[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / ARM / Thumb2SizeReduction.cpp
blobc5a62aa3399073951e5a7de8b95314c76256b52b
1 //===-- Thumb2SizeReduction.cpp - Thumb2 code size reduction pass -*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ARM.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "ARMSubtarget.h"
12 #include "MCTargetDesc/ARMBaseInfo.h"
13 #include "Thumb2InstrInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <functional>
41 #include <iterator>
42 #include <utility>
44 using namespace llvm;
46 #define DEBUG_TYPE "t2-reduce-size"
47 #define THUMB2_SIZE_REDUCE_NAME "Thumb2 instruction size reduce pass"
49 STATISTIC(NumNarrows, "Number of 32-bit instrs reduced to 16-bit ones");
50 STATISTIC(Num2Addrs, "Number of 32-bit instrs reduced to 2addr 16-bit ones");
51 STATISTIC(NumLdSts, "Number of 32-bit load / store reduced to 16-bit ones");
53 static cl::opt<int> ReduceLimit("t2-reduce-limit",
54 cl::init(-1), cl::Hidden);
55 static cl::opt<int> ReduceLimit2Addr("t2-reduce-limit2",
56 cl::init(-1), cl::Hidden);
57 static cl::opt<int> ReduceLimitLdSt("t2-reduce-limit3",
58 cl::init(-1), cl::Hidden);
60 namespace {
62 /// ReduceTable - A static table with information on mapping from wide
63 /// opcodes to narrow
64 struct ReduceEntry {
65 uint16_t WideOpc; // Wide opcode
66 uint16_t NarrowOpc1; // Narrow opcode to transform to
67 uint16_t NarrowOpc2; // Narrow opcode when it's two-address
68 uint8_t Imm1Limit; // Limit of immediate field (bits)
69 uint8_t Imm2Limit; // Limit of immediate field when it's two-address
70 unsigned LowRegs1 : 1; // Only possible if low-registers are used
71 unsigned LowRegs2 : 1; // Only possible if low-registers are used (2addr)
72 unsigned PredCC1 : 2; // 0 - If predicated, cc is on and vice versa.
73 // 1 - No cc field.
74 // 2 - Always set CPSR.
75 unsigned PredCC2 : 2;
76 unsigned PartFlag : 1; // 16-bit instruction does partial flag update
77 unsigned Special : 1; // Needs to be dealt with specially
78 unsigned AvoidMovs: 1; // Avoid movs with shifter operand (for Swift)
81 static const ReduceEntry ReduceTable[] = {
82 // Wide, Narrow1, Narrow2, imm1,imm2, lo1, lo2, P/C,PF,S,AM
83 { ARM::t2ADCrr, 0, ARM::tADC, 0, 0, 0, 1, 0,0, 0,0,0 },
84 { ARM::t2ADDri, ARM::tADDi3, ARM::tADDi8, 3, 8, 1, 1, 0,0, 0,1,0 },
85 { ARM::t2ADDrr, ARM::tADDrr, ARM::tADDhirr, 0, 0, 1, 0, 0,1, 0,0,0 },
86 { ARM::t2ADDSri,ARM::tADDi3, ARM::tADDi8, 3, 8, 1, 1, 2,2, 0,1,0 },
87 { ARM::t2ADDSrr,ARM::tADDrr, 0, 0, 0, 1, 0, 2,0, 0,1,0 },
88 { ARM::t2ANDrr, 0, ARM::tAND, 0, 0, 0, 1, 0,0, 1,0,0 },
89 { ARM::t2ASRri, ARM::tASRri, 0, 5, 0, 1, 0, 0,0, 1,0,1 },
90 { ARM::t2ASRrr, 0, ARM::tASRrr, 0, 0, 0, 1, 0,0, 1,0,1 },
91 { ARM::t2BICrr, 0, ARM::tBIC, 0, 0, 0, 1, 0,0, 1,0,0 },
92 //FIXME: Disable CMN, as CCodes are backwards from compare expectations
93 //{ ARM::t2CMNrr, ARM::tCMN, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
94 { ARM::t2CMNzrr, ARM::tCMNz, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
95 { ARM::t2CMPri, ARM::tCMPi8, 0, 8, 0, 1, 0, 2,0, 0,0,0 },
96 { ARM::t2CMPrr, ARM::tCMPhir, 0, 0, 0, 0, 0, 2,0, 0,1,0 },
97 { ARM::t2EORrr, 0, ARM::tEOR, 0, 0, 0, 1, 0,0, 1,0,0 },
98 // FIXME: adr.n immediate offset must be multiple of 4.
99 //{ ARM::t2LEApcrelJT,ARM::tLEApcrelJT, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
100 { ARM::t2LSLri, ARM::tLSLri, 0, 5, 0, 1, 0, 0,0, 1,0,1 },
101 { ARM::t2LSLrr, 0, ARM::tLSLrr, 0, 0, 0, 1, 0,0, 1,0,1 },
102 { ARM::t2LSRri, ARM::tLSRri, 0, 5, 0, 1, 0, 0,0, 1,0,1 },
103 { ARM::t2LSRrr, 0, ARM::tLSRrr, 0, 0, 0, 1, 0,0, 1,0,1 },
104 { ARM::t2MOVi, ARM::tMOVi8, 0, 8, 0, 1, 0, 0,0, 1,0,0 },
105 { ARM::t2MOVi16,ARM::tMOVi8, 0, 8, 0, 1, 0, 0,0, 1,1,0 },
106 // FIXME: Do we need the 16-bit 'S' variant?
