[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / ARM / AsmParser / ARMAsmParser.cpp
blob93b5254084a3b9956004b4798af310d3764f3aef
1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCInst.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCInstrInfo.h"
34 #include "llvm/MC/MCObjectFileInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/Support/ARMBuildAttributes.h"
48 #include "llvm/Support/ARMEHABI.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/SMLoc.h"
55 #include "llvm/Support/TargetParser.h"
56 #include "llvm/Support/TargetRegistry.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
69 #define DEBUG_TYPE "asm-parser"
71 using namespace llvm;
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
77 namespace {
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83 cl::desc("Allow conditional instructions outdside of an IT block"),
84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85 "Accept in both ISAs, emit implicit ITs in Thumb"),
86 clEnumValN(ImplicitItModeTy::Never, "never",
87 "Warn in ARM, reject in Thumb"),
88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89 "Accept in ARM, reject in Thumb"),
90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91 "Warn in ARM, emit implicit ITs in Thumb")));
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94 cl::init(false));
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99 // Position==0 means we're not in an IT block at all. Position==1
100 // means we want the first state bit, which is always 0 (Then).
101 // Position==2 means we want the second state bit, stored at bit 3
102 // of Mask, and so on downwards. So (5 - Position) will shift the
103 // right bit down to bit 0, including the always-0 bit at bit 4 for
104 // the mandatory initial Then.
105 return (Mask >> (5 - Position) & 1);
108 class UnwindContext {
109 using Locs = SmallVector<SMLoc, 4>;
111 MCAsmParser &Parser;
112 Locs FnStartLocs;
113 Locs CantUnwindLocs;
114 Locs PersonalityLocs;
115 Locs PersonalityIndexLocs;
116 Locs HandlerDataLocs;
117 int FPReg;
119 public:
120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
122 bool hasFnStart() const { return !FnStartLocs.empty(); }
123 bool cantUnwind() const { return !CantUnwindLocs.empty(); }
124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
126 bool hasPersonality() const {
127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
136 void saveFPReg(int Reg) { FPReg = Reg; }
137 int getFPReg() const { return FPReg; }
139 void emitFnStartLocNotes() const {
140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
141 FI != FE; ++FI)
142 Parser.Note(*FI, ".fnstart was specified here");
145 void emitCantUnwindLocNotes() const {
146 for (Locs::const_iterator UI = CantUnwindLocs.begin(),
147 UE = CantUnwindLocs.end(); UI != UE; ++UI)
148 Parser.Note(*UI, ".cantunwind was specified here");
151 void emitHandlerDataLocNotes() const {
152 for (Locs::const_iterator HI = HandlerDataLocs.begin(),
153 HE = HandlerDataLocs.end(); HI != HE; ++HI)
154 Parser.Note(*HI, ".handlerdata was specified here");
157 void emitPersonalityLocNotes() const {
158 for (Locs::const_iterator PI = PersonalityLocs.begin(),
159 PE = PersonalityLocs.end(),
160 PII = PersonalityIndexLocs.begin(),
161 PIE = PersonalityIndexLocs.end();
162 PI != PE || PII != PIE;) {
163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
164 Parser.Note(*PI++, ".personality was specified here");
165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
166 Parser.Note(*PII++, ".personalityindex was specified here");
167 else
168 llvm_unreachable(".personality and .personalityindex cannot be "
169 "at the same location");
173 void reset() {
174 FnStartLocs = Locs();
175 CantUnwindLocs = Locs();
176 PersonalityLocs = Locs();
177 HandlerDataLocs = Locs();
178 PersonalityIndexLocs = Locs();
179 FPReg = ARM::SP;
184 class ARMAsmParser : public MCTargetAsmParser {
185 const MCRegisterInfo *MRI;
186 UnwindContext UC;
188 ARMTargetStreamer &getTargetStreamer() {
189 assert(getParser().getStreamer().getTargetStreamer() &&
190 "do not have a target streamer");
191 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
192 return static_cast<ARMTargetStreamer &>(TS);
195 // Map of register aliases registers via the .req directive.
196 StringMap<unsigned> RegisterReqs;
198 bool NextSymbolIsThumb;
200 bool useImplicitITThumb() const {
201 return ImplicitItMode == ImplicitItModeTy::Always ||
202 ImplicitItMode == ImplicitItModeTy::ThumbOnly;
205 bool useImplicitITARM() const {
206 return ImplicitItMode == ImplicitItModeTy::Always ||
207 ImplicitItMode == ImplicitItModeTy::ARMOnly;
210 struct {
211 ARMCC::CondCodes Cond; // Condition for IT block.
212 unsigned Mask:4; // Condition mask for instructions.
213 // Starting at first 1 (from lsb).
214 // '1' condition as indicated in IT.
215 // '0' inverse of condition (else).
216 // Count of instructions in IT block is
217 // 4 - trailingzeroes(mask)
218 // Note that this does not have the same encoding
219 // as in the IT instruction, which also depends
220 // on the low bit of the condition code.
222 unsigned CurPosition; // Current position in parsing of IT
223 // block. In range [0,4], with 0 being the IT
224 // instruction itself. Initialized according to
225 // count of instructions in block. ~0U if no
226 // active IT block.
228 bool IsExplicit; // true - The IT instruction was present in the
229 // input, we should not modify it.
230 // false - The IT instruction was added
231 // implicitly, we can extend it if that
232 // would be legal.
233 } ITState;
235 SmallVector<MCInst, 4> PendingConditionalInsts;
237 void flushPendingInstructions(MCStreamer &Out) override {
238 if (!inImplicitITBlock()) {
239 assert(PendingConditionalInsts.size() == 0);
240 return;
243 // Emit the IT instruction
244 MCInst ITInst;
245 ITInst.setOpcode(ARM::t2IT);
246 ITInst.addOperand(MCOperand::createImm(ITState.Cond));
247 ITInst.addOperand(MCOperand::createImm(ITState.Mask));
248 Out.EmitInstruction(ITInst, getSTI());
250 // Emit the conditonal instructions
251 assert(PendingConditionalInsts.size() <= 4);
252 for (const MCInst &Inst : PendingConditionalInsts) {
253 Out.EmitInstruction(Inst, getSTI());
255 PendingConditionalInsts.clear();
257 // Clear the IT state
258 ITState.Mask = 0;
259 ITState.CurPosition = ~0U;
262 bool inITBlock() { return ITState.CurPosition != ~0U; }
263 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
264 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
266 bool lastInITBlock() {
267 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
270 void forwardITPosition() {
271 if (!inITBlock()) return;
272 // Move to the next instruction in the IT block, if there is one. If not,
273 // mark the block as done, except for implicit IT blocks, which we leave
274 // open until we find an instruction that can't be added to it.
275 unsigned TZ = countTrailingZeros(ITState.Mask);
276 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
277 ITState.CurPosition = ~0U; // Done with the IT block after this.
280 // Rewind the state of the current IT block, removing the last slot from it.
281 void rewindImplicitITPosition() {
282 assert(inImplicitITBlock());
283 assert(ITState.CurPosition > 1);
284 ITState.CurPosition--;
285 unsigned TZ = countTrailingZeros(ITState.Mask);
286 unsigned NewMask = 0;
287 NewMask |= ITState.Mask & (0xC << TZ);
288 NewMask |= 0x2 << TZ;
289 ITState.Mask = NewMask;
292 // Rewind the state of the current IT block, removing the last slot from it.
293 // If we were at the first slot, this closes the IT block.
294 void discardImplicitITBlock() {
295 assert(inImplicitITBlock());
296 assert(ITState.CurPosition == 1);
297 ITState.CurPosition = ~0U;
300 // Return the low-subreg of a given Q register.
301 unsigned getDRegFromQReg(unsigned QReg) const {
302 return MRI->getSubReg(QReg, ARM::dsub_0);
305 // Get the condition code corresponding to the current IT block slot.
306 ARMCC::CondCodes currentITCond() {
307 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
308 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
311 // Invert the condition of the current IT block slot without changing any
312 // other slots in the same block.
313 void invertCurrentITCondition() {
314 if (ITState.CurPosition == 1) {
315 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
316 } else {
317 ITState.Mask ^= 1 << (5 - ITState.CurPosition);
321 // Returns true if the current IT block is full (all 4 slots used).
322 bool isITBlockFull() {
323 return inITBlock() && (ITState.Mask & 1);
326 // Extend the current implicit IT block to have one more slot with the given
327 // condition code.
328 void extendImplicitITBlock(ARMCC::CondCodes Cond) {
329 assert(inImplicitITBlock());
330 assert(!isITBlockFull());
331 assert(Cond == ITState.Cond ||
332 Cond == ARMCC::getOppositeCondition(ITState.Cond));
333 unsigned TZ = countTrailingZeros(ITState.Mask);
334 unsigned NewMask = 0;
335 // Keep any existing condition bits.
336 NewMask |= ITState.Mask & (0xE << TZ);
337 // Insert the new condition bit.
338 NewMask |= (Cond != ITState.Cond) << TZ;
339 // Move the trailing 1 down one bit.
340 NewMask |= 1 << (TZ - 1);
341 ITState.Mask = NewMask;
344 // Create a new implicit IT block with a dummy condition code.
345 void startImplicitITBlock() {
346 assert(!inITBlock());
347 ITState.Cond = ARMCC::AL;
348 ITState.Mask = 8;
349 ITState.CurPosition = 1;
350 ITState.IsExplicit = false;
353 // Create a new explicit IT block with the given condition and mask.
354 // The mask should be in the format used in ARMOperand and
355 // MCOperand, with a 1 implying 'e', regardless of the low bit of
356 // the condition.
357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358 assert(!inITBlock());
359 ITState.Cond = Cond;
360 ITState.Mask = Mask;
361 ITState.CurPosition = 0;
362 ITState.IsExplicit = true;
365 struct {
366 unsigned Mask : 4;
367 unsigned CurPosition;
368 } VPTState;
369 bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
370 void forwardVPTPosition() {
371 if (!inVPTBlock()) return;
372 unsigned TZ = countTrailingZeros(VPTState.Mask);
373 if (++VPTState.CurPosition == 5 - TZ)
374 VPTState.CurPosition = ~0U;
377 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
378 return getParser().Note(L, Msg, Range);
381 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
382 return getParser().Warning(L, Msg, Range);
385 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
386 return getParser().Error(L, Msg, Range);
389 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
390 unsigned ListNo, bool IsARPop = false);
391 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
392 unsigned ListNo);
394 int tryParseRegister();
395 bool tryParseRegisterWithWriteBack(OperandVector &);
396 int tryParseShiftRegister(OperandVector &);
397 bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
398 bool parseMemory(OperandVector &);
399 bool parseOperand(OperandVector &, StringRef Mnemonic);
400 bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
402 unsigned &ShiftAmount);
403 bool parseLiteralValues(unsigned Size, SMLoc L);
404 bool parseDirectiveThumb(SMLoc L);
405 bool parseDirectiveARM(SMLoc L);
406 bool parseDirectiveThumbFunc(SMLoc L);
407 bool parseDirectiveCode(SMLoc L);
408 bool parseDirectiveSyntax(SMLoc L);
409 bool parseDirectiveReq(StringRef Name, SMLoc L);
410 bool parseDirectiveUnreq(SMLoc L);
411 bool parseDirectiveArch(SMLoc L);
412 bool parseDirectiveEabiAttr(SMLoc L);
413 bool parseDirectiveCPU(SMLoc L);
414 bool parseDirectiveFPU(SMLoc L);
415 bool parseDirectiveFnStart(SMLoc L);
416 bool parseDirectiveFnEnd(SMLoc L);
417 bool parseDirectiveCantUnwind(SMLoc L);
418 bool parseDirectivePersonality(SMLoc L);
419 bool parseDirectiveHandlerData(SMLoc L);
420 bool parseDirectiveSetFP(SMLoc L);
421 bool parseDirectivePad(SMLoc L);
422 bool parseDirectiveRegSave(SMLoc L, bool IsVector);
423 bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
424 bool parseDirectiveLtorg(SMLoc L);
425 bool parseDirectiveEven(SMLoc L);
426 bool parseDirectivePersonalityIndex(SMLoc L);
427 bool parseDirectiveUnwindRaw(SMLoc L);
428 bool parseDirectiveTLSDescSeq(SMLoc L);
429 bool parseDirectiveMovSP(SMLoc L);
430 bool parseDirectiveObjectArch(SMLoc L);
431 bool parseDirectiveArchExtension(SMLoc L);
432 bool parseDirectiveAlign(SMLoc L);
433 bool parseDirectiveThumbSet(SMLoc L);
435 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
436 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
437 unsigned &PredicationCode,
438 unsigned &VPTPredicationCode, bool &CarrySetting,
439 unsigned &ProcessorIMod, StringRef &ITMask);
440 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
441 StringRef FullInst, bool &CanAcceptCarrySet,
442 bool &CanAcceptPredicationCode,
443 bool &CanAcceptVPTPredicationCode);
445 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
446 OperandVector &Operands);
447 bool isThumb() const {
448 // FIXME: Can tablegen auto-generate this?
449 return getSTI().getFeatureBits()[ARM::ModeThumb];
452 bool isThumbOne() const {
453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
456 bool isThumbTwo() const {
457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
460 bool hasThumb() const {
461 return getSTI().getFeatureBits()[ARM::HasV4TOps];
464 bool hasThumb2() const {
465 return getSTI().getFeatureBits()[ARM::FeatureThumb2];
468 bool hasV6Ops() const {
469 return getSTI().getFeatureBits()[ARM::HasV6Ops];
472 bool hasV6T2Ops() const {
473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
476 bool hasV6MOps() const {
477 return getSTI().getFeatureBits()[ARM::HasV6MOps];
480 bool hasV7Ops() const {
481 return getSTI().getFeatureBits()[ARM::HasV7Ops];
484 bool hasV8Ops() const {
485 return getSTI().getFeatureBits()[ARM::HasV8Ops];
488 bool hasV8MBaseline() const {
489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
492 bool hasV8MMainline() const {
493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
495 bool hasV8_1MMainline() const {
496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
498 bool hasMVE() const {
499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
501 bool hasMVEFloat() const {
502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
504 bool has8MSecExt() const {
505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
508 bool hasARM() const {
509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
512 bool hasDSP() const {
513 return getSTI().getFeatureBits()[ARM::FeatureDSP];
516 bool hasD32() const {
517 return getSTI().getFeatureBits()[ARM::FeatureD32];
520 bool hasV8_1aOps() const {
521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
524 bool hasRAS() const {
525 return getSTI().getFeatureBits()[ARM::FeatureRAS];
528 void SwitchMode() {
529 MCSubtargetInfo &STI = copySTI();
530 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
531 setAvailableFeatures(FB);
534 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
536 bool isMClass() const {
537 return getSTI().getFeatureBits()[ARM::FeatureMClass];
540 /// @name Auto-generated Match Functions
541 /// {
543 #define GET_ASSEMBLER_HEADER
544 #include "ARMGenAsmMatcher.inc"
546 /// }
548 OperandMatchResultTy parseITCondCode(OperandVector &);
549 OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
550 OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
551 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
552 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
553 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
554 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
555 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
556 OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
557 OperandMatchResultTy parseBankedRegOperand(OperandVector &);
558 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
559 int High);
560 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
561 return parsePKHImm(O, "lsl", 0, 31);
563 OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
564 return parsePKHImm(O, "asr", 1, 32);
566 OperandMatchResultTy parseSetEndImm(OperandVector &);
567 OperandMatchResultTy parseShifterImm(OperandVector &);
568 OperandMatchResultTy parseRotImm(OperandVector &);
569 OperandMatchResultTy parseModImm(OperandVector &);
570 OperandMatchResultTy parseBitfield(OperandVector &);
571 OperandMatchResultTy parsePostIdxReg(OperandVector &);
572 OperandMatchResultTy parseAM3Offset(OperandVector &);
573 OperandMatchResultTy parseFPImm(OperandVector &);
574 OperandMatchResultTy parseVectorList(OperandVector &);
575 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
576 SMLoc &EndLoc);
578 // Asm Match Converter Methods
579 void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
580 void cvtThumbBranches(MCInst &Inst, const OperandVector &);
581 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
583 bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
584 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
585 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
586 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
588 bool isITBlockTerminator(MCInst &Inst) const;
589 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
590 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
591 bool Load, bool ARMMode, bool Writeback);
593 public:
594 enum ARMMatchResultTy {
595 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
596 Match_RequiresNotITBlock,
597 Match_RequiresV6,
598 Match_RequiresThumb2,
599 Match_RequiresV8,
600 Match_RequiresFlagSetting,
601 #define GET_OPERAND_DIAGNOSTIC_TYPES
602 #include "ARMGenAsmMatcher.inc"
606 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
607 const MCInstrInfo &MII, const MCTargetOptions &Options)
608 : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
609 MCAsmParserExtension::Initialize(Parser);
611 // Cache the MCRegisterInfo.
612 MRI = getContext().getRegisterInfo();
614 // Initialize the set of available features.
615 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
617 // Add build attributes based on the selected target.
618 if (AddBuildAttributes)
619 getTargetStreamer().emitTargetAttributes(STI);
621 // Not in an ITBlock to start with.
622 ITState.CurPosition = ~0U;
624 VPTState.CurPosition = ~0U;
626 NextSymbolIsThumb = false;
629 // Implementation of the MCTargetAsmParser interface:
630 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
631 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
632 SMLoc NameLoc, OperandVector &Operands) override;
633 bool ParseDirective(AsmToken DirectiveID) override;
635 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
636 unsigned Kind) override;
637 unsigned checkTargetMatchPredicate(MCInst &Inst) override;
639 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
640 OperandVector &Operands, MCStreamer &Out,
641 uint64_t &ErrorInfo,
642 bool MatchingInlineAsm) override;
643 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
644 SmallVectorImpl<NearMissInfo> &NearMisses,
645 bool MatchingInlineAsm, bool &EmitInITBlock,
646 MCStreamer &Out);
648 struct NearMissMessage {
649 SMLoc Loc;
650 SmallString<128> Message;
653 const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
655 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
656 SmallVectorImpl<NearMissMessage> &NearMissesOut,
657 SMLoc IDLoc, OperandVector &Operands);
658 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
659 OperandVector &Operands);
661 void doBeforeLabelEmit(MCSymbol *Symbol) override;
663 void onLabelParsed(MCSymbol *Symbol) override;
666 /// ARMOperand - Instances of this class represent a parsed ARM machine
667 /// operand.
668 class ARMOperand : public MCParsedAsmOperand {
669 enum KindTy {
670 k_CondCode,
671 k_VPTPred,
672 k_CCOut,
673 k_ITCondMask,
674 k_CoprocNum,
675 k_CoprocReg,
676 k_CoprocOption,
677 k_Immediate,
678 k_MemBarrierOpt,
679 k_InstSyncBarrierOpt,
680 k_TraceSyncBarrierOpt,
681 k_Memory,
682 k_PostIndexRegister,
683 k_MSRMask,
684 k_BankedReg,
685 k_ProcIFlags,
686 k_VectorIndex,
687 k_Register,
688 k_RegisterList,
689 k_RegisterListWithAPSR,
690 k_DPRRegisterList,
691 k_SPRRegisterList,
692 k_FPSRegisterListWithVPR,
693 k_FPDRegisterListWithVPR,
694 k_VectorList,
695 k_VectorListAllLanes,
696 k_VectorListIndexed,
697 k_ShiftedRegister,
698 k_ShiftedImmediate,
699 k_ShifterImmediate,
700 k_RotateImmediate,
701 k_ModifiedImmediate,
702 k_ConstantPoolImmediate,
703 k_BitfieldDescriptor,
704 k_Token,
705 } Kind;
707 SMLoc StartLoc, EndLoc, AlignmentLoc;
708 SmallVector<unsigned, 8> Registers;
710 struct CCOp {
711 ARMCC::CondCodes Val;
714 struct VCCOp {
715 ARMVCC::VPTCodes Val;
718 struct CopOp {
719 unsigned Val;
722 struct CoprocOptionOp {
723 unsigned Val;
726 struct ITMaskOp {
727 unsigned Mask:4;
730 struct MBOptOp {
731 ARM_MB::MemBOpt Val;
734 struct ISBOptOp {
735 ARM_ISB::InstSyncBOpt Val;
738 struct TSBOptOp {
739 ARM_TSB::TraceSyncBOpt Val;
742 struct IFlagsOp {
743 ARM_PROC::IFlags Val;
746 struct MMaskOp {
747 unsigned Val;
750 struct BankedRegOp {
751 unsigned Val;
754 struct TokOp {
755 const char *Data;
756 unsigned Length;
759 struct RegOp {
760 unsigned RegNum;
763 // A vector register list is a sequential list of 1 to 4 registers.
764 struct VectorListOp {
765 unsigned RegNum;
766 unsigned Count;
767 unsigned LaneIndex;
768 bool isDoubleSpaced;
771 struct VectorIndexOp {
772 unsigned Val;
775 struct ImmOp {
776 const MCExpr *Val;
779 /// Combined record for all forms of ARM address expressions.
780 struct MemoryOp {
781 unsigned BaseRegNum;
782 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
783 // was specified.
784 const MCConstantExpr *OffsetImm; // Offset immediate value
785 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
786 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
787 unsigned ShiftImm; // shift for OffsetReg.
788 unsigned Alignment; // 0 = no alignment specified
789 // n = alignment in bytes (2, 4, 8, 16, or 32)
790 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
793 struct PostIdxRegOp {
794 unsigned RegNum;
795 bool isAdd;
796 ARM_AM::ShiftOpc ShiftTy;
797 unsigned ShiftImm;
800 struct ShifterImmOp {
801 bool isASR;
802 unsigned Imm;
805 struct RegShiftedRegOp {
806 ARM_AM::ShiftOpc ShiftTy;
807 unsigned SrcReg;
808 unsigned ShiftReg;
809 unsigned ShiftImm;
812 struct RegShiftedImmOp {
813 ARM_AM::ShiftOpc ShiftTy;
814 unsigned SrcReg;
815 unsigned ShiftImm;
818 struct RotImmOp {
819 unsigned Imm;
822 struct ModImmOp {
823 unsigned Bits;
824 unsigned Rot;
827 struct BitfieldOp {
828 unsigned LSB;
829 unsigned Width;
832 union {
833 struct CCOp CC;
834 struct VCCOp VCC;
835 struct CopOp Cop;
836 struct CoprocOptionOp CoprocOption;
837 struct MBOptOp MBOpt;
838 struct ISBOptOp ISBOpt;
839 struct TSBOptOp TSBOpt;
840 struct ITMaskOp ITMask;
841 struct IFlagsOp IFlags;
842 struct MMaskOp MMask;
843 struct BankedRegOp BankedReg;
844 struct TokOp Tok;
845 struct RegOp Reg;
846 struct VectorListOp VectorList;
847 struct VectorIndexOp VectorIndex;
848 struct ImmOp Imm;
849 struct MemoryOp Memory;
850 struct PostIdxRegOp PostIdxReg;
851 struct ShifterImmOp ShifterImm;
852 struct RegShiftedRegOp RegShiftedReg;
853 struct RegShiftedImmOp RegShiftedImm;
854 struct RotImmOp RotImm;
855 struct ModImmOp ModImm;
856 struct BitfieldOp Bitfield;
859 public:
860 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
862 /// getStartLoc - Get the location of the first token of this operand.
863 SMLoc getStartLoc() const override { return StartLoc; }
865 /// getEndLoc - Get the location of the last token of this operand.
866 SMLoc getEndLoc() const override { return EndLoc; }
868 /// getLocRange - Get the range between the first and last token of this
869 /// operand.
870 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
872 /// getAlignmentLoc - Get the location of the Alignment token of this operand.
873 SMLoc getAlignmentLoc() const {
874 assert(Kind == k_Memory && "Invalid access!");
875 return AlignmentLoc;
878 ARMCC::CondCodes getCondCode() const {
879 assert(Kind == k_CondCode && "Invalid access!");
880 return CC.Val;
883 ARMVCC::VPTCodes getVPTPred() const {
884 assert(isVPTPred() && "Invalid access!");
885 return VCC.Val;
888 unsigned getCoproc() const {
889 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
890 return Cop.Val;
893 StringRef getToken() const {
894 assert(Kind == k_Token && "Invalid access!");
895 return StringRef(Tok.Data, Tok.Length);
898 unsigned getReg() const override {
899 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
900 return Reg.RegNum;
903 const SmallVectorImpl<unsigned> &getRegList() const {
904 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
905 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
906 Kind == k_FPSRegisterListWithVPR ||
907 Kind == k_FPDRegisterListWithVPR) &&
908 "Invalid access!");
909 return Registers;
912 const MCExpr *getImm() const {
913 assert(isImm() && "Invalid access!");
914 return Imm.Val;
917 const MCExpr *getConstantPoolImm() const {
918 assert(isConstantPoolImm() && "Invalid access!");
919 return Imm.Val;
922 unsigned getVectorIndex() const {
923 assert(Kind == k_VectorIndex && "Invalid access!");
924 return VectorIndex.Val;
927 ARM_MB::MemBOpt getMemBarrierOpt() const {
928 assert(Kind == k_MemBarrierOpt && "Invalid access!");
929 return MBOpt.Val;
932 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
933 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
934 return ISBOpt.Val;
937 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
938 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
939 return TSBOpt.Val;
942 ARM_PROC::IFlags getProcIFlags() const {
943 assert(Kind == k_ProcIFlags && "Invalid access!");
944 return IFlags.Val;
947 unsigned getMSRMask() const {
948 assert(Kind == k_MSRMask && "Invalid access!");
949 return MMask.Val;
952 unsigned getBankedReg() const {
953 assert(Kind == k_BankedReg && "Invalid access!");
954 return BankedReg.Val;
957 bool isCoprocNum() const { return Kind == k_CoprocNum; }
958 bool isCoprocReg() const { return Kind == k_CoprocReg; }
959 bool isCoprocOption() const { return Kind == k_CoprocOption; }
960 bool isCondCode() const { return Kind == k_CondCode; }
961 bool isVPTPred() const { return Kind == k_VPTPred; }
962 bool isCCOut() const { return Kind == k_CCOut; }
963 bool isITMask() const { return Kind == k_ITCondMask; }
964 bool isITCondCode() const { return Kind == k_CondCode; }
965 bool isImm() const override {
966 return Kind == k_Immediate;
969 bool isARMBranchTarget() const {
970 if (!isImm()) return false;
972 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
973 return CE->getValue() % 4 == 0;
974 return true;
978 bool isThumbBranchTarget() const {
979 if (!isImm()) return false;
981 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
982 return CE->getValue() % 2 == 0;
983 return true;
986 // checks whether this operand is an unsigned offset which fits is a field
987 // of specified width and scaled by a specific number of bits
988 template<unsigned width, unsigned scale>
989 bool isUnsignedOffset() const {
990 if (!isImm()) return false;
991 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
992 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
993 int64_t Val = CE->getValue();
994 int64_t Align = 1LL << scale;
995 int64_t Max = Align * ((1LL << width) - 1);
996 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
998 return false;
1001 // checks whether this operand is an signed offset which fits is a field
1002 // of specified width and scaled by a specific number of bits
1003 template<unsigned width, unsigned scale>
1004 bool isSignedOffset() const {
1005 if (!isImm()) return false;
1006 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1007 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1008 int64_t Val = CE->getValue();
1009 int64_t Align = 1LL << scale;
1010 int64_t Max = Align * ((1LL << (width-1)) - 1);
1011 int64_t Min = -Align * (1LL << (width-1));
1012 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1014 return false;
1017 // checks whether this operand is an offset suitable for the LE /
1018 // LETP instructions in Arm v8.1M
1019 bool isLEOffset() const {
1020 if (!isImm()) return false;
1021 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1022 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1023 int64_t Val = CE->getValue();
1024 return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1026 return false;
1029 // checks whether this operand is a memory operand computed as an offset
1030 // applied to PC. the offset may have 8 bits of magnitude and is represented
1031 // with two bits of shift. textually it may be either [pc, #imm], #imm or
1032 // relocable expression...
1033 bool isThumbMemPC() const {
1034 int64_t Val = 0;
1035 if (isImm()) {
1036 if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1038 if (!CE) return false;
1039 Val = CE->getValue();
1041 else if (isGPRMem()) {
1042 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1043 if(Memory.BaseRegNum != ARM::PC) return false;
1044 Val = Memory.OffsetImm->getValue();
1046 else return false;
1047 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1050 bool isFPImm() const {
1051 if (!isImm()) return false;
1052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1053 if (!CE) return false;
1054 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1055 return Val != -1;
1058 template<int64_t N, int64_t M>
1059 bool isImmediate() const {
1060 if (!isImm()) return false;
1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1062 if (!CE) return false;
1063 int64_t Value = CE->getValue();
1064 return Value >= N && Value <= M;
1067 template<int64_t N, int64_t M>
1068 bool isImmediateS4() const {
1069 if (!isImm()) return false;
1070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1071 if (!CE) return false;
1072 int64_t Value = CE->getValue();
1073 return ((Value & 3) == 0) && Value >= N && Value <= M;
1075 template<int64_t N, int64_t M>
1076 bool isImmediateS2() const {
1077 if (!isImm()) return false;
1078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1079 if (!CE) return false;
1080 int64_t Value = CE->getValue();
1081 return ((Value & 1) == 0) && Value >= N && Value <= M;
1083 bool isFBits16() const {
1084 return isImmediate<0, 17>();
1086 bool isFBits32() const {
1087 return isImmediate<1, 33>();
1089 bool isImm8s4() const {
1090 return isImmediateS4<-1020, 1020>();
1092 bool isImm7s4() const {
1093 return isImmediateS4<-508, 508>();
1095 bool isImm7Shift0() const {
1096 return isImmediate<-127, 127>();
1098 bool isImm7Shift1() const {
1099 return isImmediateS2<-255, 255>();
1101 bool isImm7Shift2() const {
1102 return isImmediateS4<-511, 511>();
1104 bool isImm7() const {
1105 return isImmediate<-127, 127>();
1107 bool isImm0_1020s4() const {
1108 return isImmediateS4<0, 1020>();
1110 bool isImm0_508s4() const {
1111 return isImmediateS4<0, 508>();
1113 bool isImm0_508s4Neg() const {
1114 if (!isImm()) return false;
1115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1116 if (!CE) return false;
1117 int64_t Value = -CE->getValue();
1118 // explicitly exclude zero. we want that to use the normal 0_508 version.
1119 return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1122 bool isImm0_4095Neg() const {
1123 if (!isImm()) return false;
1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1125 if (!CE) return false;
1126 // isImm0_4095Neg is used with 32-bit immediates only.
1127 // 32-bit immediates are zero extended to 64-bit when parsed,
1128 // thus simple -CE->getValue() results in a big negative number,
1129 // not a small positive number as intended
1130 if ((CE->getValue() >> 32) > 0) return false;
1131 uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1132 return Value > 0 && Value < 4096;
1135 bool isImm0_7() const {
1136 return isImmediate<0, 7>();
1139 bool isImm1_16() const {
1140 return isImmediate<1, 16>();
1143 bool isImm1_32() const {
1144 return isImmediate<1, 32>();
1147 bool isImm8_255() const {
1148 return isImmediate<8, 255>();
1151 bool isImm256_65535Expr() const {
1152 if (!isImm()) return false;
1153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1154 // If it's not a constant expression, it'll generate a fixup and be
1155 // handled later.
1156 if (!CE) return true;
1157 int64_t Value = CE->getValue();
1158 return Value >= 256 && Value < 65536;
1161 bool isImm0_65535Expr() const {
1162 if (!isImm()) return false;
1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1164 // If it's not a constant expression, it'll generate a fixup and be
1165 // handled later.
1166 if (!CE) return true;
1167 int64_t Value = CE->getValue();
1168 return Value >= 0 && Value < 65536;
1171 bool isImm24bit() const {
1172 return isImmediate<0, 0xffffff + 1>();
1175 bool isImmThumbSR() const {
1176 return isImmediate<1, 33>();
1179 template<int shift>
1180 bool isExpImmValue(uint64_t Value) const {
1181 uint64_t mask = (1 << shift) - 1;
1182 if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1183 return false;
1184 return true;
1187 template<int shift>
1188 bool isExpImm() const {
1189 if (!isImm()) return false;
1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1191 if (!CE) return false;
1193 return isExpImmValue<shift>(CE->getValue());
1196 template<int shift, int size>
1197 bool isInvertedExpImm() const {
1198 if (!isImm()) return false;
1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1200 if (!CE) return false;
1202 uint64_t OriginalValue = CE->getValue();
1203 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1204 return isExpImmValue<shift>(InvertedValue);
1207 bool isPKHLSLImm() const {
1208 return isImmediate<0, 32>();
1211 bool isPKHASRImm() const {
1212 return isImmediate<0, 33>();
1215 bool isAdrLabel() const {
1216 // If we have an immediate that's not a constant, treat it as a label
1217 // reference needing a fixup.
1218 if (isImm() && !isa<MCConstantExpr>(getImm()))
1219 return true;
1221 // If it is a constant, it must fit into a modified immediate encoding.
1222 if (!isImm()) return false;
1223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1224 if (!CE) return false;
1225 int64_t Value = CE->getValue();
1226 return (ARM_AM::getSOImmVal(Value) != -1 ||
1227 ARM_AM::getSOImmVal(-Value) != -1);
1230 bool isT2SOImm() const {
1231 // If we have an immediate that's not a constant, treat it as an expression
1232 // needing a fixup.
1233 if (isImm() && !isa<MCConstantExpr>(getImm())) {
1234 // We want to avoid matching :upper16: and :lower16: as we want these
1235 // expressions to match in isImm0_65535Expr()
1236 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1237 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1238 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1240 if (!isImm()) return false;
1241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1242 if (!CE) return false;
1243 int64_t Value = CE->getValue();
1244 return ARM_AM::getT2SOImmVal(Value) != -1;
1247 bool isT2SOImmNot() const {
1248 if (!isImm()) return false;
1249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1250 if (!CE) return false;
1251 int64_t Value = CE->getValue();
1252 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1253 ARM_AM::getT2SOImmVal(~Value) != -1;
1256 bool isT2SOImmNeg() const {
1257 if (!isImm()) return false;
1258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1259 if (!CE) return false;
1260 int64_t Value = CE->getValue();
1261 // Only use this when not representable as a plain so_imm.
1262 return ARM_AM::getT2SOImmVal(Value) == -1 &&
1263 ARM_AM::getT2SOImmVal(-Value) != -1;
1266 bool isSetEndImm() const {
1267 if (!isImm()) return false;
1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1269 if (!CE) return false;
1270 int64_t Value = CE->getValue();
1271 return Value == 1 || Value == 0;
1274 bool isReg() const override { return Kind == k_Register; }
1275 bool isRegList() const { return Kind == k_RegisterList; }
1276 bool isRegListWithAPSR() const {
1277 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1279 bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1280 bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1281 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1282 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1283 bool isToken() const override { return Kind == k_Token; }
1284 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1285 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1286 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1287 bool isMem() const override {
1288 return isGPRMem() || isMVEMem();
1290 bool isMVEMem() const {
1291 if (Kind != k_Memory)
1292 return false;
1293 if (Memory.BaseRegNum &&
1294 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1295 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1296 return false;
1297 if (Memory.OffsetRegNum &&
1298 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1299 Memory.OffsetRegNum))
1300 return false;
1301 return true;
1303 bool isGPRMem() const {
1304 if (Kind != k_Memory)
1305 return false;
1306 if (Memory.BaseRegNum &&
1307 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1308 return false;
1309 if (Memory.OffsetRegNum &&
1310 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1311 return false;
1312 return true;
1314 bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1315 bool isRegShiftedReg() const {
1316 return Kind == k_ShiftedRegister &&
1317 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1318 RegShiftedReg.SrcReg) &&
1319 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1320 RegShiftedReg.ShiftReg);
1322 bool isRegShiftedImm() const {
1323 return Kind == k_ShiftedImmediate &&
1324 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1325 RegShiftedImm.SrcReg);
1327 bool isRotImm() const { return Kind == k_RotateImmediate; }
1329 template<unsigned Min, unsigned Max>
1330 bool isPowerTwoInRange() const {
1331 if (!isImm()) return false;
1332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1333 if (!CE) return false;
1334 int64_t Value = CE->getValue();
1335 return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1336 Value >= Min && Value <= Max;
1338 bool isModImm() const { return Kind == k_ModifiedImmediate; }
1340 bool isModImmNot() const {
1341 if (!isImm()) return false;
1342 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1343 if (!CE) return false;
1344 int64_t Value = CE->getValue();
1345 return ARM_AM::getSOImmVal(~Value) != -1;
1348 bool isModImmNeg() const {
1349 if (!isImm()) return false;
1350 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1351 if (!CE) return false;
1352 int64_t Value = CE->getValue();
1353 return ARM_AM::getSOImmVal(Value) == -1 &&
1354 ARM_AM::getSOImmVal(-Value) != -1;
1357 bool isThumbModImmNeg1_7() const {
1358 if (!isImm()) return false;
1359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1360 if (!CE) return false;
1361 int32_t Value = -(int32_t)CE->getValue();
1362 return 0 < Value && Value < 8;
1365 bool isThumbModImmNeg8_255() const {
1366 if (!isImm()) return false;
1367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1368 if (!CE) return false;
1369 int32_t Value = -(int32_t)CE->getValue();
1370 return 7 < Value && Value < 256;
1373 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1374 bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1375 bool isPostIdxRegShifted() const {
1376 return Kind == k_PostIndexRegister &&
1377 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1379 bool isPostIdxReg() const {
1380 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1382 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1383 if (!isGPRMem())
1384 return false;
1385 // No offset of any kind.
1386 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1387 (alignOK || Memory.Alignment == Alignment);
1389 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1390 if (!isGPRMem())
1391 return false;
1393 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1394 Memory.BaseRegNum))
1395 return false;
1397 // No offset of any kind.
1398 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1399 (alignOK || Memory.Alignment == Alignment);
1401 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1402 if (!isGPRMem())
1403 return false;
1405 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1406 Memory.BaseRegNum))
1407 return false;
1409 // No offset of any kind.
1410 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1411 (alignOK || Memory.Alignment == Alignment);
1413 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1414 if (!isGPRMem())
1415 return false;
1417 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1418 Memory.BaseRegNum))
1419 return false;
1421 // No offset of any kind.
1422 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1423 (alignOK || Memory.Alignment == Alignment);
1425 bool isMemPCRelImm12() const {
1426 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1427 return false;
1428 // Base register must be PC.
1429 if (Memory.BaseRegNum != ARM::PC)
1430 return false;
1431 // Immediate offset in range [-4095, 4095].
1432 if (!Memory.OffsetImm) return true;
1433 int64_t Val = Memory.OffsetImm->getValue();
1434 return (Val > -4096 && Val < 4096) ||
1435 (Val == std::numeric_limits<int32_t>::min());
1438 bool isAlignedMemory() const {
1439 return isMemNoOffset(true);
1442 bool isAlignedMemoryNone() const {
1443 return isMemNoOffset(false, 0);
1446 bool isDupAlignedMemoryNone() const {
1447 return isMemNoOffset(false, 0);
1450 bool isAlignedMemory16() const {
1451 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1452 return true;
1453 return isMemNoOffset(false, 0);
1456 bool isDupAlignedMemory16() const {
1457 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1458 return true;
1459 return isMemNoOffset(false, 0);
1462 bool isAlignedMemory32() const {
1463 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1464 return true;
1465 return isMemNoOffset(false, 0);
1468 bool isDupAlignedMemory32() const {
1469 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1470 return true;
1471 return isMemNoOffset(false, 0);
1474 bool isAlignedMemory64() const {
1475 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1476 return true;
1477 return isMemNoOffset(false, 0);
1480 bool isDupAlignedMemory64() const {
1481 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1482 return true;
1483 return isMemNoOffset(false, 0);
1486 bool isAlignedMemory64or128() const {
1487 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1488 return true;
1489 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1490 return true;
1491 return isMemNoOffset(false, 0);
1494 bool isDupAlignedMemory64or128() const {
1495 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1496 return true;
1497 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1498 return true;
1499 return isMemNoOffset(false, 0);
1502 bool isAlignedMemory64or128or256() const {
1503 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1504 return true;
1505 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1506 return true;
1507 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1508 return true;
1509 return isMemNoOffset(false, 0);
1512 bool isAddrMode2() const {
1513 if (!isGPRMem() || Memory.Alignment != 0) return false;
1514 // Check for register offset.
1515 if (Memory.OffsetRegNum) return true;
1516 // Immediate offset in range [-4095, 4095].
1517 if (!Memory.OffsetImm) return true;
1518 int64_t Val = Memory.OffsetImm->getValue();
1519 return Val > -4096 && Val < 4096;
1522 bool isAM2OffsetImm() const {
1523 if (!isImm()) return false;
1524 // Immediate offset in range [-4095, 4095].
1525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1526 if (!CE) return false;
1527 int64_t Val = CE->getValue();
1528 return (Val == std::numeric_limits<int32_t>::min()) ||
1529 (Val > -4096 && Val < 4096);
1532 bool isAddrMode3() const {
1533 // If we have an immediate that's not a constant, treat it as a label
1534 // reference needing a fixup. If it is a constant, it's something else
1535 // and we reject it.
1536 if (isImm() && !isa<MCConstantExpr>(getImm()))
1537 return true;
1538 if (!isGPRMem() || Memory.Alignment != 0) return false;
1539 // No shifts are legal for AM3.
1540 if (Memory.ShiftType != ARM_AM::no_shift) return false;
1541 // Check for register offset.
1542 if (Memory.OffsetRegNum) return true;
1543 // Immediate offset in range [-255, 255].
1544 if (!Memory.OffsetImm) return true;
1545 int64_t Val = Memory.OffsetImm->getValue();
1546 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1547 // have to check for this too.
1548 return (Val > -256 && Val < 256) ||
1549 Val == std::numeric_limits<int32_t>::min();
1552 bool isAM3Offset() const {
1553 if (isPostIdxReg())
1554 return true;
1555 if (!isImm())
1556 return false;
1557 // Immediate offset in range [-255, 255].
1558 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1559 if (!CE) return false;
1560 int64_t Val = CE->getValue();
1561 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1562 return (Val > -256 && Val < 256) ||
1563 Val == std::numeric_limits<int32_t>::min();
1566 bool isAddrMode5() const {
1567 // If we have an immediate that's not a constant, treat it as a label
1568 // reference needing a fixup. If it is a constant, it's something else
1569 // and we reject it.
1570 if (isImm() && !isa<MCConstantExpr>(getImm()))
1571 return true;
1572 if (!isGPRMem() || Memory.Alignment != 0) return false;
1573 // Check for register offset.
1574 if (Memory.OffsetRegNum) return false;
1575 // Immediate offset in range [-1020, 1020] and a multiple of 4.
1576 if (!Memory.OffsetImm) return true;
1577 int64_t Val = Memory.OffsetImm->getValue();
1578 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1579 Val == std::numeric_limits<int32_t>::min();
1582 bool isAddrMode5FP16() const {
1583 // If we have an immediate that's not a constant, treat it as a label
1584 // reference needing a fixup. If it is a constant, it's something else
1585 // and we reject it.
1586 if (isImm() && !isa<MCConstantExpr>(getImm()))
1587 return true;
1588 if (!isGPRMem() || Memory.Alignment != 0) return false;
1589 // Check for register offset.
1590 if (Memory.OffsetRegNum) return false;
1591 // Immediate offset in range [-510, 510] and a multiple of 2.
1592 if (!Memory.OffsetImm) return true;
1593 int64_t Val = Memory.OffsetImm->getValue();
1594 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1595 Val == std::numeric_limits<int32_t>::min();
1598 bool isMemTBB() const {
1599 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1600 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1601 return false;
1602 return true;
1605 bool isMemTBH() const {
1606 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1607 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1608 Memory.Alignment != 0 )
1609 return false;
1610 return true;
1613 bool isMemRegOffset() const {
1614 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1615 return false;
1616 return true;
1619 bool isT2MemRegOffset() const {
1620 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1621 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1622 return false;
1623 // Only lsl #{0, 1, 2, 3} allowed.
1624 if (Memory.ShiftType == ARM_AM::no_shift)
1625 return true;
1626 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1627 return false;
1628 return true;
1631 bool isMemThumbRR() const {
1632 // Thumb reg+reg addressing is simple. Just two registers, a base and
1633 // an offset. No shifts, negations or any other complicating factors.
1634 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1635 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1636 return false;
1637 return isARMLowRegister(Memory.BaseRegNum) &&
1638 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1641 bool isMemThumbRIs4() const {
1642 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1643 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1644 return false;
1645 // Immediate offset, multiple of 4 in range [0, 124].
1646 if (!Memory.OffsetImm) return true;
1647 int64_t Val = Memory.OffsetImm->getValue();
1648 return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1651 bool isMemThumbRIs2() const {
1652 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1653 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1654 return false;
1655 // Immediate offset, multiple of 4 in range [0, 62].
