974 SelectVST(N
, false, 4, DOpcodes
, QOpcodes0
, QOpcodes1
);
3978 case Intrinsic::arm_neon_vst2lane
: {
3979 static const uint16_t DOpcodes
[] = { ARM::VST2LNd8Pseudo
,
3980 ARM::VST2LNd16Pseudo
,
3981 ARM::VST2LNd32Pseudo
};
3982 static const uint16_t QOpcodes
[] = { ARM::VST2LNq16Pseudo
,
3983 ARM::VST2LNq32Pseudo
};
3984 SelectVLDSTLane(N
, false, false, 2, DOpcodes
, QOpcodes
);
3988 case Intrinsic::arm_neon_vst3lane
: {
3989 static const uint16_t DOpcodes
[] = { ARM::VST3LNd8Pseudo
,
3990 ARM::VST3LNd16Pseudo
,
3991 ARM::VST3LNd32Pseudo
};
3992 static const uint16_t QOpcodes
[] = { ARM::VST3LNq16Pseudo
,
3993 ARM::VST3LNq32Pseudo
};
3994 SelectVLDSTLane(N
, false, false, 3, DOpcodes
, QOpcodes
);
3998 case Intrinsic::arm_neon_vst4lane
: {
3999 static const uint16_t DOpcodes
[] = { ARM::VST4LNd8Pseudo
,
4000 ARM::VST4LNd16Pseudo
,
4001 ARM::VST4LNd32Pseudo
};
4002 static const uint16_t QOpcodes
[] = { ARM::VST4LNq16Pseudo
,
4003 ARM::VST4LNq32Pseudo
};
4004 SelectVLDSTLane(N
, false, false, 4, DOpcodes
, QOpcodes
);
4011 case ISD::ATOMIC_CMP_SWAP
:
4019 // Inspect a register string of the form
4020 // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
4021 // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
4022 // and obtain the integer operands from them, adding these operands to the
4024 static void getIntOperandsFromRegisterString(StringRef RegString
,
4025 SelectionDAG
*CurDAG
,
4027 std::vector
<SDValue
> &Ops
) {
4028 SmallVector
<StringRef
, 5> Fields
;
4029 RegString
.split(Fields
, ':');
4031 if (Fields
.size() > 1) {
4032 bool AllIntFields
= true;
4034 for (StringRef Field
: Fields
) {
4035 // Need to trim out leading 'cp' characters and get the integer field.
4037 AllIntFields
&= !Field
.trim("CPcp").getAsInteger(10, IntField
);
4038 Ops
.push_back(CurDAG
->getTargetConstant(IntField
, DL
, MVT::i32
));
4041 assert(AllIntFields
&&
4042 "Unexpected non-integer value in special register string.");
4046 // Maps a Banked Register string to its mask value. The mask value returned is
4047 // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
4048 // mask operand, which expresses which register is to be used, e.g. r8, and in
4049 // which mode it is to be used, e.g. usr. Returns -1 to signify that the string
4051 static inline int getBankedRegisterMask(StringRef RegString
) {
4052 auto TheReg
= ARMBankedReg::lookupBankedRegByName(RegString
.lower());
4055 return TheReg
->Encoding
;
4058 // The flags here are common to those allowed for apsr in the A class cores and
4059 // those allowed for the special registers in the M class cores. Returns a
4060 // value representing which flags were present, -1 if invalid.
4061 static inline int getMClassFlagsMask(StringRef Flags
) {
4062 return StringSwitch
<int>(Flags
)
4063 .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
4064 // correct when flags are not permitted
4067 .Case("nzcvqg", 0x3)
4071 // Maps MClass special registers string to its value for use in the
4072 // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
4073 // Returns -1 to signify that the string was invalid.