107 { ARM::t2MOVr,ARM::tMOVr, 0, 0, 0, 0, 0, 1,0, 0,0,0 },
108 { ARM::t2MUL, 0, ARM::tMUL, 0, 0, 0, 1, 0,0, 1,0,0 },
109 { ARM::t2MVNr, ARM::tMVN, 0, 0, 0, 1, 0, 0,0, 0,0,0 },
110 { ARM::t2ORRrr, 0, ARM::tORR, 0, 0, 0, 1, 0,0, 1,0,0 },
111 { ARM::t2REV, ARM::tREV, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
112 { ARM::t2REV16, ARM::tREV16, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
113 { ARM::t2REVSH, ARM::tREVSH, 0, 0, 0, 1, 0, 1,0, 0,0,0 },
114 { ARM::t2RORrr, 0, ARM::tROR, 0, 0, 0, 1, 0,0, 1,0,0 },
115 { ARM::t2RSBri, ARM::tRSB, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
116 { ARM::t2RSBSri,ARM::tRSB, 0, 0, 0, 1, 0, 2,0, 0,1,0 },
117 { ARM::t2SBCrr, 0, ARM::tSBC, 0, 0, 0, 1, 0,0, 0,0,0 },
118 { ARM::t2SUBri, ARM::tSUBi3, ARM::tSUBi8, 3, 8, 1, 1, 0,0, 0,0,0 },
119 { ARM::t2SUBrr, ARM::tSUBrr, 0, 0, 0, 1, 0, 0,0, 0,0,0 },
120 { ARM::t2SUBSri,ARM::tSUBi3, ARM::tSUBi8, 3, 8, 1, 1, 2,2, 0,0,0 },
121 { ARM::t2SUBSrr,ARM::tSUBrr, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
122 { ARM::t2SXTB, ARM::tSXTB, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
123 { ARM::t2SXTH, ARM::tSXTH, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
124 { ARM::t2TEQrr, ARM::tEOR, 0, 0, 0, 1, 0, 2,0, 0,1,0 },
125 { ARM::t2TSTrr, ARM::tTST, 0, 0, 0, 1, 0, 2,0, 0,0,0 },
126 { ARM::t2UXTB, ARM::tUXTB, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
127 { ARM::t2UXTH, ARM::tUXTH, 0, 0, 0, 1, 0, 1,0, 0,1,0 },
129 // FIXME: Clean this up after splitting each Thumb load / store opcode
130 // into multiple ones.
131 { ARM::t2LDRi12,ARM::tLDRi, ARM::tLDRspi, 5, 8, 1, 0, 0,0, 0,1,0 },
132 { ARM::t2LDRs, ARM::tLDRr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
133 { ARM::t2LDRBi12,ARM::tLDRBi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
134 { ARM::t2LDRBs, ARM::tLDRBr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
135 { ARM::t2LDRHi12,ARM::tLDRHi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
136 { ARM::t2LDRHs, ARM::tLDRHr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
137 { ARM::t2LDRSBs,ARM::tLDRSB, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
138 { ARM::t2LDRSHs,ARM::tLDRSH, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
139 { ARM::t2LDR_POST,ARM::tLDMIA_UPD,0, 0, 0, 1, 0, 0,0, 0,1,0 },
140 { ARM::t2STRi12,ARM::tSTRi, ARM::tSTRspi, 5, 8, 1, 0, 0,0, 0,1,0 },
141 { ARM::t2STRs, ARM::tSTRr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
142 { ARM::t2STRBi12,ARM::tSTRBi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
143 { ARM::t2STRBs, ARM::tSTRBr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
144 { ARM::t2STRHi12,ARM::tSTRHi, 0, 5, 0, 1, 0, 0,0, 0,1,0 },
145 { ARM::t2STRHs, ARM::tSTRHr, 0, 0, 0, 1, 0, 0,0, 0,1,0 },
146 { ARM::t2STR_POST,ARM::tSTMIA_UPD,0, 0, 0, 1, 0, 0,0, 0,1,0 },
148 { ARM::t2LDMIA, ARM::tLDMIA, 0, 0, 0, 1, 1, 1,1, 0,1,0 },
149 { ARM::t2LDMIA_RET,0, ARM::tPOP_RET, 0, 0, 1, 1, 1,1, 0,1,0 },
150 { ARM::t2LDMIA_UPD,ARM::tLDMIA_UPD,ARM::tPOP,0, 0, 1, 1, 1,1, 0,1,0 },
151 // ARM::t2STMIA (with no basereg writeback) has no Thumb1 equivalent.
152 // tSTMIA_UPD is a change in semantics which can only be used if the base
153 // register is killed. This difference is correctly handled elsewhere.
154 { ARM::t2STMIA, ARM::tSTMIA_UPD, 0, 0, 0, 1, 1, 1,1, 0,1,0 },
155 { ARM::t2STMIA_UPD,ARM::tSTMIA_UPD, 0, 0, 0, 1, 1, 1,1, 0,1,0 },
156 { ARM::t2STMDB_UPD, 0, ARM::tPUSH, 0, 0, 1, 1, 1,1, 0,1,0 }
159 class Thumb2SizeReduce : public MachineFunctionPass {
160 public:
161 static char ID;
163 const Thumb2InstrInfo *TII;
164 const ARMSubtarget *STI;
166 Thumb2SizeReduce(std::function<bool(const Function &)> Ftor = nullptr);
168 bool runOnMachineFunction(MachineFunction &MF) override;
170 MachineFunctionProperties getRequiredProperties() const override {
171 return MachineFunctionProperties().set(
172 MachineFunctionProperties::Property::NoVRegs);
175 StringRef getPassName() const override {
176 return THUMB2_SIZE_REDUCE_NAME;
179 private:
180 /// ReduceOpcodeMap - Maps wide opcode to index of entry in ReduceTable.