1656 if (!Memory.OffsetImm) return true;
1657 int64_t Val = Memory.OffsetImm->getValue();
1658 return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1661 bool isMemThumbRIs1() const {
1662 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1663 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1664 return false;
1665 // Immediate offset in range [0, 31].
1666 if (!Memory.OffsetImm) return true;
1667 int64_t Val = Memory.OffsetImm->getValue();
1668 return Val >= 0 && Val <= 31;
1671 bool isMemThumbSPI() const {
1672 if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1673 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1674 return false;
1675 // Immediate offset, multiple of 4 in range [0, 1020].
1676 if (!Memory.OffsetImm) return true;
1677 int64_t Val = Memory.OffsetImm->getValue();
1678 return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1681 bool isMemImm8s4Offset() const {
1682 // If we have an immediate that's not a constant, treat it as a label
1683 // reference needing a fixup. If it is a constant, it's something else
1684 // and we reject it.
1685 if (isImm() && !isa<MCConstantExpr>(getImm()))
1686 return true;
1687 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1688 return false;
1689 // Immediate offset a multiple of 4 in range [-1020, 1020].
1690 if (!Memory.OffsetImm) return true;
1691 int64_t Val = Memory.OffsetImm->getValue();
1692 // Special case, #-0 is std::numeric_limits<int32_t>::min().
1693 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1694 Val == std::numeric_limits<int32_t>::min();
1696 bool isMemImm7s4Offset() const {
1697 // If we have an immediate that's not a constant, treat it as a label
1698 // reference needing a fixup. If it is a constant, it's something else
1699 // and we reject it.
1700 if (isImm() && !isa<MCConstantExpr>(getImm()))
1701 return true;
1702 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1703 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1704 Memory.BaseRegNum))
1705 return false;
1706 // Immediate offset a multiple of 4 in range [-508, 508].
1707 if (!Memory.OffsetImm) return true;
1708 int64_t Val = Memory.OffsetImm->getValue();
1709 // Special case, #-0 is INT32_MIN.
1710 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1712 bool isMemImm0_1020s4Offset() const {
1713 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1714 return false;
1715 // Immediate offset a multiple of 4 in range [0, 1020].
1716 if (!Memory.OffsetImm) return true;
1717 int64_t Val = Memory.OffsetImm->getValue();
1718 return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1721 bool isMemImm8Offset() const {
1722 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1723 return false;
1724 // Base reg of PC isn't allowed for these encodings.
1725 if (Memory.BaseRegNum == ARM::PC) return false;
1726 // Immediate offset in range [-255, 255].
1727 if (!Memory.OffsetImm) return true;
1728 int64_t Val = Memory.OffsetImm->getValue();
1729 return (Val == std::numeric_limits<int32_t>::min()) ||
1730 (Val > -256 && Val < 256);
1733 template<unsigned Bits, unsigned RegClassID>
1734 bool isMemImm7ShiftedOffset() const {
1735 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1736 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1737 return false;
1739 // Expect an immediate offset equal to an element of the range
1740 // [-127, 127], shifted left by Bits.
1742 if (!Memory.OffsetImm) return true;
1743 int64_t Val = Memory.OffsetImm->getValue();
1745 // INT32_MIN is a special-case value (indicating the encoding with
1746 // zero offset and the subtract bit set)
1747 if (Val == INT32_MIN)
1748 return true;
1750 unsigned Divisor = 1U << Bits;
1752 // Check that the low bits are zero
1753 if (Val % Divisor != 0)
1754 return false;
1756 // Check that the remaining offset is within range.
1757 Val /= Divisor;
1758 return (Val >= -127 && Val <= 127);
1761 template <int shift> bool isMemRegRQOffset() const {
1762 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
1763 return false;
1765 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1766 Memory.BaseRegNum))
1767 return false;
1768 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1769 Memory.OffsetRegNum))
1770 return false;
1772 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1773 return false;
1775 if (shift > 0 &&
1776 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1777 return false;
1779 return true;
1782 template <int shift> bool isMemRegQOffset() const {
1783 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1784 return false;
1786 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1787 Memory.BaseRegNum))
1788 return false;
1790 if(!Memory.OffsetImm) return true;
1791 static_assert(shift < 56,
1792 "Such that we dont shift by a value higher than 62");
1793 int64_t Val = Memory.OffsetImm->getValue();
1795 // The value must be a multiple of (1 << shift)
1796 if ((Val & ((1U << shift) - 1)) != 0)
1797 return false;
1799 // And be in the right range, depending on the amount that it is shifted
1800 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set
1801 // separately.
1802 int64_t Range = (1U << (7+shift)) - 1;
1803 return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1806 bool isMemPosImm8Offset() const {
1807 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1808 return false;
1809 // Immediate offset in range [0, 255].
1810 if (!Memory.OffsetImm) return true;
1811 int64_t Val = Memory.OffsetImm->getValue();
1812 return Val >= 0 && Val < 256;
1815 bool isMemNegImm8Offset() const {
1816 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1817 return false;
1818 // Base reg of PC isn't allowed for these encodings.
1819 if (Memory.BaseRegNum == ARM::PC) return false;
1820 // Immediate offset in range [-255, -1].
1821 if (!Memory.OffsetImm) return false;
1822 int64_t Val = Memory.OffsetImm->getValue();
1823 return (Val == std::numeric_limits<int32_t>::min()) ||
1824 (Val > -256 && Val < 0);
1827 bool isMemUImm12Offset() const {
1828 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1829 return false;
1830 // Immediate offset in range [0, 4095].
1831 if (!Memory.OffsetImm) return true;
1832 int64_t Val = Memory.OffsetImm->getValue();
1833 return (Val >= 0 && Val < 4096);
1836 bool isMemImm12Offset() const {
1837 // If we have an immediate that's not a constant, treat it as a label
1838 // reference needing a fixup. If it is a constant, it's something else
1839 // and we reject it.
1841 if (isImm() && !isa<MCConstantExpr>(getImm()))
1842 return true;
1844 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1845 return false;
1846 // Immediate offset in range [-4095, 4095].
1847 if (!Memory.OffsetImm) return true;
1848 int64_t Val = Memory.OffsetImm->getValue();
1849 return (Val > -4096 && Val < 4096) ||
1850 (Val == std::numeric_limits<int32_t>::min());
1853 bool isConstPoolAsmImm() const {
1854 // Delay processing of Constant Pool Immediate, this will turn into
1855 // a constant. Match no other operand
1856 return (isConstantPoolImm());
1859 bool isPostIdxImm8() const {
1860 if (!isImm()) return false;
1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1862 if (!CE) return false;
1863 int64_t Val = CE->getValue();
1864 return (Val > -256 && Val < 256) ||
1865 (Val == std::numeric_limits<int32_t>::min());
1868 bool isPostIdxImm8s4() const {
1869 if (!isImm()) return false;
1870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1871 if (!CE) return false;
1872 int64_t Val = CE->getValue();
1873 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1874 (Val == std::numeric_limits<int32_t>::min());
1877 bool isMSRMask() const { return Kind == k_MSRMask; }
1878 bool isBankedReg() const { return Kind == k_BankedReg; }
1879 bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1881 // NEON operands.
1882 bool isSingleSpacedVectorList() const {
1883 return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1886 bool isDoubleSpacedVectorList() const {
1887 return Kind == k_VectorList && VectorList.isDoubleSpaced;
1890 bool isVecListOneD() const {
1891 if (!isSingleSpacedVectorList()) return false;
1892 return VectorList.Count == 1;
1895 bool isVecListTwoMQ() const {
1896 return isSingleSpacedVectorList() && VectorList.Count == 2 &&
1897 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1898 VectorList.RegNum);
1901 bool isVecListDPair() const {
1902 if (!isSingleSpacedVectorList()) return false;
1903 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1904 .contains(VectorList.RegNum));
1907 bool isVecListThreeD() const {
1908 if (!isSingleSpacedVectorList()) return false;
1909 return VectorList.Count == 3;
1912 bool isVecListFourD() const {
1913 if (!isSingleSpacedVectorList()) return false;
1914 return VectorList.Count == 4;
1917 bool isVecListDPairSpaced() const {
1918 if (Kind != k_VectorList) return false;
1919 if (isSingleSpacedVectorList()) return false;
1920 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1921 .contains(VectorList.RegNum));
1924 bool isVecListThreeQ() const {
1925 if (!isDoubleSpacedVectorList()) return false;
1926 return VectorList.Count == 3;
1929 bool isVecListFourQ() const {
1930 if (!isDoubleSpacedVectorList()) return false;
1931 return VectorList.Count == 4;
1934 bool isVecListFourMQ() const {
1935 return isSingleSpacedVectorList() && VectorList.Count == 4 &&
1936 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1937 VectorList.RegNum);
1940 bool isSingleSpacedVectorAllLanes() const {
1941 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1944 bool isDoubleSpacedVectorAllLanes() const {
1945 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1948 bool isVecListOneDAllLanes() const {
1949 if (!isSingleSpacedVectorAllLanes()) return false;
1950 return VectorList.Count == 1;
1953 bool isVecListDPairAllLanes() const {
1954 if (!isSingleSpacedVectorAllLanes()) return false;
1955 return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1956 .contains(VectorList.RegNum));
1959 bool isVecListDPairSpacedAllLanes() const {
1960 if (!isDoubleSpacedVectorAllLanes()) return false;
1961 return VectorList.Count == 2;
1964 bool isVecListThreeDAllLanes() const {
1965 if (!isSingleSpacedVectorAllLanes()) return false;
1966 return VectorList.Count == 3;
1969 bool isVecListThreeQAllLanes() const {
1970 if (!isDoubleSpacedVectorAllLanes()) return false;
1971 return VectorList.Count == 3;
1974 bool isVecListFourDAllLanes() const {
1975 if (!isSingleSpacedVectorAllLanes()) return false;
1976 return VectorList.Count == 4;
1979 bool isVecListFourQAllLanes() const {
1980 if (!isDoubleSpacedVectorAllLanes()) return false;
1981 return VectorList.Count == 4;
1984 bool isSingleSpacedVectorIndexed() const {
1985 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1988 bool isDoubleSpacedVectorIndexed() const {
1989 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1992 bool isVecListOneDByteIndexed() const {
1993 if (!isSingleSpacedVectorIndexed()) return false;
1994 return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1997 bool isVecListOneDHWordIndexed() const {
1998 if (!isSingleSpacedVectorIndexed()) return false;
1999 return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2002 bool isVecListOneDWordIndexed() const {
2003 if (!isSingleSpacedVectorIndexed()) return false;
2004 return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2007 bool isVecListTwoDByteIndexed() const {
2008 if (!isSingleSpacedVectorIndexed()) return false;
2009 return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2012 bool isVecListTwoDHWordIndexed() const {
2013 if (!isSingleSpacedVectorIndexed()) return false;
2014 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2017 bool isVecListTwoQWordIndexed() const {
2018 if (!isDoubleSpacedVectorIndexed()) return false;
2019 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2022 bool isVecListTwoQHWordIndexed() const {
2023 if (!isDoubleSpacedVectorIndexed()) return false;
2024 return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2027 bool isVecListTwoDWordIndexed() const {
2028 if (!isSingleSpacedVectorIndexed()) return false;
2029 return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2032 bool isVecListThreeDByteIndexed() const {
2033 if (!isSingleSpacedVectorIndexed()) return false;
2034 return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2037 bool isVecListThreeDHWordIndexed() const {
2038 if (!isSingleSpacedVectorIndexed()) return false;
2039 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2042 bool isVecListThreeQWordIndexed() const {
2043 if (!isDoubleSpacedVectorIndexed()) return false;
2044 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2047 bool isVecListThreeQHWordIndexed() const {
2048 if (!isDoubleSpacedVectorIndexed()) return false;
2049 return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2052 bool isVecListThreeDWordIndexed() const {
2053 if (!isSingleSpacedVectorIndexed()) return false;
2054 return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2057 bool isVecListFourDByteIndexed() const {
2058 if (!isSingleSpacedVectorIndexed()) return false;
2059 return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2062 bool isVecListFourDHWordIndexed() const {
2063 if (!isSingleSpacedVectorIndexed()) return false;
2064 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2067 bool isVecListFourQWordIndexed() const {
2068 if (!isDoubleSpacedVectorIndexed()) return false;
2069 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2072 bool isVecListFourQHWordIndexed() const {
2073 if (!isDoubleSpacedVectorIndexed()) return false;
2074 return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2077 bool isVecListFourDWordIndexed() const {
2078 if (!isSingleSpacedVectorIndexed()) return false;
2079 return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2082 bool isVectorIndex() const { return Kind == k_VectorIndex; }
2084 template <unsigned NumLanes>
2085 bool isVectorIndexInRange() const {
2086 if (Kind != k_VectorIndex) return false;
2087 return VectorIndex.Val < NumLanes;
2090 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); }
2091 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2092 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2093 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2095 template<int PermittedValue, int OtherPermittedValue>
2096 bool isMVEPairVectorIndex() const {
2097 if (Kind != k_VectorIndex) return false;
2098 return VectorIndex.Val == PermittedValue ||
2099 VectorIndex.Val == OtherPermittedValue;
2102 bool isNEONi8splat() const {
2103 if (!isImm()) return false;
2104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2105 // Must be a constant.
2106 if (!CE) return false;
2107 int64_t Value = CE->getValue();
2108 // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2109 // value.
2110 return Value >= 0 && Value < 256;
2113 bool isNEONi16splat() const {
2114 if (isNEONByteReplicate(2))
2115 return false; // Leave that for bytes replication and forbid by default.
2116 if (!isImm())
2117 return false;
2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2119 // Must be a constant.
2120 if (!CE) return false;
2121 unsigned Value = CE->getValue();
2122 return ARM_AM::isNEONi16splat(Value);
2125 bool isNEONi16splatNot() const {
2126 if (!isImm())
2127 return false;
2128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2129 // Must be a constant.
2130 if (!CE) return false;
2131 unsigned Value = CE->getValue();
2132 return ARM_AM::isNEONi16splat(~Value & 0xffff);
2135 bool isNEONi32splat() const {
2136 if (isNEONByteReplicate(4))
2137 return false; // Leave that for bytes replication and forbid by default.
2138 if (!isImm())
2139 return false;
2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2141 // Must be a constant.
2142 if (!CE) return false;
2143 unsigned Value = CE->getValue();
2144 return ARM_AM::isNEONi32splat(Value);
2147 bool isNEONi32splatNot() const {
2148 if (!isImm())
2149 return false;
2150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2151 // Must be a constant.
2152 if (!CE) return false;
2153 unsigned Value = CE->getValue();
2154 return ARM_AM::isNEONi32splat(~Value);
2157 static bool isValidNEONi32vmovImm(int64_t Value) {
2158 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2159 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2160 return ((Value & 0xffffffffffffff00) == 0) ||
2161 ((Value & 0xffffffffffff00ff) == 0) ||
2162 ((Value & 0xffffffffff00ffff) == 0) ||
2163 ((Value & 0xffffffff00ffffff) == 0) ||
2164 ((Value & 0xffffffffffff00ff) == 0xff) ||
2165 ((Value & 0xffffffffff00ffff) == 0xffff);
2168 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2169 assert((Width == 8 || Width == 16 || Width == 32) &&
2170 "Invalid element width");
2171 assert(NumElems * Width <= 64 && "Invalid result width");
2173 if (!isImm())
2174 return false;
2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2176 // Must be a constant.
2177 if (!CE)
2178 return false;
2179 int64_t Value = CE->getValue();
2180 if (!Value)
2181 return false; // Don't bother with zero.
2182 if (Inv)
2183 Value = ~Value;
2185 uint64_t Mask = (1ull << Width) - 1;
2186 uint64_t Elem = Value & Mask;
2187 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2188 return false;
2189 if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2190 return false;
2192 for (unsigned i = 1; i < NumElems; ++i) {
2193 Value >>= Width;
2194 if ((Value & Mask) != Elem)
2195 return false;
2197 return true;
2200 bool isNEONByteReplicate(unsigned NumBytes) const {
2201 return isNEONReplicate(8, NumBytes, false);
2204 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2205 assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2206 "Invalid source width");
2207 assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2208 "Invalid destination width");
2209 assert(FromW < ToW && "ToW is not less than FromW");
2212 template<unsigned FromW, unsigned ToW>
2213 bool isNEONmovReplicate() const {
2214 checkNeonReplicateArgs(FromW, ToW);
2215 if (ToW == 64 && isNEONi64splat())
2216 return false;
2217 return isNEONReplicate(FromW, ToW / FromW, false);
2220 template<unsigned FromW, unsigned ToW>
2221 bool isNEONinvReplicate() const {
2222 checkNeonReplicateArgs(FromW, ToW);
2223 return isNEONReplicate(FromW, ToW / FromW, true);
2226 bool isNEONi32vmov() const {
2227 if (isNEONByteReplicate(4))
2228 return false; // Let it to be classified as byte-replicate case.
2229 if (!isImm())
2230 return false;
2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2232 // Must be a constant.
2233 if (!CE)
2234 return false;
2235 return isValidNEONi32vmovImm(CE->getValue());
2238 bool isNEONi32vmovNeg() const {
2239 if (!isImm()) return false;
2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2241 // Must be a constant.
2242 if (!CE) return false;
2243 return isValidNEONi32vmovImm(~CE->getValue());
2246 bool isNEONi64splat() const {
2247 if (!isImm()) return false;
2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249 // Must be a constant.
2250 if (!CE) return false;
2251 uint64_t Value = CE->getValue();
2252 // i64 value with each byte being either 0 or 0xff.
2253 for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2254 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2255 return true;
2258 template<int64_t Angle, int64_t Remainder>
2259 bool isComplexRotation() const {
2260 if (!isImm()) return false;
2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2263 if (!CE) return false;
2264 uint64_t Value = CE->getValue();
2266 return (Value % Angle == Remainder && Value <= 270);
2269 bool isMVELongShift() const {
2270 if (!isImm()) return false;
2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2272 // Must be a constant.
2273 if (!CE) return false;
2274 uint64_t Value = CE->getValue();
2275 return Value >= 1 && Value <= 32;
2278 bool isMveSaturateOp() const {
2279 if (!isImm()) return false;
2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2281 if (!CE) return false;
2282 uint64_t Value = CE->getValue();
2283 return Value == 48 || Value == 64;
2286 bool isITCondCodeNoAL() const {
2287 if (!isITCondCode()) return false;
2288 ARMCC::CondCodes CC = getCondCode();
2289 return CC != ARMCC::AL;
2292 bool isITCondCodeRestrictedI() const {
2293 if (!isITCondCode())
2294 return false;
2295 ARMCC::CondCodes CC = getCondCode();
2296 return CC == ARMCC::EQ || CC == ARMCC::NE;
2299 bool isITCondCodeRestrictedS() const {
2300 if (!isITCondCode())
2301 return false;
2302 ARMCC::CondCodes CC = getCondCode();
2303 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2304 CC == ARMCC::GE;
2307 bool isITCondCodeRestrictedU() const {
2308 if (!isITCondCode())
2309 return false;
2310 ARMCC::CondCodes CC = getCondCode();
2311 return CC == ARMCC::HS || CC == ARMCC::HI;
2314 bool isITCondCodeRestrictedFP() const {
2315 if (!isITCondCode())
2316 return false;
2317 ARMCC::CondCodes CC = getCondCode();
2318 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2319 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2322 void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2323 // Add as immediates when possible. Null MCExpr = 0.
2324 if (!Expr)
2325 Inst.addOperand(MCOperand::createImm(0));
2326 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2327 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2328 else
2329 Inst.addOperand(MCOperand::createExpr(Expr));
2332 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2333 assert(N == 1 && "Invalid number of operands!");
2334 addExpr(Inst, getImm());
2337 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2338 assert(N == 1 && "Invalid number of operands!");
2339 addExpr(Inst, getImm());
2342 void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2343 assert(N == 2 && "Invalid number of operands!");
2344 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2345 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2346 Inst.addOperand(MCOperand::createReg(RegNum));
2349 void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2350 assert(N == 2 && "Invalid number of operands!");
2351 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2352 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2353 Inst.addOperand(MCOperand::createReg(RegNum));
2356 void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2357 assert(N == 3 && "Invalid number of operands!");
2358 addVPTPredNOperands(Inst, N-1);
2359 unsigned RegNum;
2360 if (getVPTPred() == ARMVCC::None) {
2361 RegNum = 0;
2362 } else {
2363 unsigned NextOpIndex = Inst.getNumOperands();
2364 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2365 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2366 assert(TiedOp >= 0 &&
2367 "Inactive register in vpred_r is not tied to an output!");
2368 RegNum = Inst.getOperand(TiedOp).getReg();
2370 Inst.addOperand(MCOperand::createReg(RegNum));
2373 void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2374 assert(N == 1 && "Invalid number of operands!");
2375 Inst.addOperand(MCOperand::createImm(getCoproc()));
2378 void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2379 assert(N == 1 && "Invalid number of operands!");
2380 Inst.addOperand(MCOperand::createImm(getCoproc()));
2383 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2384 assert(N == 1 && "Invalid number of operands!");
2385 Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2388 void addITMaskOperands(MCInst &Inst, unsigned N) const {
2389 assert(N == 1 && "Invalid number of operands!");
2390 Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2393 void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2394 assert(N == 1 && "Invalid number of operands!");
2395 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2398 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2399 assert(N == 1 && "Invalid number of operands!");
2400 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2403 void addCCOutOperands(MCInst &Inst, unsigned N) const {
2404 assert(N == 1 && "Invalid number of operands!");
2405 Inst.addOperand(MCOperand::createReg(getReg()));
2408 void addRegOperands(MCInst &Inst, unsigned N) const {
2409 assert(N == 1 && "Invalid number of operands!");
2410 Inst.addOperand(MCOperand::createReg(getReg()));
2413 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2414 assert(N == 3 && "Invalid number of operands!");
2415 assert(isRegShiftedReg() &&
2416 "addRegShiftedRegOperands() on non-RegShiftedReg!");
2417 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2418 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2419 Inst.addOperand(MCOperand::createImm(
2420 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2423 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2424 assert(N == 2 && "Invalid number of operands!");
2425 assert(isRegShiftedImm() &&
2426 "addRegShiftedImmOperands() on non-RegShiftedImm!");
2427 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2428 // Shift of #32 is encoded as 0 where permitted
2429 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2430 Inst.addOperand(MCOperand::createImm(
2431 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2434 void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2435 assert(N == 1 && "Invalid number of operands!");
2436 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2437 ShifterImm.Imm));
2440 void addRegListOperands(MCInst &Inst, unsigned N) const {
2441 assert(N == 1 && "Invalid number of operands!");
2442 const SmallVectorImpl<unsigned> &RegList = getRegList();
2443 for (SmallVectorImpl<unsigned>::const_iterator
2444 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2445 Inst.addOperand(MCOperand::createReg(*I));
2448 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2449 assert(N == 1 && "Invalid number of operands!");
2450 const SmallVectorImpl<unsigned> &RegList = getRegList();
2451 for (SmallVectorImpl<unsigned>::const_iterator
2452 I = RegList.begin(), E = RegList.end(); I != E; ++I)
2453 Inst.addOperand(MCOperand::createReg(*I));
2456 void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2457 addRegListOperands(Inst, N);
2460 void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2461 addRegListOperands(Inst, N);
2464 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2465 addRegListOperands(Inst, N);
2468 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2469 addRegListOperands(Inst, N);
2472 void addRotImmOperands(MCInst &Inst, unsigned N) const {
2473 assert(N == 1 && "Invalid number of operands!");
2474 // Encoded as val>>3. The printer handles display as 8, 16, 24.
2475 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2478 void addModImmOperands(MCInst &Inst, unsigned N) const {
2479 assert(N == 1 && "Invalid number of operands!");
2481 // Support for fixups (MCFixup)
2482 if (isImm())
2483 return addImmOperands(Inst, N);
2485 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2488 void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2489 assert(N == 1 && "Invalid number of operands!");
2490 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2491 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2492 Inst.addOperand(MCOperand::createImm(Enc));
2495 void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2496 assert(N == 1 && "Invalid number of operands!");
2497 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2498 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2499 Inst.addOperand(MCOperand::createImm(Enc));
2502 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2503 assert(N == 1 && "Invalid number of operands!");
2504 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2505 uint32_t Val = -CE->getValue();
2506 Inst.addOperand(MCOperand::createImm(Val));
2509 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2510 assert(N == 1 && "Invalid number of operands!");
2511 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2512 uint32_t Val = -CE->getValue();
2513 Inst.addOperand(MCOperand::createImm(Val));
2516 void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2517 assert(N == 1 && "Invalid number of operands!");
2518 // Munge the lsb/width into a bitfield mask.
2519 unsigned lsb = Bitfield.LSB;
2520 unsigned width = Bitfield.Width;
2521 // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2522 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2523 (32 - (lsb + width)));
2524 Inst.addOperand(MCOperand::createImm(Mask));
2527 void addImmOperands(MCInst &Inst, unsigned N) const {
2528 assert(N == 1 && "Invalid number of operands!");
2529 addExpr(Inst, getImm());
2532 void addFBits16Operands(MCInst &Inst, unsigned N) const {
2533 assert(N == 1 && "Invalid number of operands!");
2534 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2535 Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2538 void addFBits32Operands(MCInst &Inst, unsigned N) const {
2539 assert(N == 1 && "Invalid number of operands!");
2540 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2541 Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2544 void addFPImmOperands(MCInst &Inst, unsigned N) const {
2545 assert(N == 1 && "Invalid number of operands!");
2546 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2547 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2548 Inst.addOperand(MCOperand::createImm(Val));
2551 void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2552 assert(N == 1 && "Invalid number of operands!");
2553 // FIXME: We really want to scale the value here, but the LDRD/STRD
2554 // instruction don't encode operands that way yet.
2555 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2556 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2559 void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2560 assert(N == 1 && "Invalid number of operands!");
2561 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2562 // instruction don't encode operands that way yet.
2563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2564 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2567 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2568 assert(N == 1 && "Invalid number of operands!");
2569 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2570 assert(CE != nullptr && "Invalid operand type!");
2571 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2574 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2575 assert(N == 1 && "Invalid number of operands!");
2576 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2577 assert(CE != nullptr && "Invalid operand type!");
2578 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2581 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2582 assert(N == 1 && "Invalid number of operands!");
2583 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2584 assert(CE != nullptr && "Invalid operand type!");
2585 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2588 void addImm7Operands(MCInst &Inst, unsigned N) const {
2589 assert(N == 1 && "Invalid number of operands!");
2590 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2591 assert(CE != nullptr && "Invalid operand type!");
2592 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2595 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2596 assert(N == 1 && "Invalid number of operands!");
2597 // The immediate is scaled by four in the encoding and is stored
2598 // in the MCInst as such. Lop off the low two bits here.
2599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2600 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2603 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2604 assert(N == 1 && "Invalid number of operands!");
2605 // The immediate is scaled by four in the encoding and is stored
2606 // in the MCInst as such. Lop off the low two bits here.
2607 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2608 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2611 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2612 assert(N == 1 && "Invalid number of operands!");
2613 // The immediate is scaled by four in the encoding and is stored
2614 // in the MCInst as such. Lop off the low two bits here.
2615 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2616 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2619 void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2620 assert(N == 1 && "Invalid number of operands!");
2621 // The constant encodes as the immediate-1, and we store in the instruction
2622 // the bits as encoded, so subtract off one here.
2623 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2624 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2627 void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2628 assert(N == 1 && "Invalid number of operands!");
2629 // The constant encodes as the immediate-1, and we store in the instruction
2630 // the bits as encoded, so subtract off one here.
2631 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2632 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2635 void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2636 assert(N == 1 && "Invalid number of operands!");
2637 // The constant encodes as the immediate, except for 32, which encodes as
2638 // zero.
2639 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2640 unsigned Imm = CE->getValue();
2641 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2644 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2645 assert(N == 1 && "Invalid number of operands!");
2646 // An ASR value of 32 encodes as 0, so that's how we want to add it to
2647 // the instruction as well.
2648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2649 int Val = CE->getValue();
2650 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2653 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2654 assert(N == 1 && "Invalid number of operands!");
2655 // The operand is actually a t2_so_imm, but we have its bitwise
2656 // negation in the assembly source, so twiddle it here.
2657 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2658 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2661 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2662 assert(N == 1 && "Invalid number of operands!");
2663 // The operand is actually a t2_so_imm, but we have its
2664 // negation in the assembly source, so twiddle it here.
2665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2666 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2669 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2670 assert(N == 1 && "Invalid number of operands!");
2671 // The operand is actually an imm0_4095, but we have its
2672 // negation in the assembly source, so twiddle it here.
2673 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2674 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2677 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2678 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2679 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2680 return;
2683 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2684 assert(SR && "Unknown value type!");
2685 Inst.addOperand(MCOperand::createExpr(SR));
2688 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2689 assert(N == 1 && "Invalid number of operands!");
2690 if (isImm()) {
2691 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2692 if (CE) {
2693 Inst.addOperand(MCOperand::createImm(CE->getValue()));
2694 return;
2697 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2699 assert(SR && "Unknown value type!");
2700 Inst.addOperand(MCOperand::createExpr(SR));
2701 return;
2704 assert(isGPRMem() && "Unknown value type!");
2705 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2706 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2709 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2710 assert(N == 1 && "Invalid number of operands!");
2711 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2714 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2715 assert(N == 1 && "Invalid number of operands!");
2716 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2719 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2720 assert(N == 1 && "Invalid number of operands!");
2721 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2724 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2725 assert(N == 1 && "Invalid number of operands!");
2726 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2729 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2730 assert(N == 1 && "Invalid number of operands!");
2731 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2734 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2735 assert(N == 1 && "Invalid number of operands!");
2736 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2739 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2740 assert(N == 1 && "Invalid number of operands!");
2741 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2744 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2745 assert(N == 1 && "Invalid number of operands!");
2746 int32_t Imm = Memory.OffsetImm->getValue();
2747 Inst.addOperand(MCOperand::createImm(Imm));
2750 void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2751 assert(N == 1 && "Invalid number of operands!");
2752 assert(isImm() && "Not an immediate!");
2754 // If we have an immediate that's not a constant, treat it as a label
2755 // reference needing a fixup.
2756 if (!isa<MCConstantExpr>(getImm())) {
2757 Inst.addOperand(MCOperand::createExpr(getImm()));
2758 return;
2761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2762 int Val = CE->getValue();
2763 Inst.addOperand(MCOperand::createImm(Val));
2766 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2767 assert(N == 2 && "Invalid number of operands!");
2768 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2769 Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2772 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2773 addAlignedMemoryOperands(Inst, N);
2776 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2777 addAlignedMemoryOperands(Inst, N);
2780 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2781 addAlignedMemoryOperands(Inst, N);
2784 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2785 addAlignedMemoryOperands(Inst, N);
2788 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2789 addAlignedMemoryOperands(Inst, N);
2792 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2793 addAlignedMemoryOperands(Inst, N);
2796 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2797 addAlignedMemoryOperands(Inst, N);
2800 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2801 addAlignedMemoryOperands(Inst, N);
2804 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2805 addAlignedMemoryOperands(Inst, N);
2808 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2809 addAlignedMemoryOperands(Inst, N);
2812 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2813 addAlignedMemoryOperands(Inst, N);
2816 void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2817 assert(N == 3 && "Invalid number of operands!");
2818 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2819 if (!Memory.OffsetRegNum) {
2820 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2821 // Special case for #-0
2822 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2823 if (Val < 0) Val = -Val;
2824 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2825 } else {
2826 // For register offset, we encode the shift type and negation flag
2827 // here.
2828 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2829 Memory.ShiftImm, Memory.ShiftType);
2831 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2832 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2833 Inst.addOperand(MCOperand::createImm(Val));
2836 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2837 assert(N == 2 && "Invalid number of operands!");
2838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2839 assert(CE && "non-constant AM2OffsetImm operand!");
2840 int32_t Val = CE->getValue();
2841 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2842 // Special case for #-0
2843 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2844 if (Val < 0) Val = -Val;
2845 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2846 Inst.addOperand(MCOperand::createReg(0));
2847 Inst.addOperand(MCOperand::createImm(Val));
2850 void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2851 assert(N == 3 && "Invalid number of operands!");
2852 // If we have an immediate that's not a constant, treat it as a label
2853 // reference needing a fixup. If it is a constant, it's something else
2854 // and we reject it.
2855 if (isImm()) {
2856 Inst.addOperand(MCOperand::createExpr(getImm()));
2857 Inst.addOperand(MCOperand::createReg(0));
2858 Inst.addOperand(MCOperand::createImm(0));
2859 return;
2862 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2863 if (!Memory.OffsetRegNum) {
2864 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2865 // Special case for #-0
2866 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2867 if (Val < 0) Val = -Val;
2868 Val = ARM_AM::getAM3Opc(AddSub, Val);
2869 } else {
2870 // For register offset, we encode the shift type and negation flag
2871 // here.
2872 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2874 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2875 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2876 Inst.addOperand(MCOperand::createImm(Val));
2879 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2880 assert(N == 2 && "Invalid number of operands!");
2881 if (Kind == k_PostIndexRegister) {
2882 int32_t Val =
2883 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2884 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2885 Inst.addOperand(MCOperand::createImm(Val));
2886 return;
2889 // Constant offset.
2890 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2891 int32_t Val = CE->getValue();
2892 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2893 // Special case for #-0
2894 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2895 if (Val < 0) Val = -Val;
2896 Val = ARM_AM::getAM3Opc(AddSub, Val);
2897 Inst.addOperand(MCOperand::createReg(0));
2898 Inst.addOperand(MCOperand::createImm(Val));
2901 void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2902 assert(N == 2 && "Invalid number of operands!");
2903 // If we have an immediate that's not a constant, treat it as a label
2904 // reference needing a fixup. If it is a constant, it's something else
2905 // and we reject it.
2906 if (isImm()) {
2907 Inst.addOperand(MCOperand::createExpr(getImm()));
2908 Inst.addOperand(MCOperand::createImm(0));
2909 return;
2912 // The lower two bits are always zero and as such are not encoded.
2913 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2914 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2915 // Special case for #-0
2916 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2917 if (Val < 0) Val = -Val;
2918 Val = ARM_AM::getAM5Opc(AddSub, Val);
2919 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2920 Inst.addOperand(MCOperand::createImm(Val));
2923 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2924 assert(N == 2 && "Invalid number of operands!");
2925 // If we have an immediate that's not a constant, treat it as a label
2926 // reference needing a fixup. If it is a constant, it's something else
2927 // and we reject it.
2928 if (isImm()) {
2929 Inst.addOperand(MCOperand::createExpr(getImm()));
2930 Inst.addOperand(MCOperand::createImm(0));
2931 return;
2934 // The lower bit is always zero and as such is not encoded.
2935 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2936 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2937 // Special case for #-0
2938 if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2939 if (Val < 0) Val = -Val;
2940 Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2941 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2942 Inst.addOperand(MCOperand::createImm(Val));
2945 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2946 assert(N == 2 && "Invalid number of operands!");
2947 // If we have an immediate that's not a constant, treat it as a label
2948 // reference needing a fixup. If it is a constant, it's something else
2949 // and we reject it.
2950 if (isImm()) {
2951 Inst.addOperand(MCOperand::createExpr(getImm()));
2952 Inst.addOperand(MCOperand::createImm(0));
2953 return;
2956 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2957 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2958 Inst.addOperand(MCOperand::createImm(Val));
2961 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
2962 assert(N == 2 && "Invalid number of operands!");
2963 // If we have an immediate that's not a constant, treat it as a label
2964 // reference needing a fixup. If it is a constant, it's something else
2965 // and we reject it.
2966 if (isImm()) {
2967 Inst.addOperand(MCOperand::createExpr(getImm()));
2968 Inst.addOperand(MCOperand::createImm(0));
2969 return;
2972 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2973 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2974 Inst.addOperand(MCOperand::createImm(Val));
2977 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2978 assert(N == 2 && "Invalid number of operands!");
2979 // The lower two bits are always zero and as such are not encoded.
2980 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2981 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2982 Inst.addOperand(MCOperand::createImm(Val));
2985 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
2986 assert(N == 2 && "Invalid number of operands!");
2987 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2988 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2989 Inst.addOperand(MCOperand::createImm(Val));
2992 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
2993 assert(N == 2 && "Invalid number of operands!");
2994 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2995 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2998 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2999 assert(N == 2 && "Invalid number of operands!");
3000 // If this is an immediate, it's a label reference.
3001 if (isImm()) {
3002 addExpr(Inst, getImm());
3003 Inst.addOperand(MCOperand::createImm(0));
3004 return;
3007 // Otherwise, it's a normal memory reg+offset.
3008 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3009 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3010 Inst.addOperand(MCOperand::createImm(Val));
3013 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3014 assert(N == 2 && "Invalid number of operands!");
3015 // If this is an immediate, it's a label reference.
3016 if (isImm()) {
3017 addExpr(Inst, getImm());
3018 Inst.addOperand(MCOperand::createImm(0));
3019 return;
3022 // Otherwise, it's a normal memory reg+offset.
3023 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3024 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3025 Inst.addOperand(MCOperand::createImm(Val));
3028 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3029 assert(N == 1 && "Invalid number of operands!");
3030 // This is container for the immediate that we will create the constant
3031 // pool from
3032 addExpr(Inst, getConstantPoolImm());
3033 return;
3036 void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3037 assert(N == 2 && "Invalid number of operands!");
3038 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3039 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3042 void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3043 assert(N == 2 && "Invalid number of operands!");
3044 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3045 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3048 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3049 assert(N == 3 && "Invalid number of operands!");
3050 unsigned Val =
3051 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3052 Memory.ShiftImm, Memory.ShiftType);
3053 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3054 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3055 Inst.addOperand(MCOperand::createImm(Val));
3058 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3059 assert(N == 3 && "Invalid number of operands!");
3060 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3061 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3062 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3065 void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3066 assert(N == 2 && "Invalid number of operands!");
3067 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3068 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3071 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3072 assert(N == 2 && "Invalid number of operands!");
3073 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3074 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3075 Inst.addOperand(MCOperand::createImm(Val));
3078 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3079 assert(N == 2 && "Invalid number of operands!");
3080 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3082 Inst.addOperand(MCOperand::createImm(Val));
3085 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3086 assert(N == 2 && "Invalid number of operands!");
3087 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
3088 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3089 Inst.addOperand(MCOperand::createImm(Val));
3092 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3093 assert(N == 2 && "Invalid number of operands!");
3094 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3095 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3096 Inst.addOperand(MCOperand::createImm(Val));
3099 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3100 assert(N == 1 && "Invalid number of operands!");
3101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3102 assert(CE && "non-constant post-idx-imm8 operand!");
3103 int Imm = CE->getValue();
3104 bool isAdd = Imm >= 0;
3105 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3106 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3107 Inst.addOperand(MCOperand::createImm(Imm));
3110 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3111 assert(N == 1 && "Invalid number of operands!");
3112 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3113 assert(CE && "non-constant post-idx-imm8s4 operand!");
3114 int Imm = CE->getValue();
3115 bool isAdd = Imm >= 0;
3116 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3117 // Immediate is scaled by 4.
3118 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3119 Inst.addOperand(MCOperand::createImm(Imm));
3122 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3123 assert(N == 2 && "Invalid number of operands!");
3124 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3125 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3128 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3129 assert(N == 2 && "Invalid number of operands!");
3130 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3131 // The sign, shift type, and shift amount are encoded in a single operand
3132 // using the AM2 encoding helpers.
3133 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3134 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3135 PostIdxReg.ShiftTy);
3136 Inst.addOperand(MCOperand::createImm(Imm));
3139 void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3140 assert(N == 1 && "Invalid number of operands!");
3141 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3142 Inst.addOperand(MCOperand::createImm(CE->getValue()));
3145 void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3146 assert(N == 1 && "Invalid number of operands!");
3147 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3150 void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3151 assert(N == 1 && "Invalid number of operands!");
3152 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3155 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3156 assert(N == 1 && "Invalid number of operands!");
3157 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3160 void addVecListOperands(MCInst &Inst, unsigned N) const {
3161 assert(N == 1 && "Invalid number of operands!");
3162 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3165 void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3166 assert(N == 1 && "Invalid number of operands!");
3168 // When we come here, the VectorList field will identify a range
3169 // of q-registers by its base register and length, and it will
3170 // have already been error-checked to be the expected length of
3171 // range and contain only q-regs in the range q0-q7. So we can
3172 // count on the base register being in the range q0-q6 (for 2
3173 // regs) or q0-q4 (for 4)
3175 // The MVE instructions taking a register range of this kind will
3176 // need an operand in the QQPR or QQQQPR class, representing the
3177 // entire range as a unit. So we must translate into that class,
3178 // by finding the index of the base register in the MQPR reg
3179 // class, and returning the super-register at the corresponding
3180 // index in the target class.
3182 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3183 const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
3184 &ARMMCRegisterClasses[ARM::QQPRRegClassID] :
3185 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID];
3187 unsigned I, E = RC_out->getNumRegs();
3188 for (I = 0; I < E; I++)
3189 if (RC_in->getRegister(I) == VectorList.RegNum)
3190 break;
3191 assert(I < E && "Invalid vector list start register!");
3193 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3196 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3197 assert(N == 2 && "Invalid number of operands!");
3198 Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3199 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3202 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3203 assert(N == 1 && "Invalid number of operands!");
3204 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3207 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3208 assert(N == 1 && "Invalid number of operands!");
3209 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3212 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3213 assert(N == 1 && "Invalid number of operands!");
3214 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3217 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3218 assert(N == 1 && "Invalid number of operands!");
3219 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3222 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3223 assert(N == 1 && "Invalid number of operands!");
3224 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3227 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3228 assert(N == 1 && "Invalid number of operands!");
3229 Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3232 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3233 assert(N == 1 && "Invalid number of operands!");
3234 // The immediate encodes the type of constant as well as the value.
3235 // Mask in that this is an i8 splat.
3236 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3237 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3240 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3241 assert(N == 1 && "Invalid number of operands!");
3242 // The immediate encodes the type of constant as well as the value.
3243 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3244 unsigned Value = CE->getValue();
3245 Value = ARM_AM::encodeNEONi16splat(Value);
3246 Inst.addOperand(MCOperand::createImm(Value));
3249 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3250 assert(N == 1 && "Invalid number of operands!");
3251 // The immediate encodes the type of constant as well as the value.
3252 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3253 unsigned Value = CE->getValue();
3254 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3255 Inst.addOperand(MCOperand::createImm(Value));
3258 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3259 assert(N == 1 && "Invalid number of operands!");
3260 // The immediate encodes the type of constant as well as the value.
3261 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3262 unsigned Value = CE->getValue();
3263 Value = ARM_AM::encodeNEONi32splat(Value);
3264 Inst.addOperand(MCOperand::createImm(Value));
3267 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3268 assert(N == 1 && "Invalid number of operands!");
3269 // The immediate encodes the type of constant as well as the value.
3270 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3271 unsigned Value = CE->getValue();
3272 Value = ARM_AM::encodeNEONi32splat(~Value);
3273 Inst.addOperand(MCOperand::createImm(Value));
3276 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3277 // The immediate encodes the type of constant as well as the value.
3278 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3279 assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3280 Inst.getOpcode() == ARM::VMOVv16i8) &&
3281 "All instructions that wants to replicate non-zero byte "
3282 "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3283 unsigned Value = CE->getValue();
3284 if (Inv)
3285 Value = ~Value;
3286 unsigned B = Value & 0xff;
3287 B |= 0xe00; // cmode = 0b1110
3288 Inst.addOperand(MCOperand::createImm(B));
3291 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3292 assert(N == 1 && "Invalid number of operands!");
3293 addNEONi8ReplicateOperands(Inst, true);
3296 static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3297 if (Value >= 256 && Value <= 0xffff)
3298 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3299 else if (Value > 0xffff && Value <= 0xffffff)
3300 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3301 else if (Value > 0xffffff)
3302 Value = (Value >> 24) | 0x600;
3303 return Value;
3306 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3307 assert(N == 1 && "Invalid number of operands!");
3308 // The immediate encodes the type of constant as well as the value.
3309 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3310 unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3311 Inst.addOperand(MCOperand::createImm(Value));
3314 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3315 assert(N == 1 && "Invalid number of operands!");
3316 addNEONi8ReplicateOperands(Inst, false);
3319 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3320 assert(N == 1 && "Invalid number of operands!");
3321 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3322 assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3323 Inst.getOpcode() == ARM::VMOVv8i16 ||
3324 Inst.getOpcode() == ARM::VMVNv4i16 ||
3325 Inst.getOpcode() == ARM::VMVNv8i16) &&
3326 "All instructions that want to replicate non-zero half-word "
3327 "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3328 uint64_t Value = CE->getValue();
3329 unsigned Elem = Value & 0xffff;
3330 if (Elem >= 256)
3331 Elem = (Elem >> 8) | 0x200;
3332 Inst.addOperand(MCOperand::createImm(Elem));
3335 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3336 assert(N == 1 && "Invalid number of operands!");
3337 // The immediate encodes the type of constant as well as the value.