4074 static int getMClassRegisterMask(StringRef Reg
, const ARMSubtarget
*Subtarget
) {
4075 auto TheReg
= ARMSysReg::lookupMClassSysRegByName(Reg
);
4076 const FeatureBitset
&FeatureBits
= Subtarget
->getFeatureBits();
4077 if (!TheReg
|| !TheReg
->hasRequiredFeatures(FeatureBits
))
4079 return (int)(TheReg
->Encoding
& 0xFFF); // SYSm value
4082 static int getARClassRegisterMask(StringRef Reg
, StringRef Flags
) {
4083 // The mask operand contains the special register (R Bit) in bit 4, whether
4084 // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
4085 // bits 3-0 contains the fields to be accessed in the special register, set by
4086 // the flags provided with the register.
4088 if (Reg
== "apsr") {
4089 // The flags permitted for apsr are the same flags that are allowed in
4090 // M class registers. We get the flag value and then shift the flags into
4091 // the correct place to combine with the mask.
4092 Mask
= getMClassFlagsMask(Flags
);
4098 if (Reg
!= "cpsr" && Reg
!= "spsr") {
4102 // This is the same as if the flags were "fc"
4103 if (Flags
.empty() || Flags
== "all")
4106 // Inspect the supplied flags string and set the bits in the mask for
4107 // the relevant and valid flags allowed for cpsr and spsr.
4108 for (char Flag
: Flags
) {
4127 // This avoids allowing strings where the same flag bit appears twice.
4128 if (!FlagVal
|| (Mask
& FlagVal
))
4133 // If the register is spsr then we need to set the R bit.
4140 // Lower the read_register intrinsic to ARM specific DAG nodes
4141 // using the supplied metadata string to select the instruction node to use
4142 // and the registers/masks to construct as operands for the node.
4143 bool ARMDAGToDAGISel::tryReadRegister(SDNode
*N
){
4144 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
4145 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
4146 bool IsThumb2
= Subtarget
->isThumb2();
4149 std::vector
<SDValue
> Ops
;
4150 getIntOperandsFromRegisterString(RegString
->getString(), CurDAG
, DL
, Ops
);
4153 // If the special register string was constructed of fields (as defined
4154 // in the ACLE) then need to lower to MRC node (32 bit) or
4155 // MRRC node(64 bit), we can make the distinction based on the number of
4156 // operands we have.
4158 SmallVector
<EVT
, 3> ResTypes
;
4159 if (Ops
.size() == 5){
4160 Opcode
= IsThumb2
? ARM::t2MRC
: ARM::MRC
;
4161 ResTypes
.append({ MVT::i32
, MVT::Other
});
4163 assert(Ops
.size() == 3 &&
4164 "Invalid number of fields in special register string.");
4165 Opcode
= IsThumb2
? ARM::t2MRRC
: ARM::MRRC
;
4166 ResTypes
.append({ MVT::i32
, MVT::i32
, MVT::Other
});
4169 Ops
.push_back(getAL(CurDAG
, DL
));
4170 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
4171 Ops
.push_back(N
->getOperand(0));
4172 ReplaceNode(N
, CurDAG
->getMachineNode(Opcode
, DL
, ResTypes
, Ops
));
4176 std::string SpecialReg
= RegString
->getString().lower();
4178 int BankedReg
= getBankedRegisterMask(SpecialReg
);
4179 if (BankedReg
!= -1) {
4180 Ops
= { CurDAG
->getTargetConstant(BankedReg
, DL
, MVT::i32
),
4181 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4184 N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MRSbanked
: ARM::MRSbanked
,
4185 DL
, MVT::i32
, MVT::Other
, Ops
));
4189 // The VFP registers are read by creating SelectionDAG nodes with opcodes
4190 // corresponding to the register that is being read from. So we switch on the
4191 // string to find which opcode we need to use.