181 DenseMap<unsigned, unsigned> ReduceOpcodeMap;
183 bool canAddPseudoFlagDep(MachineInstr *Use, bool IsSelfLoop);
185 bool VerifyPredAndCC(MachineInstr *MI, const ReduceEntry &Entry,
186 bool is2Addr, ARMCC::CondCodes Pred,
187 bool LiveCPSR, bool &HasCC, bool &CCDead);
189 bool ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
190 const ReduceEntry &Entry);
192 bool ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
193 const ReduceEntry &Entry, bool LiveCPSR, bool IsSelfLoop);
195 /// ReduceTo2Addr - Reduce a 32-bit instruction to a 16-bit two-address
196 /// instruction.
197 bool ReduceTo2Addr(MachineBasicBlock &MBB, MachineInstr *MI,
198 const ReduceEntry &Entry, bool LiveCPSR,
199 bool IsSelfLoop);
201 /// ReduceToNarrow - Reduce a 32-bit instruction to a 16-bit
202 /// non-two-address instruction.
203 bool ReduceToNarrow(MachineBasicBlock &MBB, MachineInstr *MI,
204 const ReduceEntry &Entry, bool LiveCPSR,
205 bool IsSelfLoop);
207 /// ReduceMI - Attempt to reduce MI, return true on success.
208 bool ReduceMI(MachineBasicBlock &MBB, MachineInstr *MI,
209 bool LiveCPSR, bool IsSelfLoop);
211 /// ReduceMBB - Reduce width of instructions in the specified basic block.
212 bool ReduceMBB(MachineBasicBlock &MBB);
214 bool OptimizeSize;
215 bool MinimizeSize;
217 // Last instruction to define CPSR in the current block.
218 MachineInstr *CPSRDef;
219 // Was CPSR last defined by a high latency instruction?
220 // When CPSRDef is null, this refers to CPSR defs in predecessors.
221 bool HighLatencyCPSR;
223 struct MBBInfo {
224 // The flags leaving this block have high latency.
225 bool HighLatencyCPSR = false;
226 // Has this block been visited yet?
227 bool Visited = false;
229 MBBInfo() = default;
232 SmallVector<MBBInfo, 8> BlockInfo;
234 std::function<bool(const Function &)> PredicateFtor;
237 char Thumb2SizeReduce::ID = 0;
239 } // end anonymous namespace
241 INITIALIZE_PASS(Thumb2SizeReduce, DEBUG_TYPE, THUMB2_SIZE_REDUCE_NAME, false,
242 false)
244 Thumb2SizeReduce::Thumb2SizeReduce(std::function<bool(const Function &)> Ftor)
245 : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) {
246 OptimizeSize = MinimizeSize = false;
247 for (unsigned i = 0, e = array_lengthof(ReduceTable); i != e; ++i) {
248 unsigned FromOpc = ReduceTable[i].WideOpc;
249 if (!ReduceOpcodeMap.insert(std::make_pair(FromOpc, i)).second)
250 llvm_unreachable("Duplicated entries?");
254 static bool HasImplicitCPSRDef(const MCInstrDesc &MCID) {
255 for (const MCPhysReg *Regs = MCID.getImplicitDefs(); *Regs; ++Regs)
256 if (*Regs == ARM::CPSR)
257 return true;
258 return false;
261 // Check for a likely high-latency flag def.
262 static bool isHighLatencyCPSR(MachineInstr *Def) {
263 switch(Def->getOpcode()) {
264 case ARM::FMSTAT:
265 case ARM::tMUL:
266 return true;
268 return false;
271 /// canAddPseudoFlagDep - For A9 (and other out-of-order) implementations,
272 /// the 's' 16-bit instruction partially update CPSR. Abort the
273 /// transformation to avoid adding false dependency on last CPSR setting
274 /// instruction which hurts the ability for out-of-order execution engine
275 /// to do register renaming magic.
276 /// This function checks if there is a read-of-write dependency between the
277 /// last instruction that defines the CPSR and the current instruction. If there
278 /// is, then there is no harm done since the instruction cannot be retired
279 /// before the CPSR setting instruction anyway.
280 /// Note, we are not doing full dependency analysis here for the sake of compile
281 /// time. We're not looking for cases like:
282 /// r0 = muls ...
283 /// r1 = add.w r0, ...
284 /// ...
285 /// = mul.w r1
286 /// In this case it would have been ok to narrow the mul.w to muls since there
287 /// are indirect RAW dependency between the muls and the mul.w
288 bool
289 Thumb2SizeReduce::canAddPseudoFlagDep(MachineInstr *Use, bool FirstInSelfLoop) {
290 // Disable the check for -Oz (aka OptimizeForSizeHarder).
291 if (MinimizeSize || !STI->avoidCPSRPartialUpdate())
292 return false;
294 if (!CPSRDef)
295 // If this BB loops back to itself, conservatively avoid narrowing the
296 // first instruction that does partial flag update.
297 return HighLatencyCPSR || FirstInSelfLoop;
299 SmallSet<unsigned, 2> Defs;
300 for (const MachineOperand &MO : CPSRDef->operands()) {
301 if (!MO.isReg() || MO.isUndef() || MO.isUse())
302 continue;
303 Register Reg = MO.getReg();
304 if (Reg == 0 || Reg == ARM::CPSR)
305 continue;
306 Defs.insert(Reg);
309 for (const MachineOperand &MO : Use->operands()) {
310 if (!MO.isReg() || MO.isUndef() || MO.isDef())
311 continue;
312 Register Reg = MO.getReg();
313 if (Defs.count(Reg))
314 return false;
317 // If the current CPSR has high latency, try to avoid the false dependency.