3338 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3339 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3340 Inst.addOperand(MCOperand::createImm(Value));
3343 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3344 assert(N == 1 && "Invalid number of operands!");
3345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3346 assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3347 Inst.getOpcode() == ARM::VMOVv4i32 ||
3348 Inst.getOpcode() == ARM::VMVNv2i32 ||
3349 Inst.getOpcode() == ARM::VMVNv4i32) &&
3350 "All instructions that want to replicate non-zero word "
3351 "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3352 uint64_t Value = CE->getValue();
3353 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3354 Inst.addOperand(MCOperand::createImm(Elem));
3357 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3358 assert(N == 1 && "Invalid number of operands!");
3359 // The immediate encodes the type of constant as well as the value.
3360 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3361 uint64_t Value = CE->getValue();
3362 unsigned Imm = 0;
3363 for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3364 Imm |= (Value & 1) << i;
3366 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3369 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3370 assert(N == 1 && "Invalid number of operands!");
3371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3372 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3375 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3376 assert(N == 1 && "Invalid number of operands!");
3377 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3378 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3381 void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3382 assert(N == 1 && "Invalid number of operands!");
3383 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3384 unsigned Imm = CE->getValue();
3385 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3386 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3389 void print(raw_ostream &OS) const override;
3391 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3392 auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3393 Op->ITMask.Mask = Mask;
3394 Op->StartLoc = S;
3395 Op->EndLoc = S;
3396 return Op;
3399 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3400 SMLoc S) {
3401 auto Op = std::make_unique<ARMOperand>(k_CondCode);
3402 Op->CC.Val = CC;
3403 Op->StartLoc = S;
3404 Op->EndLoc = S;
3405 return Op;
3408 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3409 SMLoc S) {
3410 auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3411 Op->VCC.Val = CC;
3412 Op->StartLoc = S;
3413 Op->EndLoc = S;
3414 return Op;
3417 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3418 auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3419 Op->Cop.Val = CopVal;
3420 Op->StartLoc = S;
3421 Op->EndLoc = S;
3422 return Op;
3425 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3426 auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3427 Op->Cop.Val = CopVal;
3428 Op->StartLoc = S;
3429 Op->EndLoc = S;
3430 return Op;
3433 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3434 SMLoc E) {
3435 auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3436 Op->Cop.Val = Val;
3437 Op->StartLoc = S;
3438 Op->EndLoc = E;
3439 return Op;
3442 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3443 auto Op = std::make_unique<ARMOperand>(k_CCOut);
3444 Op->Reg.RegNum = RegNum;
3445 Op->StartLoc = S;
3446 Op->EndLoc = S;
3447 return Op;
3450 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3451 auto Op = std::make_unique<ARMOperand>(k_Token);
3452 Op->Tok.Data = Str.data();
3453 Op->Tok.Length = Str.size();
3454 Op->StartLoc = S;
3455 Op->EndLoc = S;
3456 return Op;
3459 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3460 SMLoc E) {
3461 auto Op = std::make_unique<ARMOperand>(k_Register);
3462 Op->Reg.RegNum = RegNum;
3463 Op->StartLoc = S;
3464 Op->EndLoc = E;
3465 return Op;
3468 static std::unique_ptr<ARMOperand>
3469 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3470 unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3471 SMLoc E) {
3472 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3473 Op->RegShiftedReg.ShiftTy = ShTy;
3474 Op->RegShiftedReg.SrcReg = SrcReg;
3475 Op->RegShiftedReg.ShiftReg = ShiftReg;
3476 Op->RegShiftedReg.ShiftImm = ShiftImm;
3477 Op->StartLoc = S;
3478 Op->EndLoc = E;
3479 return Op;
3482 static std::unique_ptr<ARMOperand>
3483 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3484 unsigned ShiftImm, SMLoc S, SMLoc E) {
3485 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3486 Op->RegShiftedImm.ShiftTy = ShTy;
3487 Op->RegShiftedImm.SrcReg = SrcReg;
3488 Op->RegShiftedImm.ShiftImm = ShiftImm;
3489 Op->StartLoc = S;
3490 Op->EndLoc = E;
3491 return Op;
3494 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3495 SMLoc S, SMLoc E) {
3496 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3497 Op->ShifterImm.isASR = isASR;
3498 Op->ShifterImm.Imm = Imm;
3499 Op->StartLoc = S;
3500 Op->EndLoc = E;
3501 return Op;
3504 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3505 SMLoc E) {
3506 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3507 Op->RotImm.Imm = Imm;
3508 Op->StartLoc = S;
3509 Op->EndLoc = E;
3510 return Op;
3513 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3514 SMLoc S, SMLoc E) {
3515 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3516 Op->ModImm.Bits = Bits;
3517 Op->ModImm.Rot = Rot;
3518 Op->StartLoc = S;
3519 Op->EndLoc = E;
3520 return Op;
3523 static std::unique_ptr<ARMOperand>
3524 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3525 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3526 Op->Imm.Val = Val;
3527 Op->StartLoc = S;
3528 Op->EndLoc = E;
3529 return Op;
3532 static std::unique_ptr<ARMOperand>
3533 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3534 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3535 Op->Bitfield.LSB = LSB;
3536 Op->Bitfield.Width = Width;
3537 Op->StartLoc = S;
3538 Op->EndLoc = E;
3539 return Op;
3542 static std::unique_ptr<ARMOperand>
3543 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3544 SMLoc StartLoc, SMLoc EndLoc) {
3545 assert(Regs.size() > 0 && "RegList contains no registers?");
3546 KindTy Kind = k_RegisterList;
3548 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3549 Regs.front().second)) {
3550 if (Regs.back().second == ARM::VPR)
3551 Kind = k_FPDRegisterListWithVPR;
3552 else
3553 Kind = k_DPRRegisterList;
3554 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3555 Regs.front().second)) {
3556 if (Regs.back().second == ARM::VPR)
3557 Kind = k_FPSRegisterListWithVPR;
3558 else
3559 Kind = k_SPRRegisterList;
3562 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3563 Kind = k_RegisterListWithAPSR;
3565 assert(std::is_sorted(Regs.begin(), Regs.end()) &&
3566 "Register list must be sorted by encoding");
3568 auto Op = std::make_unique<ARMOperand>(Kind);
3569 for (const auto &P : Regs)
3570 Op->Registers.push_back(P.second);
3572 Op->StartLoc = StartLoc;
3573 Op->EndLoc = EndLoc;
3574 return Op;
3577 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3578 unsigned Count,
3579 bool isDoubleSpaced,
3580 SMLoc S, SMLoc E) {
3581 auto Op = std::make_unique<ARMOperand>(k_VectorList);
3582 Op->VectorList.RegNum = RegNum;
3583 Op->VectorList.Count = Count;
3584 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3585 Op->StartLoc = S;
3586 Op->EndLoc = E;
3587 return Op;
3590 static std::unique_ptr<ARMOperand>
3591 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3592 SMLoc S, SMLoc E) {
3593 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3594 Op->VectorList.RegNum = RegNum;
3595 Op->VectorList.Count = Count;
3596 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3597 Op->StartLoc = S;
3598 Op->EndLoc = E;
3599 return Op;
3602 static std::unique_ptr<ARMOperand>
3603 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3604 bool isDoubleSpaced, SMLoc S, SMLoc E) {
3605 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3606 Op->VectorList.RegNum = RegNum;
3607 Op->VectorList.Count = Count;
3608 Op->VectorList.LaneIndex = Index;
3609 Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3610 Op->StartLoc = S;
3611 Op->EndLoc = E;
3612 return Op;
3615 static std::unique_ptr<ARMOperand>
3616 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3617 auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3618 Op->VectorIndex.Val = Idx;
3619 Op->StartLoc = S;
3620 Op->EndLoc = E;
3621 return Op;
3624 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3625 SMLoc E) {
3626 auto Op = std::make_unique<ARMOperand>(k_Immediate);
3627 Op->Imm.Val = Val;
3628 Op->StartLoc = S;
3629 Op->EndLoc = E;
3630 return Op;
3633 static std::unique_ptr<ARMOperand>
3634 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3635 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3636 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3637 SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3638 auto Op = std::make_unique<ARMOperand>(k_Memory);
3639 Op->Memory.BaseRegNum = BaseRegNum;
3640 Op->Memory.OffsetImm = OffsetImm;
3641 Op->Memory.OffsetRegNum = OffsetRegNum;
3642 Op->Memory.ShiftType = ShiftType;
3643 Op->Memory.ShiftImm = ShiftImm;
3644 Op->Memory.Alignment = Alignment;
3645 Op->Memory.isNegative = isNegative;
3646 Op->StartLoc = S;
3647 Op->EndLoc = E;
3648 Op->AlignmentLoc = AlignmentLoc;
3649 return Op;
3652 static std::unique_ptr<ARMOperand>
3653 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3654 unsigned ShiftImm, SMLoc S, SMLoc E) {
3655 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3656 Op->PostIdxReg.RegNum = RegNum;
3657 Op->PostIdxReg.isAdd = isAdd;
3658 Op->PostIdxReg.ShiftTy = ShiftTy;
3659 Op->PostIdxReg.ShiftImm = ShiftImm;
3660 Op->StartLoc = S;
3661 Op->EndLoc = E;
3662 return Op;
3665 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3666 SMLoc S) {
3667 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3668 Op->MBOpt.Val = Opt;
3669 Op->StartLoc = S;
3670 Op->EndLoc = S;
3671 return Op;
3674 static std::unique_ptr<ARMOperand>
3675 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3676 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3677 Op->ISBOpt.Val = Opt;
3678 Op->StartLoc = S;
3679 Op->EndLoc = S;
3680 return Op;
3683 static std::unique_ptr<ARMOperand>
3684 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3685 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3686 Op->TSBOpt.Val = Opt;
3687 Op->StartLoc = S;
3688 Op->EndLoc = S;
3689 return Op;
3692 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3693 SMLoc S) {
3694 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3695 Op->IFlags.Val = IFlags;
3696 Op->StartLoc = S;
3697 Op->EndLoc = S;
3698 return Op;
3701 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3702 auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3703 Op->MMask.Val = MMask;
3704 Op->StartLoc = S;
3705 Op->EndLoc = S;
3706 return Op;
3709 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3710 auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3711 Op->BankedReg.Val = Reg;
3712 Op->StartLoc = S;
3713 Op->EndLoc = S;
3714 return Op;
3718 } // end anonymous namespace.
3720 void ARMOperand::print(raw_ostream &OS) const {
3721 auto RegName = [](unsigned Reg) {
3722 if (Reg)
3723 return ARMInstPrinter::getRegisterName(Reg);
3724 else
3725 return "noreg";
3728 switch (Kind) {
3729 case k_CondCode:
3730 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3731 break;
3732 case k_VPTPred:
3733 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3734 break;
3735 case k_CCOut:
3736 OS << "<ccout " << RegName(getReg()) << ">";
3737 break;
3738 case k_ITCondMask: {
3739 static const char *const MaskStr[] = {
3740 "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3741 "(tt)", "(ttet)", "(tte)", "(ttee)",
3742 "(t)", "(tett)", "(tet)", "(tete)",
3743 "(te)", "(teet)", "(tee)", "(teee)",
3745 assert((ITMask.Mask & 0xf) == ITMask.Mask);
3746 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3747 break;
3749 case k_CoprocNum:
3750 OS << "<coprocessor number: " << getCoproc() << ">";
3751 break;
3752 case k_CoprocReg:
3753 OS << "<coprocessor register: " << getCoproc() << ">";
3754 break;
3755 case k_CoprocOption:
3756 OS << "<coprocessor option: " << CoprocOption.Val << ">";
3757 break;
3758 case k_MSRMask:
3759 OS << "<mask: " << getMSRMask() << ">";
3760 break;
3761 case k_BankedReg:
3762 OS << "<banked reg: " << getBankedReg() << ">";
3763 break;
3764 case k_Immediate:
3765 OS << *getImm();
3766 break;
3767 case k_MemBarrierOpt:
3768 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3769 break;
3770 case k_InstSyncBarrierOpt:
3771 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3772 break;
3773 case k_TraceSyncBarrierOpt:
3774 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3775 break;
3776 case k_Memory:
3777 OS << "<memory";
3778 if (Memory.BaseRegNum)
3779 OS << " base:" << RegName(Memory.BaseRegNum);
3780 if (Memory.OffsetImm)
3781 OS << " offset-imm:" << *Memory.OffsetImm;
3782 if (Memory.OffsetRegNum)
3783 OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3784 << RegName(Memory.OffsetRegNum);
3785 if (Memory.ShiftType != ARM_AM::no_shift) {
3786 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3787 OS << " shift-imm:" << Memory.ShiftImm;
3789 if (Memory.Alignment)
3790 OS << " alignment:" << Memory.Alignment;
3791 OS << ">";
3792 break;
3793 case k_PostIndexRegister:
3794 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3795 << RegName(PostIdxReg.RegNum);
3796 if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3797 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3798 << PostIdxReg.ShiftImm;
3799 OS << ">";
3800 break;
3801 case k_ProcIFlags: {
3802 OS << "<ARM_PROC::";
3803 unsigned IFlags = getProcIFlags();
3804 for (int i=2; i >= 0; --i)
3805 if (IFlags & (1 << i))
3806 OS << ARM_PROC::IFlagsToString(1 << i);
3807 OS << ">";
3808 break;
3810 case k_Register:
3811 OS << "<register " << RegName(getReg()) << ">";
3812 break;
3813 case k_ShifterImmediate:
3814 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3815 << " #" << ShifterImm.Imm << ">";
3816 break;
3817 case k_ShiftedRegister:
3818 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3819 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3820 << RegName(RegShiftedReg.ShiftReg) << ">";
3821 break;
3822 case k_ShiftedImmediate:
3823 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3824 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3825 << RegShiftedImm.ShiftImm << ">";
3826 break;
3827 case k_RotateImmediate:
3828 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3829 break;
3830 case k_ModifiedImmediate:
3831 OS << "<mod_imm #" << ModImm.Bits << ", #"
3832 << ModImm.Rot << ")>";
3833 break;
3834 case k_ConstantPoolImmediate:
3835 OS << "<constant_pool_imm #" << *getConstantPoolImm();
3836 break;
3837 case k_BitfieldDescriptor:
3838 OS << "<bitfield " << "lsb: " << Bitfield.LSB
3839 << ", width: " << Bitfield.Width << ">";
3840 break;
3841 case k_RegisterList:
3842 case k_RegisterListWithAPSR:
3843 case k_DPRRegisterList:
3844 case k_SPRRegisterList:
3845 case k_FPSRegisterListWithVPR:
3846 case k_FPDRegisterListWithVPR: {
3847 OS << "<register_list ";
3849 const SmallVectorImpl<unsigned> &RegList = getRegList();
3850 for (SmallVectorImpl<unsigned>::const_iterator
3851 I = RegList.begin(), E = RegList.end(); I != E; ) {
3852 OS << RegName(*I);
3853 if (++I < E) OS << ", ";
3856 OS << ">";
3857 break;
3859 case k_VectorList:
3860 OS << "<vector_list " << VectorList.Count << " * "
3861 << RegName(VectorList.RegNum) << ">";
3862 break;
3863 case k_VectorListAllLanes:
3864 OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3865 << RegName(VectorList.RegNum) << ">";
3866 break;
3867 case k_VectorListIndexed:
3868 OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3869 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3870 break;
3871 case k_Token:
3872 OS << "'" << getToken() << "'";
3873 break;
3874 case k_VectorIndex:
3875 OS << "<vectorindex " << getVectorIndex() << ">";
3876 break;
3880 /// @name Auto-generated Match Functions
3881 /// {
3883 static unsigned MatchRegisterName(StringRef Name);
3885 /// }
3887 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3888 SMLoc &StartLoc, SMLoc &EndLoc) {
3889 const AsmToken &Tok = getParser().getTok();
3890 StartLoc = Tok.getLoc();
3891 EndLoc = Tok.getEndLoc();
3892 RegNo = tryParseRegister();
3894 return (RegNo == (unsigned)-1);
3897 /// Try to parse a register name. The token must be an Identifier when called,
3898 /// and if it is a register name the token is eaten and the register number is
3899 /// returned. Otherwise return -1.
3900 int ARMAsmParser::tryParseRegister() {
3901 MCAsmParser &Parser = getParser();
3902 const AsmToken &Tok = Parser.getTok();
3903 if (Tok.isNot(AsmToken::Identifier)) return -1;
3905 std::string lowerCase = Tok.getString().lower();
3906 unsigned RegNum = MatchRegisterName(lowerCase);
3907 if (!RegNum) {
3908 RegNum = StringSwitch<unsigned>(lowerCase)
3909 .Case("r13", ARM::SP)
3910 .Case("r14", ARM::LR)
3911 .Case("r15", ARM::PC)
3912 .Case("ip", ARM::R12)
3913 // Additional register name aliases for 'gas' compatibility.
3914 .Case("a1", ARM::R0)
3915 .Case("a2", ARM::R1)
3916 .Case("a3", ARM::R2)
3917 .Case("a4", ARM::R3)
3918 .Case("v1", ARM::R4)
3919 .Case("v2", ARM::R5)
3920 .Case("v3", ARM::R6)
3921 .Case("v4", ARM::R7)
3922 .Case("v5", ARM::R8)
3923 .Case("v6", ARM::R9)
3924 .Case("v7", ARM::R10)
3925 .Case("v8", ARM::R11)
3926 .Case("sb", ARM::R9)
3927 .Case("sl", ARM::R10)
3928 .Case("fp", ARM::R11)
3929 .Default(0);
3931 if (!RegNum) {
3932 // Check for aliases registered via .req. Canonicalize to lower case.
3933 // That's more consistent since register names are case insensitive, and
3934 // it's how the original entry was passed in from MC/MCParser/AsmParser.
3935 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3936 // If no match, return failure.
3937 if (Entry == RegisterReqs.end())
3938 return -1;
3939 Parser.Lex(); // Eat identifier token.
3940 return Entry->getValue();
3943 // Some FPUs only have 16 D registers, so D16-D31 are invalid
3944 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3945 return -1;
3947 Parser.Lex(); // Eat identifier token.
3949 return RegNum;
3952 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3953 // If a recoverable error occurs, return 1. If an irrecoverable error
3954 // occurs, return -1. An irrecoverable error is one where tokens have been
3955 // consumed in the process of trying to parse the shifter (i.e., when it is
3956 // indeed a shifter operand, but malformed).
3957 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3958 MCAsmParser &Parser = getParser();
3959 SMLoc S = Parser.getTok().getLoc();
3960 const AsmToken &Tok = Parser.getTok();
3961 if (Tok.isNot(AsmToken::Identifier))
3962 return -1;
3964 std::string lowerCase = Tok.getString().lower();
3965 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3966 .Case("asl", ARM_AM::lsl)
3967 .Case("lsl", ARM_AM::lsl)
3968 .Case("lsr", ARM_AM::lsr)
3969 .Case("asr", ARM_AM::asr)
3970 .Case("ror", ARM_AM::ror)
3971 .Case("rrx", ARM_AM::rrx)
3972 .Default(ARM_AM::no_shift);
3974 if (ShiftTy == ARM_AM::no_shift)
3975 return 1;
3977 Parser.Lex(); // Eat the operator.
3979 // The source register for the shift has already been added to the
3980 // operand list, so we need to pop it off and combine it into the shifted
3981 // register operand instead.
3982 std::unique_ptr<ARMOperand> PrevOp(
3983 (ARMOperand *)Operands.pop_back_val().release());
3984 if (!PrevOp->isReg())
3985 return Error(PrevOp->getStartLoc(), "shift must be of a register");
3986 int SrcReg = PrevOp->getReg();
3988 SMLoc EndLoc;
3989 int64_t Imm = 0;
3990 int ShiftReg = 0;
3991 if (ShiftTy == ARM_AM::rrx) {
3992 // RRX Doesn't have an explicit shift amount. The encoder expects
3993 // the shift register to be the same as the source register. Seems odd,
3994 // but OK.
3995 ShiftReg = SrcReg;
3996 } else {
3997 // Figure out if this is shifted by a constant or a register (for non-RRX).
3998 if (Parser.getTok().is(AsmToken::Hash) ||
3999 Parser.getTok().is(AsmToken::Dollar)) {
4000 Parser.Lex(); // Eat hash.
4001 SMLoc ImmLoc = Parser.getTok().getLoc();
4002 const MCExpr *ShiftExpr = nullptr;
4003 if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4004 Error(ImmLoc, "invalid immediate shift value");
4005 return -1;
4007 // The expression must be evaluatable as an immediate.
4008 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4009 if (!CE) {
4010 Error(ImmLoc, "invalid immediate shift value");
4011 return -1;
4013 // Range check the immediate.
4014 // lsl, ror: 0 <= imm <= 31
4015 // lsr, asr: 0 <= imm <= 32
4016 Imm = CE->getValue();
4017 if (Imm < 0 ||
4018 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4019 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4020 Error(ImmLoc, "immediate shift value out of range");
4021 return -1;
4023 // shift by zero is a nop. Always send it through as lsl.
4024 // ('as' compatibility)
4025 if (Imm == 0)
4026 ShiftTy = ARM_AM::lsl;
4027 } else if (Parser.getTok().is(AsmToken::Identifier)) {
4028 SMLoc L = Parser.getTok().getLoc();
4029 EndLoc = Parser.getTok().getEndLoc();
4030 ShiftReg = tryParseRegister();
4031 if (ShiftReg == -1) {
4032 Error(L, "expected immediate or register in shift operand");
4033 return -1;
4035 } else {
4036 Error(Parser.getTok().getLoc(),
4037 "expected immediate or register in shift operand");
4038 return -1;
4042 if (ShiftReg && ShiftTy != ARM_AM::rrx)
4043 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4044 ShiftReg, Imm,
4045 S, EndLoc));
4046 else
4047 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4048 S, EndLoc));
4050 return 0;
4053 /// Try to parse a register name. The token must be an Identifier when called.
4054 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4055 /// if there is a "writeback". 'true' if it's not a register.
4057 /// TODO this is likely to change to allow different register types and or to
4058 /// parse for a specific register type.
4059 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4060 MCAsmParser &Parser = getParser();
4061 SMLoc RegStartLoc = Parser.getTok().getLoc();
4062 SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4063 int RegNo = tryParseRegister();
4064 if (RegNo == -1)
4065 return true;
4067 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4069 const AsmToken &ExclaimTok = Parser.getTok();
4070 if (ExclaimTok.is(AsmToken::Exclaim)) {
4071 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4072 ExclaimTok.getLoc()));
4073 Parser.Lex(); // Eat exclaim token
4074 return false;
4077 // Also check for an index operand. This is only legal for vector registers,
4078 // but that'll get caught OK in operand matching, so we don't need to
4079 // explicitly filter everything else out here.
4080 if (Parser.getTok().is(AsmToken::LBrac)) {
4081 SMLoc SIdx = Parser.getTok().getLoc();
4082 Parser.Lex(); // Eat left bracket token.
4084 const MCExpr *ImmVal;
4085 if (getParser().parseExpression(ImmVal))
4086 return true;
4087 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4088 if (!MCE)
4089 return TokError("immediate value expected for vector index");
4091 if (Parser.getTok().isNot(AsmToken::RBrac))
4092 return Error(Parser.getTok().getLoc(), "']' expected");
4094 SMLoc E = Parser.getTok().getEndLoc();
4095 Parser.Lex(); // Eat right bracket token.
4097 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4098 SIdx, E,
4099 getContext()));
4102 return false;
4105 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4106 /// instruction with a symbolic operand name.
4107 /// We accept "crN" syntax for GAS compatibility.
4108 /// <operand-name> ::= <prefix><number>
4109 /// If CoprocOp is 'c', then:
4110 /// <prefix> ::= c | cr
4111 /// If CoprocOp is 'p', then :
4112 /// <prefix> ::= p
4113 /// <number> ::= integer in range [0, 15]
4114 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4115 // Use the same layout as the tablegen'erated register name matcher. Ugly,
4116 // but efficient.
4117 if (Name.size() < 2 || Name[0] != CoprocOp)
4118 return -1;
4119 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4121 switch (Name.size()) {
4122 default: return -1;
4123 case 1:
4124 switch (Name[0]) {
4125 default: return -1;
4126 case '0': return 0;
4127 case '1': return 1;
4128 case '2': return 2;
4129 case '3': return 3;
4130 case '4': return 4;
4131 case '5': return 5;
4132 case '6': return 6;
4133 case '7': return 7;
4134 case '8': return 8;
4135 case '9': return 9;
4137 case 2:
4138 if (Name[0] != '1')
4139 return -1;
4140 switch (Name[1]) {
4141 default: return -1;
4142 // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4143 // However, old cores (v5/v6) did use them in that way.
4144 case '0': return 10;
4145 case '1': return 11;
4146 case '2': return 12;
4147 case '3': return 13;
4148 case '4': return 14;
4149 case '5': return 15;
4154 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4155 OperandMatchResultTy
4156 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4157 MCAsmParser &Parser = getParser();
4158 SMLoc S = Parser.getTok().getLoc();
4159 const AsmToken &Tok = Parser.getTok();
4160 if (!Tok.is(AsmToken::Identifier))
4161 return MatchOperand_NoMatch;
4162 unsigned CC = ARMCondCodeFromString(Tok.getString());
4163 if (CC == ~0U)
4164 return MatchOperand_NoMatch;
4165 Parser.Lex(); // Eat the token.
4167 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4169 return MatchOperand_Success;
4172 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4173 /// token must be an Identifier when called, and if it is a coprocessor
4174 /// number, the token is eaten and the operand is added to the operand list.
4175 OperandMatchResultTy
4176 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4177 MCAsmParser &Parser = getParser();
4178 SMLoc S = Parser.getTok().getLoc();
4179 const AsmToken &Tok = Parser.getTok();
4180 if (Tok.isNot(AsmToken::Identifier))
4181 return MatchOperand_NoMatch;
4183 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4184 if (Num == -1)
4185 return MatchOperand_NoMatch;
4186 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4187 return MatchOperand_NoMatch;
4189 Parser.Lex(); // Eat identifier token.
4190 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4191 return MatchOperand_Success;
4194 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4195 /// token must be an Identifier when called, and if it is a coprocessor
4196 /// number, the token is eaten and the operand is added to the operand list.
4197 OperandMatchResultTy
4198 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4199 MCAsmParser &Parser = getParser();
4200 SMLoc S = Parser.getTok().getLoc();
4201 const AsmToken &Tok = Parser.getTok();
4202 if (Tok.isNot(AsmToken::Identifier))
4203 return MatchOperand_NoMatch;
4205 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4206 if (Reg == -1)
4207 return MatchOperand_NoMatch;
4209 Parser.Lex(); // Eat identifier token.
4210 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4211 return MatchOperand_Success;
4214 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4215 /// coproc_option : '{' imm0_255 '}'
4216 OperandMatchResultTy
4217 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4218 MCAsmParser &Parser = getParser();
4219 SMLoc S = Parser.getTok().getLoc();
4221 // If this isn't a '{', this isn't a coprocessor immediate operand.
4222 if (Parser.getTok().isNot(AsmToken::LCurly))
4223 return MatchOperand_NoMatch;
4224 Parser.Lex(); // Eat the '{'
4226 const MCExpr *Expr;
4227 SMLoc Loc = Parser.getTok().getLoc();
4228 if (getParser().parseExpression(Expr)) {
4229 Error(Loc, "illegal expression");
4230 return MatchOperand_ParseFail;
4232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4233 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4234 Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4235 return MatchOperand_ParseFail;
4237 int Val = CE->getValue();
4239 // Check for and consume the closing '}'
4240 if (Parser.getTok().isNot(AsmToken::RCurly))
4241 return MatchOperand_ParseFail;
4242 SMLoc E = Parser.getTok().getEndLoc();
4243 Parser.Lex(); // Eat the '}'
4245 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4246 return MatchOperand_Success;
4249 // For register list parsing, we need to map from raw GPR register numbering
4250 // to the enumeration values. The enumeration values aren't sorted by
4251 // register number due to our using "sp", "lr" and "pc" as canonical names.
4252 static unsigned getNextRegister(unsigned Reg) {
4253 // If this is a GPR, we need to do it manually, otherwise we can rely
4254 // on the sort ordering of the enumeration since the other reg-classes
4255 // are sane.
4256 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4257 return Reg + 1;
4258 switch(Reg) {
4259 default: llvm_unreachable("Invalid GPR number!");
4260 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
4261 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
4262 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
4263 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
4264 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
4265 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4266 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
4267 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
4271 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4272 // success, or false, if duplicate encoding found.
4273 static bool
4274 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4275 unsigned Enc, unsigned Reg) {
4276 Regs.emplace_back(Enc, Reg);
4277 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4278 if (J->first == Enc) {
4279 Regs.erase(J.base());
4280 return false;
4282 if (J->first < Enc)
4283 break;
4284 std::swap(*I, *J);
4286 return true;
4289 /// Parse a register list.
4290 bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
4291 bool EnforceOrder) {
4292 MCAsmParser &Parser = getParser();
4293 if (Parser.getTok().isNot(AsmToken::LCurly))
4294 return TokError("Token is not a Left Curly Brace");
4295 SMLoc S = Parser.getTok().getLoc();
4296 Parser.Lex(); // Eat '{' token.
4297 SMLoc RegLoc = Parser.getTok().getLoc();
4299 // Check the first register in the list to see what register class
4300 // this is a list of.
4301 int Reg = tryParseRegister();
4302 if (Reg == -1)
4303 return Error(RegLoc, "register expected");
4305 // The reglist instructions have at most 16 registers, so reserve
4306 // space for that many.
4307 int EReg = 0;
4308 SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4310 // Allow Q regs and just interpret them as the two D sub-registers.
4311 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4312 Reg = getDRegFromQReg(Reg);
4313 EReg = MRI->getEncodingValue(Reg);
4314 Registers.emplace_back(EReg, Reg);
4315 ++Reg;
4317 const MCRegisterClass *RC;
4318 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4319 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4320 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4321 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4322 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4323 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4324 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4325 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4326 else
4327 return Error(RegLoc, "invalid register in register list");
4329 // Store the register.
4330 EReg = MRI->getEncodingValue(Reg);
4331 Registers.emplace_back(EReg, Reg);
4333 // This starts immediately after the first register token in the list,
4334 // so we can see either a comma or a minus (range separator) as a legal
4335 // next token.
4336 while (Parser.getTok().is(AsmToken::Comma) ||
4337 Parser.getTok().is(AsmToken::Minus)) {
4338 if (Parser.getTok().is(AsmToken::Minus)) {
4339 Parser.Lex(); // Eat the minus.
4340 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4341 int EndReg = tryParseRegister();
4342 if (EndReg == -1)
4343 return Error(AfterMinusLoc, "register expected");
4344 // Allow Q regs and just interpret them as the two D sub-registers.
4345 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4346 EndReg = getDRegFromQReg(EndReg) + 1;
4347 // If the register is the same as the start reg, there's nothing
4348 // more to do.
4349 if (Reg == EndReg)
4350 continue;
4351 // The register must be in the same register class as the first.
4352 if (!RC->contains(EndReg))
4353 return Error(AfterMinusLoc, "invalid register in register list");
4354 // Ranges must go from low to high.
4355 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4356 return Error(AfterMinusLoc, "bad range in register list");
4358 // Add all the registers in the range to the register list.
4359 while (Reg != EndReg) {
4360 Reg = getNextRegister(Reg);
4361 EReg = MRI->getEncodingValue(Reg);
4362 if (!insertNoDuplicates(Registers, EReg, Reg)) {
4363 Warning(AfterMinusLoc, StringRef("duplicated register (") +
4364 ARMInstPrinter::getRegisterName(Reg) +
4365 ") in register list");
4368 continue;
4370 Parser.Lex(); // Eat the comma.
4371 RegLoc = Parser.getTok().getLoc();
4372 int OldReg = Reg;
4373 const AsmToken RegTok = Parser.getTok();
4374 Reg = tryParseRegister();
4375 if (Reg == -1)
4376 return Error(RegLoc, "register expected");
4377 // Allow Q regs and just interpret them as the two D sub-registers.
4378 bool isQReg = false;
4379 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4380 Reg = getDRegFromQReg(Reg);
4381 isQReg = true;
4383 if (!RC->contains(Reg) &&
4384 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4385 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4386 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4387 // subset of GPRRegClassId except it contains APSR as well.
4388 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4390 if (Reg == ARM::VPR &&
4391 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4392 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4393 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4394 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4395 EReg = MRI->getEncodingValue(Reg);
4396 if (!insertNoDuplicates(Registers, EReg, Reg)) {
4397 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4398 ") in register list");
4400 continue;
4402 // The register must be in the same register class as the first.
4403 if (!RC->contains(Reg))
4404 return Error(RegLoc, "invalid register in register list");
4405 // In most cases, the list must be monotonically increasing. An
4406 // exception is CLRM, which is order-independent anyway, so
4407 // there's no potential for confusion if you write clrm {r2,r1}
4408 // instead of clrm {r1,r2}.
4409 if (EnforceOrder &&
4410 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4411 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4412 Warning(RegLoc, "register list not in ascending order");
4413 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4414 return Error(RegLoc, "register list not in ascending order");
4416 // VFP register lists must also be contiguous.
4417 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4418 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4419 Reg != OldReg + 1)
4420 return Error(RegLoc, "non-contiguous register range");
4421 EReg = MRI->getEncodingValue(Reg);
4422 if (!insertNoDuplicates(Registers, EReg, Reg)) {
4423 Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4424 ") in register list");
4426 if (isQReg) {
4427 EReg = MRI->getEncodingValue(++Reg);
4428 Registers.emplace_back(EReg, Reg);
4432 if (Parser.getTok().isNot(AsmToken::RCurly))
4433 return Error(Parser.getTok().getLoc(), "'}' expected");
4434 SMLoc E = Parser.getTok().getEndLoc();
4435 Parser.Lex(); // Eat '}' token.
4437 // Push the register list operand.
4438 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4440 // The ARM system instruction variants for LDM/STM have a '^' token here.
4441 if (Parser.getTok().is(AsmToken::Caret)) {
4442 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4443 Parser.Lex(); // Eat '^' token.
4446 return false;
4449 // Helper function to parse the lane index for vector lists.
4450 OperandMatchResultTy ARMAsmParser::
4451 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4452 MCAsmParser &Parser = getParser();
4453 Index = 0; // Always return a defined index value.
4454 if (Parser.getTok().is(AsmToken::LBrac)) {
4455 Parser.Lex(); // Eat the '['.
4456 if (Parser.getTok().is(AsmToken::RBrac)) {
4457 // "Dn[]" is the 'all lanes' syntax.
4458 LaneKind = AllLanes;
4459 EndLoc = Parser.getTok().getEndLoc();
4460 Parser.Lex(); // Eat the ']'.
4461 return MatchOperand_Success;
4464 // There's an optional '#' token here. Normally there wouldn't be, but
4465 // inline assemble puts one in, and it's friendly to accept that.
4466 if (Parser.getTok().is(AsmToken::Hash))
4467 Parser.Lex(); // Eat '#' or '$'.
4469 const MCExpr *LaneIndex;
4470 SMLoc Loc = Parser.getTok().getLoc();
4471 if (getParser().parseExpression(LaneIndex)) {
4472 Error(Loc, "illegal expression");
4473 return MatchOperand_ParseFail;
4475 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4476 if (!CE) {
4477 Error(Loc, "lane index must be empty or an integer");
4478 return MatchOperand_ParseFail;
4480 if (Parser.getTok().isNot(AsmToken::RBrac)) {
4481 Error(Parser.getTok().getLoc(), "']' expected");
4482 return MatchOperand_ParseFail;
4484 EndLoc = Parser.getTok().getEndLoc();
4485 Parser.Lex(); // Eat the ']'.
4486 int64_t Val = CE->getValue();
4488 // FIXME: Make this range check context sensitive for .8, .16, .32.
4489 if (Val < 0 || Val > 7) {
4490 Error(Parser.getTok().getLoc(), "lane index out of range");
4491 return MatchOperand_ParseFail;
4493 Index = Val;
4494 LaneKind = IndexedLane;
4495 return MatchOperand_Success;
4497 LaneKind = NoLanes;
4498 return MatchOperand_Success;
4501 // parse a vector register list
4502 OperandMatchResultTy
4503 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4504 MCAsmParser &Parser = getParser();
4505 VectorLaneTy LaneKind;
4506 unsigned LaneIndex;
4507 SMLoc S = Parser.getTok().getLoc();
4508 // As an extension (to match gas), support a plain D register or Q register
4509 // (without encosing curly braces) as a single or double entry list,
4510 // respectively.
4511 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4512 SMLoc E = Parser.getTok().getEndLoc();
4513 int Reg = tryParseRegister();
4514 if (Reg == -1)
4515 return MatchOperand_NoMatch;
4516 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4517 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4518 if (Res != MatchOperand_Success)
4519 return Res;
4520 switch (LaneKind) {
4521 case NoLanes:
4522 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4523 break;
4524 case AllLanes:
4525 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4526 S, E));
4527 break;
4528 case IndexedLane:
4529 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4530 LaneIndex,
4531 false, S, E));
4532 break;
4534 return MatchOperand_Success;
4536 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4537 Reg = getDRegFromQReg(Reg);
4538 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4539 if (Res != MatchOperand_Success)
4540 return Res;
4541 switch (LaneKind) {
4542 case NoLanes:
4543 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4544 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4545 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4546 break;
4547 case AllLanes:
4548 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4549 &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4550 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4551 S, E));
4552 break;
4553 case IndexedLane:
4554 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4555 LaneIndex,
4556 false, S, E));
4557 break;
4559 return MatchOperand_Success;
4561 Error(S, "vector register expected");
4562 return MatchOperand_ParseFail;
4565 if (Parser.getTok().isNot(AsmToken::LCurly))
4566 return MatchOperand_NoMatch;
4568 Parser.Lex(); // Eat '{' token.
4569 SMLoc RegLoc = Parser.getTok().getLoc();
4571 int Reg = tryParseRegister();
4572 if (Reg == -1) {
4573 Error(RegLoc, "register expected");
4574 return MatchOperand_ParseFail;
4576 unsigned Count = 1;
4577 int Spacing = 0;
4578 unsigned FirstReg = Reg;
4580 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4581 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4582 return MatchOperand_ParseFail;
4584 // The list is of D registers, but we also allow Q regs and just interpret
4585 // them as the two D sub-registers.
4586 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4587 FirstReg = Reg = getDRegFromQReg(Reg);
4588 Spacing = 1; // double-spacing requires explicit D registers, otherwise
4589 // it's ambiguous with four-register single spaced.
4590 ++Reg;
4591 ++Count;
4594 SMLoc E;
4595 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4596 return MatchOperand_ParseFail;
4598 while (Parser.getTok().is(AsmToken::Comma) ||
4599 Parser.getTok().is(AsmToken::Minus)) {
4600 if (Parser.getTok().is(AsmToken::Minus)) {
4601 if (!Spacing)
4602 Spacing = 1; // Register range implies a single spaced list.
4603 else if (Spacing == 2) {
4604 Error(Parser.getTok().getLoc(),
4605 "sequential registers in double spaced list");
4606 return MatchOperand_ParseFail;
4608 Parser.Lex(); // Eat the minus.
4609 SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4610 int EndReg = tryParseRegister();
4611 if (EndReg == -1) {
4612 Error(AfterMinusLoc, "register expected");
4613 return MatchOperand_ParseFail;
4615 // Allow Q regs and just interpret them as the two D sub-registers.
4616 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4617 EndReg = getDRegFromQReg(EndReg) + 1;
4618 // If the register is the same as the start reg, there's nothing
4619 // more to do.
4620 if (Reg == EndReg)
4621 continue;
4622 // The register must be in the same register class as the first.
4623 if ((hasMVE() &&
4624 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4625 (!hasMVE() &&
4626 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4627 Error(AfterMinusLoc, "invalid register in register list");
4628 return MatchOperand_ParseFail;
4630 // Ranges must go from low to high.
4631 if (Reg > EndReg) {
4632 Error(AfterMinusLoc, "bad range in register list");
4633 return MatchOperand_ParseFail;
4635 // Parse the lane specifier if present.
4636 VectorLaneTy NextLaneKind;
4637 unsigned NextLaneIndex;
4638 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4639 MatchOperand_Success)
4640 return MatchOperand_ParseFail;
4641 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4642 Error(AfterMinusLoc, "mismatched lane index in register list");
4643 return MatchOperand_ParseFail;
4646 // Add all the registers in the range to the register list.
4647 Count += EndReg - Reg;
4648 Reg = EndReg;
4649 continue;
4651 Parser.Lex(); // Eat the comma.
4652 RegLoc = Parser.getTok().getLoc();
4653 int OldReg = Reg;
4654 Reg = tryParseRegister();
4655 if (Reg == -1) {
4656 Error(RegLoc, "register expected");
4657 return MatchOperand_ParseFail;
4660 if (hasMVE()) {
4661 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4662 Error(RegLoc, "vector register in range Q0-Q7 expected");
4663 return MatchOperand_ParseFail;
4665 Spacing = 1;
4667 // vector register lists must be contiguous.
4668 // It's OK to use the enumeration values directly here rather, as the
4669 // VFP register classes have the enum sorted properly.
4671 // The list is of D registers, but we also allow Q regs and just interpret
4672 // them as the two D sub-registers.
4673 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4674 if (!Spacing)
4675 Spacing = 1; // Register range implies a single spaced list.
4676 else if (Spacing == 2) {
4677 Error(RegLoc,
4678 "invalid register in double-spaced list (must be 'D' register')");
4679 return MatchOperand_ParseFail;
4681 Reg = getDRegFromQReg(Reg);
4682 if (Reg != OldReg + 1) {
4683 Error(RegLoc, "non-contiguous register range");
4684 return MatchOperand_ParseFail;
4686 ++Reg;
4687 Count += 2;
4688 // Parse the lane specifier if present.
4689 VectorLaneTy NextLaneKind;
4690 unsigned NextLaneIndex;
4691 SMLoc LaneLoc = Parser.getTok().getLoc();
4692 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4693 MatchOperand_Success)
4694 return MatchOperand_ParseFail;
4695 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4696 Error(LaneLoc, "mismatched lane index in register list");
4697 return MatchOperand_ParseFail;
4699 continue;
4701 // Normal D register.
4702 // Figure out the register spacing (single or double) of the list if
4703 // we don't know it already.
4704 if (!Spacing)
4705 Spacing = 1 + (Reg == OldReg + 2);
4707 // Just check that it's contiguous and keep going.
4708 if (Reg != OldReg + Spacing) {
4709 Error(RegLoc, "non-contiguous register range");
4710 return MatchOperand_ParseFail;
4712 ++Count;
4713 // Parse the lane specifier if present.
4714 VectorLaneTy NextLaneKind;
4715 unsigned NextLaneIndex;
4716 SMLoc EndLoc = Parser.getTok().getLoc();
4717 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4718 return MatchOperand_ParseFail;
4719 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4720 Error(EndLoc, "mismatched lane index in register list");
4721 return MatchOperand_ParseFail;
4725 if (Parser.getTok().isNot(AsmToken::RCurly)) {
4726 Error(Parser.getTok().getLoc(), "'}' expected");
4727 return MatchOperand_ParseFail;
4729 E = Parser.getTok().getEndLoc();
4730 Parser.Lex(); // Eat '}' token.
4732 switch (LaneKind) {
4733 case NoLanes:
4734 case AllLanes: {
4735 // Two-register operands have been converted to the
4736 // composite register classes.
4737 if (Count == 2 && !hasMVE()) {
4738 const MCRegisterClass *RC = (Spacing == 1) ?
4739 &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4740 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4741 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4743 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4744 ARMOperand::CreateVectorListAllLanes);
4745 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4746 break;
4748 case IndexedLane:
4749 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4750 LaneIndex,
4751 (Spacing == 2),
4752 S, E));
4753 break;
4755 return MatchOperand_Success;
4758 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4759 OperandMatchResultTy
4760 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4761 MCAsmParser &Parser = getParser();
4762 SMLoc S = Parser.getTok().getLoc();
4763 const AsmToken &Tok = Parser.getTok();
4764 unsigned Opt;
4766 if (Tok.is(AsmToken::Identifier)) {
4767 StringRef OptStr = Tok.getString();
4769 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4770 .Case("sy", ARM_MB::SY)
4771 .Case("st", ARM_MB::ST)
4772 .Case("ld", ARM_MB::LD)
4773 .Case("sh", ARM_MB::ISH)
4774 .Case("ish", ARM_MB::ISH)
4775 .Case("shst", ARM_MB::ISHST)
4776 .Case("ishst", ARM_MB::ISHST)
4777 .Case("ishld", ARM_MB::ISHLD)
4778 .Case("nsh", ARM_MB::NSH)
4779 .Case("un", ARM_MB::NSH)
4780 .Case("nshst", ARM_MB::NSHST)
4781 .Case("nshld", ARM_MB::NSHLD)
4782 .Case("unst", ARM_MB::NSHST)
4783 .Case("osh", ARM_MB::OSH)
4784 .Case("oshst", ARM_MB::OSHST)
4785 .Case("oshld", ARM_MB::OSHLD)
4786 .Default(~0U);
4788 // ishld, oshld, nshld and ld are only available from ARMv8.