4192 unsigned Opcode
= StringSwitch
<unsigned>(SpecialReg
)
4193 .Case("fpscr", ARM::VMRS
)
4194 .Case("fpexc", ARM::VMRS_FPEXC
)
4195 .Case("fpsid", ARM::VMRS_FPSID
)
4196 .Case("mvfr0", ARM::VMRS_MVFR0
)
4197 .Case("mvfr1", ARM::VMRS_MVFR1
)
4198 .Case("mvfr2", ARM::VMRS_MVFR2
)
4199 .Case("fpinst", ARM::VMRS_FPINST
)
4200 .Case("fpinst2", ARM::VMRS_FPINST2
)
4203 // If an opcode was found then we can lower the read to a VFP instruction.
4205 if (!Subtarget
->hasVFP2Base())
4207 if (Opcode
== ARM::VMRS_MVFR2
&& !Subtarget
->hasFPARMv8Base())
4210 Ops
= { getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4213 CurDAG
->getMachineNode(Opcode
, DL
, MVT::i32
, MVT::Other
, Ops
));
4217 // If the target is M Class then need to validate that the register string
4218 // is an acceptable value, so check that a mask can be constructed from the
4220 if (Subtarget
->isMClass()) {
4221 int SYSmValue
= getMClassRegisterMask(SpecialReg
, Subtarget
);
4222 if (SYSmValue
== -1)
4225 SDValue Ops
[] = { CurDAG
->getTargetConstant(SYSmValue
, DL
, MVT::i32
),
4226 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4229 N
, CurDAG
->getMachineNode(ARM::t2MRS_M
, DL
, MVT::i32
, MVT::Other
, Ops
));
4233 // Here we know the target is not M Class so we need to check if it is one
4234 // of the remaining possible values which are apsr, cpsr or spsr.
4235 if (SpecialReg
== "apsr" || SpecialReg
== "cpsr") {
4236 Ops
= { getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4238 ReplaceNode(N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MRS_AR
: ARM::MRS
,
4239 DL
, MVT::i32
, MVT::Other
, Ops
));
4243 if (SpecialReg
== "spsr") {
4244 Ops
= { getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4247 N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MRSsys_AR
: ARM::MRSsys
, DL
,
4248 MVT::i32
, MVT::Other
, Ops
));
4255 // Lower the write_register intrinsic to ARM specific DAG nodes
4256 // using the supplied metadata string to select the instruction node to use
4257 // and the registers/masks to use in the nodes
4258 bool ARMDAGToDAGISel::tryWriteRegister(SDNode
*N
){
4259 const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(N
->getOperand(1));
4260 const MDString
*RegString
= dyn_cast
<MDString
>(MD
->getMD()->getOperand(0));
4261 bool IsThumb2
= Subtarget
->isThumb2();
4264 std::vector
<SDValue
> Ops
;
4265 getIntOperandsFromRegisterString(RegString
->getString(), CurDAG
, DL
, Ops
);
4268 // If the special register string was constructed of fields (as defined
4269 // in the ACLE) then need to lower to MCR node (32 bit) or
4270 // MCRR node(64 bit), we can make the distinction based on the number of
4271 // operands we have.
4273 if (Ops
.size() == 5) {
4274 Opcode
= IsThumb2
? ARM::t2MCR
: ARM::MCR
;
4275 Ops
.insert(Ops
.begin()+2, N
->getOperand(2));
4277 assert(Ops
.size() == 3 &&
4278 "Invalid number of fields in special register string.");
4279 Opcode
= IsThumb2
? ARM::t2MCRR
: ARM::MCRR
;
4280 SDValue WriteValue
[] = { N
->getOperand(2), N
->getOperand(3) };
4281 Ops
.insert(Ops
.begin()+2, WriteValue
, WriteValue
+2);
4284 Ops
.push_back(getAL(CurDAG
, DL
));
4285 Ops
.push_back(CurDAG
->getRegister(0, MVT::i32
));
4286 Ops
.push_back(N
->getOperand(0));
4288 ReplaceNode(N
, CurDAG
->getMachineNode(Opcode
, DL
, MVT::Other
, Ops
));
4292 std::string SpecialReg
= RegString
->getString().lower();
4293 int BankedReg
= getBankedRegisterMask(SpecialReg
);
4294 if (BankedReg
!= -1) {
4295 Ops
= { CurDAG
->getTargetConstant(BankedReg
, DL
, MVT::i32
), N
->getOperand(2),
4296 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4299 N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MSRbanked
: ARM::MSRbanked
,
4300 DL
, MVT::Other
, Ops
));
4304 // The VFP registers are written to by creating SelectionDAG nodes with
4305 // opcodes corresponding to the register that is being written. So we switch
4306 // on the string to find which opcode we need to use.