318 if (HighLatencyCPSR)
319 return true;
321 // tMOVi8 usually doesn't start long dependency chains, and there are a lot
322 // of them, so always shrink them when CPSR doesn't have high latency.
323 if (Use->getOpcode() == ARM::t2MOVi ||
324 Use->getOpcode() == ARM::t2MOVi16)
325 return false;
327 // No read-after-write dependency. The narrowing will add false dependency.
328 return true;
331 bool
332 Thumb2SizeReduce::VerifyPredAndCC(MachineInstr *MI, const ReduceEntry &Entry,
333 bool is2Addr, ARMCC::CondCodes Pred,
334 bool LiveCPSR, bool &HasCC, bool &CCDead) {
335 if ((is2Addr && Entry.PredCC2 == 0) ||
336 (!is2Addr && Entry.PredCC1 == 0)) {
337 if (Pred == ARMCC::AL) {
338 // Not predicated, must set CPSR.
339 if (!HasCC) {
340 // Original instruction was not setting CPSR, but CPSR is not
341 // currently live anyway. It's ok to set it. The CPSR def is
342 // dead though.
343 if (!LiveCPSR) {
344 HasCC = true;
345 CCDead = true;
346 return true;
348 return false;
350 } else {
351 // Predicated, must not set CPSR.
352 if (HasCC)
353 return false;
355 } else if ((is2Addr && Entry.PredCC2 == 2) ||
356 (!is2Addr && Entry.PredCC1 == 2)) {
357 /// Old opcode has an optional def of CPSR.
358 if (HasCC)
359 return true;
360 // If old opcode does not implicitly define CPSR, then it's not ok since
361 // these new opcodes' CPSR def is not meant to be thrown away. e.g. CMP.
362 if (!HasImplicitCPSRDef(MI->getDesc()))
363 return false;
364 HasCC = true;
365 } else {
366 // 16-bit instruction does not set CPSR.
367 if (HasCC)
368 return false;
371 return true;
374 static bool VerifyLowRegs(MachineInstr *MI) {
375 unsigned Opc = MI->getOpcode();
376 bool isPCOk = (Opc == ARM::t2LDMIA_RET || Opc == ARM::t2LDMIA_UPD);
377 bool isLROk = (Opc == ARM::t2STMDB_UPD);
378 bool isSPOk = isPCOk || isLROk;
379 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
380 const MachineOperand &MO = MI->getOperand(i);
381 if (!MO.isReg() || MO.isImplicit())
382 continue;
383 Register Reg = MO.getReg();
384 if (Reg == 0 || Reg == ARM::CPSR)
385 continue;
386 if (isPCOk && Reg == ARM::PC)
387 continue;
388 if (isLROk && Reg == ARM::LR)
389 continue;
390 if (Reg == ARM::SP) {
391 if (isSPOk)
392 continue;
393 if (i == 1 && (Opc == ARM::t2LDRi12 || Opc == ARM::t2STRi12))
394 // Special case for these ldr / str with sp as base register.
395 continue;
397 if (!isARMLowRegister(Reg))
398 return false;
400 return true;
403 bool
404 Thumb2SizeReduce::ReduceLoadStore(MachineBasicBlock &MBB, MachineInstr *MI,
405 const ReduceEntry &Entry) {
406 if (ReduceLimitLdSt != -1 && ((int)NumLdSts >= ReduceLimitLdSt))
407 return false;
409 unsigned Scale = 1;
410 bool HasImmOffset = false;
411 bool HasShift = false;
412 bool HasOffReg = true;
413 bool isLdStMul = false;
414 unsigned Opc = Entry.NarrowOpc1;
415 unsigned OpNum = 3; // First 'rest' of operands.
416 uint8_t ImmLimit = Entry.Imm1Limit;
418 switch (Entry.WideOpc) {
419 default:
420 llvm_unreachable("Unexpected Thumb2 load / store opcode!");
421 case ARM::t2LDRi12:
422 case ARM::t2STRi12:
423 if (MI->getOperand(1).getReg() == ARM::SP) {
424 Opc = Entry.NarrowOpc2;
425 ImmLimit = Entry.Imm2Limit;
428 Scale = 4;
429 HasImmOffset = true;
430 HasOffReg = false;
431 break;
432 case ARM::t2LDRBi12:
433 case ARM::t2STRBi12:
434 HasImmOffset = true;
435 HasOffReg = false;
436 break;
437 case ARM::t2LDRHi12:
438 case ARM::t2STRHi12:
439 Scale = 2;
440 HasImmOffset = true;
441 HasOffReg = false;
442 break;
443 case ARM::t2LDRs:
444 case ARM::t2LDRBs:
445 case ARM::t2LDRHs:
446 case ARM::t2LDRSBs:
447 case ARM::t2LDRSHs:
448 case ARM::t2STRs:
449 case ARM::t2STRBs:
450 case ARM::t2STRHs:
451 HasShift = true;
452 OpNum = 4;
453 break;
454 case ARM::t2LDR_POST:
455 case ARM::t2STR_POST: {
456 if (!MinimizeSize)
457 return false;
459 if (!MI->hasOneMemOperand() ||
460 (*MI->memoperands_begin())->getAlignment() < 4)
461 return false;
463 // We're creating a completely different type of load/store - LDM from LDR.