4789 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4790 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4791 Opt = ~0U;
4793 if (Opt == ~0U)
4794 return MatchOperand_NoMatch;
4796 Parser.Lex(); // Eat identifier token.
4797 } else if (Tok.is(AsmToken::Hash) ||
4798 Tok.is(AsmToken::Dollar) ||
4799 Tok.is(AsmToken::Integer)) {
4800 if (Parser.getTok().isNot(AsmToken::Integer))
4801 Parser.Lex(); // Eat '#' or '$'.
4802 SMLoc Loc = Parser.getTok().getLoc();
4804 const MCExpr *MemBarrierID;
4805 if (getParser().parseExpression(MemBarrierID)) {
4806 Error(Loc, "illegal expression");
4807 return MatchOperand_ParseFail;
4810 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4811 if (!CE) {
4812 Error(Loc, "constant expression expected");
4813 return MatchOperand_ParseFail;
4816 int Val = CE->getValue();
4817 if (Val & ~0xf) {
4818 Error(Loc, "immediate value out of range");
4819 return MatchOperand_ParseFail;
4822 Opt = ARM_MB::RESERVED_0 + Val;
4823 } else
4824 return MatchOperand_ParseFail;
4826 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4827 return MatchOperand_Success;
4830 OperandMatchResultTy
4831 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4832 MCAsmParser &Parser = getParser();
4833 SMLoc S = Parser.getTok().getLoc();
4834 const AsmToken &Tok = Parser.getTok();
4836 if (Tok.isNot(AsmToken::Identifier))
4837 return MatchOperand_NoMatch;
4839 if (!Tok.getString().equals_lower("csync"))
4840 return MatchOperand_NoMatch;
4842 Parser.Lex(); // Eat identifier token.
4844 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4845 return MatchOperand_Success;
4848 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4849 OperandMatchResultTy
4850 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4851 MCAsmParser &Parser = getParser();
4852 SMLoc S = Parser.getTok().getLoc();
4853 const AsmToken &Tok = Parser.getTok();
4854 unsigned Opt;
4856 if (Tok.is(AsmToken::Identifier)) {
4857 StringRef OptStr = Tok.getString();
4859 if (OptStr.equals_lower("sy"))
4860 Opt = ARM_ISB::SY;
4861 else
4862 return MatchOperand_NoMatch;
4864 Parser.Lex(); // Eat identifier token.
4865 } else if (Tok.is(AsmToken::Hash) ||
4866 Tok.is(AsmToken::Dollar) ||
4867 Tok.is(AsmToken::Integer)) {
4868 if (Parser.getTok().isNot(AsmToken::Integer))
4869 Parser.Lex(); // Eat '#' or '$'.
4870 SMLoc Loc = Parser.getTok().getLoc();
4872 const MCExpr *ISBarrierID;
4873 if (getParser().parseExpression(ISBarrierID)) {
4874 Error(Loc, "illegal expression");
4875 return MatchOperand_ParseFail;
4878 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4879 if (!CE) {
4880 Error(Loc, "constant expression expected");
4881 return MatchOperand_ParseFail;
4884 int Val = CE->getValue();
4885 if (Val & ~0xf) {
4886 Error(Loc, "immediate value out of range");
4887 return MatchOperand_ParseFail;
4890 Opt = ARM_ISB::RESERVED_0 + Val;
4891 } else
4892 return MatchOperand_ParseFail;
4894 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4895 (ARM_ISB::InstSyncBOpt)Opt, S));
4896 return MatchOperand_Success;
4900 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4901 OperandMatchResultTy
4902 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4903 MCAsmParser &Parser = getParser();
4904 SMLoc S = Parser.getTok().getLoc();
4905 const AsmToken &Tok = Parser.getTok();
4906 if (!Tok.is(AsmToken::Identifier))
4907 return MatchOperand_NoMatch;
4908 StringRef IFlagsStr = Tok.getString();
4910 // An iflags string of "none" is interpreted to mean that none of the AIF
4911 // bits are set. Not a terribly useful instruction, but a valid encoding.
4912 unsigned IFlags = 0;
4913 if (IFlagsStr != "none") {
4914 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4915 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4916 .Case("a", ARM_PROC::A)
4917 .Case("i", ARM_PROC::I)
4918 .Case("f", ARM_PROC::F)
4919 .Default(~0U);
4921 // If some specific iflag is already set, it means that some letter is
4922 // present more than once, this is not acceptable.
4923 if (Flag == ~0U || (IFlags & Flag))
4924 return MatchOperand_NoMatch;
4926 IFlags |= Flag;
4930 Parser.Lex(); // Eat identifier token.
4931 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4932 return MatchOperand_Success;
4935 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4936 OperandMatchResultTy
4937 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4938 MCAsmParser &Parser = getParser();
4939 SMLoc S = Parser.getTok().getLoc();
4940 const AsmToken &Tok = Parser.getTok();
4942 if (Tok.is(AsmToken::Integer)) {
4943 int64_t Val = Tok.getIntVal();
4944 if (Val > 255 || Val < 0) {
4945 return MatchOperand_NoMatch;
4947 unsigned SYSmvalue = Val & 0xFF;
4948 Parser.Lex();
4949 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4950 return MatchOperand_Success;
4953 if (!Tok.is(AsmToken::Identifier))
4954 return MatchOperand_NoMatch;
4955 StringRef Mask = Tok.getString();
4957 if (isMClass()) {
4958 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4959 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4960 return MatchOperand_NoMatch;
4962 unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4964 Parser.Lex(); // Eat identifier token.
4965 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4966 return MatchOperand_Success;
4969 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4970 size_t Start = 0, Next = Mask.find('_');
4971 StringRef Flags = "";
4972 std::string SpecReg = Mask.slice(Start, Next).lower();
4973 if (Next != StringRef::npos)
4974 Flags = Mask.slice(Next+1, Mask.size());
4976 // FlagsVal contains the complete mask:
4977 // 3-0: Mask
4978 // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4979 unsigned FlagsVal = 0;
4981 if (SpecReg == "apsr") {
4982 FlagsVal = StringSwitch<unsigned>(Flags)
4983 .Case("nzcvq", 0x8) // same as CPSR_f
4984 .Case("g", 0x4) // same as CPSR_s
4985 .Case("nzcvqg", 0xc) // same as CPSR_fs
4986 .Default(~0U);
4988 if (FlagsVal == ~0U) {
4989 if (!Flags.empty())
4990 return MatchOperand_NoMatch;
4991 else
4992 FlagsVal = 8; // No flag
4994 } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4995 // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4996 if (Flags == "all" || Flags == "")
4997 Flags = "fc";
4998 for (int i = 0, e = Flags.size(); i != e; ++i) {
4999 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5000 .Case("c", 1)
5001 .Case("x", 2)
5002 .Case("s", 4)
5003 .Case("f", 8)
5004 .Default(~0U);
5006 // If some specific flag is already set, it means that some letter is
5007 // present more than once, this is not acceptable.
5008 if (Flag == ~0U || (FlagsVal & Flag))
5009 return MatchOperand_NoMatch;
5010 FlagsVal |= Flag;
5012 } else // No match for special register.
5013 return MatchOperand_NoMatch;
5015 // Special register without flags is NOT equivalent to "fc" flags.
5016 // NOTE: This is a divergence from gas' behavior. Uncommenting the following
5017 // two lines would enable gas compatibility at the expense of breaking
5018 // round-tripping.
5020 // if (!FlagsVal)
5021 // FlagsVal = 0x9;
5023 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5024 if (SpecReg == "spsr")
5025 FlagsVal |= 16;
5027 Parser.Lex(); // Eat identifier token.
5028 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5029 return MatchOperand_Success;
5032 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5033 /// use in the MRS/MSR instructions added to support virtualization.
5034 OperandMatchResultTy
5035 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5036 MCAsmParser &Parser = getParser();
5037 SMLoc S = Parser.getTok().getLoc();
5038 const AsmToken &Tok = Parser.getTok();
5039 if (!Tok.is(AsmToken::Identifier))
5040 return MatchOperand_NoMatch;
5041 StringRef RegName = Tok.getString();
5043 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5044 if (!TheReg)
5045 return MatchOperand_NoMatch;
5046 unsigned Encoding = TheReg->Encoding;
5048 Parser.Lex(); // Eat identifier token.
5049 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5050 return MatchOperand_Success;
5053 OperandMatchResultTy
5054 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5055 int High) {
5056 MCAsmParser &Parser = getParser();
5057 const AsmToken &Tok = Parser.getTok();
5058 if (Tok.isNot(AsmToken::Identifier)) {
5059 Error(Parser.getTok().getLoc(), Op + " operand expected.");
5060 return MatchOperand_ParseFail;
5062 StringRef ShiftName = Tok.getString();
5063 std::string LowerOp = Op.lower();
5064 std::string UpperOp = Op.upper();
5065 if (ShiftName != LowerOp && ShiftName != UpperOp) {
5066 Error(Parser.getTok().getLoc(), Op + " operand expected.");
5067 return MatchOperand_ParseFail;
5069 Parser.Lex(); // Eat shift type token.
5071 // There must be a '#' and a shift amount.
5072 if (Parser.getTok().isNot(AsmToken::Hash) &&
5073 Parser.getTok().isNot(AsmToken::Dollar)) {
5074 Error(Parser.getTok().getLoc(), "'#' expected");
5075 return MatchOperand_ParseFail;
5077 Parser.Lex(); // Eat hash token.
5079 const MCExpr *ShiftAmount;
5080 SMLoc Loc = Parser.getTok().getLoc();
5081 SMLoc EndLoc;
5082 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5083 Error(Loc, "illegal expression");
5084 return MatchOperand_ParseFail;
5086 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5087 if (!CE) {
5088 Error(Loc, "constant expression expected");
5089 return MatchOperand_ParseFail;
5091 int Val = CE->getValue();
5092 if (Val < Low || Val > High) {
5093 Error(Loc, "immediate value out of range");
5094 return MatchOperand_ParseFail;
5097 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5099 return MatchOperand_Success;
5102 OperandMatchResultTy
5103 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5104 MCAsmParser &Parser = getParser();
5105 const AsmToken &Tok = Parser.getTok();
5106 SMLoc S = Tok.getLoc();
5107 if (Tok.isNot(AsmToken::Identifier)) {
5108 Error(S, "'be' or 'le' operand expected");
5109 return MatchOperand_ParseFail;
5111 int Val = StringSwitch<int>(Tok.getString().lower())
5112 .Case("be", 1)
5113 .Case("le", 0)
5114 .Default(-1);
5115 Parser.Lex(); // Eat the token.
5117 if (Val == -1) {
5118 Error(S, "'be' or 'le' operand expected");
5119 return MatchOperand_ParseFail;
5121 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5122 getContext()),
5123 S, Tok.getEndLoc()));
5124 return MatchOperand_Success;
5127 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5128 /// instructions. Legal values are:
5129 /// lsl #n 'n' in [0,31]
5130 /// asr #n 'n' in [1,32]
5131 /// n == 32 encoded as n == 0.
5132 OperandMatchResultTy
5133 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5134 MCAsmParser &Parser = getParser();
5135 const AsmToken &Tok = Parser.getTok();
5136 SMLoc S = Tok.getLoc();
5137 if (Tok.isNot(AsmToken::Identifier)) {
5138 Error(S, "shift operator 'asr' or 'lsl' expected");
5139 return MatchOperand_ParseFail;
5141 StringRef ShiftName = Tok.getString();
5142 bool isASR;
5143 if (ShiftName == "lsl" || ShiftName == "LSL")
5144 isASR = false;
5145 else if (ShiftName == "asr" || ShiftName == "ASR")
5146 isASR = true;
5147 else {
5148 Error(S, "shift operator 'asr' or 'lsl' expected");
5149 return MatchOperand_ParseFail;
5151 Parser.Lex(); // Eat the operator.
5153 // A '#' and a shift amount.
5154 if (Parser.getTok().isNot(AsmToken::Hash) &&
5155 Parser.getTok().isNot(AsmToken::Dollar)) {
5156 Error(Parser.getTok().getLoc(), "'#' expected");
5157 return MatchOperand_ParseFail;
5159 Parser.Lex(); // Eat hash token.
5160 SMLoc ExLoc = Parser.getTok().getLoc();
5162 const MCExpr *ShiftAmount;
5163 SMLoc EndLoc;
5164 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5165 Error(ExLoc, "malformed shift expression");
5166 return MatchOperand_ParseFail;
5168 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5169 if (!CE) {
5170 Error(ExLoc, "shift amount must be an immediate");
5171 return MatchOperand_ParseFail;
5174 int64_t Val = CE->getValue();
5175 if (isASR) {
5176 // Shift amount must be in [1,32]
5177 if (Val < 1 || Val > 32) {
5178 Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5179 return MatchOperand_ParseFail;
5181 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5182 if (isThumb() && Val == 32) {
5183 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5184 return MatchOperand_ParseFail;
5186 if (Val == 32) Val = 0;
5187 } else {
5188 // Shift amount must be in [1,32]
5189 if (Val < 0 || Val > 31) {
5190 Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5191 return MatchOperand_ParseFail;
5195 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5197 return MatchOperand_Success;
5200 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5201 /// of instructions. Legal values are:
5202 /// ror #n 'n' in {0, 8, 16, 24}
5203 OperandMatchResultTy
5204 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5205 MCAsmParser &Parser = getParser();
5206 const AsmToken &Tok = Parser.getTok();
5207 SMLoc S = Tok.getLoc();
5208 if (Tok.isNot(AsmToken::Identifier))
5209 return MatchOperand_NoMatch;
5210 StringRef ShiftName = Tok.getString();
5211 if (ShiftName != "ror" && ShiftName != "ROR")
5212 return MatchOperand_NoMatch;
5213 Parser.Lex(); // Eat the operator.
5215 // A '#' and a rotate amount.
5216 if (Parser.getTok().isNot(AsmToken::Hash) &&
5217 Parser.getTok().isNot(AsmToken::Dollar)) {
5218 Error(Parser.getTok().getLoc(), "'#' expected");
5219 return MatchOperand_ParseFail;
5221 Parser.Lex(); // Eat hash token.
5222 SMLoc ExLoc = Parser.getTok().getLoc();
5224 const MCExpr *ShiftAmount;
5225 SMLoc EndLoc;
5226 if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5227 Error(ExLoc, "malformed rotate expression");
5228 return MatchOperand_ParseFail;
5230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5231 if (!CE) {
5232 Error(ExLoc, "rotate amount must be an immediate");
5233 return MatchOperand_ParseFail;
5236 int64_t Val = CE->getValue();
5237 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5238 // normally, zero is represented in asm by omitting the rotate operand
5239 // entirely.
5240 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5241 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5242 return MatchOperand_ParseFail;
5245 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5247 return MatchOperand_Success;
5250 OperandMatchResultTy
5251 ARMAsmParser::parseModImm(OperandVector &Operands) {
5252 MCAsmParser &Parser = getParser();
5253 MCAsmLexer &Lexer = getLexer();
5254 int64_t Imm1, Imm2;
5256 SMLoc S = Parser.getTok().getLoc();
5258 // 1) A mod_imm operand can appear in the place of a register name:
5259 // add r0, #mod_imm
5260 // add r0, r0, #mod_imm
5261 // to correctly handle the latter, we bail out as soon as we see an
5262 // identifier.
5264 // 2) Similarly, we do not want to parse into complex operands:
5265 // mov r0, #mod_imm
5266 // mov r0, :lower16:(_foo)
5267 if (Parser.getTok().is(AsmToken::Identifier) ||
5268 Parser.getTok().is(AsmToken::Colon))
5269 return MatchOperand_NoMatch;
5271 // Hash (dollar) is optional as per the ARMARM
5272 if (Parser.getTok().is(AsmToken::Hash) ||
5273 Parser.getTok().is(AsmToken::Dollar)) {
5274 // Avoid parsing into complex operands (#:)
5275 if (Lexer.peekTok().is(AsmToken::Colon))
5276 return MatchOperand_NoMatch;
5278 // Eat the hash (dollar)
5279 Parser.Lex();
5282 SMLoc Sx1, Ex1;
5283 Sx1 = Parser.getTok().getLoc();
5284 const MCExpr *Imm1Exp;
5285 if (getParser().parseExpression(Imm1Exp, Ex1)) {
5286 Error(Sx1, "malformed expression");
5287 return MatchOperand_ParseFail;
5290 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5292 if (CE) {
5293 // Immediate must fit within 32-bits
5294 Imm1 = CE->getValue();
5295 int Enc = ARM_AM::getSOImmVal(Imm1);
5296 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5297 // We have a match!
5298 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5299 (Enc & 0xF00) >> 7,
5300 Sx1, Ex1));
5301 return MatchOperand_Success;
5304 // We have parsed an immediate which is not for us, fallback to a plain
5305 // immediate. This can happen for instruction aliases. For an example,
5306 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5307 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5308 // instruction with a mod_imm operand. The alias is defined such that the
5309 // parser method is shared, that's why we have to do this here.
5310 if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5311 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5312 return MatchOperand_Success;
5314 } else {
5315 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5316 // MCFixup). Fallback to a plain immediate.
5317 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5318 return MatchOperand_Success;
5321 // From this point onward, we expect the input to be a (#bits, #rot) pair
5322 if (Parser.getTok().isNot(AsmToken::Comma)) {
5323 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5324 return MatchOperand_ParseFail;
5327 if (Imm1 & ~0xFF) {
5328 Error(Sx1, "immediate operand must a number in the range [0, 255]");
5329 return MatchOperand_ParseFail;
5332 // Eat the comma
5333 Parser.Lex();
5335 // Repeat for #rot
5336 SMLoc Sx2, Ex2;
5337 Sx2 = Parser.getTok().getLoc();
5339 // Eat the optional hash (dollar)
5340 if (Parser.getTok().is(AsmToken::Hash) ||
5341 Parser.getTok().is(AsmToken::Dollar))
5342 Parser.Lex();
5344 const MCExpr *Imm2Exp;
5345 if (getParser().parseExpression(Imm2Exp, Ex2)) {
5346 Error(Sx2, "malformed expression");
5347 return MatchOperand_ParseFail;
5350 CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5352 if (CE) {
5353 Imm2 = CE->getValue();
5354 if (!(Imm2 & ~0x1E)) {
5355 // We have a match!
5356 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5357 return MatchOperand_Success;
5359 Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5360 return MatchOperand_ParseFail;
5361 } else {
5362 Error(Sx2, "constant expression expected");
5363 return MatchOperand_ParseFail;
5367 OperandMatchResultTy
5368 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5369 MCAsmParser &Parser = getParser();
5370 SMLoc S = Parser.getTok().getLoc();
5371 // The bitfield descriptor is really two operands, the LSB and the width.
5372 if (Parser.getTok().isNot(AsmToken::Hash) &&
5373 Parser.getTok().isNot(AsmToken::Dollar)) {
5374 Error(Parser.getTok().getLoc(), "'#' expected");
5375 return MatchOperand_ParseFail;
5377 Parser.Lex(); // Eat hash token.
5379 const MCExpr *LSBExpr;
5380 SMLoc E = Parser.getTok().getLoc();
5381 if (getParser().parseExpression(LSBExpr)) {
5382 Error(E, "malformed immediate expression");
5383 return MatchOperand_ParseFail;
5385 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5386 if (!CE) {
5387 Error(E, "'lsb' operand must be an immediate");
5388 return MatchOperand_ParseFail;
5391 int64_t LSB = CE->getValue();
5392 // The LSB must be in the range [0,31]
5393 if (LSB < 0 || LSB > 31) {
5394 Error(E, "'lsb' operand must be in the range [0,31]");
5395 return MatchOperand_ParseFail;
5397 E = Parser.getTok().getLoc();
5399 // Expect another immediate operand.
5400 if (Parser.getTok().isNot(AsmToken::Comma)) {
5401 Error(Parser.getTok().getLoc(), "too few operands");
5402 return MatchOperand_ParseFail;
5404 Parser.Lex(); // Eat hash token.
5405 if (Parser.getTok().isNot(AsmToken::Hash) &&
5406 Parser.getTok().isNot(AsmToken::Dollar)) {
5407 Error(Parser.getTok().getLoc(), "'#' expected");
5408 return MatchOperand_ParseFail;
5410 Parser.Lex(); // Eat hash token.
5412 const MCExpr *WidthExpr;
5413 SMLoc EndLoc;
5414 if (getParser().parseExpression(WidthExpr, EndLoc)) {
5415 Error(E, "malformed immediate expression");
5416 return MatchOperand_ParseFail;
5418 CE = dyn_cast<MCConstantExpr>(WidthExpr);
5419 if (!CE) {
5420 Error(E, "'width' operand must be an immediate");
5421 return MatchOperand_ParseFail;
5424 int64_t Width = CE->getValue();
5425 // The LSB must be in the range [1,32-lsb]
5426 if (Width < 1 || Width > 32 - LSB) {
5427 Error(E, "'width' operand must be in the range [1,32-lsb]");
5428 return MatchOperand_ParseFail;
5431 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5433 return MatchOperand_Success;
5436 OperandMatchResultTy
5437 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5438 // Check for a post-index addressing register operand. Specifically:
5439 // postidx_reg := '+' register {, shift}
5440 // | '-' register {, shift}
5441 // | register {, shift}
5443 // This method must return MatchOperand_NoMatch without consuming any tokens
5444 // in the case where there is no match, as other alternatives take other
5445 // parse methods.
5446 MCAsmParser &Parser = getParser();
5447 AsmToken Tok = Parser.getTok();
5448 SMLoc S = Tok.getLoc();
5449 bool haveEaten = false;
5450 bool isAdd = true;
5451 if (Tok.is(AsmToken::Plus)) {
5452 Parser.Lex(); // Eat the '+' token.
5453 haveEaten = true;
5454 } else if (Tok.is(AsmToken::Minus)) {
5455 Parser.Lex(); // Eat the '-' token.
5456 isAdd = false;
5457 haveEaten = true;
5460 SMLoc E = Parser.getTok().getEndLoc();
5461 int Reg = tryParseRegister();
5462 if (Reg == -1) {
5463 if (!haveEaten)
5464 return MatchOperand_NoMatch;
5465 Error(Parser.getTok().getLoc(), "register expected");
5466 return MatchOperand_ParseFail;
5469 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5470 unsigned ShiftImm = 0;
5471 if (Parser.getTok().is(AsmToken::Comma)) {
5472 Parser.Lex(); // Eat the ','.
5473 if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5474 return MatchOperand_ParseFail;
5476 // FIXME: Only approximates end...may include intervening whitespace.
5477 E = Parser.getTok().getLoc();
5480 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5481 ShiftImm, S, E));
5483 return MatchOperand_Success;
5486 OperandMatchResultTy
5487 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5488 // Check for a post-index addressing register operand. Specifically:
5489 // am3offset := '+' register
5490 // | '-' register
5491 // | register
5492 // | # imm
5493 // | # + imm
5494 // | # - imm
5496 // This method must return MatchOperand_NoMatch without consuming any tokens
5497 // in the case where there is no match, as other alternatives take other
5498 // parse methods.
5499 MCAsmParser &Parser = getParser();
5500 AsmToken Tok = Parser.getTok();
5501 SMLoc S = Tok.getLoc();
5503 // Do immediates first, as we always parse those if we have a '#'.
5504 if (Parser.getTok().is(AsmToken::Hash) ||
5505 Parser.getTok().is(AsmToken::Dollar)) {
5506 Parser.Lex(); // Eat '#' or '$'.
5507 // Explicitly look for a '-', as we need to encode negative zero
5508 // differently.
5509 bool isNegative = Parser.getTok().is(AsmToken::Minus);
5510 const MCExpr *Offset;
5511 SMLoc E;
5512 if (getParser().parseExpression(Offset, E))
5513 return MatchOperand_ParseFail;
5514 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5515 if (!CE) {
5516 Error(S, "constant expression expected");
5517 return MatchOperand_ParseFail;
5519 // Negative zero is encoded as the flag value
5520 // std::numeric_limits<int32_t>::min().
5521 int32_t Val = CE->getValue();
5522 if (isNegative && Val == 0)
5523 Val = std::numeric_limits<int32_t>::min();
5525 Operands.push_back(
5526 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5528 return MatchOperand_Success;
5531 bool haveEaten = false;
5532 bool isAdd = true;
5533 if (Tok.is(AsmToken::Plus)) {
5534 Parser.Lex(); // Eat the '+' token.
5535 haveEaten = true;
5536 } else if (Tok.is(AsmToken::Minus)) {
5537 Parser.Lex(); // Eat the '-' token.
5538 isAdd = false;
5539 haveEaten = true;
5542 Tok = Parser.getTok();
5543 int Reg = tryParseRegister();
5544 if (Reg == -1) {
5545 if (!haveEaten)
5546 return MatchOperand_NoMatch;
5547 Error(Tok.getLoc(), "register expected");
5548 return MatchOperand_ParseFail;
5551 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5552 0, S, Tok.getEndLoc()));
5554 return MatchOperand_Success;
5557 /// Convert parsed operands to MCInst. Needed here because this instruction
5558 /// only has two register operands, but multiplication is commutative so
5559 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5560 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5561 const OperandVector &Operands) {
5562 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5563 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5564 // If we have a three-operand form, make sure to set Rn to be the operand
5565 // that isn't the same as Rd.
5566 unsigned RegOp = 4;
5567 if (Operands.size() == 6 &&
5568 ((ARMOperand &)*Operands[4]).getReg() ==
5569 ((ARMOperand &)*Operands[3]).getReg())
5570 RegOp = 5;
5571 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5572 Inst.addOperand(Inst.getOperand(0));
5573 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5576 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5577 const OperandVector &Operands) {
5578 int CondOp = -1, ImmOp = -1;
5579 switch(Inst.getOpcode()) {
5580 case ARM::tB:
5581 case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
5583 case ARM::t2B:
5584 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5586 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5588 // first decide whether or not the branch should be conditional
5589 // by looking at it's location relative to an IT block
5590 if(inITBlock()) {
5591 // inside an IT block we cannot have any conditional branches. any
5592 // such instructions needs to be converted to unconditional form
5593 switch(Inst.getOpcode()) {
5594 case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5595 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5597 } else {
5598 // outside IT blocks we can only have unconditional branches with AL
5599 // condition code or conditional branches with non-AL condition code
5600 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5601 switch(Inst.getOpcode()) {
5602 case ARM::tB:
5603 case ARM::tBcc:
5604 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5605 break;
5606 case ARM::t2B:
5607 case ARM::t2Bcc:
5608 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5609 break;
5613 // now decide on encoding size based on branch target range
5614 switch(Inst.getOpcode()) {
5615 // classify tB as either t2B or t1B based on range of immediate operand
5616 case ARM::tB: {
5617 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5618 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5619 Inst.setOpcode(ARM::t2B);
5620 break;
5622 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5623 case ARM::tBcc: {
5624 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5625 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5626 Inst.setOpcode(ARM::t2Bcc);
5627 break;
5630 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5631 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5634 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5635 MCInst &Inst, const OperandVector &Operands) {
5637 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5638 assert(Operands.size() == 8);
5640 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5641 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5642 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5643 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5644 // skip second copy of Qd in Operands[6]
5645 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5646 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5649 /// Parse an ARM memory expression, return false if successful else return true
5650 /// or an error. The first token must be a '[' when called.
5651 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5652 MCAsmParser &Parser = getParser();
5653 SMLoc S, E;
5654 if (Parser.getTok().isNot(AsmToken::LBrac))
5655 return TokError("Token is not a Left Bracket");
5656 S = Parser.getTok().getLoc();
5657 Parser.Lex(); // Eat left bracket token.
5659 const AsmToken &BaseRegTok = Parser.getTok();
5660 int BaseRegNum = tryParseRegister();
5661 if (BaseRegNum == -1)
5662 return Error(BaseRegTok.getLoc(), "register expected");
5664 // The next token must either be a comma, a colon or a closing bracket.
5665 const AsmToken &Tok = Parser.getTok();
5666 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5667 !Tok.is(AsmToken::RBrac))
5668 return Error(Tok.getLoc(), "malformed memory operand");
5670 if (Tok.is(AsmToken::RBrac)) {
5671 E = Tok.getEndLoc();
5672 Parser.Lex(); // Eat right bracket token.
5674 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5675 ARM_AM::no_shift, 0, 0, false,
5676 S, E));
5678 // If there's a pre-indexing writeback marker, '!', just add it as a token
5679 // operand. It's rather odd, but syntactically valid.
5680 if (Parser.getTok().is(AsmToken::Exclaim)) {
5681 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5682 Parser.Lex(); // Eat the '!'.
5685 return false;
5688 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5689 "Lost colon or comma in memory operand?!");
5690 if (Tok.is(AsmToken::Comma)) {
5691 Parser.Lex(); // Eat the comma.
5694 // If we have a ':', it's an alignment specifier.
5695 if (Parser.getTok().is(AsmToken::Colon)) {
5696 Parser.Lex(); // Eat the ':'.
5697 E = Parser.getTok().getLoc();
5698 SMLoc AlignmentLoc = Tok.getLoc();
5700 const MCExpr *Expr;
5701 if (getParser().parseExpression(Expr))
5702 return true;
5704 // The expression has to be a constant. Memory references with relocations
5705 // don't come through here, as they use the <label> forms of the relevant
5706 // instructions.
5707 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5708 if (!CE)
5709 return Error (E, "constant expression expected");
5711 unsigned Align = 0;
5712 switch (CE->getValue()) {
5713 default:
5714 return Error(E,
5715 "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5716 case 16: Align = 2; break;
5717 case 32: Align = 4; break;
5718 case 64: Align = 8; break;
5719 case 128: Align = 16; break;
5720 case 256: Align = 32; break;
5723 // Now we should have the closing ']'
5724 if (Parser.getTok().isNot(AsmToken::RBrac))
5725 return Error(Parser.getTok().getLoc(), "']' expected");
5726 E = Parser.getTok().getEndLoc();
5727 Parser.Lex(); // Eat right bracket token.
5729 // Don't worry about range checking the value here. That's handled by
5730 // the is*() predicates.
5731 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5732 ARM_AM::no_shift, 0, Align,
5733 false, S, E, AlignmentLoc));
5735 // If there's a pre-indexing writeback marker, '!', just add it as a token
5736 // operand.
5737 if (Parser.getTok().is(AsmToken::Exclaim)) {
5738 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5739 Parser.Lex(); // Eat the '!'.
5742 return false;
5745 // If we have a '#', it's an immediate offset, else assume it's a register
5746 // offset. Be friendly and also accept a plain integer (without a leading
5747 // hash) for gas compatibility.
5748 if (Parser.getTok().is(AsmToken::Hash) ||
5749 Parser.getTok().is(AsmToken::Dollar) ||
5750 Parser.getTok().is(AsmToken::Integer)) {
5751 if (Parser.getTok().isNot(AsmToken::Integer))
5752 Parser.Lex(); // Eat '#' or '$'.
5753 E = Parser.getTok().getLoc();
5755 bool isNegative = getParser().getTok().is(AsmToken::Minus);
5756 const MCExpr *Offset;
5757 if (getParser().parseExpression(Offset))
5758 return true;
5760 // The expression has to be a constant. Memory references with relocations
5761 // don't come through here, as they use the <label> forms of the relevant
5762 // instructions.
5763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5764 if (!CE)
5765 return Error (E, "constant expression expected");
5767 // If the constant was #-0, represent it as
5768 // std::numeric_limits<int32_t>::min().
5769 int32_t Val = CE->getValue();
5770 if (isNegative && Val == 0)
5771 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5772 getContext());
5774 // Now we should have the closing ']'
5775 if (Parser.getTok().isNot(AsmToken::RBrac))
5776 return Error(Parser.getTok().getLoc(), "']' expected");
5777 E = Parser.getTok().getEndLoc();
5778 Parser.Lex(); // Eat right bracket token.
5780 // Don't worry about range checking the value here. That's handled by
5781 // the is*() predicates.
5782 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5783 ARM_AM::no_shift, 0, 0,
5784 false, S, E));
5786 // If there's a pre-indexing writeback marker, '!', just add it as a token
5787 // operand.
5788 if (Parser.getTok().is(AsmToken::Exclaim)) {
5789 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5790 Parser.Lex(); // Eat the '!'.
5793 return false;
5796 // The register offset is optionally preceded by a '+' or '-'
5797 bool isNegative = false;
5798 if (Parser.getTok().is(AsmToken::Minus)) {
5799 isNegative = true;
5800 Parser.Lex(); // Eat the '-'.
5801 } else if (Parser.getTok().is(AsmToken::Plus)) {
5802 // Nothing to do.
5803 Parser.Lex(); // Eat the '+'.
5806 E = Parser.getTok().getLoc();
5807 int OffsetRegNum = tryParseRegister();
5808 if (OffsetRegNum == -1)
5809 return Error(E, "register expected");
5811 // If there's a shift operator, handle it.
5812 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5813 unsigned ShiftImm = 0;
5814 if (Parser.getTok().is(AsmToken::Comma)) {
5815 Parser.Lex(); // Eat the ','.
5816 if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5817 return true;
5820 // Now we should have the closing ']'
5821 if (Parser.getTok().isNot(AsmToken::RBrac))
5822 return Error(Parser.getTok().getLoc(), "']' expected");
5823 E = Parser.getTok().getEndLoc();
5824 Parser.Lex(); // Eat right bracket token.
5826 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5827 ShiftType, ShiftImm, 0, isNegative,
5828 S, E));
5830 // If there's a pre-indexing writeback marker, '!', just add it as a token
5831 // operand.
5832 if (Parser.getTok().is(AsmToken::Exclaim)) {
5833 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5834 Parser.Lex(); // Eat the '!'.
5837 return false;
5840 /// parseMemRegOffsetShift - one of these two:
5841 /// ( lsl | lsr | asr | ror ) , # shift_amount
5842 /// rrx
5843 /// return true if it parses a shift otherwise it returns false.
5844 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5845 unsigned &Amount) {
5846 MCAsmParser &Parser = getParser();
5847 SMLoc Loc = Parser.getTok().getLoc();
5848 const AsmToken &Tok = Parser.getTok();
5849 if (Tok.isNot(AsmToken::Identifier))
5850 return Error(Loc, "illegal shift operator");
5851 StringRef ShiftName = Tok.getString();
5852 if (ShiftName == "lsl" || ShiftName == "LSL" ||
5853 ShiftName == "asl" || ShiftName == "ASL")
5854 St = ARM_AM::lsl;
5855 else if (ShiftName == "lsr" || ShiftName == "LSR")
5856 St = ARM_AM::lsr;
5857 else if (ShiftName == "asr" || ShiftName == "ASR")
5858 St = ARM_AM::asr;
5859 else if (ShiftName == "ror" || ShiftName == "ROR")
5860 St = ARM_AM::ror;
5861 else if (ShiftName == "rrx" || ShiftName == "RRX")
5862 St = ARM_AM::rrx;
5863 else if (ShiftName == "uxtw" || ShiftName == "UXTW")
5864 St = ARM_AM::uxtw;
5865 else
5866 return Error(Loc, "illegal shift operator");
5867 Parser.Lex(); // Eat shift type token.
5869 // rrx stands alone.
5870 Amount = 0;
5871 if (St != ARM_AM::rrx) {
5872 Loc = Parser.getTok().getLoc();
5873 // A '#' and a shift amount.
5874 const AsmToken &HashTok = Parser.getTok();
5875 if (HashTok.isNot(AsmToken::Hash) &&
5876 HashTok.isNot(AsmToken::Dollar))
5877 return Error(HashTok.getLoc(), "'#' expected");
5878 Parser.Lex(); // Eat hash token.
5880 const MCExpr *Expr;
5881 if (getParser().parseExpression(Expr))
5882 return true;
5883 // Range check the immediate.
5884 // lsl, ror: 0 <= imm <= 31
5885 // lsr, asr: 0 <= imm <= 32
5886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5887 if (!CE)
5888 return Error(Loc, "shift amount must be an immediate");
5889 int64_t Imm = CE->getValue();
5890 if (Imm < 0 ||
5891 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5892 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5893 return Error(Loc, "immediate shift value out of range");
5894 // If <ShiftTy> #0, turn it into a no_shift.
5895 if (Imm == 0)
5896 St = ARM_AM::lsl;
5897 // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5898 if (Imm == 32)
5899 Imm = 0;
5900 Amount = Imm;
5903 return false;
5906 /// parseFPImm - A floating point immediate expression operand.
5907 OperandMatchResultTy
5908 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5909 MCAsmParser &Parser = getParser();
5910 // Anything that can accept a floating point constant as an operand
5911 // needs to go through here, as the regular parseExpression is
5912 // integer only.
5914 // This routine still creates a generic Immediate operand, containing
5915 // a bitcast of the 64-bit floating point value. The various operands
5916 // that accept floats can check whether the value is valid for them
5917 // via the standard is*() predicates.
5919 SMLoc S = Parser.getTok().getLoc();
5921 if (Parser.getTok().isNot(AsmToken::Hash) &&
5922 Parser.getTok().isNot(AsmToken::Dollar))
5923 return MatchOperand_NoMatch;
5925 // Disambiguate the VMOV forms that can accept an FP immediate.
5926 // vmov.f32 <sreg>, #imm
5927 // vmov.f64 <dreg>, #imm
5928 // vmov.f32 <dreg>, #imm @ vector f32x2
5929 // vmov.f32 <qreg>, #imm @ vector f32x4
5931 // There are also the NEON VMOV instructions which expect an
5932 // integer constant. Make sure we don't try to parse an FPImm
5933 // for these:
5934 // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5935 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5936 bool isVmovf = TyOp.isToken() &&
5937 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5938 TyOp.getToken() == ".f16");
5939 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5940 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5941 Mnemonic.getToken() == "fconsts");
5942 if (!(isVmovf || isFconst))
5943 return MatchOperand_NoMatch;
5945 Parser.Lex(); // Eat '#' or '$'.
5947 // Handle negation, as that still comes through as a separate token.
5948 bool isNegative = false;
5949 if (Parser.getTok().is(AsmToken::Minus)) {
5950 isNegative = true;
5951 Parser.Lex();
5953 const AsmToken &Tok = Parser.getTok();
5954 SMLoc Loc = Tok.getLoc();
5955 if (Tok.is(AsmToken::Real) && isVmovf) {
5956 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5957 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5958 // If we had a '-' in front, toggle the sign bit.
5959 IntVal ^= (uint64_t)isNegative << 31;
5960 Parser.Lex(); // Eat the token.
5961 Operands.push_back(ARMOperand::CreateImm(
5962 MCConstantExpr::create(IntVal, getContext()),
5963 S, Parser.getTok().getLoc()));
5964 return MatchOperand_Success;
5966 // Also handle plain integers. Instructions which allow floating point
5967 // immediates also allow a raw encoded 8-bit value.
5968 if (Tok.is(AsmToken::Integer) && isFconst) {
5969 int64_t Val = Tok.getIntVal();
5970 Parser.Lex(); // Eat the token.
5971 if (Val > 255 || Val < 0) {
5972 Error(Loc, "encoded floating point value out of range");
5973 return MatchOperand_ParseFail;
5975 float RealVal = ARM_AM::getFPImmFloat(Val);
5976 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5978 Operands.push_back(ARMOperand::CreateImm(
5979 MCConstantExpr::create(Val, getContext()), S,
5980 Parser.getTok().getLoc()));
5981 return MatchOperand_Success;
5984 Error(Loc, "invalid floating point immediate");
5985 return MatchOperand_ParseFail;
5988 /// Parse a arm instruction operand. For now this parses the operand regardless
5989 /// of the mnemonic.
5990 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5991 MCAsmParser &Parser = getParser();
5992 SMLoc S, E;
5994 // Check if the current operand has a custom associated parser, if so, try to
5995 // custom parse the operand, or fallback to the general approach.
5996 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5997 if (ResTy == MatchOperand_Success)
5998 return false;
5999 // If there wasn't a custom match, try the generic matcher below. Otherwise,
6000 // there was a match, but an error occurred, in which case, just return that
6001 // the operand parsing failed.
6002 if (ResTy == MatchOperand_ParseFail)
6003 return true;
6005 switch (getLexer().getKind()) {
6006 default:
6007 Error(Parser.getTok().getLoc(), "unexpected token in operand");
6008 return true;
6009 case AsmToken::Identifier: {
6010 // If we've seen a branch mnemonic, the next operand must be a label. This
6011 // is true even if the label is a register name. So "br r1" means branch to
6012 // label "r1".
6013 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6014 if (!ExpectLabel) {
6015 if (!tryParseRegisterWithWriteBack(Operands))
6016 return false;
6017 int Res = tryParseShiftRegister(Operands);
6018 if (Res == 0) // success
6019 return false;
6020 else if (Res == -1) // irrecoverable error
6021 return true;
6022 // If this is VMRS, check for the apsr_nzcv operand.
6023 if (Mnemonic == "vmrs" &&
6024 Parser.getTok().getString().equals_lower("apsr_nzcv")) {
6025 S = Parser.getTok().getLoc();
6026 Parser.Lex();
6027 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6028 return false;
6032 // Fall though for the Identifier case that is not a register or a
6033 // special name.
6034 LLVM_FALLTHROUGH;
6036 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
6037 case AsmToken::Integer: // things like 1f and 2b as a branch targets
6038 case AsmToken::String: // quoted label names.
6039 case AsmToken::Dot: { // . as a branch target
6040 // This was not a register so parse other operands that start with an
6041 // identifier (like labels) as expressions and create them as immediates.
6042 const MCExpr *IdVal;
6043 S = Parser.getTok().getLoc();
6044 if (getParser().parseExpression(IdVal))
6045 return true;
6046 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6047 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6048 return false;
6050 case AsmToken::LBrac:
6051 return parseMemory(Operands);
6052 case AsmToken::LCurly:
6053 return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6054 case AsmToken::Dollar:
6055 case AsmToken::Hash:
6056 // #42 -> immediate.
6057 S = Parser.getTok().getLoc();
6058 Parser.Lex();
6060 if (Parser.getTok().isNot(AsmToken::Colon)) {
6061 bool isNegative = Parser.getTok().is(AsmToken::Minus);
6062 const MCExpr *ImmVal;
6063 if (getParser().parseExpression(ImmVal))
6064 return true;
6065 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6066 if (CE) {
6067 int32_t Val = CE->getValue();
6068 if (isNegative && Val == 0)
6069 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6070 getContext());
6072 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6073 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6075 // There can be a trailing '!' on operands that we want as a separate
6076 // '!' Token operand. Handle that here. For example, the compatibility
6077 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6078 if (Parser.getTok().is(AsmToken::Exclaim)) {
6079 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6080 Parser.getTok().getLoc()));
6081 Parser.Lex(); // Eat exclaim token
6083 return false;
6085 // w/ a ':' after the '#', it's just like a plain ':'.
6086 LLVM_FALLTHROUGH;
6088 case AsmToken::Colon: {
6089 S = Parser.getTok().getLoc();
6090 // ":lower16:" and ":upper16:" expression prefixes
6091 // FIXME: Check it's an expression prefix,
6092 // e.g. (FOO - :lower16:BAR) isn't legal.
6093 ARMMCExpr::VariantKind RefKind;
6094 if (parsePrefix(RefKind))
6095 return true;
6097 const MCExpr *SubExprVal;
6098 if (getParser().parseExpression(SubExprVal))
6099 return true;
6101 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6102 getContext());
6103 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6104 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6105 return false;
6107 case AsmToken::Equal: {
6108 S = Parser.getTok().getLoc();
6109 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6110 return Error(S, "unexpected token in operand");
6111 Parser.Lex(); // Eat '='
6112 const MCExpr *SubExprVal;
6113 if (getParser().parseExpression(SubExprVal))
6114 return true;
6115 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6117 // execute-only: we assume that assembly programmers know what they are
6118 // doing and allow literal pool creation here
6119 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6120 return false;
6125 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6126 // :lower16: and :upper16:.