4307 unsigned Opcode
= StringSwitch
<unsigned>(SpecialReg
)
4308 .Case("fpscr", ARM::VMSR
)
4309 .Case("fpexc", ARM::VMSR_FPEXC
)
4310 .Case("fpsid", ARM::VMSR_FPSID
)
4311 .Case("fpinst", ARM::VMSR_FPINST
)
4312 .Case("fpinst2", ARM::VMSR_FPINST2
)
4316 if (!Subtarget
->hasVFP2Base())
4318 Ops
= { N
->getOperand(2), getAL(CurDAG
, DL
),
4319 CurDAG
->getRegister(0, MVT::i32
), N
->getOperand(0) };
4320 ReplaceNode(N
, CurDAG
->getMachineNode(Opcode
, DL
, MVT::Other
, Ops
));
4324 std::pair
<StringRef
, StringRef
> Fields
;
4325 Fields
= StringRef(SpecialReg
).rsplit('_');
4326 std::string Reg
= Fields
.first
.str();
4327 StringRef Flags
= Fields
.second
;
4329 // If the target was M Class then need to validate the special register value
4330 // and retrieve the mask for use in the instruction node.
4331 if (Subtarget
->isMClass()) {
4332 int SYSmValue
= getMClassRegisterMask(SpecialReg
, Subtarget
);
4333 if (SYSmValue
== -1)
4336 SDValue Ops
[] = { CurDAG
->getTargetConstant(SYSmValue
, DL
, MVT::i32
),
4337 N
->getOperand(2), getAL(CurDAG
, DL
),
4338 CurDAG
->getRegister(0, MVT::i32
), N
->getOperand(0) };
4339 ReplaceNode(N
, CurDAG
->getMachineNode(ARM::t2MSR_M
, DL
, MVT::Other
, Ops
));
4343 // We then check to see if a valid mask can be constructed for one of the
4344 // register string values permitted for the A and R class cores. These values
4345 // are apsr, spsr and cpsr; these are also valid on older cores.
4346 int Mask
= getARClassRegisterMask(Reg
, Flags
);
4348 Ops
= { CurDAG
->getTargetConstant(Mask
, DL
, MVT::i32
), N
->getOperand(2),
4349 getAL(CurDAG
, DL
), CurDAG
->getRegister(0, MVT::i32
),
4351 ReplaceNode(N
, CurDAG
->getMachineNode(IsThumb2
? ARM::t2MSR_AR
: ARM::MSR
,
4352 DL
, MVT::Other
, Ops
));
4359 bool ARMDAGToDAGISel::tryInlineAsm(SDNode
*N
){
4360 std::vector
<SDValue
> AsmNodeOperands
;
4361 unsigned Flag
, Kind
;
4362 bool Changed
= false;
4363 unsigned NumOps
= N
->getNumOperands();
4365 // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
4366 // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
4367 // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
4368 // respectively. Since there is no constraint to explicitly specify a
4369 // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
4370 // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
4371 // them into a GPRPair.
4374 SDValue Glue
= N
->getGluedNode() ? N
->getOperand(NumOps
-1)
4375 : SDValue(nullptr,0);
4377 SmallVector
<bool, 8> OpChanged
;
4378 // Glue node will be appended late.