464 // For this reason we can't reuse the logic at the end of this function; we
465 // have to implement the MI building here.
466 bool IsStore = Entry.WideOpc == ARM::t2STR_POST;
467 Register Rt = MI->getOperand(IsStore ? 1 : 0).getReg();
468 Register Rn = MI->getOperand(IsStore ? 0 : 1).getReg();
469 unsigned Offset = MI->getOperand(3).getImm();
470 unsigned PredImm = MI->getOperand(4).getImm();
471 Register PredReg = MI->getOperand(5).getReg();
472 assert(isARMLowRegister(Rt));
473 assert(isARMLowRegister(Rn));
475 if (Offset != 4)
476 return false;
478 // Add the 16-bit load / store instruction.
479 DebugLoc dl = MI->getDebugLoc();
480 auto MIB = BuildMI(MBB, MI, dl, TII->get(Entry.NarrowOpc1))
481 .addReg(Rn, RegState::Define)
482 .addReg(Rn)
483 .addImm(PredImm)
484 .addReg(PredReg)
485 .addReg(Rt, IsStore ? 0 : RegState::Define);
487 // Transfer memoperands.
488 MIB.setMemRefs(MI->memoperands());
490 // Transfer MI flags.
491 MIB.setMIFlags(MI->getFlags());
493 // Kill the old instruction.
494 MI->eraseFromBundle();
495 ++NumLdSts;
496 return true;
498 case ARM::t2LDMIA: {
499 Register BaseReg = MI->getOperand(0).getReg();
500 assert(isARMLowRegister(BaseReg));
502 // For the non-writeback version (this one), the base register must be
503 // one of the registers being loaded.
504 bool isOK = false;
505 for (unsigned i = 3; i < MI->getNumOperands(); ++i) {
506 if (MI->getOperand(i).getReg() == BaseReg) {
507 isOK = true;
508 break;
512 if (!isOK)
513 return false;
515 OpNum = 0;
516 isLdStMul = true;
517 break;
519 case ARM::t2STMIA:
520 // If the base register is killed, we don't care what its value is after the
521 // instruction, so we can use an updating STMIA.
522 if (!MI->getOperand(0).isKill())
523 return false;
525 break;
526 case ARM::t2LDMIA_RET: {
527 Register BaseReg = MI->getOperand(1).getReg();
528 if (BaseReg != ARM::SP)
529 return false;
530 Opc = Entry.NarrowOpc2; // tPOP_RET
531 OpNum = 2;
532 isLdStMul = true;
533 break;
535 case ARM::t2LDMIA_UPD:
536 case ARM::t2STMIA_UPD:
537 case ARM::t2STMDB_UPD: {
538 OpNum = 0;
540 Register BaseReg = MI->getOperand(1).getReg();
541 if (BaseReg == ARM::SP &&
542 (Entry.WideOpc == ARM::t2LDMIA_UPD ||
543 Entry.WideOpc == ARM::t2STMDB_UPD)) {
544 Opc = Entry.NarrowOpc2; // tPOP or tPUSH
545 OpNum = 2;
546 } else if (!isARMLowRegister(BaseReg) ||
547 (Entry.WideOpc != ARM::t2LDMIA_UPD &&
548 Entry.WideOpc != ARM::t2STMIA_UPD)) {
549 return false;
552 isLdStMul = true;
553 break;
557 unsigned OffsetReg = 0;
558 bool OffsetKill = false;
559 bool OffsetInternal = false;
560 if (HasShift) {
561 OffsetReg = MI->getOperand(2).getReg();
562 OffsetKill = MI->getOperand(2).isKill();
563 OffsetInternal = MI->getOperand(2).isInternalRead();
565 if (MI->getOperand(3).getImm())
566 // Thumb1 addressing mode doesn't support shift.
567 return false;
570 unsigned OffsetImm = 0;
571 if (HasImmOffset) {
572 OffsetImm = MI->getOperand(2).getImm();
573 unsigned MaxOffset = ((1 << ImmLimit) - 1) * Scale;
575 if ((OffsetImm & (Scale - 1)) || OffsetImm > MaxOffset)
576 // Make sure the immediate field fits.
577 return false;
580 // Add the 16-bit load / store instruction.
581 DebugLoc dl = MI->getDebugLoc();
582 MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, TII->get(Opc));
584 // tSTMIA_UPD takes a defining register operand. We've already checked that
585 // the register is killed, so mark it as dead here.
586 if (Entry.WideOpc == ARM::t2STMIA)
587 MIB.addReg(MI->getOperand(0).getReg(), RegState::Define | RegState::Dead);
589 if (!isLdStMul) {
590 MIB.add(MI->getOperand(0));
591 MIB.add(MI->getOperand(1));
593 if (HasImmOffset)
594 MIB.addImm(OffsetImm / Scale);
596 assert((!HasShift || OffsetReg) && "Invalid so_reg load / store address!");
598 if (HasOffReg)
599 MIB.addReg(OffsetReg, getKillRegState(OffsetKill) |
600 getInternalReadRegState(OffsetInternal));
603 // Transfer the rest of operands.
604 for (unsigned e = MI->getNumOperands(); OpNum != e; ++OpNum)
605 MIB.add(MI->getOperand(OpNum));
607 // Transfer memoperands.
608 MIB.setMemRefs(MI->memoperands());
610 // Transfer MI flags.