6127 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6128 MCAsmParser &Parser = getParser();
6129 RefKind = ARMMCExpr::VK_ARM_None;
6131 // consume an optional '#' (GNU compatibility)
6132 if (getLexer().is(AsmToken::Hash))
6133 Parser.Lex();
6135 // :lower16: and :upper16: modifiers
6136 assert(getLexer().is(AsmToken::Colon) && "expected a :");
6137 Parser.Lex(); // Eat ':'
6139 if (getLexer().isNot(AsmToken::Identifier)) {
6140 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6141 return true;
6144 enum {
6145 COFF = (1 << MCObjectFileInfo::IsCOFF),
6146 ELF = (1 << MCObjectFileInfo::IsELF),
6147 MACHO = (1 << MCObjectFileInfo::IsMachO),
6148 WASM = (1 << MCObjectFileInfo::IsWasm),
6150 static const struct PrefixEntry {
6151 const char *Spelling;
6152 ARMMCExpr::VariantKind VariantKind;
6153 uint8_t SupportedFormats;
6154 } PrefixEntries[] = {
6155 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6156 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6159 StringRef IDVal = Parser.getTok().getIdentifier();
6161 const auto &Prefix =
6162 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
6163 [&IDVal](const PrefixEntry &PE) {
6164 return PE.Spelling == IDVal;
6166 if (Prefix == std::end(PrefixEntries)) {
6167 Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6168 return true;
6171 uint8_t CurrentFormat;
6172 switch (getContext().getObjectFileInfo()->getObjectFileType()) {
6173 case MCObjectFileInfo::IsMachO:
6174 CurrentFormat = MACHO;
6175 break;
6176 case MCObjectFileInfo::IsELF:
6177 CurrentFormat = ELF;
6178 break;
6179 case MCObjectFileInfo::IsCOFF:
6180 CurrentFormat = COFF;
6181 break;
6182 case MCObjectFileInfo::IsWasm:
6183 CurrentFormat = WASM;
6184 break;
6185 case MCObjectFileInfo::IsXCOFF:
6186 llvm_unreachable("unexpected object format");
6187 break;
6190 if (~Prefix->SupportedFormats & CurrentFormat) {
6191 Error(Parser.getTok().getLoc(),
6192 "cannot represent relocation in the current file format");
6193 return true;
6196 RefKind = Prefix->VariantKind;
6197 Parser.Lex();
6199 if (getLexer().isNot(AsmToken::Colon)) {
6200 Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6201 return true;
6203 Parser.Lex(); // Eat the last ':'
6205 return false;
6208 /// Given a mnemonic, split out possible predication code and carry
6209 /// setting letters to form a canonical mnemonic and flags.
6211 // FIXME: Would be nice to autogen this.
6212 // FIXME: This is a bit of a maze of special cases.
6213 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6214 StringRef ExtraToken,
6215 unsigned &PredicationCode,
6216 unsigned &VPTPredicationCode,
6217 bool &CarrySetting,
6218 unsigned &ProcessorIMod,
6219 StringRef &ITMask) {
6220 PredicationCode = ARMCC::AL;
6221 VPTPredicationCode = ARMVCC::None;
6222 CarrySetting = false;
6223 ProcessorIMod = 0;
6225 // Ignore some mnemonics we know aren't predicated forms.
6227 // FIXME: Would be nice to autogen this.
6228 if ((Mnemonic == "movs" && isThumb()) ||
6229 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
6230 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
6231 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
6232 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
6233 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
6234 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
6235 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
6236 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6237 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6238 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
6239 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6240 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6241 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6242 Mnemonic == "bxns" || Mnemonic == "blxns" ||
6243 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6244 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6245 Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6246 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
6247 Mnemonic == "csel" || Mnemonic == "csinc" ||
6248 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6249 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
6250 Mnemonic == "csetm")
6251 return Mnemonic;
6253 // First, split out any predication code. Ignore mnemonics we know aren't
6254 // predicated but do have a carry-set and so weren't caught above.
6255 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6256 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6257 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6258 Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6259 !(hasMVE() &&
6260 (Mnemonic == "vmine" ||
6261 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6262 Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6263 Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6264 Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6265 Mnemonic == "vmule" || Mnemonic == "vmult" ||
6266 Mnemonic == "vrintne" ||
6267 Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6268 Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6269 Mnemonic.startswith("vq")))) {
6270 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6271 if (CC != ~0U) {
6272 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6273 PredicationCode = CC;
6277 // Next, determine if we have a carry setting bit. We explicitly ignore all
6278 // the instructions we know end in 's'.
6279 if (Mnemonic.endswith("s") &&
6280 !(Mnemonic == "cps" || Mnemonic == "mls" ||
6281 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6282 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6283 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6284 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6285 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6286 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6287 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6288 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6289 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6290 Mnemonic == "vmlas" ||
6291 (Mnemonic == "movs" && isThumb()))) {
6292 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6293 CarrySetting = true;
6296 // The "cps" instruction can have a interrupt mode operand which is glued into
6297 // the mnemonic. Check if this is the case, split it and parse the imod op
6298 if (Mnemonic.startswith("cps")) {
6299 // Split out any imod code.
6300 unsigned IMod =
6301 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6302 .Case("ie", ARM_PROC::IE)
6303 .Case("id", ARM_PROC::ID)
6304 .Default(~0U);
6305 if (IMod != ~0U) {
6306 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6307 ProcessorIMod = IMod;
6311 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6312 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6313 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6314 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6315 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6316 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6317 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6318 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6319 if (CC != ~0U) {
6320 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6321 VPTPredicationCode = CC;
6323 return Mnemonic;
6326 // The "it" instruction has the condition mask on the end of the mnemonic.
6327 if (Mnemonic.startswith("it")) {
6328 ITMask = Mnemonic.slice(2, Mnemonic.size());
6329 Mnemonic = Mnemonic.slice(0, 2);
6332 if (Mnemonic.startswith("vpst")) {
6333 ITMask = Mnemonic.slice(4, Mnemonic.size());
6334 Mnemonic = Mnemonic.slice(0, 4);
6336 else if (Mnemonic.startswith("vpt")) {
6337 ITMask = Mnemonic.slice(3, Mnemonic.size());
6338 Mnemonic = Mnemonic.slice(0, 3);
6341 return Mnemonic;
6344 /// Given a canonical mnemonic, determine if the instruction ever allows
6345 /// inclusion of carry set or predication code operands.
6347 // FIXME: It would be nice to autogen this.
6348 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6349 StringRef ExtraToken,
6350 StringRef FullInst,
6351 bool &CanAcceptCarrySet,
6352 bool &CanAcceptPredicationCode,
6353 bool &CanAcceptVPTPredicationCode) {
6354 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6356 CanAcceptCarrySet =
6357 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6358 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6359 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6360 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6361 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6362 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6363 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6364 (!isThumb() &&
6365 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6366 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6368 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6369 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6370 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6371 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6372 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6373 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6374 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6375 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6376 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6377 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6378 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6379 Mnemonic == "vmovx" || Mnemonic == "vins" ||
6380 Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6381 Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6382 Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6383 Mnemonic == "sb" || Mnemonic == "ssbb" ||
6384 Mnemonic == "pssbb" ||
6385 Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6386 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6387 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6388 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6389 Mnemonic == "cset" || Mnemonic == "csetm" ||
6390 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6391 (hasMVE() &&
6392 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6393 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6394 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6395 Mnemonic.startswith("letp")))) {
6396 // These mnemonics are never predicable
6397 CanAcceptPredicationCode = false;
6398 } else if (!isThumb()) {
6399 // Some instructions are only predicable in Thumb mode
6400 CanAcceptPredicationCode =
6401 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6402 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6403 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6404 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6405 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6406 Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6407 Mnemonic != "tsb" &&
6408 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6409 } else if (isThumbOne()) {
6410 if (hasV6MOps())
6411 CanAcceptPredicationCode = Mnemonic != "movs";
6412 else
6413 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6414 } else
6415 CanAcceptPredicationCode = true;
6418 // Some Thumb instructions have two operand forms that are not
6419 // available as three operand, convert to two operand form if possible.
6421 // FIXME: We would really like to be able to tablegen'erate this.
6422 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6423 bool CarrySetting,
6424 OperandVector &Operands) {
6425 if (Operands.size() != 6)
6426 return;
6428 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6429 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6430 if (!Op3.isReg() || !Op4.isReg())
6431 return;
6433 auto Op3Reg = Op3.getReg();
6434 auto Op4Reg = Op4.getReg();
6436 // For most Thumb2 cases we just generate the 3 operand form and reduce
6437 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6438 // won't accept SP or PC so we do the transformation here taking care
6439 // with immediate range in the 'add sp, sp #imm' case.
6440 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6441 if (isThumbTwo()) {
6442 if (Mnemonic != "add")
6443 return;
6444 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6445 (Op5.isReg() && Op5.getReg() == ARM::PC);
6446 if (!TryTransform) {
6447 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6448 (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6449 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6450 Op5.isImm() && !Op5.isImm0_508s4());
6452 if (!TryTransform)
6453 return;
6454 } else if (!isThumbOne())
6455 return;
6457 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6458 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6459 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6460 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6461 return;
6463 // If first 2 operands of a 3 operand instruction are the same
6464 // then transform to 2 operand version of the same instruction
6465 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6466 bool Transform = Op3Reg == Op4Reg;
6468 // For communtative operations, we might be able to transform if we swap
6469 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
6470 // as tADDrsp.
6471 const ARMOperand *LastOp = &Op5;
6472 bool Swap = false;
6473 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6474 ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6475 Mnemonic == "and" || Mnemonic == "eor" ||
6476 Mnemonic == "adc" || Mnemonic == "orr")) {
6477 Swap = true;
6478 LastOp = &Op4;
6479 Transform = true;
6482 // If both registers are the same then remove one of them from
6483 // the operand list, with certain exceptions.
6484 if (Transform) {
6485 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6486 // 2 operand forms don't exist.
6487 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6488 LastOp->isReg())
6489 Transform = false;
6491 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6492 // 3-bits because the ARMARM says not to.
6493 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6494 Transform = false;
6497 if (Transform) {
6498 if (Swap)
6499 std::swap(Op4, Op5);
6500 Operands.erase(Operands.begin() + 3);
6504 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6505 OperandVector &Operands) {
6506 // FIXME: This is all horribly hacky. We really need a better way to deal
6507 // with optional operands like this in the matcher table.
6509 // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6510 // another does not. Specifically, the MOVW instruction does not. So we
6511 // special case it here and remove the defaulted (non-setting) cc_out
6512 // operand if that's the instruction we're trying to match.
6514 // We do this as post-processing of the explicit operands rather than just
6515 // conditionally adding the cc_out in the first place because we need
6516 // to check the type of the parsed immediate operand.
6517 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6518 !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6519 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6520 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6521 return true;
6523 // Register-register 'add' for thumb does not have a cc_out operand
6524 // when there are only two register operands.
6525 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6526 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6527 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6528 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6529 return true;
6530 // Register-register 'add' for thumb does not have a cc_out operand
6531 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6532 // have to check the immediate range here since Thumb2 has a variant
6533 // that can handle a different range and has a cc_out operand.
6534 if (((isThumb() && Mnemonic == "add") ||
6535 (isThumbTwo() && Mnemonic == "sub")) &&
6536 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6537 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6538 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6539 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6540 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6541 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6542 return true;
6543 // For Thumb2, add/sub immediate does not have a cc_out operand for the
6544 // imm0_4095 variant. That's the least-preferred variant when
6545 // selecting via the generic "add" mnemonic, so to know that we
6546 // should remove the cc_out operand, we have to explicitly check that
6547 // it's not one of the other variants. Ugh.
6548 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6549 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6550 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6551 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6552 // Nest conditions rather than one big 'if' statement for readability.
6554 // If both registers are low, we're in an IT block, and the immediate is
6555 // in range, we should use encoding T1 instead, which has a cc_out.
6556 if (inITBlock() &&
6557 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6558 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6559 static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6560 return false;
6561 // Check against T3. If the second register is the PC, this is an
6562 // alternate form of ADR, which uses encoding T4, so check for that too.
6563 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6564 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
6565 return false;
6567 // Otherwise, we use encoding T4, which does not have a cc_out
6568 // operand.
6569 return true;
6572 // The thumb2 multiply instruction doesn't have a CCOut register, so
6573 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6574 // use the 16-bit encoding or not.
6575 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6576 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6577 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6578 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6579 static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6580 // If the registers aren't low regs, the destination reg isn't the
6581 // same as one of the source regs, or the cc_out operand is zero
6582 // outside of an IT block, we have to use the 32-bit encoding, so
6583 // remove the cc_out operand.
6584 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6585 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6586 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6587 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6588 static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6589 static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6590 static_cast<ARMOperand &>(*Operands[4]).getReg())))
6591 return true;
6593 // Also check the 'mul' syntax variant that doesn't specify an explicit
6594 // destination register.
6595 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6596 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6597 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6598 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6599 // If the registers aren't low regs or the cc_out operand is zero
6600 // outside of an IT block, we have to use the 32-bit encoding, so
6601 // remove the cc_out operand.
6602 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6603 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6604 !inITBlock()))
6605 return true;
6607 // Register-register 'add/sub' for thumb does not have a cc_out operand
6608 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6609 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6610 // right, this will result in better diagnostics (which operand is off)
6611 // anyway.
6612 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6613 (Operands.size() == 5 || Operands.size() == 6) &&
6614 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6615 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6616 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6617 (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6618 (Operands.size() == 6 &&
6619 static_cast<ARMOperand &>(*Operands[5]).isImm())))
6620 return true;
6622 return false;
6625 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6626 OperandVector &Operands) {
6627 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6628 unsigned RegIdx = 3;
6629 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6630 Mnemonic == "vrintr") &&
6631 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6632 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6633 if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6634 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6635 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6636 RegIdx = 4;
6638 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6639 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6640 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6641 ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6642 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6643 return true;
6645 return false;
6648 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6649 OperandVector &Operands) {
6650 if (!hasMVE() || Operands.size() < 3)
6651 return true;
6653 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6654 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6655 return true;
6657 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6658 return false;
6660 if (Mnemonic.startswith("vmov") &&
6661 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6662 Mnemonic.startswith("vmovx"))) {
6663 for (auto &Operand : Operands) {
6664 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6665 ((*Operand).isReg() &&
6666 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6667 (*Operand).getReg()) ||
6668 ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6669 (*Operand).getReg())))) {
6670 return true;
6673 return false;
6674 } else {
6675 for (auto &Operand : Operands) {
6676 // We check the larger class QPR instead of just the legal class
6677 // MQPR, to more accurately report errors when using Q registers
6678 // outside of the allowed range.
6679 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6680 (Operand->isReg() &&
6681 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6682 Operand->getReg()))))
6683 return false;
6685 return true;
6689 static bool isDataTypeToken(StringRef Tok) {
6690 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6691 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6692 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6693 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6694 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6695 Tok == ".f" || Tok == ".d";
6698 // FIXME: This bit should probably be handled via an explicit match class
6699 // in the .td files that matches the suffix instead of having it be
6700 // a literal string token the way it is now.
6701 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6702 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6705 static void applyMnemonicAliases(StringRef &Mnemonic,
6706 const FeatureBitset &Features,
6707 unsigned VariantID);
6709 // The GNU assembler has aliases of ldrd and strd with the second register
6710 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6712 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6713 // the assmebly parser could then generate confusing diagnostics refering to
6714 // it. If we do find anything that prevents us from doing the transformation we
6715 // bail out, and let the assembly parser report an error on the instruction as
6716 // it is written.
6717 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6718 OperandVector &Operands) {
6719 if (Mnemonic != "ldrd" && Mnemonic != "strd")
6720 return;
6721 if (Operands.size() < 4)
6722 return;
6724 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6725 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6727 if (!Op2.isReg())
6728 return;
6729 if (!Op3.isGPRMem())
6730 return;
6732 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6733 if (!GPR.contains(Op2.getReg()))
6734 return;
6736 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6737 if (!isThumb() && (RtEncoding & 1)) {
6738 // In ARM mode, the registers must be from an aligned pair, this
6739 // restriction does not apply in Thumb mode.
6740 return;
6742 if (Op2.getReg() == ARM::PC)
6743 return;
6744 unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6745 if (!PairedReg || PairedReg == ARM::PC ||
6746 (PairedReg == ARM::SP && !hasV8Ops()))
6747 return;
6749 Operands.insert(
6750 Operands.begin() + 3,
6751 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6754 /// Parse an arm instruction mnemonic followed by its operands.
6755 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6756 SMLoc NameLoc, OperandVector &Operands) {
6757 MCAsmParser &Parser = getParser();
6759 // Apply mnemonic aliases before doing anything else, as the destination
6760 // mnemonic may include suffices and we want to handle them normally.
6761 // The generic tblgen'erated code does this later, at the start of
6762 // MatchInstructionImpl(), but that's too late for aliases that include
6763 // any sort of suffix.
6764 const FeatureBitset &AvailableFeatures = getAvailableFeatures();
6765 unsigned AssemblerDialect = getParser().getAssemblerDialect();
6766 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6768 // First check for the ARM-specific .req directive.
6769 if (Parser.getTok().is(AsmToken::Identifier) &&
6770 Parser.getTok().getIdentifier() == ".req") {
6771 parseDirectiveReq(Name, NameLoc);
6772 // We always return 'error' for this, as we're done with this
6773 // statement and don't need to match the 'instruction."
6774 return true;
6777 // Create the leading tokens for the mnemonic, split by '.' characters.
6778 size_t Start = 0, Next = Name.find('.');
6779 StringRef Mnemonic = Name.slice(Start, Next);
6780 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
6782 // Split out the predication code and carry setting flag from the mnemonic.
6783 unsigned PredicationCode;
6784 unsigned VPTPredicationCode;
6785 unsigned ProcessorIMod;
6786 bool CarrySetting;
6787 StringRef ITMask;
6788 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
6789 CarrySetting, ProcessorIMod, ITMask);
6791 // In Thumb1, only the branch (B) instruction can be predicated.
6792 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6793 return Error(NameLoc, "conditional execution not supported in Thumb1");
6796 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6798 // Handle the mask for IT and VPT instructions. In ARMOperand and
6799 // MCOperand, this is stored in a format independent of the
6800 // condition code: the lowest set bit indicates the end of the
6801 // encoding, and above that, a 1 bit indicates 'else', and an 0
6802 // indicates 'then'. E.g.
6803 // IT -> 1000
6804 // ITx -> x100 (ITT -> 0100, ITE -> 1100)
6805 // ITxy -> xy10 (e.g. ITET -> 1010)
6806 // ITxyz -> xyz1 (e.g. ITEET -> 1101)
6807 if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
6808 Mnemonic.startswith("vpst")) {
6809 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
6810 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
6811 SMLoc::getFromPointer(NameLoc.getPointer() + 4);
6812 if (ITMask.size() > 3) {
6813 if (Mnemonic == "it")
6814 return Error(Loc, "too many conditions on IT instruction");
6815 return Error(Loc, "too many conditions on VPT instruction");
6817 unsigned Mask = 8;
6818 for (unsigned i = ITMask.size(); i != 0; --i) {
6819 char pos = ITMask[i - 1];
6820 if (pos != 't' && pos != 'e') {
6821 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6823 Mask >>= 1;
6824 if (ITMask[i - 1] == 'e')
6825 Mask |= 8;
6827 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6830 // FIXME: This is all a pretty gross hack. We should automatically handle
6831 // optional operands like this via tblgen.
6833 // Next, add the CCOut and ConditionCode operands, if needed.
6835 // For mnemonics which can ever incorporate a carry setting bit or predication
6836 // code, our matching model involves us always generating CCOut and
6837 // ConditionCode operands to match the mnemonic "as written" and then we let
6838 // the matcher deal with finding the right instruction or generating an
6839 // appropriate error.
6840 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
6841 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
6842 CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
6844 // If we had a carry-set on an instruction that can't do that, issue an
6845 // error.
6846 if (!CanAcceptCarrySet && CarrySetting) {
6847 return Error(NameLoc, "instruction '" + Mnemonic +
6848 "' can not set flags, but 's' suffix specified");
6850 // If we had a predication code on an instruction that can't do that, issue an
6851 // error.
6852 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6853 return Error(NameLoc, "instruction '" + Mnemonic +
6854 "' is not predicable, but condition code specified");
6857 // If we had a VPT predication code on an instruction that can't do that, issue an
6858 // error.
6859 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
6860 return Error(NameLoc, "instruction '" + Mnemonic +
6861 "' is not VPT predicable, but VPT code T/E is specified");
6864 // Add the carry setting operand, if necessary.
6865 if (CanAcceptCarrySet) {
6866 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6867 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6868 Loc));
6871 // Add the predication code operand, if necessary.
6872 if (CanAcceptPredicationCode) {
6873 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6874 CarrySetting);
6875 Operands.push_back(ARMOperand::CreateCondCode(
6876 ARMCC::CondCodes(PredicationCode), Loc));
6879 // Add the VPT predication code operand, if necessary.
6880 // FIXME: We don't add them for the instructions filtered below as these can
6881 // have custom operands which need special parsing. This parsing requires
6882 // the operand to be in the same place in the OperandVector as their
6883 // definition in tblgen. Since these instructions may also have the
6884 // scalar predication operand we do not add the vector one and leave until
6885 // now to fix it up.
6886 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
6887 !Mnemonic.startswith("vcmp") &&
6888 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
6889 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
6890 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6891 CarrySetting);
6892 Operands.push_back(ARMOperand::CreateVPTPred(
6893 ARMVCC::VPTCodes(VPTPredicationCode), Loc));
6896 // Add the processor imod operand, if necessary.
6897 if (ProcessorIMod) {
6898 Operands.push_back(ARMOperand::CreateImm(
6899 MCConstantExpr::create(ProcessorIMod, getContext()),
6900 NameLoc, NameLoc));
6901 } else if (Mnemonic == "cps" && isMClass()) {
6902 return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6905 // Add the remaining tokens in the mnemonic.
6906 while (Next != StringRef::npos) {
6907 Start = Next;
6908 Next = Name.find('.', Start + 1);
6909 ExtraToken = Name.slice(Start, Next);
6911 // Some NEON instructions have an optional datatype suffix that is
6912 // completely ignored. Check for that.
6913 if (isDataTypeToken(ExtraToken) &&
6914 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6915 continue;
6917 // For for ARM mode generate an error if the .n qualifier is used.
6918 if (ExtraToken == ".n" && !isThumb()) {
6919 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6920 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6921 "arm mode");
6924 // The .n qualifier is always discarded as that is what the tables
6925 // and matcher expect. In ARM mode the .w qualifier has no effect,
6926 // so discard it to avoid errors that can be caused by the matcher.
6927 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6928 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6929 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6933 // Read the remaining operands.
6934 if (getLexer().isNot(AsmToken::EndOfStatement)) {
6935 // Read the first operand.
6936 if (parseOperand(Operands, Mnemonic)) {
6937 return true;
6940 while (parseOptionalToken(AsmToken::Comma)) {
6941 // Parse and remember the operand.
6942 if (parseOperand(Operands, Mnemonic)) {
6943 return true;
6948 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6949 return true;
6951 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6953 // Some instructions, mostly Thumb, have forms for the same mnemonic that
6954 // do and don't have a cc_out optional-def operand. With some spot-checks
6955 // of the operand list, we can figure out which variant we're trying to
6956 // parse and adjust accordingly before actually matching. We shouldn't ever
6957 // try to remove a cc_out operand that was explicitly set on the
6958 // mnemonic, of course (CarrySetting == true). Reason number #317 the
6959 // table driven matcher doesn't fit well with the ARM instruction set.
6960 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6961 Operands.erase(Operands.begin() + 1);
6963 // Some instructions have the same mnemonic, but don't always
6964 // have a predicate. Distinguish them here and delete the
6965 // appropriate predicate if needed. This could be either the scalar
6966 // predication code or the vector predication code.
6967 if (PredicationCode == ARMCC::AL &&
6968 shouldOmitPredicateOperand(Mnemonic, Operands))
6969 Operands.erase(Operands.begin() + 1);
6972 if (hasMVE()) {
6973 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
6974 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
6975 // Very nasty hack to deal with the vector predicated variant of vmovlt
6976 // the scalar predicated vmov with condition 'lt'. We can not tell them
6977 // apart until we have parsed their operands.
6978 Operands.erase(Operands.begin() + 1);
6979 Operands.erase(Operands.begin());
6980 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
6981 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
6982 Mnemonic.size() - 1 + CarrySetting);
6983 Operands.insert(Operands.begin(),
6984 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
6985 Operands.insert(Operands.begin(),
6986 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
6987 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
6988 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
6989 // Another nasty hack to deal with the ambiguity between vcvt with scalar
6990 // predication 'ne' and vcvtn with vector predication 'e'. As above we
6991 // can only distinguish between the two after we have parsed their
6992 // operands.
6993 Operands.erase(Operands.begin() + 1);
6994 Operands.erase(Operands.begin());
6995 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
6996 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
6997 Mnemonic.size() - 1 + CarrySetting);
6998 Operands.insert(Operands.begin(),
6999 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7000 Operands.insert(Operands.begin(),
7001 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7002 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7003 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7004 // Another hack, this time to distinguish between scalar predicated vmul
7005 // with 'lt' predication code and the vector instruction vmullt with
7006 // vector predication code "none"
7007 Operands.erase(Operands.begin() + 1);
7008 Operands.erase(Operands.begin());
7009 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7010 Operands.insert(Operands.begin(),
7011 ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7013 // For vmov and vcmp, as mentioned earlier, we did not add the vector
7014 // predication code, since these may contain operands that require
7015 // special parsing. So now we have to see if they require vector
7016 // predication and replace the scalar one with the vector predication
7017 // operand if that is the case.
7018 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7019 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7020 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7021 !Mnemonic.startswith("vcvtm"))) {
7022 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7023 // We could not split the vector predicate off vcvt because it might
7024 // have been the scalar vcvtt instruction. Now we know its a vector
7025 // instruction, we still need to check whether its the vector
7026 // predicated vcvt with 'Then' predication or the vector vcvtt. We can
7027 // distinguish the two based on the suffixes, if it is any of
7028 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7029 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7030 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7031 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7032 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7033 Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7034 Operands.erase(Operands.begin());
7035 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7036 VPTPredicationCode = ARMVCC::Then;
7038 Mnemonic = Mnemonic.substr(0, 4);
7039 Operands.insert(Operands.begin(),
7040 ARMOperand::CreateToken(Mnemonic, MLoc));
7043 Operands.erase(Operands.begin() + 1);
7044 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7045 Mnemonic.size() + CarrySetting);
7046 Operands.insert(Operands.begin() + 1,
7047 ARMOperand::CreateVPTPred(
7048 ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7050 } else if (CanAcceptVPTPredicationCode) {
7051 // For all other instructions, make sure only one of the two
7052 // predication operands is left behind, depending on whether we should
7053 // use the vector predication.
7054 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7055 if (CanAcceptPredicationCode)
7056 Operands.erase(Operands.begin() + 2);
7057 else
7058 Operands.erase(Operands.begin() + 1);
7059 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7060 Operands.erase(Operands.begin() + 1);
7065 if (VPTPredicationCode != ARMVCC::None) {
7066 bool usedVPTPredicationCode = false;
7067 for (unsigned I = 1; I < Operands.size(); ++I)
7068 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7069 usedVPTPredicationCode = true;
7070 if (!usedVPTPredicationCode) {
7071 // If we have a VPT predication code and we haven't just turned it
7072 // into an operand, then it was a mistake for splitMnemonic to
7073 // separate it from the rest of the mnemonic in the first place,
7074 // and this may lead to wrong disassembly (e.g. scalar floating
7075 // point VCMPE is actually a different instruction from VCMP, so
7076 // we mustn't treat them the same). In that situation, glue it
7077 // back on.
7078 Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7079 Operands.erase(Operands.begin());
7080 Operands.insert(Operands.begin(),
7081 ARMOperand::CreateToken(Mnemonic, NameLoc));
7085 // ARM mode 'blx' need special handling, as the register operand version
7086 // is predicable, but the label operand version is not. So, we can't rely
7087 // on the Mnemonic based checking to correctly figure out when to put
7088 // a k_CondCode operand in the list. If we're trying to match the label
7089 // version, remove the k_CondCode operand here.
7090 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7091 static_cast<ARMOperand &>(*Operands[2]).isImm())
7092 Operands.erase(Operands.begin() + 1);
7094 // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7095 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7096 // a single GPRPair reg operand is used in the .td file to replace the two
7097 // GPRs. However, when parsing from asm, the two GRPs cannot be
7098 // automatically
7099 // expressed as a GPRPair, so we have to manually merge them.
7100 // FIXME: We would really like to be able to tablegen'erate this.
7101 if (!isThumb() && Operands.size() > 4 &&
7102 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7103 Mnemonic == "stlexd")) {
7104 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7105 unsigned Idx = isLoad ? 2 : 3;
7106 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7107 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7109 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7110 // Adjust only if Op1 and Op2 are GPRs.
7111 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7112 MRC.contains(Op2.getReg())) {
7113 unsigned Reg1 = Op1.getReg();
7114 unsigned Reg2 = Op2.getReg();
7115 unsigned Rt = MRI->getEncodingValue(Reg1);
7116 unsigned Rt2 = MRI->getEncodingValue(Reg2);
7118 // Rt2 must be Rt + 1 and Rt must be even.
7119 if (Rt + 1 != Rt2 || (Rt & 1)) {
7120 return Error(Op2.getStartLoc(),
7121 isLoad ? "destination operands must be sequential"
7122 : "source operands must be sequential");
7124 unsigned NewReg = MRI->getMatchingSuperReg(
7125 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7126 Operands[Idx] =
7127 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7128 Operands.erase(Operands.begin() + Idx + 1);
7132 // GNU Assembler extension (compatibility).
7133 fixupGNULDRDAlias(Mnemonic, Operands);
7135 // FIXME: As said above, this is all a pretty gross hack. This instruction
7136 // does not fit with other "subs" and tblgen.
7137 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7138 // so the Mnemonic is the original name "subs" and delete the predicate
7139 // operand so it will match the table entry.
7140 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7141 static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7142 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7143 static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7144 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7145 static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7146 Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7147 Operands.erase(Operands.begin() + 1);
7149 return false;
7152 // Validate context-sensitive operand constraints.
7154 // return 'true' if register list contains non-low GPR registers,
7155 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7156 // 'containsReg' to true.
7157 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7158 unsigned Reg, unsigned HiReg,
7159 bool &containsReg) {
7160 containsReg = false;
7161 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7162 unsigned OpReg = Inst.getOperand(i).getReg();
7163 if (OpReg == Reg)
7164 containsReg = true;
7165 // Anything other than a low register isn't legal here.
7166 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7167 return true;
7169 return false;
7172 // Check if the specified regisgter is in the register list of the inst,
7173 // starting at the indicated operand number.
7174 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7175 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7176 unsigned OpReg = Inst.getOperand(i).getReg();
7177 if (OpReg == Reg)
7178 return true;
7180 return false;
7183 // Return true if instruction has the interesting property of being
7184 // allowed in IT blocks, but not being predicable.
7185 static bool instIsBreakpoint(const MCInst &Inst) {
7186 return Inst.getOpcode() == ARM::tBKPT ||
7187 Inst.getOpcode() == ARM::BKPT ||
7188 Inst.getOpcode() == ARM::tHLT ||
7189 Inst.getOpcode() == ARM::HLT;
7192 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7193 const OperandVector &Operands,
7194 unsigned ListNo, bool IsARPop) {
7195 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7196 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7198 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7199 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7200 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7202 if (!IsARPop && ListContainsSP)
7203 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7204 "SP may not be in the register list");
7205 else if (ListContainsPC && ListContainsLR)
7206 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7207 "PC and LR may not be in the register list simultaneously");
7208 return false;
7211 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7212 const OperandVector &Operands,
7213 unsigned ListNo) {
7214 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7215 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7217 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7218 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7220 if (ListContainsSP && ListContainsPC)
7221 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7222 "SP and PC may not be in the register list");
7223 else if (ListContainsSP)
7224 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7225 "SP may not be in the register list");
7226 else if (ListContainsPC)
7227 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7228 "PC may not be in the register list");
7229 return false;
7232 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7233 const OperandVector &Operands,
7234 bool Load, bool ARMMode, bool Writeback) {
7235 unsigned RtIndex = Load || !Writeback ? 0 : 1;
7236 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7237 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7239 if (ARMMode) {
7240 // Rt can't be R14.
7241 if (Rt == 14)
7242 return Error(Operands[3]->getStartLoc(),
7243 "Rt can't be R14");
7245 // Rt must be even-numbered.
7246 if ((Rt & 1) == 1)
7247 return Error(Operands[3]->getStartLoc(),
7248 "Rt must be even-numbered");
7250 // Rt2 must be Rt + 1.
7251 if (Rt2 != Rt + 1) {
7252 if (Load)
7253 return Error(Operands[3]->getStartLoc(),
7254 "destination operands must be sequential");
7255 else
7256 return Error(Operands[3]->getStartLoc(),
7257 "source operands must be sequential");
7260 // FIXME: Diagnose m == 15
7261 // FIXME: Diagnose ldrd with m == t || m == t2.
7264 if (!ARMMode && Load) {
7265 if (Rt2 == Rt)
7266 return Error(Operands[3]->getStartLoc(),
7267 "destination operands can't be identical");
7270 if (Writeback) {
7271 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7273 if (Rn == Rt || Rn == Rt2) {
7274 if (Load)
7275 return Error(Operands[3]->getStartLoc(),
7276 "base register needs to be different from destination "
7277 "registers");
7278 else
7279 return Error(Operands[3]->getStartLoc(),
7280 "source register and base register can't be identical");
7283 // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7284 // (Except the immediate form of ldrd?)
7287 return false;
7290 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7291 for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7292 if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7293 return i;
7295 return -1;
7298 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7299 return findFirstVectorPredOperandIdx(MCID) != -1;
7302 // FIXME: We would really like to be able to tablegen'erate this.
7303 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7304 const OperandVector &Operands) {
7305 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7306 SMLoc Loc = Operands[0]->getStartLoc();
7308 // Check the IT block state first.
7309 // NOTE: BKPT and HLT instructions have the interesting property of being
7310 // allowed in IT blocks, but not being predicable. They just always execute.
7311 if (inITBlock() && !instIsBreakpoint(Inst)) {
7312 // The instruction must be predicable.
7313 if (!MCID.isPredicable())
7314 return Error(Loc, "instructions in IT block must be predicable");
7315 ARMCC::CondCodes Cond = ARMCC::CondCodes(
7316 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7317 if (Cond != currentITCond()) {
7318 // Find the condition code Operand to get its SMLoc information.
7319 SMLoc CondLoc;
7320 for (unsigned I = 1; I < Operands.size(); ++I)
7321 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7322 CondLoc = Operands[I]->getStartLoc();
7323 return Error(CondLoc, "incorrect condition in IT block; got '" +
7324 StringRef(ARMCondCodeToString(Cond)) +
7325 "', but expected '" +
7326 ARMCondCodeToString(currentITCond()) + "'");
7328 // Check for non-'al' condition codes outside of the IT block.
7329 } else if (isThumbTwo() && MCID.isPredicable() &&
7330 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7331 ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7332 Inst.getOpcode() != ARM::t2Bcc &&
7333 Inst.getOpcode() != ARM::t2BFic) {
7334 return Error(Loc, "predicated instructions must be in IT block");
7335 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7336 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7337 ARMCC::AL) {
7338 return Warning(Loc, "predicated instructions should be in IT block");
7339 } else if (!MCID.isPredicable()) {
7340 // Check the instruction doesn't have a predicate operand anyway
7341 // that it's not allowed to use. Sometimes this happens in order
7342 // to keep instructions the same shape even though one cannot
7343 // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7344 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7345 if (MCID.OpInfo[i].isPredicate()) {
7346 if (Inst.getOperand(i).getImm() != ARMCC::AL)
7347 return Error(Loc, "instruction is not predicable");
7348 break;
7353 // PC-setting instructions in an IT block, but not the last instruction of
7354 // the block, are UNPREDICTABLE.
7355 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7356 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7359 if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7360 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7361 if (!isVectorPredicable(MCID))
7362 return Error(Loc, "instruction in VPT block must be predicable");
7363 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7364 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7365 if (Pred != VPTPred) {
7366 SMLoc PredLoc;
7367 for (unsigned I = 1; I < Operands.size(); ++I)
7368 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7369 PredLoc = Operands[I]->getStartLoc();
7370 return Error(PredLoc, "incorrect predication in VPT block; got '" +
7371 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7372 "', but expected '" +
7373 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7376 else if (isVectorPredicable(MCID) &&
7377 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7378 ARMVCC::None)
7379 return Error(Loc, "VPT predicated instructions must be in VPT block");
7381 const unsigned Opcode = Inst.getOpcode();
7382 switch (Opcode) {
7383 case ARM::t2IT: {
7384 // Encoding is unpredictable if it ever results in a notional 'NV'
7385 // predicate. Since we don't parse 'NV' directly this means an 'AL'
7386 // predicate with an "else" mask bit.
7387 unsigned Cond = Inst.getOperand(0).getImm();
7388 unsigned Mask = Inst.getOperand(1).getImm();
7390 // Conditions only allowing a 't' are those with no set bit except
7391 // the lowest-order one that indicates the end of the sequence. In
7392 // other words, powers of 2.
7393 if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7394 return Error(Loc, "unpredictable IT predicate sequence");
7395 break;
7397 case ARM::LDRD:
7398 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7399 /*Writeback*/false))
7400 return true;
7401 break;
7402 case ARM::LDRD_PRE:
7403 case ARM::LDRD_POST:
7404 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7405 /*Writeback*/true))
7406 return true;
7407 break;
7408 case ARM::t2LDRDi8:
7409 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7410 /*Writeback*/false))
7411 return true;
7412 break;
7413 case ARM::t2LDRD_PRE:
7414 case ARM::t2LDRD_POST:
7415 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7416 /*Writeback*/true))
7417 return true;
7418 break;
7419 case ARM::t2BXJ: {
7420 const unsigned RmReg = Inst.getOperand(0).getReg();
7421 // Rm = SP is no longer unpredictable in v8-A
7422 if (RmReg == ARM::SP && !hasV8Ops())
7423 return Error(Operands[2]->getStartLoc(),
7424 "r13 (SP) is an unpredictable operand to BXJ");
7425 return false;
7427 case ARM::STRD:
7428 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7429 /*Writeback*/false))
7430 return true;
7431 break;
7432 case ARM::STRD_PRE:
7433 case ARM::STRD_POST:
7434 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7435 /*Writeback*/true))
7436 return true;
7437 break;
7438 case ARM::t2STRD_PRE:
7439 case ARM::t2STRD_POST:
7440 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7441 /*Writeback*/true))
7442 return true;
7443 break;
7444 case ARM::STR_PRE_IMM:
7445 case ARM::STR_PRE_REG:
7446 case ARM::t2STR_PRE:
7447 case ARM::STR_POST_IMM:
7448 case ARM::STR_POST_REG:
7449 case ARM::t2STR_POST:
7450 case ARM::STRH_PRE:
7451 case ARM::t2STRH_PRE:
7452 case ARM::STRH_POST:
7453 case ARM::t2STRH_POST:
7454 case ARM::STRB_PRE_IMM:
7455 case ARM::STRB_PRE_REG:
7456 case ARM::t2STRB_PRE:
7457 case ARM::STRB_POST_IMM:
7458 case ARM::STRB_POST_REG:
7459 case ARM::t2STRB_POST: {
7460 // Rt must be different from Rn.
7461 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7462 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7464 if (Rt == Rn)
7465 return Error(Operands[3]->getStartLoc(),
7466 "source register and base register can't be identical");
7467 return false;
7469 case ARM::LDR_PRE_IMM:
7470 case ARM::LDR_PRE_REG:
7471 case ARM::t2LDR_PRE:
7472 case ARM::LDR_POST_IMM:
7473 case ARM::LDR_POST_REG:
7474 case ARM::t2LDR_POST:
7475 case ARM::LDRH_PRE:
7476 case ARM::t2LDRH_PRE:
7477 case ARM::LDRH_POST:
7478 case ARM::t2LDRH_POST:
7479 case ARM::LDRSH_PRE:
7480 case ARM::t2LDRSH_PRE:
7481 case ARM::LDRSH_POST:
7482 case ARM::t2LDRSH_POST:
7483 case ARM::LDRB_PRE_IMM:
7484 case ARM::LDRB_PRE_REG:
7485 case ARM::t2LDRB_PRE:
7486 case ARM::LDRB_POST_IMM:
7487 case ARM::LDRB_POST_REG:
7488 case ARM::t2LDRB_POST:
7489 case ARM::LDRSB_PRE:
7490 case ARM::t2LDRSB_PRE:
7491 case ARM::LDRSB_POST:
7492 case ARM::t2LDRSB_POST: {
7493 // Rt must be different from Rn.
7494 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7495 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7497 if (Rt == Rn)
7498 return Error(Operands[3]->getStartLoc(),
7499 "destination register and base register can't be identical");
7500 return false;
7503 case ARM::MVE_VLDRBU8_rq:
7504 case ARM::MVE_VLDRBU16_rq:
7505 case ARM::MVE_VLDRBS16_rq:
7506 case ARM::MVE_VLDRBU32_rq:
7507 case ARM::MVE_VLDRBS32_rq:
7508 case ARM::MVE_VLDRHU16_rq:
7509 case ARM::MVE_VLDRHU16_rq_u:
7510 case ARM::MVE_VLDRHU32_rq:
7511 case ARM::MVE_VLDRHU32_rq_u:
7512 case ARM::MVE_VLDRHS32_rq:
7513 case ARM::MVE_VLDRHS32_rq_u:
7514 case ARM::MVE_VLDRWU32_rq:
7515 case ARM::MVE_VLDRWU32_rq_u:
7516 case ARM::MVE_VLDRDU64_rq:
7517 case ARM::MVE_VLDRDU64_rq_u:
7518 case ARM::MVE_VLDRWU32_qi:
7519 case ARM::MVE_VLDRWU32_qi_pre:
7520 case ARM::MVE_VLDRDU64_qi:
7521 case ARM::MVE_VLDRDU64_qi_pre: {
7522 // Qd must be different from Qm.
7523 unsigned QdIdx = 0, QmIdx = 2;
7524 bool QmIsPointer = false;
7525 switch (Opcode) {
7526 case ARM::MVE_VLDRWU32_qi:
7527 case ARM::MVE_VLDRDU64_qi:
7528 QmIdx = 1;
7529 QmIsPointer = true;
7530 break;
7531 case ARM::MVE_VLDRWU32_qi_pre:
7532 case ARM::MVE_VLDRDU64_qi_pre:
7533 QdIdx = 1;
7534 QmIsPointer = true;
7535 break;
7538 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7539 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7541 if (Qd == Qm) {
7542 return Error(Operands[3]->getStartLoc(),
7543 Twine("destination vector register and vector ") +
7544 (QmIsPointer ? "pointer" : "offset") +
7545 " register can't be identical");
7547 return false;
7550 case ARM::SBFX:
7551 case ARM::t2SBFX:
7552 case ARM::UBFX:
7553 case ARM::t2UBFX: {
7554 // Width must be in range [1, 32-lsb].
7555 unsigned LSB = Inst.getOperand(2).getImm();
7556 unsigned Widthm1 = Inst.getOperand(3).getImm();
7557 if (Widthm1 >= 32 - LSB)
7558 return Error(Operands[5]->getStartLoc(),
7559 "bitfield width must be in range [1,32-lsb]");
7560 return false;
7562 // Notionally handles ARM::tLDMIA_UPD too.
7563 case ARM::tLDMIA: {
7564 // If we're parsing Thumb2, the .w variant is available and handles
7565 // most cases that are normally illegal for a Thumb1 LDM instruction.
7566 // We'll make the transformation in processInstruction() if necessary.
7568 // Thumb LDM instructions are writeback iff the base register is not
7569 // in the register list.
7570 unsigned Rn = Inst.getOperand(0).getReg();
7571 bool HasWritebackToken =
7572 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7573 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7574 bool ListContainsBase;
7575 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7576 return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7577 "registers must be in range r0-r7");
7578 // If we should have writeback, then there should be a '!' token.
7579 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7580 return Error(Operands[2]->getStartLoc(),
7581 "writeback operator '!' expected");
7582 // If we should not have writeback, there must not be a '!'. This is
7583 // true even for the 32-bit wide encodings.