4379 for(unsigned i
= 0, e
= N
->getGluedNode() ? NumOps
- 1 : NumOps
; i
< e
; ++i
) {
4380 SDValue op
= N
->getOperand(i
);
4381 AsmNodeOperands
.push_back(op
);
4383 if (i
< InlineAsm::Op_FirstOperand
)
4386 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(i
))) {
4387 Flag
= C
->getZExtValue();
4388 Kind
= InlineAsm::getKind(Flag
);
4393 // Immediate operands to inline asm in the SelectionDAG are modeled with
4394 // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
4395 // the second is a constant with the value of the immediate. If we get here
4396 // and we have a Kind_Imm, skip the next operand, and continue.
4397 if (Kind
== InlineAsm::Kind_Imm
) {
4398 SDValue op
= N
->getOperand(++i
);
4399 AsmNodeOperands
.push_back(op
);
4403 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(Flag
);
4405 OpChanged
.push_back(false);
4407 unsigned DefIdx
= 0;
4408 bool IsTiedToChangedOp
= false;
4409 // If it's a use that is tied with a previous def, it has no
4410 // reg class constraint.
4411 if (Changed
&& InlineAsm::isUseOperandTiedToDef(Flag
, DefIdx
))
4412 IsTiedToChangedOp
= OpChanged
[DefIdx
];
4414 // Memory operands to inline asm in the SelectionDAG are modeled with two
4415 // operands: a constant of value InlineAsm::Kind_Mem followed by the input
4416 // operand. If we get here and we have a Kind_Mem, skip the next operand (so
4417 // it doesn't get misinterpreted), and continue. We do this here because
4418 // it's important to update the OpChanged array correctly before moving on.
4419 if (Kind
== InlineAsm::Kind_Mem
) {
4420 SDValue op
= N
->getOperand(++i
);
4421 AsmNodeOperands
.push_back(op
);
4425 if (Kind
!= InlineAsm::Kind_RegUse
&& Kind
!= InlineAsm::Kind_RegDef
4426 && Kind
!= InlineAsm::Kind_RegDefEarlyClobber
)
4430 bool HasRC
= InlineAsm::hasRegClassConstraint(Flag
, RC
);
4431 if ((!IsTiedToChangedOp
&& (!HasRC
|| RC
!= ARM::GPRRegClassID
))
4435 assert((i
+2 < NumOps
) && "Invalid number of operands in inline asm");
4436 SDValue V0
= N
->getOperand(i
+1);
4437 SDValue V1
= N
->getOperand(i
+2);
4438 unsigned Reg0
= cast
<RegisterSDNode
>(V0
)->getReg();
4439 unsigned Reg1
= cast
<RegisterSDNode
>(V1
)->getReg();
4441 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4443 if (Kind
== InlineAsm::Kind_RegDef
||
4444 Kind
== InlineAsm::Kind_RegDefEarlyClobber
) {
4445 // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
4446 // the original GPRs.
4448 Register GPVR
= MRI
.createVirtualRegister(&ARM::GPRPairRegClass
);
4449 PairedReg
= CurDAG
->getRegister(GPVR
, MVT::Untyped
);
4450 SDValue Chain
= SDValue(N
,0);
4452 SDNode
*GU
= N
->getGluedUser();
4453 SDValue RegCopy
= CurDAG
->getCopyFromReg(Chain
, dl
, GPVR
, MVT::Untyped
,
4456 // Extract values from a GPRPair reg and copy to the original GPR reg.
4457 SDValue Sub0
= CurDAG
->getTargetExtractSubreg(ARM::gsub_0
, dl
, MVT::i32
,
4459 SDValue Sub1
= CurDAG
->getTargetExtractSubreg(ARM::gsub_1
, dl
, MVT::i32
,
4461 SDValue T0
= CurDAG
->getCopyToReg(Sub0
, dl
, Reg0
, Sub0
,
4462 RegCopy
.getValue(1));
4463 SDValue T1
= CurDAG
->getCopyToReg(Sub1
, dl
, Reg1
, Sub1
, T0
.getValue(1));
4465 // Update the original glue user.