611 MIB.setMIFlags(MI->getFlags());
613 LLVM_DEBUG(errs() << "Converted 32-bit: " << *MI
614 << " to 16-bit: " << *MIB);
616 MBB.erase_instr(MI);
617 ++NumLdSts;
618 return true;
621 bool
622 Thumb2SizeReduce::ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
623 const ReduceEntry &Entry,
624 bool LiveCPSR, bool IsSelfLoop) {
625 unsigned Opc = MI->getOpcode();
626 if (Opc == ARM::t2ADDri) {
627 // If the source register is SP, try to reduce to tADDrSPi, otherwise
628 // it's a normal reduce.
629 if (MI->getOperand(1).getReg() != ARM::SP) {
630 if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
631 return true;
632 return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
634 // Try to reduce to tADDrSPi.
635 unsigned Imm = MI->getOperand(2).getImm();
636 // The immediate must be in range, the destination register must be a low
637 // reg, the predicate must be "always" and the condition flags must not
638 // be being set.
639 if (Imm & 3 || Imm > 1020)
640 return false;
641 if (!isARMLowRegister(MI->getOperand(0).getReg()))
642 return false;
643 if (MI->getOperand(3).getImm() != ARMCC::AL)
644 return false;
645 const MCInstrDesc &MCID = MI->getDesc();
646 if (MCID.hasOptionalDef() &&
647 MI->getOperand(MCID.getNumOperands()-1).getReg() == ARM::CPSR)
648 return false;
650 MachineInstrBuilder MIB =
651 BuildMI(MBB, MI, MI->getDebugLoc(),
652 TII->get(ARM::tADDrSPi))
653 .add(MI->getOperand(0))
654 .add(MI->getOperand(1))
655 .addImm(Imm / 4) // The tADDrSPi has an implied scale by four.
656 .add(predOps(ARMCC::AL));
658 // Transfer MI flags.
659 MIB.setMIFlags(MI->getFlags());
661 LLVM_DEBUG(errs() << "Converted 32-bit: " << *MI
662 << " to 16-bit: " << *MIB);
664 MBB.erase_instr(MI);
665 ++NumNarrows;
666 return true;
669 if (Entry.LowRegs1 && !VerifyLowRegs(MI))
670 return false;
672 if (MI->mayLoadOrStore())
673 return ReduceLoadStore(MBB, MI, Entry);
675 switch (Opc) {
676 default: break;
677 case ARM::t2ADDSri:
678 case ARM::t2ADDSrr: {
679 unsigned PredReg = 0;
680 if (getInstrPredicate(*MI, PredReg) == ARMCC::AL) {
681 switch (Opc) {
682 default: break;
683 case ARM::t2ADDSri:
684 if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
685 return true;
686 LLVM_FALLTHROUGH;
687 case ARM::t2ADDSrr:
688 return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
691 break;
693 case ARM::t2RSBri:
694 case ARM::t2RSBSri:
695 case ARM::t2SXTB:
696 case ARM::t2SXTH:
697 case ARM::t2UXTB:
698 case ARM::t2UXTH:
699 if (MI->getOperand(2).getImm() == 0)
700 return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
701 break;
702 case ARM::t2MOVi16:
703 // Can convert only 'pure' immediate operands, not immediates obtained as
704 // globals' addresses.
705 if (MI->getOperand(1).isImm())
706 return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
707 break;
708 case ARM::t2CMPrr: {
709 // Try to reduce to the lo-reg only version first. Why there are two
710 // versions of the instruction is a mystery.
711 // It would be nice to just have two entries in the master table that
712 // are prioritized, but the table assumes a unique entry for each
713 // source insn opcode. So for now, we hack a local entry record to use.
714 static const ReduceEntry NarrowEntry =
715 { ARM::t2CMPrr,ARM::tCMPr, 0, 0, 0, 1, 1,2, 0, 0,1,0 };
716 if (ReduceToNarrow(MBB, MI, NarrowEntry, LiveCPSR, IsSelfLoop))
717 return true;
718 return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
720 case ARM::t2TEQrr: {
721 unsigned PredReg = 0;
722 // Can only convert to eors if we're not in an IT block.
723 if (getInstrPredicate(*MI, PredReg) != ARMCC::AL)
724 break;
725 // TODO if Operand 0 is not killed but Operand 1 is, then we could write
726 // to Op1 instead.
727 if (MI->getOperand(0).isKill())
728 return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
731 return false;
734 bool
735 Thumb2SizeReduce::ReduceTo2Addr(MachineBasicBlock &MBB, MachineInstr *MI,
736 const ReduceEntry &Entry,
737 bool LiveCPSR, bool IsSelfLoop) {
738 if (ReduceLimit2Addr != -1 && ((int)Num2Addrs >= ReduceLimit2Addr))
739 return false;
741 if (!OptimizeSize && Entry.AvoidMovs && STI->avoidMOVsShifterOperand())
742 // Don't issue movs with shifter operand for some CPUs unless we
743 // are optimizing for size.
744 return false;
746 Register Reg0 = MI->getOperand(0).getReg();
747 Register Reg1 = MI->getOperand(1).getReg();
748 // t2MUL is "special". The tied source operand is second, not first.
749 if (MI->getOpcode() == ARM::t2MUL) {
750 Register Reg2 = MI->getOperand(2).getReg();
751 // Early exit if the regs aren't all low regs.
752 if (!isARMLowRegister(Reg0) || !isARMLowRegister(Reg1)
753 || !isARMLowRegister(Reg2))
754 return false;
755 if (Reg0 != Reg2) {
756 // If the other operand also isn't the same as the destination, we
757 // can't reduce.
758 if (Reg1 != Reg0)
759 return false;
760 // Try to commute the operands to make it a 2-address instruction.