7584 if (ListContainsBase && HasWritebackToken)
7585 return Error(Operands[3]->getStartLoc(),
7586 "writeback operator '!' not allowed when base register "
7587 "in register list");
7589 if (validatetLDMRegList(Inst, Operands, 3))
7590 return true;
7591 break;
7593 case ARM::LDMIA_UPD:
7594 case ARM::LDMDB_UPD:
7595 case ARM::LDMIB_UPD:
7596 case ARM::LDMDA_UPD:
7597 // ARM variants loading and updating the same register are only officially
7598 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7599 if (!hasV7Ops())
7600 break;
7601 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7602 return Error(Operands.back()->getStartLoc(),
7603 "writeback register not allowed in register list");
7604 break;
7605 case ARM::t2LDMIA:
7606 case ARM::t2LDMDB:
7607 if (validatetLDMRegList(Inst, Operands, 3))
7608 return true;
7609 break;
7610 case ARM::t2STMIA:
7611 case ARM::t2STMDB:
7612 if (validatetSTMRegList(Inst, Operands, 3))
7613 return true;
7614 break;
7615 case ARM::t2LDMIA_UPD:
7616 case ARM::t2LDMDB_UPD:
7617 case ARM::t2STMIA_UPD:
7618 case ARM::t2STMDB_UPD:
7619 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7620 return Error(Operands.back()->getStartLoc(),
7621 "writeback register not allowed in register list");
7623 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7624 if (validatetLDMRegList(Inst, Operands, 3))
7625 return true;
7626 } else {
7627 if (validatetSTMRegList(Inst, Operands, 3))
7628 return true;
7630 break;
7632 case ARM::sysLDMIA_UPD:
7633 case ARM::sysLDMDA_UPD:
7634 case ARM::sysLDMDB_UPD:
7635 case ARM::sysLDMIB_UPD:
7636 if (!listContainsReg(Inst, 3, ARM::PC))
7637 return Error(Operands[4]->getStartLoc(),
7638 "writeback register only allowed on system LDM "
7639 "if PC in register-list");
7640 break;
7641 case ARM::sysSTMIA_UPD:
7642 case ARM::sysSTMDA_UPD:
7643 case ARM::sysSTMDB_UPD:
7644 case ARM::sysSTMIB_UPD:
7645 return Error(Operands[2]->getStartLoc(),
7646 "system STM cannot have writeback register");
7647 case ARM::tMUL:
7648 // The second source operand must be the same register as the destination
7649 // operand.
7651 // In this case, we must directly check the parsed operands because the
7652 // cvtThumbMultiply() function is written in such a way that it guarantees
7653 // this first statement is always true for the new Inst. Essentially, the
7654 // destination is unconditionally copied into the second source operand
7655 // without checking to see if it matches what we actually parsed.
7656 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7657 ((ARMOperand &)*Operands[5]).getReg()) &&
7658 (((ARMOperand &)*Operands[3]).getReg() !=
7659 ((ARMOperand &)*Operands[4]).getReg())) {
7660 return Error(Operands[3]->getStartLoc(),
7661 "destination register must match source register");
7663 break;
7665 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7666 // so only issue a diagnostic for thumb1. The instructions will be
7667 // switched to the t2 encodings in processInstruction() if necessary.
7668 case ARM::tPOP: {
7669 bool ListContainsBase;
7670 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
7671 !isThumbTwo())
7672 return Error(Operands[2]->getStartLoc(),
7673 "registers must be in range r0-r7 or pc");
7674 if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
7675 return true;
7676 break;
7678 case ARM::tPUSH: {
7679 bool ListContainsBase;
7680 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
7681 !isThumbTwo())
7682 return Error(Operands[2]->getStartLoc(),
7683 "registers must be in range r0-r7 or lr");
7684 if (validatetSTMRegList(Inst, Operands, 2))
7685 return true;
7686 break;
7688 case ARM::tSTMIA_UPD: {
7689 bool ListContainsBase, InvalidLowList;
7690 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
7691 0, ListContainsBase);
7692 if (InvalidLowList && !isThumbTwo())
7693 return Error(Operands[4]->getStartLoc(),
7694 "registers must be in range r0-r7");
7696 // This would be converted to a 32-bit stm, but that's not valid if the
7697 // writeback register is in the list.
7698 if (InvalidLowList && ListContainsBase)
7699 return Error(Operands[4]->getStartLoc(),
7700 "writeback operator '!' not allowed when base register "
7701 "in register list");
7703 if (validatetSTMRegList(Inst, Operands, 4))
7704 return true;
7705 break;
7707 case ARM::tADDrSP:
7708 // If the non-SP source operand and the destination operand are not the
7709 // same, we need thumb2 (for the wide encoding), or we have an error.
7710 if (!isThumbTwo() &&
7711 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7712 return Error(Operands[4]->getStartLoc(),
7713 "source register must be the same as destination");
7715 break;
7717 case ARM::t2ADDri:
7718 case ARM::t2ADDri12:
7719 case ARM::t2ADDrr:
7720 case ARM::t2ADDrs:
7721 case ARM::t2SUBri:
7722 case ARM::t2SUBri12:
7723 case ARM::t2SUBrr:
7724 case ARM::t2SUBrs:
7725 if (Inst.getOperand(0).getReg() == ARM::SP &&
7726 Inst.getOperand(1).getReg() != ARM::SP)
7727 return Error(Operands[4]->getStartLoc(),
7728 "source register must be sp if destination is sp");
7729 break;
7731 // Final range checking for Thumb unconditional branch instructions.
7732 case ARM::tB:
7733 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
7734 return Error(Operands[2]->getStartLoc(), "branch target out of range");
7735 break;
7736 case ARM::t2B: {
7737 int op = (Operands[2]->isImm()) ? 2 : 3;
7738 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
7739 return Error(Operands[op]->getStartLoc(), "branch target out of range");
7740 break;
7742 // Final range checking for Thumb conditional branch instructions.
7743 case ARM::tBcc:
7744 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
7745 return Error(Operands[2]->getStartLoc(), "branch target out of range");
7746 break;
7747 case ARM::t2Bcc: {
7748 int Op = (Operands[2]->isImm()) ? 2 : 3;
7749 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
7750 return Error(Operands[Op]->getStartLoc(), "branch target out of range");
7751 break;
7753 case ARM::tCBZ:
7754 case ARM::tCBNZ: {
7755 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
7756 return Error(Operands[2]->getStartLoc(), "branch target out of range");
7757 break;
7759 case ARM::MOVi16:
7760 case ARM::MOVTi16:
7761 case ARM::t2MOVi16:
7762 case ARM::t2MOVTi16:
7764 // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
7765 // especially when we turn it into a movw and the expression <symbol> does
7766 // not have a :lower16: or :upper16 as part of the expression. We don't
7767 // want the behavior of silently truncating, which can be unexpected and
7768 // lead to bugs that are difficult to find since this is an easy mistake
7769 // to make.
7770 int i = (Operands[3]->isImm()) ? 3 : 4;
7771 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
7772 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
7773 if (CE) break;
7774 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
7775 if (!E) break;
7776 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
7777 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
7778 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
7779 return Error(
7780 Op.getStartLoc(),
7781 "immediate expression for mov requires :lower16: or :upper16");
7782 break;
7784 case ARM::HINT:
7785 case ARM::t2HINT: {
7786 unsigned Imm8 = Inst.getOperand(0).getImm();
7787 unsigned Pred = Inst.getOperand(1).getImm();
7788 // ESB is not predicable (pred must be AL). Without the RAS extension, this
7789 // behaves as any other unallocated hint.
7790 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
7791 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
7792 "predicable, but condition "
7793 "code specified");
7794 if (Imm8 == 0x14 && Pred != ARMCC::AL)
7795 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
7796 "predicable, but condition "
7797 "code specified");
7798 break;
7800 case ARM::t2BFi:
7801 case ARM::t2BFr:
7802 case ARM::t2BFLi:
7803 case ARM::t2BFLr: {
7804 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
7805 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7806 return Error(Operands[2]->getStartLoc(),
7807 "branch location out of range or not a multiple of 2");
7809 if (Opcode == ARM::t2BFi) {
7810 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
7811 return Error(Operands[3]->getStartLoc(),
7812 "branch target out of range or not a multiple of 2");
7813 } else if (Opcode == ARM::t2BFLi) {
7814 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
7815 return Error(Operands[3]->getStartLoc(),
7816 "branch target out of range or not a multiple of 2");
7818 break;
7820 case ARM::t2BFic: {
7821 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
7822 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7823 return Error(Operands[1]->getStartLoc(),
7824 "branch location out of range or not a multiple of 2");
7826 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
7827 return Error(Operands[2]->getStartLoc(),
7828 "branch target out of range or not a multiple of 2");
7830 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
7831 "branch location and else branch target should either both be "
7832 "immediates or both labels");
7834 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
7835 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
7836 if (Diff != 4 && Diff != 2)
7837 return Error(
7838 Operands[3]->getStartLoc(),
7839 "else branch target must be 2 or 4 greater than the branch location");
7841 break;
7843 case ARM::t2CLRM: {
7844 for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
7845 if (Inst.getOperand(i).isReg() &&
7846 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
7847 Inst.getOperand(i).getReg())) {
7848 return Error(Operands[2]->getStartLoc(),
7849 "invalid register in register list. Valid registers are "
7850 "r0-r12, lr/r14 and APSR.");
7853 break;
7855 case ARM::DSB:
7856 case ARM::t2DSB: {
7858 if (Inst.getNumOperands() < 2)
7859 break;
7861 unsigned Option = Inst.getOperand(0).getImm();
7862 unsigned Pred = Inst.getOperand(1).getImm();
7864 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
7865 if (Option == 0 && Pred != ARMCC::AL)
7866 return Error(Operands[1]->getStartLoc(),
7867 "instruction 'ssbb' is not predicable, but condition code "
7868 "specified");
7869 if (Option == 4 && Pred != ARMCC::AL)
7870 return Error(Operands[1]->getStartLoc(),
7871 "instruction 'pssbb' is not predicable, but condition code "
7872 "specified");
7873 break;
7875 case ARM::VMOVRRS: {
7876 // Source registers must be sequential.
7877 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7878 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7879 if (Sm1 != Sm + 1)
7880 return Error(Operands[5]->getStartLoc(),
7881 "source operands must be sequential");
7882 break;
7884 case ARM::VMOVSRR: {
7885 // Destination registers must be sequential.
7886 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7887 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7888 if (Sm1 != Sm + 1)
7889 return Error(Operands[3]->getStartLoc(),
7890 "destination operands must be sequential");
7891 break;
7893 case ARM::VLDMDIA:
7894 case ARM::VSTMDIA: {
7895 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
7896 auto &RegList = Op.getRegList();
7897 if (RegList.size() < 1 || RegList.size() > 16)
7898 return Error(Operands[3]->getStartLoc(),
7899 "list of registers must be at least 1 and at most 16");
7900 break;
7902 case ARM::MVE_VQDMULLs32bh:
7903 case ARM::MVE_VQDMULLs32th:
7904 case ARM::MVE_VCMULf32:
7905 case ARM::MVE_VMULLs32bh:
7906 case ARM::MVE_VMULLs32th:
7907 case ARM::MVE_VMULLu32bh:
7908 case ARM::MVE_VMULLu32th: {
7909 if (Operands[3]->getReg() == Operands[4]->getReg()) {
7910 return Error (Operands[3]->getStartLoc(),
7911 "Qd register and Qn register can't be identical");
7913 if (Operands[3]->getReg() == Operands[5]->getReg()) {
7914 return Error (Operands[3]->getStartLoc(),
7915 "Qd register and Qm register can't be identical");
7917 break;
7919 case ARM::MVE_VMOV_rr_q: {
7920 if (Operands[4]->getReg() != Operands[6]->getReg())
7921 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
7922 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
7923 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
7924 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7925 break;
7927 case ARM::MVE_VMOV_q_rr: {
7928 if (Operands[2]->getReg() != Operands[4]->getReg())
7929 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
7930 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
7931 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
7932 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
7933 break;
7937 return false;
7940 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
7941 switch(Opc) {
7942 default: llvm_unreachable("unexpected opcode!");
7943 // VST1LN
7944 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
7945 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
7946 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
7947 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
7948 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
7949 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
7950 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
7951 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
7952 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
7954 // VST2LN
7955 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
7956 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
7957 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
7958 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
7959 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
7961 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
7962 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
7963 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
7964 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
7965 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
7967 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
7968 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
7969 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
7970 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
7971 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
7973 // VST3LN
7974 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
7975 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
7976 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
7977 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
7978 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
7979 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
7980 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
7981 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
7982 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
7983 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
7984 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
7985 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
7986 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
7987 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
7988 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
7990 // VST3
7991 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
7992 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
7993 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
7994 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
7995 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
7996 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
7997 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
7998 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
7999 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8000 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
8001 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8002 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8003 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
8004 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8005 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8006 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
8007 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8008 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8010 // VST4LN
8011 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
8012 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8013 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8014 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8015 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8016 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
8017 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8018 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8019 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8020 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8021 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
8022 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8023 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8024 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8025 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8027 // VST4
8028 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
8029 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8030 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8031 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
8032 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8033 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8034 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
8035 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8036 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8037 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
8038 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8039 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8040 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
8041 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8042 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8043 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
8044 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8045 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8049 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8050 switch(Opc) {
8051 default: llvm_unreachable("unexpected opcode!");
8052 // VLD1LN
8053 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
8054 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8055 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8056 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
8057 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8058 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8059 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
8060 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8061 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8063 // VLD2LN
8064 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
8065 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8066 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8067 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8068 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8069 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
8070 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8071 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8072 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8073 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8074 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
8075 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8076 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8077 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8078 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8080 // VLD3DUP
8081 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
8082 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8083 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8084 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8085 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8086 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8087 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
8088 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8089 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8090 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8091 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8092 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8093 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
8094 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8095 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8096 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8097 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8098 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8100 // VLD3LN
8101 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
8102 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8103 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8104 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8105 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8106 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
8107 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8108 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8109 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8110 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8111 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
8112 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8113 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8114 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8115 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8117 // VLD3
8118 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
8119 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8120 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8121 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
8122 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8123 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8124 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
8125 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8126 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8127 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
8128 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8129 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8130 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
8131 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8132 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8133 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
8134 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8135 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8137 // VLD4LN
8138 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
8139 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8140 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8141 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8142 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8143 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
8144 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8145 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8146 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8147 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8148 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
8149 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8150 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8151 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8152 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8154 // VLD4DUP
8155 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
8156 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8157 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8158 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8159 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8160 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8161 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
8162 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8163 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8164 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8165 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8166 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8167 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
8168 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8169 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8170 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8171 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8172 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8174 // VLD4
8175 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
8176 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8177 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8178 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
8179 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8180 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8181 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
8182 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8183 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8184 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
8185 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8186 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8187 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
8188 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8189 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8190 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
8191 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8192 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8196 bool ARMAsmParser::processInstruction(MCInst &Inst,
8197 const OperandVector &Operands,
8198 MCStreamer &Out) {
8199 // Check if we have the wide qualifier, because if it's present we
8200 // must avoid selecting a 16-bit thumb instruction.
8201 bool HasWideQualifier = false;
8202 for (auto &Op : Operands) {
8203 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8204 if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8205 HasWideQualifier = true;
8206 break;
8210 switch (Inst.getOpcode()) {
8211 case ARM::MVE_VORNIZ0v4i32:
8212 case ARM::MVE_VORNIZ0v8i16:
8213 case ARM::MVE_VORNIZ8v4i32:
8214 case ARM::MVE_VORNIZ8v8i16:
8215 case ARM::MVE_VORNIZ16v4i32:
8216 case ARM::MVE_VORNIZ24v4i32:
8217 case ARM::MVE_VANDIZ0v4i32:
8218 case ARM::MVE_VANDIZ0v8i16:
8219 case ARM::MVE_VANDIZ8v4i32:
8220 case ARM::MVE_VANDIZ8v8i16:
8221 case ARM::MVE_VANDIZ16v4i32:
8222 case ARM::MVE_VANDIZ24v4i32: {
8223 unsigned Opcode;
8224 bool imm16 = false;
8225 switch(Inst.getOpcode()) {
8226 case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break;
8227 case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break;
8228 case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break;
8229 case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break;
8230 case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break;
8231 case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break;
8232 case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break;
8233 case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break;
8234 case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break;
8235 case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break;
8236 case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break;
8237 case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break;
8238 default: llvm_unreachable("unexpected opcode");
8241 MCInst TmpInst;
8242 TmpInst.setOpcode(Opcode);
8243 TmpInst.addOperand(Inst.getOperand(0));
8244 TmpInst.addOperand(Inst.getOperand(1));
8246 // invert immediate
8247 unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff);
8248 TmpInst.addOperand(MCOperand::createImm(imm));
8250 TmpInst.addOperand(Inst.getOperand(3));
8251 TmpInst.addOperand(Inst.getOperand(4));
8252 Inst = TmpInst;
8253 return true;
8255 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8256 case ARM::LDRT_POST:
8257 case ARM::LDRBT_POST: {
8258 const unsigned Opcode =
8259 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8260 : ARM::LDRBT_POST_IMM;
8261 MCInst TmpInst;
8262 TmpInst.setOpcode(Opcode);
8263 TmpInst.addOperand(Inst.getOperand(0));
8264 TmpInst.addOperand(Inst.getOperand(1));
8265 TmpInst.addOperand(Inst.getOperand(1));
8266 TmpInst.addOperand(MCOperand::createReg(0));
8267 TmpInst.addOperand(MCOperand::createImm(0));
8268 TmpInst.addOperand(Inst.getOperand(2));
8269 TmpInst.addOperand(Inst.getOperand(3));
8270 Inst = TmpInst;
8271 return true;
8273 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8274 case ARM::STRT_POST:
8275 case ARM::STRBT_POST: {
8276 const unsigned Opcode =
8277 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8278 : ARM::STRBT_POST_IMM;
8279 MCInst TmpInst;
8280 TmpInst.setOpcode(Opcode);
8281 TmpInst.addOperand(Inst.getOperand(1));
8282 TmpInst.addOperand(Inst.getOperand(0));
8283 TmpInst.addOperand(Inst.getOperand(1));
8284 TmpInst.addOperand(MCOperand::createReg(0));
8285 TmpInst.addOperand(MCOperand::createImm(0));
8286 TmpInst.addOperand(Inst.getOperand(2));
8287 TmpInst.addOperand(Inst.getOperand(3));
8288 Inst = TmpInst;
8289 return true;
8291 // Alias for alternate form of 'ADR Rd, #imm' instruction.
8292 case ARM::ADDri: {
8293 if (Inst.getOperand(1).getReg() != ARM::PC ||
8294 Inst.getOperand(5).getReg() != 0 ||
8295 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8296 return false;
8297 MCInst TmpInst;
8298 TmpInst.setOpcode(ARM::ADR);
8299 TmpInst.addOperand(Inst.getOperand(0));
8300 if (Inst.getOperand(2).isImm()) {
8301 // Immediate (mod_imm) will be in its encoded form, we must unencode it
8302 // before passing it to the ADR instruction.
8303 unsigned Enc = Inst.getOperand(2).getImm();
8304 TmpInst.addOperand(MCOperand::createImm(
8305 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8306 } else {
8307 // Turn PC-relative expression into absolute expression.
8308 // Reading PC provides the start of the current instruction + 8 and
8309 // the transform to adr is biased by that.
8310 MCSymbol *Dot = getContext().createTempSymbol();
8311 Out.EmitLabel(Dot);
8312 const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8313 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8314 MCSymbolRefExpr::VK_None,
8315 getContext());
8316 const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8317 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8318 getContext());
8319 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8320 getContext());
8321 TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8323 TmpInst.addOperand(Inst.getOperand(3));
8324 TmpInst.addOperand(Inst.getOperand(4));
8325 Inst = TmpInst;
8326 return true;
8328 // Aliases for alternate PC+imm syntax of LDR instructions.
8329 case ARM::t2LDRpcrel:
8330 // Select the narrow version if the immediate will fit.
8331 if (Inst.getOperand(1).getImm() > 0 &&
8332 Inst.getOperand(1).getImm() <= 0xff &&
8333 !HasWideQualifier)
8334 Inst.setOpcode(ARM::tLDRpci);
8335 else
8336 Inst.setOpcode(ARM::t2LDRpci);
8337 return true;
8338 case ARM::t2LDRBpcrel:
8339 Inst.setOpcode(ARM::t2LDRBpci);
8340 return true;
8341 case ARM::t2LDRHpcrel:
8342 Inst.setOpcode(ARM::t2LDRHpci);
8343 return true;
8344 case ARM::t2LDRSBpcrel:
8345 Inst.setOpcode(ARM::t2LDRSBpci);
8346 return true;
8347 case ARM::t2LDRSHpcrel:
8348 Inst.setOpcode(ARM::t2LDRSHpci);
8349 return true;
8350 case ARM::LDRConstPool:
8351 case ARM::tLDRConstPool:
8352 case ARM::t2LDRConstPool: {
8353 // Pseudo instruction ldr rt, =immediate is converted to a
8354 // MOV rt, immediate if immediate is known and representable
8355 // otherwise we create a constant pool entry that we load from.
8356 MCInst TmpInst;
8357 if (Inst.getOpcode() == ARM::LDRConstPool)
8358 TmpInst.setOpcode(ARM::LDRi12);
8359 else if (Inst.getOpcode() == ARM::tLDRConstPool)
8360 TmpInst.setOpcode(ARM::tLDRpci);
8361 else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8362 TmpInst.setOpcode(ARM::t2LDRpci);
8363 const ARMOperand &PoolOperand =
8364 (HasWideQualifier ?
8365 static_cast<ARMOperand &>(*Operands[4]) :
8366 static_cast<ARMOperand &>(*Operands[3]));
8367 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8368 // If SubExprVal is a constant we may be able to use a MOV
8369 if (isa<MCConstantExpr>(SubExprVal) &&
8370 Inst.getOperand(0).getReg() != ARM::PC &&
8371 Inst.getOperand(0).getReg() != ARM::SP) {
8372 int64_t Value =
8373 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8374 bool UseMov = true;
8375 bool MovHasS = true;
8376 if (Inst.getOpcode() == ARM::LDRConstPool) {
8377 // ARM Constant
8378 if (ARM_AM::getSOImmVal(Value) != -1) {
8379 Value = ARM_AM::getSOImmVal(Value);
8380 TmpInst.setOpcode(ARM::MOVi);
8382 else if (ARM_AM::getSOImmVal(~Value) != -1) {
8383 Value = ARM_AM::getSOImmVal(~Value);
8384 TmpInst.setOpcode(ARM::MVNi);
8386 else if (hasV6T2Ops() &&
8387 Value >=0 && Value < 65536) {
8388 TmpInst.setOpcode(ARM::MOVi16);
8389 MovHasS = false;
8391 else
8392 UseMov = false;
8394 else {
8395 // Thumb/Thumb2 Constant
8396 if (hasThumb2() &&
8397 ARM_AM::getT2SOImmVal(Value) != -1)
8398 TmpInst.setOpcode(ARM::t2MOVi);
8399 else if (hasThumb2() &&
8400 ARM_AM::getT2SOImmVal(~Value) != -1) {
8401 TmpInst.setOpcode(ARM::t2MVNi);
8402 Value = ~Value;
8404 else if (hasV8MBaseline() &&
8405 Value >=0 && Value < 65536) {
8406 TmpInst.setOpcode(ARM::t2MOVi16);
8407 MovHasS = false;
8409 else
8410 UseMov = false;
8412 if (UseMov) {
8413 TmpInst.addOperand(Inst.getOperand(0)); // Rt
8414 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
8415 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8416 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8417 if (MovHasS)
8418 TmpInst.addOperand(MCOperand::createReg(0)); // S
8419 Inst = TmpInst;
8420 return true;
8423 // No opportunity to use MOV/MVN create constant pool
8424 const MCExpr *CPLoc =
8425 getTargetStreamer().addConstantPoolEntry(SubExprVal,
8426 PoolOperand.getStartLoc());
8427 TmpInst.addOperand(Inst.getOperand(0)); // Rt
8428 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8429 if (TmpInst.getOpcode() == ARM::LDRi12)
8430 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
8431 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8432 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8433 Inst = TmpInst;
8434 return true;
8436 // Handle NEON VST complex aliases.
8437 case ARM::VST1LNdWB_register_Asm_8:
8438 case ARM::VST1LNdWB_register_Asm_16:
8439 case ARM::VST1LNdWB_register_Asm_32: {
8440 MCInst TmpInst;
8441 // Shuffle the operands around so the lane index operand is in the
8442 // right place.
8443 unsigned Spacing;
8444 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8445 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8446 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8447 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8448 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8449 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8450 TmpInst.addOperand(Inst.getOperand(1)); // lane
8451 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8452 TmpInst.addOperand(Inst.getOperand(6));
8453 Inst = TmpInst;
8454 return true;
8457 case ARM::VST2LNdWB_register_Asm_8:
8458 case ARM::VST2LNdWB_register_Asm_16:
8459 case ARM::VST2LNdWB_register_Asm_32:
8460 case ARM::VST2LNqWB_register_Asm_16:
8461 case ARM::VST2LNqWB_register_Asm_32: {
8462 MCInst TmpInst;
8463 // Shuffle the operands around so the lane index operand is in the
8464 // right place.
8465 unsigned Spacing;
8466 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8467 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8468 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8469 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8470 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8471 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8472 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8473 Spacing));
8474 TmpInst.addOperand(Inst.getOperand(1)); // lane
8475 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8476 TmpInst.addOperand(Inst.getOperand(6));
8477 Inst = TmpInst;
8478 return true;
8481 case ARM::VST3LNdWB_register_Asm_8:
8482 case ARM::VST3LNdWB_register_Asm_16:
8483 case ARM::VST3LNdWB_register_Asm_32:
8484 case ARM::VST3LNqWB_register_Asm_16:
8485 case ARM::VST3LNqWB_register_Asm_32: {
8486 MCInst TmpInst;
8487 // Shuffle the operands around so the lane index operand is in the
8488 // right place.
8489 unsigned Spacing;
8490 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8491 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8492 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8493 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8494 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8495 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8496 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8497 Spacing));
8498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8499 Spacing * 2));
8500 TmpInst.addOperand(Inst.getOperand(1)); // lane
8501 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8502 TmpInst.addOperand(Inst.getOperand(6));
8503 Inst = TmpInst;
8504 return true;
8507 case ARM::VST4LNdWB_register_Asm_8:
8508 case ARM::VST4LNdWB_register_Asm_16:
8509 case ARM::VST4LNdWB_register_Asm_32:
8510 case ARM::VST4LNqWB_register_Asm_16:
8511 case ARM::VST4LNqWB_register_Asm_32: {
8512 MCInst TmpInst;
8513 // Shuffle the operands around so the lane index operand is in the
8514 // right place.
8515 unsigned Spacing;
8516 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8517 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8518 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8519 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8520 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8521 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8522 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8523 Spacing));
8524 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8525 Spacing * 2));
8526 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8527 Spacing * 3));
8528 TmpInst.addOperand(Inst.getOperand(1)); // lane
8529 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8530 TmpInst.addOperand(Inst.getOperand(6));
8531 Inst = TmpInst;
8532 return true;
8535 case ARM::VST1LNdWB_fixed_Asm_8:
8536 case ARM::VST1LNdWB_fixed_Asm_16:
8537 case ARM::VST1LNdWB_fixed_Asm_32: {
8538 MCInst TmpInst;
8539 // Shuffle the operands around so the lane index operand is in the
8540 // right place.
8541 unsigned Spacing;
8542 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8543 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8544 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8545 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8546 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8547 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8548 TmpInst.addOperand(Inst.getOperand(1)); // lane
8549 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8550 TmpInst.addOperand(Inst.getOperand(5));
8551 Inst = TmpInst;
8552 return true;
8555 case ARM::VST2LNdWB_fixed_Asm_8:
8556 case ARM::VST2LNdWB_fixed_Asm_16:
8557 case ARM::VST2LNdWB_fixed_Asm_32:
8558 case ARM::VST2LNqWB_fixed_Asm_16:
8559 case ARM::VST2LNqWB_fixed_Asm_32: {
8560 MCInst TmpInst;
8561 // Shuffle the operands around so the lane index operand is in the
8562 // right place.
8563 unsigned Spacing;
8564 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8565 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8566 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8567 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8568 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8569 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8570 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8571 Spacing));
8572 TmpInst.addOperand(Inst.getOperand(1)); // lane
8573 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8574 TmpInst.addOperand(Inst.getOperand(5));
8575 Inst = TmpInst;
8576 return true;
8579 case ARM::VST3LNdWB_fixed_Asm_8:
8580 case ARM::VST3LNdWB_fixed_Asm_16:
8581 case ARM::VST3LNdWB_fixed_Asm_32:
8582 case ARM::VST3LNqWB_fixed_Asm_16:
8583 case ARM::VST3LNqWB_fixed_Asm_32: {
8584 MCInst TmpInst;
8585 // Shuffle the operands around so the lane index operand is in the
8586 // right place.
8587 unsigned Spacing;
8588 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8589 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8590 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8591 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8592 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8593 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8594 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8595 Spacing));
8596 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8597 Spacing * 2));
8598 TmpInst.addOperand(Inst.getOperand(1)); // lane
8599 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8600 TmpInst.addOperand(Inst.getOperand(5));
8601 Inst = TmpInst;
8602 return true;
8605 case ARM::VST4LNdWB_fixed_Asm_8:
8606 case ARM::VST4LNdWB_fixed_Asm_16:
8607 case ARM::VST4LNdWB_fixed_Asm_32:
8608 case ARM::VST4LNqWB_fixed_Asm_16:
8609 case ARM::VST4LNqWB_fixed_Asm_32: {
8610 MCInst TmpInst;
8611 // Shuffle the operands around so the lane index operand is in the
8612 // right place.
8613 unsigned Spacing;
8614 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8615 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8616 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8617 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8618 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8619 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8620 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8621 Spacing));
8622 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8623 Spacing * 2));
8624 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8625 Spacing * 3));
8626 TmpInst.addOperand(Inst.getOperand(1)); // lane
8627 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8628 TmpInst.addOperand(Inst.getOperand(5));
8629 Inst = TmpInst;
8630 return true;
8633 case ARM::VST1LNdAsm_8:
8634 case ARM::VST1LNdAsm_16:
8635 case ARM::VST1LNdAsm_32: {
8636 MCInst TmpInst;
8637 // Shuffle the operands around so the lane index operand is in the
8638 // right place.
8639 unsigned Spacing;
8640 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8641 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8642 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8643 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8644 TmpInst.addOperand(Inst.getOperand(1)); // lane
8645 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8646 TmpInst.addOperand(Inst.getOperand(5));
8647 Inst = TmpInst;
8648 return true;
8651 case ARM::VST2LNdAsm_8:
8652 case ARM::VST2LNdAsm_16:
8653 case ARM::VST2LNdAsm_32:
8654 case ARM::VST2LNqAsm_16:
8655 case ARM::VST2LNqAsm_32: {
8656 MCInst TmpInst;
8657 // Shuffle the operands around so the lane index operand is in the
8658 // right place.
8659 unsigned Spacing;
8660 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8661 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8662 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8663 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8664 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8665 Spacing));
8666 TmpInst.addOperand(Inst.getOperand(1)); // lane
8667 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8668 TmpInst.addOperand(Inst.getOperand(5));
8669 Inst = TmpInst;
8670 return true;
8673 case ARM::VST3LNdAsm_8:
8674 case ARM::VST3LNdAsm_16:
8675 case ARM::VST3LNdAsm_32:
8676 case ARM::VST3LNqAsm_16:
8677 case ARM::VST3LNqAsm_32: {
8678 MCInst TmpInst;
8679 // Shuffle the operands around so the lane index operand is in the
8680 // right place.
8681 unsigned Spacing;
8682 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8683 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8684 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8685 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8687 Spacing));
8688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8689 Spacing * 2));
8690 TmpInst.addOperand(Inst.getOperand(1)); // lane
8691 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8692 TmpInst.addOperand(Inst.getOperand(5));
8693 Inst = TmpInst;
8694 return true;
8697 case ARM::VST4LNdAsm_8:
8698 case ARM::VST4LNdAsm_16:
8699 case ARM::VST4LNdAsm_32:
8700 case ARM::VST4LNqAsm_16:
8701 case ARM::VST4LNqAsm_32: {
8702 MCInst TmpInst;
8703 // Shuffle the operands around so the lane index operand is in the
8704 // right place.
8705 unsigned Spacing;
8706 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8707 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8708 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8709 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8711 Spacing));
8712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8713 Spacing * 2));
8714 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8715 Spacing * 3));
8716 TmpInst.addOperand(Inst.getOperand(1)); // lane
8717 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8718 TmpInst.addOperand(Inst.getOperand(5));
8719 Inst = TmpInst;
8720 return true;
8723 // Handle NEON VLD complex aliases.
8724 case ARM::VLD1LNdWB_register_Asm_8:
8725 case ARM::VLD1LNdWB_register_Asm_16:
8726 case ARM::VLD1LNdWB_register_Asm_32: {
8727 MCInst TmpInst;
8728 // Shuffle the operands around so the lane index operand is in the
8729 // right place.
8730 unsigned Spacing;
8731 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8732 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8733 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8734 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8735 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8736 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8737 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8738 TmpInst.addOperand(Inst.getOperand(1)); // lane
8739 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8740 TmpInst.addOperand(Inst.getOperand(6));
8741 Inst = TmpInst;
8742 return true;
8745 case ARM::VLD2LNdWB_register_Asm_8:
8746 case ARM::VLD2LNdWB_register_Asm_16:
8747 case ARM::VLD2LNdWB_register_Asm_32:
8748 case ARM::VLD2LNqWB_register_Asm_16:
8749 case ARM::VLD2LNqWB_register_Asm_32: {
8750 MCInst TmpInst;
8751 // Shuffle the operands around so the lane index operand is in the
8752 // right place.
8753 unsigned Spacing;
8754 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8755 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8757 Spacing));
8758 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8759 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8760 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8761 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8762 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8764 Spacing));
8765 TmpInst.addOperand(Inst.getOperand(1)); // lane
8766 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8767 TmpInst.addOperand(Inst.getOperand(6));
8768 Inst = TmpInst;
8769 return true;
8772 case ARM::VLD3LNdWB_register_Asm_8:
8773 case ARM::VLD3LNdWB_register_Asm_16:
8774 case ARM::VLD3LNdWB_register_Asm_32:
8775 case ARM::VLD3LNqWB_register_Asm_16:
8776 case ARM::VLD3LNqWB_register_Asm_32: {
8777 MCInst TmpInst;
8778 // Shuffle the operands around so the lane index operand is in the
8779 // right place.
8780 unsigned Spacing;
8781 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8782 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8784 Spacing));
8785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8786 Spacing * 2));
8787 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8788 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8789 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8790 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8791 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8793 Spacing));
8794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8795 Spacing * 2));
8796 TmpInst.addOperand(Inst.getOperand(1)); // lane
8797 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8798 TmpInst.addOperand(Inst.getOperand(6));
8799 Inst = TmpInst;
8800 return true;
8803 case ARM::VLD4LNdWB_register_Asm_8:
8804 case ARM::VLD4LNdWB_register_Asm_16:
8805 case ARM::VLD4LNdWB_register_Asm_32:
8806 case ARM::VLD4LNqWB_register_Asm_16:
8807 case ARM::VLD4LNqWB_register_Asm_32: {
8808 MCInst TmpInst;
8809 // Shuffle the operands around so the lane index operand is in the
8810 // right place.
8811 unsigned Spacing;
8812 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8813 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8814 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8815 Spacing));
8816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8817 Spacing * 2));
8818 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8819 Spacing * 3));
8820 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8821 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8822 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8823 TmpInst.addOperand(Inst.getOperand(4)); // Rm
8824 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8826 Spacing));
8827 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8828 Spacing * 2));
8829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8830 Spacing * 3));
8831 TmpInst.addOperand(Inst.getOperand(1)); // lane
8832 TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8833 TmpInst.addOperand(Inst.getOperand(6));
8834 Inst = TmpInst;
8835 return true;
8838 case ARM::VLD1LNdWB_fixed_Asm_8:
8839 case ARM::VLD1LNdWB_fixed_Asm_16:
8840 case ARM::VLD1LNdWB_fixed_Asm_32: {
8841 MCInst TmpInst;
8842 // Shuffle the operands around so the lane index operand is in the
8843 // right place.
8844 unsigned Spacing;
8845 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8846 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8847 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8848 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8849 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8850 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8851 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8852 TmpInst.addOperand(Inst.getOperand(1)); // lane
8853 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8854 TmpInst.addOperand(Inst.getOperand(5));
8855 Inst = TmpInst;
8856 return true;
8859 case ARM::VLD2LNdWB_fixed_Asm_8:
8860 case ARM::VLD2LNdWB_fixed_Asm_16:
8861 case ARM::VLD2LNdWB_fixed_Asm_32:
8862 case ARM::VLD2LNqWB_fixed_Asm_16:
8863 case ARM::VLD2LNqWB_fixed_Asm_32: {
8864 MCInst TmpInst;
8865 // Shuffle the operands around so the lane index operand is in the
8866 // right place.
8867 unsigned Spacing;
8868 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8869 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8871 Spacing));
8872 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8873 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8874 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8875 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8876 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8877 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8878 Spacing));
8879 TmpInst.addOperand(Inst.getOperand(1)); // lane
8880 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8881 TmpInst.addOperand(Inst.getOperand(5));
8882 Inst = TmpInst;
8883 return true;
8886 case ARM::VLD3LNdWB_fixed_Asm_8:
8887 case ARM::VLD3LNdWB_fixed_Asm_16:
8888 case ARM::VLD3LNdWB_fixed_Asm_32:
8889 case ARM::VLD3LNqWB_fixed_Asm_16:
8890 case ARM::VLD3LNqWB_fixed_Asm_32: {
8891 MCInst TmpInst;
8892 // Shuffle the operands around so the lane index operand is in the
8893 // right place.
8894 unsigned Spacing;
8895 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8896 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8898 Spacing));
8899 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8900 Spacing * 2));
8901 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8902 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8903 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8904 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8905 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8906 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8907 Spacing));
8908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8909 Spacing * 2));
8910 TmpInst.addOperand(Inst.getOperand(1)); // lane
8911 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8912 TmpInst.addOperand(Inst.getOperand(5));
8913 Inst = TmpInst;
8914 return true;
8917 case ARM::VLD4LNdWB_fixed_Asm_8:
8918 case ARM::VLD4LNdWB_fixed_Asm_16:
8919 case ARM::VLD4LNdWB_fixed_Asm_32:
8920 case ARM::VLD4LNqWB_fixed_Asm_16:
8921 case ARM::VLD4LNqWB_fixed_Asm_32: {
8922 MCInst TmpInst;
8923 // Shuffle the operands around so the lane index operand is in the
8924 // right place.
8925 unsigned Spacing;
8926 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8927 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8928 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8929 Spacing));
8930 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8931 Spacing * 2));
8932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8933 Spacing * 3));
8934 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8935 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8936 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8937 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8938 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8940 Spacing));
8941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8942 Spacing * 2));
8943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8944 Spacing * 3));
8945 TmpInst.addOperand(Inst.getOperand(1)); // lane
8946 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8947 TmpInst.addOperand(Inst.getOperand(5));
8948 Inst = TmpInst;
8949 return true;
8952 case ARM::VLD1LNdAsm_8:
8953 case ARM::VLD1LNdAsm_16:
8954 case ARM::VLD1LNdAsm_32: {
8955 MCInst TmpInst;
8956 // Shuffle the operands around so the lane index operand is in the
8957 // right place.
8958 unsigned Spacing;
8959 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8960 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8961 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8962 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8963 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8964 TmpInst.addOperand(Inst.getOperand(1)); // lane
8965 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8966 TmpInst.addOperand(Inst.getOperand(5));
8967 Inst = TmpInst;
8968 return true;
8971 case ARM::VLD2LNdAsm_8:
8972 case ARM::VLD2LNdAsm_16:
8973 case ARM::VLD2LNdAsm_32:
8974 case ARM::VLD2LNqAsm_16:
8975 case ARM::VLD2LNqAsm_32: {
8976 MCInst TmpInst;
8977 // Shuffle the operands around so the lane index operand is in the
8978 // right place.
8979 unsigned Spacing;
8980 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8981 TmpInst.addOperand(Inst.getOperand(0)); // Vd
8982 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8983 Spacing));
8984 TmpInst.addOperand(Inst.getOperand(2)); // Rn
8985 TmpInst.addOperand(Inst.getOperand(3)); // alignment
8986 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
8987 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8988 Spacing));
8989 TmpInst.addOperand(Inst.getOperand(1)); // lane
8990 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8991 TmpInst.addOperand(Inst.getOperand(5));
8992 Inst = TmpInst;
8993 return true;
8996 case ARM::VLD3LNdAsm_8:
8997 case ARM::VLD3LNdAsm_16:
8998 case ARM::VLD3LNdAsm_32:
8999 case ARM::VLD3LNqAsm_16:
9000 case ARM::VLD3LNqAsm_32: {
9001 MCInst TmpInst;
9002 // Shuffle the operands around so the lane index operand is in the
9003 // right place.
9004 unsigned Spacing;
9005 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9006 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9007 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9008 Spacing));
9009 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9010 Spacing * 2));
9011 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9012 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9013 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9015 Spacing));
9016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9017 Spacing * 2));
9018 TmpInst.addOperand(Inst.getOperand(1)); // lane
9019 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9020 TmpInst.addOperand(Inst.getOperand(5));
9021 Inst = TmpInst;
9022 return true;
9025 case ARM::VLD4LNdAsm_8:
9026 case ARM::VLD4LNdAsm_16:
9027 case ARM::VLD4LNdAsm_32:
9028 case ARM::VLD4LNqAsm_16:
9029 case ARM::VLD4LNqAsm_32: {
9030 MCInst TmpInst;
9031 // Shuffle the operands around so the lane index operand is in the
9032 // right place.
9033 unsigned Spacing;
9034 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9035 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9036 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9037 Spacing));
9038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9039 Spacing * 2));
9040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9041 Spacing * 3));
9042 TmpInst.addOperand(Inst.getOperand(2)); // Rn
9043 TmpInst.addOperand(Inst.getOperand(3)); // alignment
9044 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9046 Spacing));
9047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9048 Spacing * 2));
9049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9050 Spacing * 3));
9051 TmpInst.addOperand(Inst.getOperand(1)); // lane
9052 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9053 TmpInst.addOperand(Inst.getOperand(5));
9054 Inst = TmpInst;
9055 return true;
9058 // VLD3DUP single 3-element structure to all lanes instructions.
9059 case ARM::VLD3DUPdAsm_8:
9060 case ARM::VLD3DUPdAsm_16:
9061 case ARM::VLD3DUPdAsm_32:
9062 case ARM::VLD3DUPqAsm_8:
9063 case ARM::VLD3DUPqAsm_16:
9064 case ARM::VLD3DUPqAsm_32: {
9065 MCInst TmpInst;
9066 unsigned Spacing;
9067 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9068 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9069 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9070 Spacing));
9071 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9072 Spacing * 2));
9073 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9074 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9075 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9076 TmpInst.addOperand(Inst.getOperand(4));
9077 Inst = TmpInst;
9078 return true;
9081 case ARM::VLD3DUPdWB_fixed_Asm_8:
9082 case ARM::VLD3DUPdWB_fixed_Asm_16:
9083 case ARM::VLD3DUPdWB_fixed_Asm_32:
9084 case ARM::VLD3DUPqWB_fixed_Asm_8:
9085 case ARM::VLD3DUPqWB_fixed_Asm_16:
9086 case ARM::VLD3DUPqWB_fixed_Asm_32: {
9087 MCInst TmpInst;
9088 unsigned Spacing;
9089 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9090 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9092 Spacing));
9093 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9094 Spacing * 2));
9095 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9096 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9097 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9098 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9099 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9100 TmpInst.addOperand(Inst.getOperand(4));
9101 Inst = TmpInst;
9102 return true;
9105 case ARM::VLD3DUPdWB_register_Asm_8:
9106 case ARM::VLD3DUPdWB_register_Asm_16:
9107 case ARM::VLD3DUPdWB_register_Asm_32:
9108 case ARM::VLD3DUPqWB_register_Asm_8:
9109 case ARM::VLD3DUPqWB_register_Asm_16:
9110 case ARM::VLD3DUPqWB_register_Asm_32: {
9111 MCInst TmpInst;
9112 unsigned Spacing;
9113 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9114 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9115 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9116 Spacing));
9117 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9118 Spacing * 2));
9119 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9120 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9121 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9122 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9123 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9124 TmpInst.addOperand(Inst.getOperand(5));
9125 Inst = TmpInst;
9126 return true;
9129 // VLD3 multiple 3-element structure instructions.