4466 std::vector
<SDValue
> Ops(GU
->op_begin(), GU
->op_end()-1);
4467 Ops
.push_back(T1
.getValue(1));
4468 CurDAG
->UpdateNodeOperands(GU
, Ops
);
4471 // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
4472 // GPRPair and then pass the GPRPair to the inline asm.
4473 SDValue Chain
= AsmNodeOperands
[InlineAsm::Op_InputChain
];
4475 // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
4476 SDValue T0
= CurDAG
->getCopyFromReg(Chain
, dl
, Reg0
, MVT::i32
,
4478 SDValue T1
= CurDAG
->getCopyFromReg(Chain
, dl
, Reg1
, MVT::i32
,
4480 SDValue Pair
= SDValue(createGPRPairNode(MVT::Untyped
, T0
, T1
), 0);
4482 // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
4483 // i32 VRs of inline asm with it.
4484 Register GPVR
= MRI
.createVirtualRegister(&ARM::GPRPairRegClass
);
4485 PairedReg
= CurDAG
->getRegister(GPVR
, MVT::Untyped
);
4486 Chain
= CurDAG
->getCopyToReg(T1
, dl
, GPVR
, Pair
, T1
.getValue(1));
4488 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
4489 Glue
= Chain
.getValue(1);
4494 if(PairedReg
.getNode()) {
4495 OpChanged
[OpChanged
.size() -1 ] = true;
4496 Flag
= InlineAsm::getFlagWord(Kind
, 1 /* RegNum*/);
4497 if (IsTiedToChangedOp
)
4498 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, DefIdx
);
4500 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, ARM::GPRPairRegClassID
);
4501 // Replace the current flag.
4502 AsmNodeOperands
[AsmNodeOperands
.size() -1] = CurDAG
->getTargetConstant(
4503 Flag
, dl
, MVT::i32
);
4504 // Add the new register node and skip the original two GPRs.
4505 AsmNodeOperands
.push_back(PairedReg
);
4506 // Skip the next two GPRs.
4512 AsmNodeOperands
.push_back(Glue
);
4516 SDValue New
= CurDAG
->getNode(N
->getOpcode(), SDLoc(N
),
4517 CurDAG
->getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
4519 ReplaceNode(N
, New
.getNode());
4524 bool ARMDAGToDAGISel::
4525 SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
4526 std::vector
<SDValue
> &OutOps
) {
4527 switch(ConstraintID
) {
4529 llvm_unreachable("Unexpected asm memory constraint");
4530 case InlineAsm::Constraint_i
:
4531 // FIXME: It seems strange that 'i' is needed here since it's supposed to
4532 // be an immediate and not a memory constraint.
4534 case InlineAsm::Constraint_m
:
4535 case InlineAsm::Constraint_o
:
4536 case InlineAsm::Constraint_Q
:
4537 case InlineAsm::Constraint_Um
:
4538 case InlineAsm::Constraint_Un
:
4539 case InlineAsm::Constraint_Uq
:
4540 case InlineAsm::Constraint_Us
:
4541 case InlineAsm::Constraint_Ut
:
4542 case InlineAsm::Constraint_Uv
:
4543 case InlineAsm::Constraint_Uy
:
4544 // Require the address to be in a register. That is safe for all ARM
4545 // variants and it is hard to do anything much smarter without knowing
4546 // how the operand is used.
4547 OutOps
.push_back(Op
);
4553 /// createARMISelDag - This pass converts a legalized DAG into a
4554 /// ARM-specific DAG, ready for instruction scheduling.
4556 FunctionPass
*llvm::createARMISelDag(ARMBaseTargetMachine
&TM
,
4557 CodeGenOpt::Level OptLevel
) {
4558 return new ARMDAGToDAGISel(TM
, OptLevel
);