761 MachineInstr *CommutedMI = TII->commuteInstruction(*MI);
762 if (!CommutedMI)
763 return false;
765 } else if (Reg0 != Reg1) {
766 // Try to commute the operands to make it a 2-address instruction.
767 unsigned CommOpIdx1 = 1;
768 unsigned CommOpIdx2 = TargetInstrInfo::CommuteAnyOperandIndex;
769 if (!TII->findCommutedOpIndices(*MI, CommOpIdx1, CommOpIdx2) ||
770 MI->getOperand(CommOpIdx2).getReg() != Reg0)
771 return false;
772 MachineInstr *CommutedMI =
773 TII->commuteInstruction(*MI, false, CommOpIdx1, CommOpIdx2);
774 if (!CommutedMI)
775 return false;
777 if (Entry.LowRegs2 && !isARMLowRegister(Reg0))
778 return false;
779 if (Entry.Imm2Limit) {
780 unsigned Imm = MI->getOperand(2).getImm();
781 unsigned Limit = (1 << Entry.Imm2Limit) - 1;
782 if (Imm > Limit)
783 return false;
784 } else {
785 Register Reg2 = MI->getOperand(2).getReg();
786 if (Entry.LowRegs2 && !isARMLowRegister(Reg2))
787 return false;
790 // Check if it's possible / necessary to transfer the predicate.
791 const MCInstrDesc &NewMCID = TII->get(Entry.NarrowOpc2);
792 unsigned PredReg = 0;
793 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
794 bool SkipPred = false;
795 if (Pred != ARMCC::AL) {
796 if (!NewMCID.isPredicable())
797 // Can't transfer predicate, fail.
798 return false;
799 } else {
800 SkipPred = !NewMCID.isPredicable();
803 bool HasCC = false;
804 bool CCDead = false;
805 const MCInstrDesc &MCID = MI->getDesc();
806 if (MCID.hasOptionalDef()) {
807 unsigned NumOps = MCID.getNumOperands();
808 HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
809 if (HasCC && MI->getOperand(NumOps-1).isDead())
810 CCDead = true;
812 if (!VerifyPredAndCC(MI, Entry, true, Pred, LiveCPSR, HasCC, CCDead))
813 return false;
815 // Avoid adding a false dependency on partial flag update by some 16-bit
816 // instructions which has the 's' bit set.
817 if (Entry.PartFlag && NewMCID.hasOptionalDef() && HasCC &&
818 canAddPseudoFlagDep(MI, IsSelfLoop))
819 return false;
821 // Add the 16-bit instruction.
822 DebugLoc dl = MI->getDebugLoc();
823 MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
824 MIB.add(MI->getOperand(0));
825 if (NewMCID.hasOptionalDef())
826 MIB.add(HasCC ? t1CondCodeOp(CCDead) : condCodeOp());
828 // Transfer the rest of operands.
829 unsigned NumOps = MCID.getNumOperands();
830 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
831 if (i < NumOps && MCID.OpInfo[i].isOptionalDef())
832 continue;
833 if (SkipPred && MCID.OpInfo[i].isPredicate())
834 continue;
835 MIB.add(MI->getOperand(i));
838 // Transfer MI flags.
839 MIB.setMIFlags(MI->getFlags());
841 LLVM_DEBUG(errs() << "Converted 32-bit: " << *MI
842 << " to 16-bit: " << *MIB);
844 MBB.erase_instr(MI);
845 ++Num2Addrs;
846 return true;
849 bool
850 Thumb2SizeReduce::ReduceToNarrow(MachineBasicBlock &MBB, MachineInstr *MI,
851 const ReduceEntry &Entry,
852 bool LiveCPSR, bool IsSelfLoop) {
853 if (ReduceLimit != -1 && ((int)NumNarrows >= ReduceLimit))
854 return false;
856 if (!OptimizeSize && Entry.AvoidMovs && STI->avoidMOVsShifterOperand())
857 // Don't issue movs with shifter operand for some CPUs unless we
858 // are optimizing for size.
859 return false;
861 unsigned Limit = ~0U;
862 if (Entry.Imm1Limit)
863 Limit = (1 << Entry.Imm1Limit) - 1;
865 const MCInstrDesc &MCID = MI->getDesc();
866 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
867 if (MCID.OpInfo[i].isPredicate())
868 continue;
869 const MachineOperand &MO = MI->getOperand(i);
870 if (MO.isReg()) {
871 Register Reg = MO.getReg();
872 if (!Reg || Reg == ARM::CPSR)
873 continue;
874 if (Entry.LowRegs1 && !isARMLowRegister(Reg))
875 return false;
876 } else if (MO.isImm() &&
877 !MCID.OpInfo[i].isPredicate()) {
878 if (((unsigned)MO.getImm()) > Limit)
879 return false;
883 // Check if it's possible / necessary to transfer the predicate.
884 const MCInstrDesc &NewMCID = TII->get(Entry.NarrowOpc1);
885 unsigned PredReg = 0;
886 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
887 bool SkipPred = false;
888 if (Pred != ARMCC::AL) {
889 if (!NewMCID.isPredicable())
890 // Can't transfer predicate, fail.
891 return false;
892 } else {
893 SkipPred = !NewMCID.isPredicable();
896 bool HasCC = false;
897 bool CCDead = false;
898 if (MCID.hasOptionalDef()) {
899 unsigned NumOps = MCID.getNumOperands();
900 HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
901 if (HasCC && MI->getOperand(NumOps-1).isDead())
902 CCDead = true;
904 if (!VerifyPredAndCC(MI, Entry, false, Pred, LiveCPSR, HasCC, CCDead))
905 return false;
907 // Avoid adding a false dependency on partial flag update by some 16-bit
908 // instructions which has the 's' bit set.