9130 case ARM::VLD3dAsm_8:
9131 case ARM::VLD3dAsm_16:
9132 case ARM::VLD3dAsm_32:
9133 case ARM::VLD3qAsm_8:
9134 case ARM::VLD3qAsm_16:
9135 case ARM::VLD3qAsm_32: {
9136 MCInst TmpInst;
9137 unsigned Spacing;
9138 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9139 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9140 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9141 Spacing));
9142 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9143 Spacing * 2));
9144 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9145 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9146 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9147 TmpInst.addOperand(Inst.getOperand(4));
9148 Inst = TmpInst;
9149 return true;
9152 case ARM::VLD3dWB_fixed_Asm_8:
9153 case ARM::VLD3dWB_fixed_Asm_16:
9154 case ARM::VLD3dWB_fixed_Asm_32:
9155 case ARM::VLD3qWB_fixed_Asm_8:
9156 case ARM::VLD3qWB_fixed_Asm_16:
9157 case ARM::VLD3qWB_fixed_Asm_32: {
9158 MCInst TmpInst;
9159 unsigned Spacing;
9160 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9161 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9162 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9163 Spacing));
9164 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9165 Spacing * 2));
9166 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9167 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9168 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9169 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9170 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9171 TmpInst.addOperand(Inst.getOperand(4));
9172 Inst = TmpInst;
9173 return true;
9176 case ARM::VLD3dWB_register_Asm_8:
9177 case ARM::VLD3dWB_register_Asm_16:
9178 case ARM::VLD3dWB_register_Asm_32:
9179 case ARM::VLD3qWB_register_Asm_8:
9180 case ARM::VLD3qWB_register_Asm_16:
9181 case ARM::VLD3qWB_register_Asm_32: {
9182 MCInst TmpInst;
9183 unsigned Spacing;
9184 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9185 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9186 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9187 Spacing));
9188 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9189 Spacing * 2));
9190 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9191 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9192 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9193 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9194 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9195 TmpInst.addOperand(Inst.getOperand(5));
9196 Inst = TmpInst;
9197 return true;
9200 // VLD4DUP single 3-element structure to all lanes instructions.
9201 case ARM::VLD4DUPdAsm_8:
9202 case ARM::VLD4DUPdAsm_16:
9203 case ARM::VLD4DUPdAsm_32:
9204 case ARM::VLD4DUPqAsm_8:
9205 case ARM::VLD4DUPqAsm_16:
9206 case ARM::VLD4DUPqAsm_32: {
9207 MCInst TmpInst;
9208 unsigned Spacing;
9209 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9210 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9211 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9212 Spacing));
9213 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9214 Spacing * 2));
9215 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9216 Spacing * 3));
9217 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9218 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9219 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9220 TmpInst.addOperand(Inst.getOperand(4));
9221 Inst = TmpInst;
9222 return true;
9225 case ARM::VLD4DUPdWB_fixed_Asm_8:
9226 case ARM::VLD4DUPdWB_fixed_Asm_16:
9227 case ARM::VLD4DUPdWB_fixed_Asm_32:
9228 case ARM::VLD4DUPqWB_fixed_Asm_8:
9229 case ARM::VLD4DUPqWB_fixed_Asm_16:
9230 case ARM::VLD4DUPqWB_fixed_Asm_32: {
9231 MCInst TmpInst;
9232 unsigned Spacing;
9233 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9234 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9235 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9236 Spacing));
9237 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9238 Spacing * 2));
9239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9240 Spacing * 3));
9241 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9242 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9243 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9244 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9245 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9246 TmpInst.addOperand(Inst.getOperand(4));
9247 Inst = TmpInst;
9248 return true;
9251 case ARM::VLD4DUPdWB_register_Asm_8:
9252 case ARM::VLD4DUPdWB_register_Asm_16:
9253 case ARM::VLD4DUPdWB_register_Asm_32:
9254 case ARM::VLD4DUPqWB_register_Asm_8:
9255 case ARM::VLD4DUPqWB_register_Asm_16:
9256 case ARM::VLD4DUPqWB_register_Asm_32: {
9257 MCInst TmpInst;
9258 unsigned Spacing;
9259 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9260 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9262 Spacing));
9263 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9264 Spacing * 2));
9265 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9266 Spacing * 3));
9267 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9268 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9269 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9270 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9271 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9272 TmpInst.addOperand(Inst.getOperand(5));
9273 Inst = TmpInst;
9274 return true;
9277 // VLD4 multiple 4-element structure instructions.
9278 case ARM::VLD4dAsm_8:
9279 case ARM::VLD4dAsm_16:
9280 case ARM::VLD4dAsm_32:
9281 case ARM::VLD4qAsm_8:
9282 case ARM::VLD4qAsm_16:
9283 case ARM::VLD4qAsm_32: {
9284 MCInst TmpInst;
9285 unsigned Spacing;
9286 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9287 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9288 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9289 Spacing));
9290 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9291 Spacing * 2));
9292 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9293 Spacing * 3));
9294 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9295 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9296 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9297 TmpInst.addOperand(Inst.getOperand(4));
9298 Inst = TmpInst;
9299 return true;
9302 case ARM::VLD4dWB_fixed_Asm_8:
9303 case ARM::VLD4dWB_fixed_Asm_16:
9304 case ARM::VLD4dWB_fixed_Asm_32:
9305 case ARM::VLD4qWB_fixed_Asm_8:
9306 case ARM::VLD4qWB_fixed_Asm_16:
9307 case ARM::VLD4qWB_fixed_Asm_32: {
9308 MCInst TmpInst;
9309 unsigned Spacing;
9310 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9311 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9312 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9313 Spacing));
9314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9315 Spacing * 2));
9316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9317 Spacing * 3));
9318 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9319 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9320 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9321 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9322 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9323 TmpInst.addOperand(Inst.getOperand(4));
9324 Inst = TmpInst;
9325 return true;
9328 case ARM::VLD4dWB_register_Asm_8:
9329 case ARM::VLD4dWB_register_Asm_16:
9330 case ARM::VLD4dWB_register_Asm_32:
9331 case ARM::VLD4qWB_register_Asm_8:
9332 case ARM::VLD4qWB_register_Asm_16:
9333 case ARM::VLD4qWB_register_Asm_32: {
9334 MCInst TmpInst;
9335 unsigned Spacing;
9336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9337 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9339 Spacing));
9340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9341 Spacing * 2));
9342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9343 Spacing * 3));
9344 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9345 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9346 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9347 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9348 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9349 TmpInst.addOperand(Inst.getOperand(5));
9350 Inst = TmpInst;
9351 return true;
9354 // VST3 multiple 3-element structure instructions.
9355 case ARM::VST3dAsm_8:
9356 case ARM::VST3dAsm_16:
9357 case ARM::VST3dAsm_32:
9358 case ARM::VST3qAsm_8:
9359 case ARM::VST3qAsm_16:
9360 case ARM::VST3qAsm_32: {
9361 MCInst TmpInst;
9362 unsigned Spacing;
9363 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9364 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9365 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9366 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9367 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9368 Spacing));
9369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9370 Spacing * 2));
9371 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9372 TmpInst.addOperand(Inst.getOperand(4));
9373 Inst = TmpInst;
9374 return true;
9377 case ARM::VST3dWB_fixed_Asm_8:
9378 case ARM::VST3dWB_fixed_Asm_16:
9379 case ARM::VST3dWB_fixed_Asm_32:
9380 case ARM::VST3qWB_fixed_Asm_8:
9381 case ARM::VST3qWB_fixed_Asm_16:
9382 case ARM::VST3qWB_fixed_Asm_32: {
9383 MCInst TmpInst;
9384 unsigned Spacing;
9385 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9386 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9387 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9388 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9389 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9390 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9391 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9392 Spacing));
9393 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9394 Spacing * 2));
9395 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9396 TmpInst.addOperand(Inst.getOperand(4));
9397 Inst = TmpInst;
9398 return true;
9401 case ARM::VST3dWB_register_Asm_8:
9402 case ARM::VST3dWB_register_Asm_16:
9403 case ARM::VST3dWB_register_Asm_32:
9404 case ARM::VST3qWB_register_Asm_8:
9405 case ARM::VST3qWB_register_Asm_16:
9406 case ARM::VST3qWB_register_Asm_32: {
9407 MCInst TmpInst;
9408 unsigned Spacing;
9409 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9410 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9411 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9412 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9413 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9414 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9415 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9416 Spacing));
9417 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9418 Spacing * 2));
9419 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9420 TmpInst.addOperand(Inst.getOperand(5));
9421 Inst = TmpInst;
9422 return true;
9425 // VST4 multiple 3-element structure instructions.
9426 case ARM::VST4dAsm_8:
9427 case ARM::VST4dAsm_16:
9428 case ARM::VST4dAsm_32:
9429 case ARM::VST4qAsm_8:
9430 case ARM::VST4qAsm_16:
9431 case ARM::VST4qAsm_32: {
9432 MCInst TmpInst;
9433 unsigned Spacing;
9434 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9435 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9436 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9437 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9439 Spacing));
9440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9441 Spacing * 2));
9442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9443 Spacing * 3));
9444 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9445 TmpInst.addOperand(Inst.getOperand(4));
9446 Inst = TmpInst;
9447 return true;
9450 case ARM::VST4dWB_fixed_Asm_8:
9451 case ARM::VST4dWB_fixed_Asm_16:
9452 case ARM::VST4dWB_fixed_Asm_32:
9453 case ARM::VST4qWB_fixed_Asm_8:
9454 case ARM::VST4qWB_fixed_Asm_16:
9455 case ARM::VST4qWB_fixed_Asm_32: {
9456 MCInst TmpInst;
9457 unsigned Spacing;
9458 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9459 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9460 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9461 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9462 TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9463 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9464 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9465 Spacing));
9466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9467 Spacing * 2));
9468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9469 Spacing * 3));
9470 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9471 TmpInst.addOperand(Inst.getOperand(4));
9472 Inst = TmpInst;
9473 return true;
9476 case ARM::VST4dWB_register_Asm_8:
9477 case ARM::VST4dWB_register_Asm_16:
9478 case ARM::VST4dWB_register_Asm_32:
9479 case ARM::VST4qWB_register_Asm_8:
9480 case ARM::VST4qWB_register_Asm_16:
9481 case ARM::VST4qWB_register_Asm_32: {
9482 MCInst TmpInst;
9483 unsigned Spacing;
9484 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9485 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9486 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9487 TmpInst.addOperand(Inst.getOperand(2)); // alignment
9488 TmpInst.addOperand(Inst.getOperand(3)); // Rm
9489 TmpInst.addOperand(Inst.getOperand(0)); // Vd
9490 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9491 Spacing));
9492 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9493 Spacing * 2));
9494 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9495 Spacing * 3));
9496 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9497 TmpInst.addOperand(Inst.getOperand(5));
9498 Inst = TmpInst;
9499 return true;
9502 // Handle encoding choice for the shift-immediate instructions.
9503 case ARM::t2LSLri:
9504 case ARM::t2LSRri:
9505 case ARM::t2ASRri:
9506 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9507 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9508 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9509 !HasWideQualifier) {
9510 unsigned NewOpc;
9511 switch (Inst.getOpcode()) {
9512 default: llvm_unreachable("unexpected opcode");
9513 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9514 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9515 case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9517 // The Thumb1 operands aren't in the same order. Awesome, eh?
9518 MCInst TmpInst;
9519 TmpInst.setOpcode(NewOpc);
9520 TmpInst.addOperand(Inst.getOperand(0));
9521 TmpInst.addOperand(Inst.getOperand(5));
9522 TmpInst.addOperand(Inst.getOperand(1));
9523 TmpInst.addOperand(Inst.getOperand(2));
9524 TmpInst.addOperand(Inst.getOperand(3));
9525 TmpInst.addOperand(Inst.getOperand(4));
9526 Inst = TmpInst;
9527 return true;
9529 return false;
9531 // Handle the Thumb2 mode MOV complex aliases.
9532 case ARM::t2MOVsr:
9533 case ARM::t2MOVSsr: {
9534 // Which instruction to expand to depends on the CCOut operand and
9535 // whether we're in an IT block if the register operands are low
9536 // registers.
9537 bool isNarrow = false;
9538 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9539 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9540 isARMLowRegister(Inst.getOperand(2).getReg()) &&
9541 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9542 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
9543 !HasWideQualifier)
9544 isNarrow = true;
9545 MCInst TmpInst;
9546 unsigned newOpc;
9547 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
9548 default: llvm_unreachable("unexpected opcode!");
9549 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
9550 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
9551 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
9552 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
9554 TmpInst.setOpcode(newOpc);
9555 TmpInst.addOperand(Inst.getOperand(0)); // Rd
9556 if (isNarrow)
9557 TmpInst.addOperand(MCOperand::createReg(
9558 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9559 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9560 TmpInst.addOperand(Inst.getOperand(2)); // Rm
9561 TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9562 TmpInst.addOperand(Inst.getOperand(5));
9563 if (!isNarrow)
9564 TmpInst.addOperand(MCOperand::createReg(
9565 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9566 Inst = TmpInst;
9567 return true;
9569 case ARM::t2MOVsi:
9570 case ARM::t2MOVSsi: {
9571 // Which instruction to expand to depends on the CCOut operand and
9572 // whether we're in an IT block if the register operands are low
9573 // registers.
9574 bool isNarrow = false;
9575 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9576 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9577 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
9578 !HasWideQualifier)
9579 isNarrow = true;
9580 MCInst TmpInst;
9581 unsigned newOpc;
9582 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
9583 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
9584 bool isMov = false;
9585 // MOV rd, rm, LSL #0 is actually a MOV instruction
9586 if (Shift == ARM_AM::lsl && Amount == 0) {
9587 isMov = true;
9588 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
9589 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
9590 // unpredictable in an IT block so the 32-bit encoding T3 has to be used
9591 // instead.
9592 if (inITBlock()) {
9593 isNarrow = false;
9595 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
9596 } else {
9597 switch(Shift) {
9598 default: llvm_unreachable("unexpected opcode!");
9599 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
9600 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
9601 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
9602 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
9603 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
9606 if (Amount == 32) Amount = 0;
9607 TmpInst.setOpcode(newOpc);
9608 TmpInst.addOperand(Inst.getOperand(0)); // Rd
9609 if (isNarrow && !isMov)
9610 TmpInst.addOperand(MCOperand::createReg(
9611 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9612 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9613 if (newOpc != ARM::t2RRX && !isMov)
9614 TmpInst.addOperand(MCOperand::createImm(Amount));
9615 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9616 TmpInst.addOperand(Inst.getOperand(4));
9617 if (!isNarrow)
9618 TmpInst.addOperand(MCOperand::createReg(
9619 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9620 Inst = TmpInst;
9621 return true;
9623 // Handle the ARM mode MOV complex aliases.
9624 case ARM::ASRr:
9625 case ARM::LSRr:
9626 case ARM::LSLr:
9627 case ARM::RORr: {
9628 ARM_AM::ShiftOpc ShiftTy;
9629 switch(Inst.getOpcode()) {
9630 default: llvm_unreachable("unexpected opcode!");
9631 case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
9632 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
9633 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
9634 case ARM::RORr: ShiftTy = ARM_AM::ror; break;
9636 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
9637 MCInst TmpInst;
9638 TmpInst.setOpcode(ARM::MOVsr);
9639 TmpInst.addOperand(Inst.getOperand(0)); // Rd
9640 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9641 TmpInst.addOperand(Inst.getOperand(2)); // Rm
9642 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9643 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9644 TmpInst.addOperand(Inst.getOperand(4));
9645 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9646 Inst = TmpInst;
9647 return true;
9649 case ARM::ASRi:
9650 case ARM::LSRi:
9651 case ARM::LSLi:
9652 case ARM::RORi: {
9653 ARM_AM::ShiftOpc ShiftTy;
9654 switch(Inst.getOpcode()) {
9655 default: llvm_unreachable("unexpected opcode!");
9656 case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
9657 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
9658 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
9659 case ARM::RORi: ShiftTy = ARM_AM::ror; break;
9661 // A shift by zero is a plain MOVr, not a MOVsi.
9662 unsigned Amt = Inst.getOperand(2).getImm();
9663 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
9664 // A shift by 32 should be encoded as 0 when permitted
9665 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
9666 Amt = 0;
9667 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
9668 MCInst TmpInst;
9669 TmpInst.setOpcode(Opc);
9670 TmpInst.addOperand(Inst.getOperand(0)); // Rd
9671 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9672 if (Opc == ARM::MOVsi)
9673 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9674 TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9675 TmpInst.addOperand(Inst.getOperand(4));
9676 TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9677 Inst = TmpInst;
9678 return true;
9680 case ARM::RRXi: {
9681 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
9682 MCInst TmpInst;
9683 TmpInst.setOpcode(ARM::MOVsi);
9684 TmpInst.addOperand(Inst.getOperand(0)); // Rd
9685 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9686 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9687 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9688 TmpInst.addOperand(Inst.getOperand(3));
9689 TmpInst.addOperand(Inst.getOperand(4)); // cc_out
9690 Inst = TmpInst;
9691 return true;
9693 case ARM::t2LDMIA_UPD: {
9694 // If this is a load of a single register, then we should use
9695 // a post-indexed LDR instruction instead, per the ARM ARM.
9696 if (Inst.getNumOperands() != 5)
9697 return false;
9698 MCInst TmpInst;
9699 TmpInst.setOpcode(ARM::t2LDR_POST);
9700 TmpInst.addOperand(Inst.getOperand(4)); // Rt
9701 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9702 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9703 TmpInst.addOperand(MCOperand::createImm(4));
9704 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9705 TmpInst.addOperand(Inst.getOperand(3));
9706 Inst = TmpInst;
9707 return true;
9709 case ARM::t2STMDB_UPD: {
9710 // If this is a store of a single register, then we should use
9711 // a pre-indexed STR instruction instead, per the ARM ARM.
9712 if (Inst.getNumOperands() != 5)
9713 return false;
9714 MCInst TmpInst;
9715 TmpInst.setOpcode(ARM::t2STR_PRE);
9716 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9717 TmpInst.addOperand(Inst.getOperand(4)); // Rt
9718 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9719 TmpInst.addOperand(MCOperand::createImm(-4));
9720 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9721 TmpInst.addOperand(Inst.getOperand(3));
9722 Inst = TmpInst;
9723 return true;
9725 case ARM::LDMIA_UPD:
9726 // If this is a load of a single register via a 'pop', then we should use
9727 // a post-indexed LDR instruction instead, per the ARM ARM.
9728 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
9729 Inst.getNumOperands() == 5) {
9730 MCInst TmpInst;
9731 TmpInst.setOpcode(ARM::LDR_POST_IMM);
9732 TmpInst.addOperand(Inst.getOperand(4)); // Rt
9733 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9734 TmpInst.addOperand(Inst.getOperand(1)); // Rn
9735 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
9736 TmpInst.addOperand(MCOperand::createImm(4));
9737 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9738 TmpInst.addOperand(Inst.getOperand(3));
9739 Inst = TmpInst;
9740 return true;
9742 break;
9743 case ARM::STMDB_UPD:
9744 // If this is a store of a single register via a 'push', then we should use
9745 // a pre-indexed STR instruction instead, per the ARM ARM.
9746 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
9747 Inst.getNumOperands() == 5) {
9748 MCInst TmpInst;
9749 TmpInst.setOpcode(ARM::STR_PRE_IMM);
9750 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9751 TmpInst.addOperand(Inst.getOperand(4)); // Rt
9752 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
9753 TmpInst.addOperand(MCOperand::createImm(-4));
9754 TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9755 TmpInst.addOperand(Inst.getOperand(3));
9756 Inst = TmpInst;
9758 break;
9759 case ARM::t2ADDri12:
9760 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
9761 // mnemonic was used (not "addw"), encoding T3 is preferred.
9762 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
9763 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
9764 break;
9765 Inst.setOpcode(ARM::t2ADDri);
9766 Inst.addOperand(MCOperand::createReg(0)); // cc_out
9767 break;
9768 case ARM::t2SUBri12:
9769 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
9770 // mnemonic was used (not "subw"), encoding T3 is preferred.
9771 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
9772 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
9773 break;
9774 Inst.setOpcode(ARM::t2SUBri);
9775 Inst.addOperand(MCOperand::createReg(0)); // cc_out
9776 break;
9777 case ARM::tADDi8:
9778 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9779 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9780 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9781 // to encoding T1 if <Rd> is omitted."
9782 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
9783 Inst.setOpcode(ARM::tADDi3);
9784 return true;
9786 break;
9787 case ARM::tSUBi8:
9788 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
9789 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
9790 // to encoding T2 if <Rd> is specified and encoding T2 is preferred
9791 // to encoding T1 if <Rd> is omitted."
9792 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
9793 Inst.setOpcode(ARM::tSUBi3);
9794 return true;
9796 break;
9797 case ARM::t2ADDri:
9798 case ARM::t2SUBri: {
9799 // If the destination and first source operand are the same, and
9800 // the flags are compatible with the current IT status, use encoding T2
9801 // instead of T3. For compatibility with the system 'as'. Make sure the
9802 // wide encoding wasn't explicit.
9803 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
9804 !isARMLowRegister(Inst.getOperand(0).getReg()) ||
9805 (Inst.getOperand(2).isImm() &&
9806 (unsigned)Inst.getOperand(2).getImm() > 255) ||
9807 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
9808 HasWideQualifier)
9809 break;
9810 MCInst TmpInst;
9811 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
9812 ARM::tADDi8 : ARM::tSUBi8);
9813 TmpInst.addOperand(Inst.getOperand(0));
9814 TmpInst.addOperand(Inst.getOperand(5));
9815 TmpInst.addOperand(Inst.getOperand(0));
9816 TmpInst.addOperand(Inst.getOperand(2));
9817 TmpInst.addOperand(Inst.getOperand(3));
9818 TmpInst.addOperand(Inst.getOperand(4));
9819 Inst = TmpInst;
9820 return true;
9822 case ARM::t2ADDrr: {
9823 // If the destination and first source operand are the same, and
9824 // there's no setting of the flags, use encoding T2 instead of T3.
9825 // Note that this is only for ADD, not SUB. This mirrors the system
9826 // 'as' behaviour. Also take advantage of ADD being commutative.
9827 // Make sure the wide encoding wasn't explicit.
9828 bool Swap = false;
9829 auto DestReg = Inst.getOperand(0).getReg();
9830 bool Transform = DestReg == Inst.getOperand(1).getReg();
9831 if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
9832 Transform = true;
9833 Swap = true;
9835 if (!Transform ||
9836 Inst.getOperand(5).getReg() != 0 ||
9837 HasWideQualifier)
9838 break;
9839 MCInst TmpInst;
9840 TmpInst.setOpcode(ARM::tADDhirr);
9841 TmpInst.addOperand(Inst.getOperand(0));
9842 TmpInst.addOperand(Inst.getOperand(0));
9843 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
9844 TmpInst.addOperand(Inst.getOperand(3));
9845 TmpInst.addOperand(Inst.getOperand(4));
9846 Inst = TmpInst;
9847 return true;
9849 case ARM::tADDrSP:
9850 // If the non-SP source operand and the destination operand are not the
9851 // same, we need to use the 32-bit encoding if it's available.
9852 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
9853 Inst.setOpcode(ARM::t2ADDrr);
9854 Inst.addOperand(MCOperand::createReg(0)); // cc_out
9855 return true;
9857 break;
9858 case ARM::tB:
9859 // A Thumb conditional branch outside of an IT block is a tBcc.
9860 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
9861 Inst.setOpcode(ARM::tBcc);
9862 return true;
9864 break;
9865 case ARM::t2B:
9866 // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
9867 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
9868 Inst.setOpcode(ARM::t2Bcc);
9869 return true;
9871 break;
9872 case ARM::t2Bcc:
9873 // If the conditional is AL or we're in an IT block, we really want t2B.
9874 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
9875 Inst.setOpcode(ARM::t2B);
9876 return true;
9878 break;
9879 case ARM::tBcc:
9880 // If the conditional is AL, we really want tB.
9881 if (Inst.getOperand(1).getImm() == ARMCC::AL) {
9882 Inst.setOpcode(ARM::tB);
9883 return true;
9885 break;
9886 case ARM::tLDMIA: {
9887 // If the register list contains any high registers, or if the writeback
9888 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
9889 // instead if we're in Thumb2. Otherwise, this should have generated
9890 // an error in validateInstruction().
9891 unsigned Rn = Inst.getOperand(0).getReg();
9892 bool hasWritebackToken =
9893 (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
9894 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
9895 bool listContainsBase;
9896 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
9897 (!listContainsBase && !hasWritebackToken) ||
9898 (listContainsBase && hasWritebackToken)) {
9899 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9900 assert(isThumbTwo());
9901 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
9902 // If we're switching to the updating version, we need to insert
9903 // the writeback tied operand.
9904 if (hasWritebackToken)
9905 Inst.insert(Inst.begin(),
9906 MCOperand::createReg(Inst.getOperand(0).getReg()));
9907 return true;
9909 break;
9911 case ARM::tSTMIA_UPD: {
9912 // If the register list contains any high registers, we need to use
9913 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9914 // should have generated an error in validateInstruction().
9915 unsigned Rn = Inst.getOperand(0).getReg();
9916 bool listContainsBase;
9917 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
9918 // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
9919 assert(isThumbTwo());
9920 Inst.setOpcode(ARM::t2STMIA_UPD);
9921 return true;
9923 break;
9925 case ARM::tPOP: {
9926 bool listContainsBase;
9927 // If the register list contains any high registers, we need to use
9928 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
9929 // should have generated an error in validateInstruction().
9930 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
9931 return false;
9932 assert(isThumbTwo());
9933 Inst.setOpcode(ARM::t2LDMIA_UPD);
9934 // Add the base register and writeback operands.
9935 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9936 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9937 return true;
9939 case ARM::tPUSH: {
9940 bool listContainsBase;
9941 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
9942 return false;
9943 assert(isThumbTwo());
9944 Inst.setOpcode(ARM::t2STMDB_UPD);
9945 // Add the base register and writeback operands.
9946 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9947 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
9948 return true;
9950 case ARM::t2MOVi:
9951 // If we can use the 16-bit encoding and the user didn't explicitly
9952 // request the 32-bit variant, transform it here.
9953 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9954 (Inst.getOperand(1).isImm() &&
9955 (unsigned)Inst.getOperand(1).getImm() <= 255) &&
9956 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9957 !HasWideQualifier) {
9958 // The operands aren't in the same order for tMOVi8...
9959 MCInst TmpInst;
9960 TmpInst.setOpcode(ARM::tMOVi8);
9961 TmpInst.addOperand(Inst.getOperand(0));
9962 TmpInst.addOperand(Inst.getOperand(4));
9963 TmpInst.addOperand(Inst.getOperand(1));
9964 TmpInst.addOperand(Inst.getOperand(2));
9965 TmpInst.addOperand(Inst.getOperand(3));
9966 Inst = TmpInst;
9967 return true;
9969 break;
9971 case ARM::t2MOVr:
9972 // If we can use the 16-bit encoding and the user didn't explicitly
9973 // request the 32-bit variant, transform it here.
9974 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9975 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9976 Inst.getOperand(2).getImm() == ARMCC::AL &&
9977 Inst.getOperand(4).getReg() == ARM::CPSR &&
9978 !HasWideQualifier) {
9979 // The operands aren't the same for tMOV[S]r... (no cc_out)
9980 MCInst TmpInst;
9981 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
9982 TmpInst.addOperand(Inst.getOperand(0));
9983 TmpInst.addOperand(Inst.getOperand(1));
9984 TmpInst.addOperand(Inst.getOperand(2));
9985 TmpInst.addOperand(Inst.getOperand(3));
9986 Inst = TmpInst;
9987 return true;
9989 break;
9991 case ARM::t2SXTH:
9992 case ARM::t2SXTB:
9993 case ARM::t2UXTH:
9994 case ARM::t2UXTB:
9995 // If we can use the 16-bit encoding and the user didn't explicitly
9996 // request the 32-bit variant, transform it here.
9997 if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9998 isARMLowRegister(Inst.getOperand(1).getReg()) &&
9999 Inst.getOperand(2).getImm() == 0 &&
10000 !HasWideQualifier) {
10001 unsigned NewOpc;
10002 switch (Inst.getOpcode()) {
10003 default: llvm_unreachable("Illegal opcode!");
10004 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10005 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10006 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10007 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10009 // The operands aren't the same for thumb1 (no rotate operand).
10010 MCInst TmpInst;
10011 TmpInst.setOpcode(NewOpc);
10012 TmpInst.addOperand(Inst.getOperand(0));
10013 TmpInst.addOperand(Inst.getOperand(1));
10014 TmpInst.addOperand(Inst.getOperand(3));
10015 TmpInst.addOperand(Inst.getOperand(4));
10016 Inst = TmpInst;
10017 return true;
10019 break;
10021 case ARM::MOVsi: {
10022 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10023 // rrx shifts and asr/lsr of #32 is encoded as 0
10024 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10025 return false;
10026 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10027 // Shifting by zero is accepted as a vanilla 'MOVr'
10028 MCInst TmpInst;
10029 TmpInst.setOpcode(ARM::MOVr);
10030 TmpInst.addOperand(Inst.getOperand(0));
10031 TmpInst.addOperand(Inst.getOperand(1));
10032 TmpInst.addOperand(Inst.getOperand(3));
10033 TmpInst.addOperand(Inst.getOperand(4));
10034 TmpInst.addOperand(Inst.getOperand(5));
10035 Inst = TmpInst;
10036 return true;
10038 return false;
10040 case ARM::ANDrsi:
10041 case ARM::ORRrsi:
10042 case ARM::EORrsi:
10043 case ARM::BICrsi:
10044 case ARM::SUBrsi:
10045 case ARM::ADDrsi: {
10046 unsigned newOpc;
10047 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10048 if (SOpc == ARM_AM::rrx) return false;
10049 switch (Inst.getOpcode()) {
10050 default: llvm_unreachable("unexpected opcode!");
10051 case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10052 case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10053 case ARM::EORrsi: newOpc = ARM::EORrr; break;
10054 case ARM::BICrsi: newOpc = ARM::BICrr; break;
10055 case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10056 case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10058 // If the shift is by zero, use the non-shifted instruction definition.
10059 // The exception is for right shifts, where 0 == 32
10060 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10061 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10062 MCInst TmpInst;
10063 TmpInst.setOpcode(newOpc);
10064 TmpInst.addOperand(Inst.getOperand(0));
10065 TmpInst.addOperand(Inst.getOperand(1));
10066 TmpInst.addOperand(Inst.getOperand(2));
10067 TmpInst.addOperand(Inst.getOperand(4));
10068 TmpInst.addOperand(Inst.getOperand(5));
10069 TmpInst.addOperand(Inst.getOperand(6));
10070 Inst = TmpInst;
10071 return true;
10073 return false;
10075 case ARM::ITasm:
10076 case ARM::t2IT: {
10077 // Set up the IT block state according to the IT instruction we just
10078 // matched.
10079 assert(!inITBlock() && "nested IT blocks?!");
10080 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10081 Inst.getOperand(1).getImm());
10082 break;
10084 case ARM::t2LSLrr:
10085 case ARM::t2LSRrr:
10086 case ARM::t2ASRrr:
10087 case ARM::t2SBCrr:
10088 case ARM::t2RORrr:
10089 case ARM::t2BICrr:
10090 // Assemblers should use the narrow encodings of these instructions when permissible.
10091 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10092 isARMLowRegister(Inst.getOperand(2).getReg())) &&
10093 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10094 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10095 !HasWideQualifier) {
10096 unsigned NewOpc;
10097 switch (Inst.getOpcode()) {
10098 default: llvm_unreachable("unexpected opcode");
10099 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10100 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10101 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10102 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10103 case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10104 case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10106 MCInst TmpInst;
10107 TmpInst.setOpcode(NewOpc);
10108 TmpInst.addOperand(Inst.getOperand(0));
10109 TmpInst.addOperand(Inst.getOperand(5));
10110 TmpInst.addOperand(Inst.getOperand(1));
10111 TmpInst.addOperand(Inst.getOperand(2));
10112 TmpInst.addOperand(Inst.getOperand(3));
10113 TmpInst.addOperand(Inst.getOperand(4));
10114 Inst = TmpInst;
10115 return true;
10117 return false;
10119 case ARM::t2ANDrr:
10120 case ARM::t2EORrr:
10121 case ARM::t2ADCrr:
10122 case ARM::t2ORRrr:
10123 // Assemblers should use the narrow encodings of these instructions when permissible.
10124 // These instructions are special in that they are commutable, so shorter encodings
10125 // are available more often.
10126 if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10127 isARMLowRegister(Inst.getOperand(2).getReg())) &&
10128 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10129 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10130 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10131 !HasWideQualifier) {
10132 unsigned NewOpc;
10133 switch (Inst.getOpcode()) {
10134 default: llvm_unreachable("unexpected opcode");
10135 case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10136 case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10137 case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10138 case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10140 MCInst TmpInst;
10141 TmpInst.setOpcode(NewOpc);
10142 TmpInst.addOperand(Inst.getOperand(0));
10143 TmpInst.addOperand(Inst.getOperand(5));
10144 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10145 TmpInst.addOperand(Inst.getOperand(1));
10146 TmpInst.addOperand(Inst.getOperand(2));
10147 } else {
10148 TmpInst.addOperand(Inst.getOperand(2));
10149 TmpInst.addOperand(Inst.getOperand(1));
10151 TmpInst.addOperand(Inst.getOperand(3));
10152 TmpInst.addOperand(Inst.getOperand(4));
10153 Inst = TmpInst;
10154 return true;
10156 return false;
10157 case ARM::MVE_VPST:
10158 case ARM::MVE_VPTv16i8:
10159 case ARM::MVE_VPTv8i16:
10160 case ARM::MVE_VPTv4i32:
10161 case ARM::MVE_VPTv16u8:
10162 case ARM::MVE_VPTv8u16:
10163 case ARM::MVE_VPTv4u32:
10164 case ARM::MVE_VPTv16s8:
10165 case ARM::MVE_VPTv8s16:
10166 case ARM::MVE_VPTv4s32:
10167 case ARM::MVE_VPTv4f32:
10168 case ARM::MVE_VPTv8f16:
10169 case ARM::MVE_VPTv16i8r:
10170 case ARM::MVE_VPTv8i16r:
10171 case ARM::MVE_VPTv4i32r:
10172 case ARM::MVE_VPTv16u8r:
10173 case ARM::MVE_VPTv8u16r:
10174 case ARM::MVE_VPTv4u32r:
10175 case ARM::MVE_VPTv16s8r:
10176 case ARM::MVE_VPTv8s16r:
10177 case ARM::MVE_VPTv4s32r:
10178 case ARM::MVE_VPTv4f32r:
10179 case ARM::MVE_VPTv8f16r: {
10180 assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10181 MCOperand &MO = Inst.getOperand(0);
10182 VPTState.Mask = MO.getImm();
10183 VPTState.CurPosition = 0;
10184 break;
10187 return false;
10190 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10191 // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10192 // suffix depending on whether they're in an IT block or not.
10193 unsigned Opc = Inst.getOpcode();
10194 const MCInstrDesc &MCID = MII.get(Opc);
10195 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10196 assert(MCID.hasOptionalDef() &&
10197 "optionally flag setting instruction missing optional def operand");
10198 assert(MCID.NumOperands == Inst.getNumOperands() &&
10199 "operand count mismatch!");
10200 // Find the optional-def operand (cc_out).
10201 unsigned OpNo;
10202 for (OpNo = 0;
10203 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10204 ++OpNo)
10206 // If we're parsing Thumb1, reject it completely.
10207 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10208 return Match_RequiresFlagSetting;
10209 // If we're parsing Thumb2, which form is legal depends on whether we're
10210 // in an IT block.
10211 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10212 !inITBlock())
10213 return Match_RequiresITBlock;
10214 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10215 inITBlock())
10216 return Match_RequiresNotITBlock;
10217 // LSL with zero immediate is not allowed in an IT block
10218 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10219 return Match_RequiresNotITBlock;
10220 } else if (isThumbOne()) {
10221 // Some high-register supporting Thumb1 encodings only allow both registers
10222 // to be from r0-r7 when in Thumb2.
10223 if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10224 isARMLowRegister(Inst.getOperand(1).getReg()) &&
10225 isARMLowRegister(Inst.getOperand(2).getReg()))
10226 return Match_RequiresThumb2;
10227 // Others only require ARMv6 or later.
10228 else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10229 isARMLowRegister(Inst.getOperand(0).getReg()) &&
10230 isARMLowRegister(Inst.getOperand(1).getReg()))
10231 return Match_RequiresV6;
10234 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10235 // than the loop below can handle, so it uses the GPRnopc register class and
10236 // we do SP handling here.
10237 if (Opc == ARM::t2MOVr && !hasV8Ops())
10239 // SP as both source and destination is not allowed
10240 if (Inst.getOperand(0).getReg() == ARM::SP &&
10241 Inst.getOperand(1).getReg() == ARM::SP)
10242 return Match_RequiresV8;
10243 // When flags-setting SP as either source or destination is not allowed
10244 if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10245 (Inst.getOperand(0).getReg() == ARM::SP ||
10246 Inst.getOperand(1).getReg() == ARM::SP))
10247 return Match_RequiresV8;
10250 switch (Inst.getOpcode()) {
10251 case ARM::VMRS:
10252 case ARM::VMSR:
10253 case ARM::VMRS_FPCXTS:
10254 case ARM::VMRS_FPCXTNS:
10255 case ARM::VMSR_FPCXTS:
10256 case ARM::VMSR_FPCXTNS:
10257 case ARM::VMRS_FPSCR_NZCVQC:
10258 case ARM::VMSR_FPSCR_NZCVQC:
10259 case ARM::FMSTAT:
10260 case ARM::VMRS_VPR:
10261 case ARM::VMRS_P0:
10262 case ARM::VMSR_VPR:
10263 case ARM::VMSR_P0:
10264 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10265 // ARMv8-A.
10266 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10267 (isThumb() && !hasV8Ops()))
10268 return Match_InvalidOperand;
10269 break;
10270 default:
10271 break;
10274 for (unsigned I = 0; I < MCID.NumOperands; ++I)
10275 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10276 // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10277 const auto &Op = Inst.getOperand(I);
10278 if (!Op.isReg()) {
10279 // This can happen in awkward cases with tied operands, e.g. a
10280 // writeback load/store with a complex addressing mode in
10281 // which there's an output operand corresponding to the
10282 // updated written-back base register: the Tablegen-generated
10283 // AsmMatcher will have written a placeholder operand to that
10284 // slot in the form of an immediate 0, because it can't
10285 // generate the register part of the complex addressing-mode
10286 // operand ahead of time.
10287 continue;
10290 unsigned Reg = Op.getReg();
10291 if ((Reg == ARM::SP) && !hasV8Ops())
10292 return Match_RequiresV8;
10293 else if (Reg == ARM::PC)
10294 return Match_InvalidOperand;
10297 return Match_Success;
10300 namespace llvm {
10302 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10303 return true; // In an assembly source, no need to second-guess
10306 } // end namespace llvm
10308 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10309 // the last instruction in the block.
10310 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10311 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10313 // All branch & call instructions terminate IT blocks with the exception of
10314 // SVC.
10315 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10316 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10317 return true;
10319 // Any arithmetic instruction which writes to the PC also terminates the IT
10320 // block.
10321 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10322 return true;
10324 return false;
10327 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10328 SmallVectorImpl<NearMissInfo> &NearMisses,
10329 bool MatchingInlineAsm,
10330 bool &EmitInITBlock,
10331 MCStreamer &Out) {
10332 // If we can't use an implicit IT block here, just match as normal.
10333 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10334 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10336 // Try to match the instruction in an extension of the current IT block (if
10337 // there is one).
10338 if (inImplicitITBlock()) {
10339 extendImplicitITBlock(ITState.Cond);
10340 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10341 Match_Success) {
10342 // The match succeded, but we still have to check that the instruction is
10343 // valid in this implicit IT block.
10344 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10345 if (MCID.isPredicable()) {
10346 ARMCC::CondCodes InstCond =
10347 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10348 .getImm();
10349 ARMCC::CondCodes ITCond = currentITCond();
10350 if (InstCond == ITCond) {
10351 EmitInITBlock = true;
10352 return Match_Success;
10353 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10354 invertCurrentITCondition();
10355 EmitInITBlock = true;
10356 return Match_Success;
10360 rewindImplicitITPosition();
10363 // Finish the current IT block, and try to match outside any IT block.
10364 flushPendingInstructions(Out);
10365 unsigned PlainMatchResult =
10366 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10367 if (PlainMatchResult == Match_Success) {
10368 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10369 if (MCID.isPredicable()) {
10370 ARMCC::CondCodes InstCond =
10371 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10372 .getImm();
10373 // Some forms of the branch instruction have their own condition code
10374 // fields, so can be conditionally executed without an IT block.
10375 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10376 EmitInITBlock = false;
10377 return Match_Success;
10379 if (InstCond == ARMCC::AL) {
10380 EmitInITBlock = false;
10381 return Match_Success;
10383 } else {
10384 EmitInITBlock = false;
10385 return Match_Success;
10389 // Try to match in a new IT block. The matcher doesn't check the actual
10390 // condition, so we create an IT block with a dummy condition, and fix it up
10391 // once we know the actual condition.
10392 startImplicitITBlock();
10393 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10394 Match_Success) {
10395 const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10396 if (MCID.isPredicable()) {
10397 ITState.Cond =
10398 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10399 .getImm();
10400 EmitInITBlock = true;
10401 return Match_Success;
10404 discardImplicitITBlock();
10406 // If none of these succeed, return the error we got when trying to match
10407 // outside any IT blocks.
10408 EmitInITBlock = false;
10409 return PlainMatchResult;
10412 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10413 unsigned VariantID = 0);
10415 static const char *getSubtargetFeatureName(uint64_t Val);
10416 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10417 OperandVector &Operands,
10418 MCStreamer &Out, uint64_t &ErrorInfo,
10419 bool MatchingInlineAsm) {
10420 MCInst Inst;
10421 unsigned MatchResult;
10422 bool PendConditionalInstruction = false;
10424 SmallVector<NearMissInfo, 4> NearMisses;
10425 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10426 PendConditionalInstruction, Out);
10428 switch (MatchResult) {
10429 case Match_Success:
10430 LLVM_DEBUG(dbgs() << "Parsed as: ";
10431 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10432 dbgs() << "\n");
10434 // Context sensitive operand constraints aren't handled by the matcher,
10435 // so check them here.
10436 if (validateInstruction(Inst, Operands)) {
10437 // Still progress the IT block, otherwise one wrong condition causes
10438 // nasty cascading errors.
10439 forwardITPosition();
10440 forwardVPTPosition();
10441 return true;
10444 { // processInstruction() updates inITBlock state, we need to save it away
10445 bool wasInITBlock = inITBlock();
10447 // Some instructions need post-processing to, for example, tweak which
10448 // encoding is selected. Loop on it while changes happen so the
10449 // individual transformations can chain off each other. E.g.,
10450 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10451 while (processInstruction(Inst, Operands, Out))
10452 LLVM_DEBUG(dbgs() << "Changed to: ";
10453 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10454 dbgs() << "\n");
10456 // Only after the instruction is fully processed, we can validate it
10457 if (wasInITBlock && hasV8Ops() && isThumb() &&
10458 !isV8EligibleForIT(&Inst)) {
10459 Warning(IDLoc, "deprecated instruction in IT block");
10463 // Only move forward at the very end so that everything in validate
10464 // and process gets a consistent answer about whether we're in an IT
10465 // block.
10466 forwardITPosition();
10467 forwardVPTPosition();
10469 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10470 // doesn't actually encode.
10471 if (Inst.getOpcode() == ARM::ITasm)
10472 return false;
10474 Inst.setLoc(IDLoc);
10475 if (PendConditionalInstruction) {
10476 PendingConditionalInsts.push_back(Inst);
10477 if (isITBlockFull() || isITBlockTerminator(Inst))
10478 flushPendingInstructions(Out);
10479 } else {
10480 Out.EmitInstruction(Inst, getSTI());
10482 return false;
10483 case Match_NearMisses:
10484 ReportNearMisses(NearMisses, IDLoc, Operands);
10485 return true;
10486 case Match_MnemonicFail: {
10487 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
10488 std::string Suggestion = ARMMnemonicSpellCheck(
10489 ((ARMOperand &)*Operands[0]).getToken(), FBS);
10490 return Error(IDLoc, "invalid instruction" + Suggestion,
10491 ((ARMOperand &)*Operands[0]).getLocRange());
10495 llvm_unreachable("Implement any new match types added!");
10498 /// parseDirective parses the arm specific directives
10499 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
10500 const MCObjectFileInfo::Environment Format =
10501 getContext().getObjectFileInfo()->getObjectFileType();
10502 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10503 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
10505 StringRef IDVal = DirectiveID.getIdentifier();
10506 if (IDVal == ".word")
10507 parseLiteralValues(4, DirectiveID.getLoc());
10508 else if (IDVal == ".short" || IDVal == ".hword")
10509 parseLiteralValues(2, DirectiveID.getLoc());
10510 else if (IDVal == ".thumb")
10511 parseDirectiveThumb(DirectiveID.getLoc());
10512 else if (IDVal == ".arm")
10513 parseDirectiveARM(DirectiveID.getLoc());
10514 else if (IDVal == ".thumb_func")
10515 parseDirectiveThumbFunc(DirectiveID.getLoc());
10516 else if (IDVal == ".code")
10517 parseDirectiveCode(DirectiveID.getLoc());
10518 else if (IDVal == ".syntax")
10519 parseDirectiveSyntax(DirectiveID.getLoc());
10520 else if (IDVal == ".unreq")
10521 parseDirectiveUnreq(DirectiveID.getLoc());
10522 else if (IDVal == ".fnend")
10523 parseDirectiveFnEnd(DirectiveID.getLoc());
10524 else if (IDVal == ".cantunwind")
10525 parseDirectiveCantUnwind(DirectiveID.getLoc());
10526 else if (IDVal == ".personality")
10527 parseDirectivePersonality(DirectiveID.getLoc());
10528 else if (IDVal == ".handlerdata")
10529 parseDirectiveHandlerData(DirectiveID.getLoc());
10530 else if (IDVal == ".setfp")
10531 parseDirectiveSetFP(DirectiveID.getLoc());
10532 else if (IDVal == ".pad")
10533 parseDirectivePad(DirectiveID.getLoc());
10534 else if (IDVal == ".save")
10535 parseDirectiveRegSave(DirectiveID.getLoc(), false);
10536 else if (IDVal == ".vsave")
10537 parseDirectiveRegSave(DirectiveID.getLoc(), true);
10538 else if (IDVal == ".ltorg" || IDVal == ".pool")
10539 parseDirectiveLtorg(DirectiveID.getLoc());
10540 else if (IDVal == ".even")
10541 parseDirectiveEven(DirectiveID.getLoc());
10542 else if (IDVal == ".personalityindex")
10543 parseDirectivePersonalityIndex(DirectiveID.getLoc());
10544 else if (IDVal == ".unwind_raw")
10545 parseDirectiveUnwindRaw(DirectiveID.getLoc());
10546 else if (IDVal == ".movsp")
10547 parseDirectiveMovSP(DirectiveID.getLoc());
10548 else if (IDVal == ".arch_extension")
10549 parseDirectiveArchExtension(DirectiveID.getLoc());
10550 else if (IDVal == ".align")
10551 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
10552 else if (IDVal == ".thumb_set")
10553 parseDirectiveThumbSet(DirectiveID.getLoc());
10554 else if (IDVal == ".inst")
10555 parseDirectiveInst(DirectiveID.getLoc());
10556 else if (IDVal == ".inst.n")
10557 parseDirectiveInst(DirectiveID.getLoc(), 'n');
10558 else if (IDVal == ".inst.w")
10559 parseDirectiveInst(DirectiveID.getLoc(), 'w');
10560 else if (!IsMachO && !IsCOFF) {
10561 if (IDVal == ".arch")
10562 parseDirectiveArch(DirectiveID.getLoc());
10563 else if (IDVal == ".cpu")
10564 parseDirectiveCPU(DirectiveID.getLoc());
10565 else if (IDVal == ".eabi_attribute")
10566 parseDirectiveEabiAttr(DirectiveID.getLoc());
10567 else if (IDVal == ".fpu")
10568 parseDirectiveFPU(DirectiveID.getLoc());
10569 else if (IDVal == ".fnstart")
10570 parseDirectiveFnStart(DirectiveID.getLoc());
10571 else if (IDVal == ".object_arch")
10572 parseDirectiveObjectArch(DirectiveID.getLoc());
10573 else if (IDVal == ".tlsdescseq")
10574 parseDirectiveTLSDescSeq(DirectiveID.getLoc());
10575 else
10576 return true;
10577 } else
10578 return true;
10579 return false;
10582 /// parseLiteralValues
10583 /// ::= .hword expression [, expression]*
10584 /// ::= .short expression [, expression]*
10585 /// ::= .word expression [, expression]*
10586 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
10587 auto parseOne = [&]() -> bool {
10588 const MCExpr *Value;
10589 if (getParser().parseExpression(Value))
10590 return true;
10591 getParser().getStreamer().EmitValue(Value, Size, L);
10592 return false;
10594 return (parseMany(parseOne));
10597 /// parseDirectiveThumb
10598 /// ::= .thumb
10599 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
10600 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10601 check(!hasThumb(), L, "target does not support Thumb mode"))
10602 return true;
10604 if (!isThumb())
10605 SwitchMode();
10607 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
10608 return false;
10611 /// parseDirectiveARM
10612 /// ::= .arm
10613 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
10614 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10615 check(!hasARM(), L, "target does not support ARM mode"))
10616 return true;
10618 if (isThumb())
10619 SwitchMode();
10620 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
10621 return false;
10624 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
10625 // We need to flush the current implicit IT block on a label, because it is
10626 // not legal to branch into an IT block.
10627 flushPendingInstructions(getStreamer());
10630 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
10631 if (NextSymbolIsThumb) {
10632 getParser().getStreamer().EmitThumbFunc(Symbol);
10633 NextSymbolIsThumb = false;
10637 /// parseDirectiveThumbFunc
10638 /// ::= .thumbfunc symbol_name
10639 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
10640 MCAsmParser &Parser = getParser();
10641 const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
10642 bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10644 // Darwin asm has (optionally) function name after .thumb_func direction
10645 // ELF doesn't
10647 if (IsMachO) {
10648 if (Parser.getTok().is(AsmToken::Identifier) ||
10649 Parser.getTok().is(AsmToken::String)) {
10650 MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
10651 Parser.getTok().getIdentifier());
10652 getParser().getStreamer().EmitThumbFunc(Func);
10653 Parser.Lex();
10654 if (parseToken(AsmToken::EndOfStatement,
10655 "unexpected token in '.thumb_func' directive"))
10656 return true;
10657 return false;
10661 if (parseToken(AsmToken::EndOfStatement,
10662 "unexpected token in '.thumb_func' directive"))
10663 return true;
10665 NextSymbolIsThumb = true;
10666 return false;
10669 /// parseDirectiveSyntax
10670 /// ::= .syntax unified | divided
10671 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
10672 MCAsmParser &Parser = getParser();
10673 const AsmToken &Tok = Parser.getTok();
10674 if (Tok.isNot(AsmToken::Identifier)) {
10675 Error(L, "unexpected token in .syntax directive");
10676 return false;
10679 StringRef Mode = Tok.getString();
10680 Parser.Lex();
10681 if (check(Mode == "divided" || Mode == "DIVIDED", L,
10682 "'.syntax divided' arm assembly not supported") ||
10683 check(Mode != "unified" && Mode != "UNIFIED", L,
10684 "unrecognized syntax mode in .syntax directive") ||
10685 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10686 return true;
10688 // TODO tell the MC streamer the mode
10689 // getParser().getStreamer().Emit???();
10690 return false;
10693 /// parseDirectiveCode
10694 /// ::= .code 16 | 32
10695 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
10696 MCAsmParser &Parser = getParser();
10697 const AsmToken &Tok = Parser.getTok();
10698 if (Tok.isNot(AsmToken::Integer))
10699 return Error(L, "unexpected token in .code directive");
10700 int64_t Val = Parser.getTok().getIntVal();
10701 if (Val != 16 && Val != 32) {
10702 Error(L, "invalid operand to .code directive");
10703 return false;
10705 Parser.Lex();
10707 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10708 return true;
10710 if (Val == 16) {
10711 if (!hasThumb())
10712 return Error(L, "target does not support Thumb mode");
10714 if (!isThumb())
10715 SwitchMode();
10716 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
10717 } else {
10718 if (!hasARM())
10719 return Error(L, "target does not support ARM mode");
10721 if (isThumb())
10722 SwitchMode();
10723 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
10726 return false;
10729 /// parseDirectiveReq
10730 /// ::= name .req registername
10731 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
10732 MCAsmParser &Parser = getParser();
10733 Parser.Lex(); // Eat the '.req' token.
10734 unsigned Reg;
10735 SMLoc SRegLoc, ERegLoc;
10736 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
10737 "register name expected") ||
10738 parseToken(AsmToken::EndOfStatement,
10739 "unexpected input in .req directive."))
10740 return true;
10742 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
10743 return Error(SRegLoc,
10744 "redefinition of '" + Name + "' does not match original.");
10746 return false;
10749 /// parseDirectiveUneq
10750 /// ::= .unreq registername
10751 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
10752 MCAsmParser &Parser = getParser();
10753 if (Parser.getTok().isNot(AsmToken::Identifier))
10754 return Error(L, "unexpected input in .unreq directive.");
10755 RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
10756 Parser.Lex(); // Eat the identifier.
10757 if (parseToken(AsmToken::EndOfStatement,
10758 "unexpected input in '.unreq' directive"))
10759 return true;
10760 return false;
10763 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
10764 // before, if supported by the new target, or emit mapping symbols for the mode
10765 // switch.
10766 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
10767 if (WasThumb != isThumb()) {
10768 if (WasThumb && hasThumb()) {
10769 // Stay in Thumb mode
10770 SwitchMode();
10771 } else if (!WasThumb && hasARM()) {
10772 // Stay in ARM mode
10773 SwitchMode();
10774 } else {
10775 // Mode switch forced, because the new arch doesn't support the old mode.
10776 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
10777 : MCAF_Code32);
10778 // Warn about the implcit mode switch. GAS does not switch modes here,
10779 // but instead stays in the old mode, reporting an error on any following
10780 // instructions as the mode does not exist on the target.
10781 Warning(Loc, Twine("new target does not support ") +
10782 (WasThumb ? "thumb" : "arm") + " mode, switching to " +
10783 (!WasThumb ? "thumb" : "arm") + " mode");
10788 /// parseDirectiveArch
10789 /// ::= .arch token
10790 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
10791 StringRef Arch = getParser().parseStringToEndOfStatement().trim();
10792 ARM::ArchKind ID = ARM::parseArch(Arch);
10794 if (ID == ARM::ArchKind::INVALID)
10795 return Error(L, "Unknown arch name");
10797 bool WasThumb = isThumb();
10798 Triple T;
10799 MCSubtargetInfo &STI = copySTI();
10800 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
10801 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10802 FixModeAfterArchChange(WasThumb, L);
10804 getTargetStreamer().emitArch(ID);
10805 return false;
10808 /// parseDirectiveEabiAttr
10809 /// ::= .eabi_attribute int, int [, "str"]
10810 /// ::= .eabi_attribute Tag_name, int [, "str"]
10811 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
10812 MCAsmParser &Parser = getParser();
10813 int64_t Tag;
10814 SMLoc TagLoc;
10815 TagLoc = Parser.getTok().getLoc();
10816 if (Parser.getTok().is(AsmToken::Identifier)) {
10817 StringRef Name = Parser.getTok().getIdentifier();
10818 Tag = ARMBuildAttrs::AttrTypeFromString(Name);
10819 if (Tag == -1) {
10820 Error(TagLoc, "attribute name not recognised: " + Name);
10821 return false;
10823 Parser.Lex();
10824 } else {
10825 const MCExpr *AttrExpr;
10827 TagLoc = Parser.getTok().getLoc();
10828 if (Parser.parseExpression(AttrExpr))
10829 return true;
10831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
10832 if (check(!CE, TagLoc, "expected numeric constant"))
10833 return true;
10835 Tag = CE->getValue();
10838 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
10839 return true;
10841 StringRef StringValue = "";
10842 bool IsStringValue = false;
10844 int64_t IntegerValue = 0;
10845 bool IsIntegerValue = false;
10847 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
10848 IsStringValue = true;
10849 else if (Tag == ARMBuildAttrs::compatibility) {
10850 IsStringValue = true;
10851 IsIntegerValue = true;
10852 } else if (Tag < 32 || Tag % 2 == 0)
10853 IsIntegerValue = true;
10854 else if (Tag % 2 == 1)
10855 IsStringValue = true;
10856 else
10857 llvm_unreachable("invalid tag type");
10859 if (IsIntegerValue) {
10860 const MCExpr *ValueExpr;
10861 SMLoc ValueExprLoc = Parser.getTok().getLoc();
10862 if (Parser.parseExpression(ValueExpr))
10863 return true;
10865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
10866 if (!CE)
10867 return Error(ValueExprLoc, "expected numeric constant");
10868 IntegerValue = CE->getValue();
10871 if (Tag == ARMBuildAttrs::compatibility) {
10872 if (Parser.parseToken(AsmToken::Comma, "comma expected"))
10873 return true;
10876 if (IsStringValue) {
10877 if (Parser.getTok().isNot(AsmToken::String))
10878 return Error(Parser.getTok().getLoc(), "bad string constant");
10880 StringValue = Parser.getTok().getStringContents();
10881 Parser.Lex();
10884 if (Parser.parseToken(AsmToken::EndOfStatement,
10885 "unexpected token in '.eabi_attribute' directive"))
10886 return true;
10888 if (IsIntegerValue && IsStringValue) {
10889 assert(Tag == ARMBuildAttrs::compatibility);
10890 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
10891 } else if (IsIntegerValue)
10892 getTargetStreamer().emitAttribute(Tag, IntegerValue);
10893 else if (IsStringValue)
10894 getTargetStreamer().emitTextAttribute(Tag, StringValue);
10895 return false;
10898 /// parseDirectiveCPU
10899 /// ::= .cpu str
10900 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
10901 StringRef CPU = getParser().parseStringToEndOfStatement().trim();
10902 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
10904 // FIXME: This is using table-gen data, but should be moved to
10905 // ARMTargetParser once that is table-gen'd.
10906 if (!getSTI().isCPUStringValid(CPU))
10907 return Error(L, "Unknown CPU name");
10909 bool WasThumb = isThumb();
10910 MCSubtargetInfo &STI = copySTI();
10911 STI.setDefaultFeatures(CPU, "");
10912 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10913 FixModeAfterArchChange(WasThumb, L);
10915 return false;
10918 /// parseDirectiveFPU
10919 /// ::= .fpu str
10920 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
10921 SMLoc FPUNameLoc = getTok().getLoc();
10922 StringRef FPU = getParser().parseStringToEndOfStatement().trim();
10924 unsigned ID = ARM::parseFPU(FPU);
10925 std::vector<StringRef> Features;
10926 if (!ARM::getFPUFeatures(ID, Features))
10927 return Error(FPUNameLoc, "Unknown FPU name");
10929 MCSubtargetInfo &STI = copySTI();
10930 for (auto Feature : Features)
10931 STI.ApplyFeatureFlag(Feature);
10932 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
10934 getTargetStreamer().emitFPU(ID);
10935 return false;
10938 /// parseDirectiveFnStart
10939 /// ::= .fnstart
10940 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
10941 if (parseToken(AsmToken::EndOfStatement,
10942 "unexpected token in '.fnstart' directive"))
10943 return true;
10945 if (UC.hasFnStart()) {
10946 Error(L, ".fnstart starts before the end of previous one");
10947 UC.emitFnStartLocNotes();
10948 return true;
10951 // Reset the unwind directives parser state
10952 UC.reset();
10954 getTargetStreamer().emitFnStart();
10956 UC.recordFnStart(L);
10957 return false;
10960 /// parseDirectiveFnEnd
10961 /// ::= .fnend
10962 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
10963 if (parseToken(AsmToken::EndOfStatement,
10964 "unexpected token in '.fnend' directive"))
10965 return true;
10966 // Check the ordering of unwind directives
10967 if (!UC.hasFnStart())
10968 return Error(L, ".fnstart must precede .fnend directive");
10970 // Reset the unwind directives parser state
10971 getTargetStreamer().emitFnEnd();
10973 UC.reset();
10974 return false;
10977 /// parseDirectiveCantUnwind
10978 /// ::= .cantunwind
10979 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
10980 if (parseToken(AsmToken::EndOfStatement,
10981 "unexpected token in '.cantunwind' directive"))
10982 return true;
10984 UC.recordCantUnwind(L);
10985 // Check the ordering of unwind directives
10986 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
10987 return true;
10989 if (UC.hasHandlerData()) {
10990 Error(L, ".cantunwind can't be used with .handlerdata directive");
10991 UC.emitHandlerDataLocNotes();
10992 return true;
10994 if (UC.hasPersonality()) {
10995 Error(L, ".cantunwind can't be used with .personality directive");
10996 UC.emitPersonalityLocNotes();
10997 return true;
11000 getTargetStreamer().emitCantUnwind();
11001 return false;
11004 /// parseDirectivePersonality
11005 /// ::= .personality name
11006 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11007 MCAsmParser &Parser = getParser();
11008 bool HasExistingPersonality = UC.hasPersonality();
11010 // Parse the name of the personality routine
11011 if (Parser.getTok().isNot(AsmToken::Identifier))
11012 return Error(L, "unexpected input in .personality directive.");
11013 StringRef Name(Parser.getTok().getIdentifier());
11014 Parser.Lex();
11016 if (parseToken(AsmToken::EndOfStatement,
11017 "unexpected token in '.personality' directive"))
11018 return true;
11020 UC.recordPersonality(L);
11022 // Check the ordering of unwind directives
11023 if (!UC.hasFnStart())
11024 return Error(L, ".fnstart must precede .personality directive");
11025 if (UC.cantUnwind()) {
11026 Error(L, ".personality can't be used with .cantunwind directive");
11027 UC.emitCantUnwindLocNotes();
11028 return true;
11030 if (UC.hasHandlerData()) {
11031 Error(L, ".personality must precede .handlerdata directive");
11032 UC.emitHandlerDataLocNotes();
11033 return true;
11035 if (HasExistingPersonality) {
11036 Error(L, "multiple personality directives");
11037 UC.emitPersonalityLocNotes();
11038 return true;
11041 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11042 getTargetStreamer().emitPersonality(PR);
11043 return false;
11046 /// parseDirectiveHandlerData
11047 /// ::= .handlerdata
11048 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11049 if (parseToken(AsmToken::EndOfStatement,
11050 "unexpected token in '.handlerdata' directive"))
11051 return true;
11053 UC.recordHandlerData(L);
11054 // Check the ordering of unwind directives
11055 if (!UC.hasFnStart())
11056 return Error(L, ".fnstart must precede .personality directive");
11057 if (UC.cantUnwind()) {
11058 Error(L, ".handlerdata can't be used with .cantunwind directive");
11059 UC.emitCantUnwindLocNotes();
11060 return true;
11063 getTargetStreamer().emitHandlerData();
11064 return false;
11067 /// parseDirectiveSetFP
11068 /// ::= .setfp fpreg, spreg [, offset]
11069 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11070 MCAsmParser &Parser = getParser();
11071 // Check the ordering of unwind directives
11072 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11073 check(UC.hasHandlerData(), L,
11074 ".setfp must precede .handlerdata directive"))
11075 return true;
11077 // Parse fpreg
11078 SMLoc FPRegLoc = Parser.getTok().getLoc();
11079 int FPReg = tryParseRegister();
11081 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11082 Parser.parseToken(AsmToken::Comma, "comma expected"))
11083 return true;
11085 // Parse spreg
11086 SMLoc SPRegLoc = Parser.getTok().getLoc();
11087 int SPReg = tryParseRegister();
11088 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11089 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11090 "register should be either $sp or the latest fp register"))
11091 return true;
11093 // Update the frame pointer register
11094 UC.saveFPReg(FPReg);
11096 // Parse offset
11097 int64_t Offset = 0;
11098 if (Parser.parseOptionalToken(AsmToken::Comma)) {
11099 if (Parser.getTok().isNot(AsmToken::Hash) &&
11100 Parser.getTok().isNot(AsmToken::Dollar))
11101 return Error(Parser.getTok().getLoc(), "'#' expected");
11102 Parser.Lex(); // skip hash token.
11104 const MCExpr *OffsetExpr;
11105 SMLoc ExLoc = Parser.getTok().getLoc();
11106 SMLoc EndLoc;
11107 if (getParser().parseExpression(OffsetExpr, EndLoc))
11108 return Error(ExLoc, "malformed setfp offset");
11109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11110 if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11111 return true;
11112 Offset = CE->getValue();
11115 if (Parser.parseToken(AsmToken::EndOfStatement))
11116 return true;
11118 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11119 static_cast<unsigned>(SPReg), Offset);
11120 return false;
11123 /// parseDirective
11124 /// ::= .pad offset
11125 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11126 MCAsmParser &Parser = getParser();
11127 // Check the ordering of unwind directives
11128 if (!UC.hasFnStart())
11129 return Error(L, ".fnstart must precede .pad directive");
11130 if (UC.hasHandlerData())
11131 return Error(L, ".pad must precede .handlerdata directive");
11133 // Parse the offset
11134 if (Parser.getTok().isNot(AsmToken::Hash) &&
11135 Parser.getTok().isNot(AsmToken::Dollar))
11136 return Error(Parser.getTok().getLoc(), "'#' expected");
11137 Parser.Lex(); // skip hash token.
11139 const MCExpr *OffsetExpr;
11140 SMLoc ExLoc = Parser.getTok().getLoc();
11141 SMLoc EndLoc;
11142 if (getParser().parseExpression(OffsetExpr, EndLoc))
11143 return Error(ExLoc, "malformed pad offset");
11144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11145 if (!CE)
11146 return Error(ExLoc, "pad offset must be an immediate");
11148 if (parseToken(AsmToken::EndOfStatement,
11149 "unexpected token in '.pad' directive"))
11150 return true;
11152 getTargetStreamer().emitPad(CE->getValue());
11153 return false;
11156 /// parseDirectiveRegSave
11157 /// ::= .save { registers }
11158 /// ::= .vsave { registers }
11159 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11160 // Check the ordering of unwind directives
11161 if (!UC.hasFnStart())
11162 return Error(L, ".fnstart must precede .save or .vsave directives");
11163 if (UC.hasHandlerData())
11164 return Error(L, ".save or .vsave must precede .handlerdata directive");
11166 // RAII object to make sure parsed operands are deleted.
11167 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11169 // Parse the register list
11170 if (parseRegisterList(Operands) ||
11171 parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11172 return true;
11173 ARMOperand &Op = (ARMOperand &)*Operands[0];
11174 if (!IsVector && !Op.isRegList())
11175 return Error(L, ".save expects GPR registers");
11176 if (IsVector && !Op.isDPRRegList())
11177 return Error(L, ".vsave expects DPR registers");
11179 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11180 return false;
11183 /// parseDirectiveInst
11184 /// ::= .inst opcode [, ...]
11185 /// ::= .inst.n opcode [, ...]
11186 /// ::= .inst.w opcode [, ...]
11187 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11188 int Width = 4;
11190 if (isThumb()) {
11191 switch (Suffix) {
11192 case 'n':
11193 Width = 2;
11194 break;
11195 case 'w':
11196 break;
11197 default:
11198 Width = 0;
11199 break;
11201 } else {
11202 if (Suffix)
11203 return Error(Loc, "width suffixes are invalid in ARM mode");
11206 auto parseOne = [&]() -> bool {
11207 const MCExpr *Expr;
11208 if (getParser().parseExpression(Expr))
11209 return true;
11210 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11211 if (!Value) {
11212 return Error(Loc, "expected constant expression");
11215 char CurSuffix = Suffix;
11216 switch (Width) {
11217 case 2:
11218 if (Value->getValue() > 0xffff)
11219 return Error(Loc, "inst.n operand is too big, use inst.w instead");
11220 break;
11221 case 4:
11222 if (Value->getValue() > 0xffffffff)
11223 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11224 " operand is too big");
11225 break;
11226 case 0:
11227 // Thumb mode, no width indicated. Guess from the opcode, if possible.
11228 if (Value->getValue() < 0xe800)
11229 CurSuffix = 'n';
11230 else if (Value->getValue() >= 0xe8000000)
11231 CurSuffix = 'w';
11232 else
11233 return Error(Loc, "cannot determine Thumb instruction size, "
11234 "use inst.n/inst.w instead");
11235 break;
11236 default:
11237 llvm_unreachable("only supported widths are 2 and 4");
11240 getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11241 return false;
11244 if (parseOptionalToken(AsmToken::EndOfStatement))
11245 return Error(Loc, "expected expression following directive");
11246 if (parseMany(parseOne))
11247 return true;
11248 return false;
11251 /// parseDirectiveLtorg
11252 /// ::= .ltorg | .pool
11253 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11254 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11255 return true;
11256 getTargetStreamer().emitCurrentConstantPool();
11257 return false;
11260 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11261 const MCSection *Section = getStreamer().getCurrentSectionOnly();
11263 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11264 return true;
11266 if (!Section) {
11267 getStreamer().InitSections(false);
11268 Section = getStreamer().getCurrentSectionOnly();
11271 assert(Section && "must have section to emit alignment");
11272 if (Section->UseCodeAlign())
11273 getStreamer().EmitCodeAlignment(2);
11274 else
11275 getStreamer().EmitValueToAlignment(2);
11277 return false;
11280 /// parseDirectivePersonalityIndex
11281 /// ::= .personalityindex index
11282 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11283 MCAsmParser &Parser = getParser();
11284 bool HasExistingPersonality = UC.hasPersonality();
11286 const MCExpr *IndexExpression;
11287 SMLoc IndexLoc = Parser.getTok().getLoc();
11288 if (Parser.parseExpression(IndexExpression) ||
11289 parseToken(AsmToken::EndOfStatement,
11290 "unexpected token in '.personalityindex' directive")) {
11291 return true;
11294 UC.recordPersonalityIndex(L);
11296 if (!UC.hasFnStart()) {
11297 return Error(L, ".fnstart must precede .personalityindex directive");
11299 if (UC.cantUnwind()) {
11300 Error(L, ".personalityindex cannot be used with .cantunwind");
11301 UC.emitCantUnwindLocNotes();
11302 return true;
11304 if (UC.hasHandlerData()) {
11305 Error(L, ".personalityindex must precede .handlerdata directive");
11306 UC.emitHandlerDataLocNotes();
11307 return true;
11309 if (HasExistingPersonality) {
11310 Error(L, "multiple personality directives");
11311 UC.emitPersonalityLocNotes();
11312 return true;
11315 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11316 if (!CE)
11317 return Error(IndexLoc, "index must be a constant number");
11318 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11319 return Error(IndexLoc,
11320 "personality routine index should be in range [0-3]");
11322 getTargetStreamer().emitPersonalityIndex(CE->getValue());
11323 return false;
11326 /// parseDirectiveUnwindRaw
11327 /// ::= .unwind_raw offset, opcode [, opcode...]
11328 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11329 MCAsmParser &Parser = getParser();
11330 int64_t StackOffset;
11331 const MCExpr *OffsetExpr;
11332 SMLoc OffsetLoc = getLexer().getLoc();
11334 if (!UC.hasFnStart())
11335 return Error(L, ".fnstart must precede .unwind_raw directives");
11336 if (getParser().parseExpression(OffsetExpr))
11337 return Error(OffsetLoc, "expected expression");
11339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11340 if (!CE)
11341 return Error(OffsetLoc, "offset must be a constant");
11343 StackOffset = CE->getValue();
11345 if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11346 return true;
11348 SmallVector<uint8_t, 16> Opcodes;
11350 auto parseOne = [&]() -> bool {
11351 const MCExpr *OE;
11352 SMLoc OpcodeLoc = getLexer().getLoc();
11353 if (check(getLexer().is(AsmToken::EndOfStatement) ||
11354 Parser.parseExpression(OE),
11355 OpcodeLoc, "expected opcode expression"))
11356 return true;
11357 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11358 if (!OC)
11359 return Error(OpcodeLoc, "opcode value must be a constant");
11360 const int64_t Opcode = OC->getValue();
11361 if (Opcode & ~0xff)
11362 return Error(OpcodeLoc, "invalid opcode");
11363 Opcodes.push_back(uint8_t(Opcode));
11364 return false;
11367 // Must have at least 1 element
11368 SMLoc OpcodeLoc = getLexer().getLoc();
11369 if (parseOptionalToken(AsmToken::EndOfStatement))
11370 return Error(OpcodeLoc, "expected opcode expression");
11371 if (parseMany(parseOne))
11372 return true;
11374 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11375 return false;
11378 /// parseDirectiveTLSDescSeq
11379 /// ::= .tlsdescseq tls-variable
11380 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11381 MCAsmParser &Parser = getParser();
11383 if (getLexer().isNot(AsmToken::Identifier))
11384 return TokError("expected variable after '.tlsdescseq' directive");
11386 const MCSymbolRefExpr *SRE =
11387 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11388 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11389 Lex();
11391 if (parseToken(AsmToken::EndOfStatement,
11392 "unexpected token in '.tlsdescseq' directive"))
11393 return true;
11395 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11396 return false;
11399 /// parseDirectiveMovSP
11400 /// ::= .movsp reg [, #offset]
11401 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11402 MCAsmParser &Parser = getParser();
11403 if (!UC.hasFnStart())
11404 return Error(L, ".fnstart must precede .movsp directives");
11405 if (UC.getFPReg() != ARM::SP)
11406 return Error(L, "unexpected .movsp directive");
11408 SMLoc SPRegLoc = Parser.getTok().getLoc();
11409 int SPReg = tryParseRegister();
11410 if (SPReg == -1)
11411 return Error(SPRegLoc, "register expected");
11412 if (SPReg == ARM::SP || SPReg == ARM::PC)
11413 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11415 int64_t Offset = 0;
11416 if (Parser.parseOptionalToken(AsmToken::Comma)) {
11417 if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11418 return true;
11420 const MCExpr *OffsetExpr;
11421 SMLoc OffsetLoc = Parser.getTok().getLoc();
11423 if (Parser.parseExpression(OffsetExpr))
11424 return Error(OffsetLoc, "malformed offset expression");
11426 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11427 if (!CE)
11428 return Error(OffsetLoc, "offset must be an immediate constant");
11430 Offset = CE->getValue();
11433 if (parseToken(AsmToken::EndOfStatement,
11434 "unexpected token in '.movsp' directive"))
11435 return true;
11437 getTargetStreamer().emitMovSP(SPReg, Offset);
11438 UC.saveFPReg(SPReg);
11440 return false;
11443 /// parseDirectiveObjectArch
11444 /// ::= .object_arch name
11445 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11446 MCAsmParser &Parser = getParser();
11447 if (getLexer().isNot(AsmToken::Identifier))
11448 return Error(getLexer().getLoc(), "unexpected token");
11450 StringRef Arch = Parser.getTok().getString();
11451 SMLoc ArchLoc = Parser.getTok().getLoc();
11452 Lex();
11454 ARM::ArchKind ID = ARM::parseArch(Arch);
11456 if (ID == ARM::ArchKind::INVALID)
11457 return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11458 if (parseToken(AsmToken::EndOfStatement))
11459 return true;
11461 getTargetStreamer().emitObjectArch(ID);
11462 return false;
11465 /// parseDirectiveAlign
11466 /// ::= .align
11467 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11468 // NOTE: if this is not the end of the statement, fall back to the target
11469 // agnostic handling for this directive which will correctly handle this.
11470 if (parseOptionalToken(AsmToken::EndOfStatement)) {
11471 // '.align' is target specifically handled to mean 2**2 byte alignment.
11472 const MCSection *Section = getStreamer().getCurrentSectionOnly();
11473 assert(Section && "must have section to emit alignment");
11474 if (Section->UseCodeAlign())
11475 getStreamer().EmitCodeAlignment(4, 0);
11476 else
11477 getStreamer().EmitValueToAlignment(4, 0, 1, 0);
11478 return false;
11480 return true;
11483 /// parseDirectiveThumbSet
11484 /// ::= .thumb_set name, value
11485 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
11486 MCAsmParser &Parser = getParser();
11488 StringRef Name;
11489 if (check(Parser.parseIdentifier(Name),
11490 "expected identifier after '.thumb_set'") ||
11491 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
11492 return true;
11494 MCSymbol *Sym;
11495 const MCExpr *Value;
11496 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
11497 Parser, Sym, Value))
11498 return true;
11500 getTargetStreamer().emitThumbSet(Sym, Value);
11501 return false;
11504 /// Force static initialization.
11505 extern "C" void LLVMInitializeARMAsmParser() {
11506 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
11507 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
11508 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
11509 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
11512 #define GET_REGISTER_MATCHER
11513 #define GET_SUBTARGET_FEATURE_NAME
11514 #define GET_MATCHER_IMPLEMENTATION
11515 #define GET_MNEMONIC_SPELL_CHECKER
11516 #include "ARMGenAsmMatcher.inc"
11518 // Some diagnostics need to vary with subtarget features, so they are handled
11519 // here. For example, the DPR class has either 16 or 32 registers, depending
11520 // on the FPU available.
11521 const char *
11522 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
11523 switch (MatchError) {
11524 // rGPR contains sp starting with ARMv8.
11525 case Match_rGPR:
11526 return hasV8Ops() ? "operand must be a register in range [r0, r14]"
11527 : "operand must be a register in range [r0, r12] or r14";
11528 // DPR contains 16 registers for some FPUs, and 32 for others.
11529 case Match_DPR:
11530 return hasD32() ? "operand must be a register in range [d0, d31]"
11531 : "operand must be a register in range [d0, d15]";
11532 case Match_DPR_RegList:
11533 return hasD32() ? "operand must be a list of registers in range [d0, d31]"
11534 : "operand must be a list of registers in range [d0, d15]";
11536 // For all other diags, use the static string from tablegen.
11537 default:
11538 return getMatchKindDiag(MatchError);
11542 // Process the list of near-misses, throwing away ones we don't want to report
11543 // to the user, and converting the rest to a source location and string that
11544 // should be reported.
11545 void
11546 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
11547 SmallVectorImpl<NearMissMessage> &NearMissesOut,
11548 SMLoc IDLoc, OperandVector &Operands) {
11549 // TODO: If operand didn't match, sub in a dummy one and run target
11550 // predicate, so that we can avoid reporting near-misses that are invalid?
11551 // TODO: Many operand types dont have SuperClasses set, so we report
11552 // redundant ones.
11553 // TODO: Some operands are superclasses of registers (e.g.
11554 // MCK_RegShiftedImm), we don't have any way to represent that currently.
11555 // TODO: This is not all ARM-specific, can some of it be factored out?
11557 // Record some information about near-misses that we have already seen, so
11558 // that we can avoid reporting redundant ones. For example, if there are
11559 // variants of an instruction that take 8- and 16-bit immediates, we want
11560 // to only report the widest one.
11561 std::multimap<unsigned, unsigned> OperandMissesSeen;
11562 SmallSet<FeatureBitset, 4> FeatureMissesSeen;
11563 bool ReportedTooFewOperands = false;
11565 // Process the near-misses in reverse order, so that we see more general ones
11566 // first, and so can avoid emitting more specific ones.
11567 for (NearMissInfo &I : reverse(NearMissesIn)) {
11568 switch (I.getKind()) {
11569 case NearMissInfo::NearMissOperand: {
11570 SMLoc OperandLoc =
11571 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
11572 const char *OperandDiag =
11573 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
11575 // If we have already emitted a message for a superclass, don't also report
11576 // the sub-class. We consider all operand classes that we don't have a
11577 // specialised diagnostic for to be equal for the propose of this check,
11578 // so that we don't report the generic error multiple times on the same
11579 // operand.
11580 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
11581 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
11582 if (std::any_of(PrevReports.first, PrevReports.second,
11583 [DupCheckMatchClass](
11584 const std::pair<unsigned, unsigned> Pair) {
11585 if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
11586 return Pair.second == DupCheckMatchClass;
11587 else
11588 return isSubclass((MatchClassKind)DupCheckMatchClass,
11589 (MatchClassKind)Pair.second);
11591 break;
11592 OperandMissesSeen.insert(
11593 std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
11595 NearMissMessage Message;
11596 Message.Loc = OperandLoc;
11597 if (OperandDiag) {
11598 Message.Message = OperandDiag;
11599 } else if (I.getOperandClass() == InvalidMatchClass) {
11600 Message.Message = "too many operands for instruction";
11601 } else {
11602 Message.Message = "invalid operand for instruction";
11603 LLVM_DEBUG(
11604 dbgs() << "Missing diagnostic string for operand class "
11605 << getMatchClassName((MatchClassKind)I.getOperandClass())
11606 << I.getOperandClass() << ", error " << I.getOperandError()
11607 << ", opcode " << MII.getName(I.getOpcode()) << "\n");
11609 NearMissesOut.emplace_back(Message);
11610 break;
11612 case NearMissInfo::NearMissFeature: {
11613 const FeatureBitset &MissingFeatures = I.getFeatures();
11614 // Don't report the same set of features twice.
11615 if (FeatureMissesSeen.count(MissingFeatures))
11616 break;
11617 FeatureMissesSeen.insert(MissingFeatures);
11619 // Special case: don't report a feature set which includes arm-mode for
11620 // targets that don't have ARM mode.
11621 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
11622 break;
11623 // Don't report any near-misses that both require switching instruction
11624 // set, and adding other subtarget features.
11625 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
11626 MissingFeatures.count() > 1)
11627 break;
11628 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
11629 MissingFeatures.count() > 1)
11630 break;
11631 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
11632 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
11633 Feature_IsThumbBit})).any())
11634 break;
11635 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
11636 break;
11638 NearMissMessage Message;
11639 Message.Loc = IDLoc;
11640 raw_svector_ostream OS(Message.Message);
11642 OS << "instruction requires:";
11643 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
11644 if (MissingFeatures.test(i))
11645 OS << ' ' << getSubtargetFeatureName(i);
11647 NearMissesOut.emplace_back(Message);
11649 break;
11651 case NearMissInfo::NearMissPredicate: {
11652 NearMissMessage Message;
11653 Message.Loc = IDLoc;
11654 switch (I.getPredicateError()) {
11655 case Match_RequiresNotITBlock:
11656 Message.Message = "flag setting instruction only valid outside IT block";
11657 break;
11658 case Match_RequiresITBlock:
11659 Message.Message = "instruction only valid inside IT block";
11660 break;
11661 case Match_RequiresV6:
11662 Message.Message = "instruction variant requires ARMv6 or later";
11663 break;
11664 case Match_RequiresThumb2:
11665 Message.Message = "instruction variant requires Thumb2";
11666 break;
11667 case Match_RequiresV8:
11668 Message.Message = "instruction variant requires ARMv8 or later";
11669 break;
11670 case Match_RequiresFlagSetting:
11671 Message.Message = "no flag-preserving variant of this instruction available";
11672 break;
11673 case Match_InvalidOperand:
11674 Message.Message = "invalid operand for instruction";
11675 break;
11676 default:
11677 llvm_unreachable("Unhandled target predicate error");
11678 break;
11680 NearMissesOut.emplace_back(Message);
11681 break;
11683 case NearMissInfo::NearMissTooFewOperands: {
11684 if (!ReportedTooFewOperands) {
11685 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
11686 NearMissesOut.emplace_back(NearMissMessage{
11687 EndLoc, StringRef("too few operands for instruction")});
11688 ReportedTooFewOperands = true;
11690 break;
11692 case NearMissInfo::NoNearMiss:
11693 // This should never leave the matcher.
11694 llvm_unreachable("not a near-miss");
11695 break;
11700 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
11701 SMLoc IDLoc, OperandVector &Operands) {
11702 SmallVector<NearMissMessage, 4> Messages;
11703 FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
11705 if (Messages.size() == 0) {
11706 // No near-misses were found, so the best we can do is "invalid
11707 // instruction".
11708 Error(IDLoc, "invalid instruction");
11709 } else if (Messages.size() == 1) {
11710 // One near miss was found, report it as the sole error.
11711 Error(Messages[0].Loc, Messages[0].Message);
11712 } else {
11713 // More than one near miss, so report a generic "invalid instruction"
11714 // error, followed by notes for each of the near-misses.
11715 Error(IDLoc, "invalid instruction, any one of the following would fix this:");
11716 for (auto &M : Messages) {
11717 Note(M.Loc, M.Message);
11722 /// parseDirectiveArchExtension
11723 /// ::= .arch_extension [no]feature
11724 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
11725 // FIXME: This structure should be moved inside ARMTargetParser
11726 // when we start to table-generate them, and we can use the ARM
11727 // flags below, that were generated by table-gen.
11728 static const struct {
11729 const unsigned Kind;
11730 const FeatureBitset ArchCheck;
11731 const FeatureBitset Features;
11732 } Extensions[] = {
11733 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} },
11734 { ARM::AEK_CRYPTO, {Feature_HasV8Bit},
11735 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
11736 { ARM::AEK_FP, {Feature_HasV8Bit},
11737 {ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} },
11738 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
11739 {Feature_HasV7Bit, Feature_IsNotMClassBit},
11740 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
11741 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit},
11742 {ARM::FeatureMP} },
11743 { ARM::AEK_SIMD, {Feature_HasV8Bit},
11744 {ARM::FeatureNEON, ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} },
11745 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} },
11746 // FIXME: Only available in A-class, isel not predicated
11747 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} },
11748 { ARM::AEK_FP16, {Feature_HasV8_2aBit},
11749 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
11750 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} },
11751 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} },
11752 // FIXME: Unsupported extensions.
11753 { ARM::AEK_OS, {}, {} },
11754 { ARM::AEK_IWMMXT, {}, {} },
11755 { ARM::AEK_IWMMXT2, {}, {} },
11756 { ARM::AEK_MAVERICK, {}, {} },
11757 { ARM::AEK_XSCALE, {}, {} },
11760 MCAsmParser &Parser = getParser();
11762 if (getLexer().isNot(AsmToken::Identifier))
11763 return Error(getLexer().getLoc(), "expected architecture extension name");
11765 StringRef Name = Parser.getTok().getString();
11766 SMLoc ExtLoc = Parser.getTok().getLoc();
11767 Lex();
11769 if (parseToken(AsmToken::EndOfStatement,
11770 "unexpected token in '.arch_extension' directive"))
11771 return true;
11773 bool EnableFeature = true;
11774 if (Name.startswith_lower("no")) {
11775 EnableFeature = false;
11776 Name = Name.substr(2);
11778 unsigned FeatureKind = ARM::parseArchExt(Name);
11779 if (FeatureKind == ARM::AEK_INVALID)
11780 return Error(ExtLoc, "unknown architectural extension: " + Name);
11782 for (const auto &Extension : Extensions) {
11783 if (Extension.Kind != FeatureKind)
11784 continue;
11786 if (Extension.Features.none())
11787 return Error(ExtLoc, "unsupported architectural extension: " + Name);
11789 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
11790 return Error(ExtLoc, "architectural extension '" + Name +
11791 "' is not "
11792 "allowed for the current base architecture");
11794 MCSubtargetInfo &STI = copySTI();
11795 if (EnableFeature) {
11796 STI.SetFeatureBitsTransitively(Extension.Features);
11797 } else {
11798 STI.ClearFeatureBitsTransitively(Extension.Features);
11800 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
11801 setAvailableFeatures(Features);
11802 return false;
11805 return Error(ExtLoc, "unknown architectural extension: " + Name);
11808 // Define this matcher function after the auto-generated include so we
11809 // have the match class enum definitions.
11810 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
11811 unsigned Kind) {
11812 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
11813 // If the kind is a token for a literal immediate, check if our asm
11814 // operand matches. This is for InstAliases which have a fixed-value
11815 // immediate in the syntax.
11816 switch (Kind) {
11817 default: break;
11818 case MCK__35_0:
11819 if (Op.isImm())
11820 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11821 if (CE->getValue() == 0)
11822 return Match_Success;
11823 break;
11824 case MCK__35_8:
11825 if (Op.isImm())
11826 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11827 if (CE->getValue() == 8)
11828 return Match_Success;
11829 break;
11830 case MCK__35_16:
11831 if (Op.isImm())
11832 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
11833 if (CE->getValue() == 16)
11834 return Match_Success;
11835 break;
11836 case MCK_ModImm:
11837 if (Op.isImm()) {
11838 const MCExpr *SOExpr = Op.getImm();
11839 int64_t Value;
11840 if (!SOExpr->evaluateAsAbsolute(Value))
11841 return Match_Success;
11842 assert((Value >= std::numeric_limits<int32_t>::min() &&
11843 Value <= std::numeric_limits<uint32_t>::max()) &&
11844 "expression value must be representable in 32 bits");
11846 break;
11847 case MCK_rGPR:
11848 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
11849 return Match_Success;
11850 return Match_rGPR;
11851 case MCK_GPRPair:
11852 if (Op.isReg() &&
11853 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
11854 return Match_Success;
11855 break;
11857 return Match_InvalidOperand;
11860 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
11861 StringRef ExtraToken) {
11862 if (!hasMVE())
11863 return false;
11865 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
11866 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
11867 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
11868 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
11869 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
11870 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
11871 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
11872 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
11873 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
11874 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
11875 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
11876 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
11877 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
11878 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
11879 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
11880 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
11881 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
11882 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
11883 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
11884 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
11885 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
11886 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
11887 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
11888 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
11889 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
11890 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
11891 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
11892 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
11893 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
11894 Mnemonic.startswith("vqabs") ||
11895 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
11896 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
11897 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
11898 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
11899 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
11900 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
11901 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
11902 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
11903 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
11904 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
11905 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
11906 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
11907 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
11908 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
11909 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
11910 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
11911 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
11912 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
11913 Mnemonic.startswith("vldrb") ||
11914 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
11915 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
11916 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
11917 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
11918 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
11919 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
11920 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
11921 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
11922 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
11923 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
11924 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
11925 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
11926 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
11927 Mnemonic.startswith("vcvt") ||
11928 (Mnemonic.startswith("vmov") &&
11929 !(ExtraToken == ".f16" || ExtraToken == ".32" ||
11930 ExtraToken == ".16" || ExtraToken == ".8"));