909 if (Entry.PartFlag && NewMCID.hasOptionalDef() && HasCC &&
910 canAddPseudoFlagDep(MI, IsSelfLoop))
911 return false;
913 // Add the 16-bit instruction.
914 DebugLoc dl = MI->getDebugLoc();
915 MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
917 // TEQ is special in that it doesn't define a register but we're converting
918 // it into an EOR which does. So add the first operand as a def and then
919 // again as a use.
920 if (MCID.getOpcode() == ARM::t2TEQrr) {
921 MIB.add(MI->getOperand(0));
922 MIB->getOperand(0).setIsKill(false);
923 MIB->getOperand(0).setIsDef(true);
924 MIB->getOperand(0).setIsDead(true);
926 if (NewMCID.hasOptionalDef())
927 MIB.add(HasCC ? t1CondCodeOp(CCDead) : condCodeOp());
928 MIB.add(MI->getOperand(0));
929 } else {
930 MIB.add(MI->getOperand(0));
931 if (NewMCID.hasOptionalDef())
932 MIB.add(HasCC ? t1CondCodeOp(CCDead) : condCodeOp());
935 // Transfer the rest of operands.
936 unsigned NumOps = MCID.getNumOperands();
937 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
938 if (i < NumOps && MCID.OpInfo[i].isOptionalDef())
939 continue;
940 if ((MCID.getOpcode() == ARM::t2RSBSri ||
941 MCID.getOpcode() == ARM::t2RSBri ||
942 MCID.getOpcode() == ARM::t2SXTB ||
943 MCID.getOpcode() == ARM::t2SXTH ||
944 MCID.getOpcode() == ARM::t2UXTB ||
945 MCID.getOpcode() == ARM::t2UXTH) && i == 2)
946 // Skip the zero immediate operand, it's now implicit.
947 continue;
948 bool isPred = (i < NumOps && MCID.OpInfo[i].isPredicate());
949 if (SkipPred && isPred)
950 continue;
951 const MachineOperand &MO = MI->getOperand(i);
952 if (MO.isReg() && MO.isImplicit() && MO.getReg() == ARM::CPSR)
953 // Skip implicit def of CPSR. Either it's modeled as an optional
954 // def now or it's already an implicit def on the new instruction.
955 continue;
956 MIB.add(MO);
958 if (!MCID.isPredicable() && NewMCID.isPredicable())
959 MIB.add(predOps(ARMCC::AL));
961 // Transfer MI flags.
962 MIB.setMIFlags(MI->getFlags());
964 LLVM_DEBUG(errs() << "Converted 32-bit: " << *MI
965 << " to 16-bit: " << *MIB);
967 MBB.erase_instr(MI);
968 ++NumNarrows;
969 return true;
972 static bool UpdateCPSRDef(MachineInstr &MI, bool LiveCPSR, bool &DefCPSR) {
973 bool HasDef = false;
974 for (const MachineOperand &MO : MI.operands()) {
975 if (!MO.isReg() || MO.isUndef() || MO.isUse())
976 continue;
977 if (MO.getReg() != ARM::CPSR)
978 continue;
980 DefCPSR = true;
981 if (!MO.isDead())
982 HasDef = true;
985 return HasDef || LiveCPSR;
988 static bool UpdateCPSRUse(MachineInstr &MI, bool LiveCPSR) {
989 for (const MachineOperand &MO : MI.operands()) {
990 if (!MO.isReg() || MO.isUndef() || MO.isDef())
991 continue;
992 if (MO.getReg() != ARM::CPSR)
993 continue;
994 assert(LiveCPSR && "CPSR liveness tracking is wrong!");
995 if (MO.isKill()) {
996 LiveCPSR = false;
997 break;
1001 return LiveCPSR;
1004 bool Thumb2SizeReduce::ReduceMI(MachineBasicBlock &MBB, MachineInstr *MI,
1005 bool LiveCPSR, bool IsSelfLoop) {
1006 unsigned Opcode = MI->getOpcode();
1007 DenseMap<unsigned, unsigned>::iterator OPI = ReduceOpcodeMap.find(Opcode);
1008 if (OPI == ReduceOpcodeMap.end())
1009 return false;
1010 const ReduceEntry &Entry = ReduceTable[OPI->second];
1012 // Don't attempt normal reductions on "special" cases for now.
1013 if (Entry.Special)
1014 return ReduceSpecial(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
1016 // Try to transform to a 16-bit two-address instruction.
1017 if (Entry.NarrowOpc2 &&
1018 ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
1019 return true;
1021 // Try to transform to a 16-bit non-two-address instruction.
1022 if (Entry.NarrowOpc1 &&
1023 ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
1024 return true;
1026 return false;
1029 bool Thumb2SizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
1030 bool Modified = false;
1032 // Yes, CPSR could be livein.
1033 bool LiveCPSR = MBB.isLiveIn(ARM::CPSR);
1034 MachineInstr *BundleMI = nullptr;
1036 CPSRDef = nullptr;
1037 HighLatencyCPSR = false;
1039 // Check predecessors for the latest CPSRDef.
1040 for (auto *Pred : MBB.predecessors()) {
1041 const MBBInfo &PInfo = BlockInfo[Pred->getNumber()];
1042 if (!PInfo.Visited) {
1043 // Since blocks are visited in RPO, this must be a back-edge.
1044 continue;
1046 if (PInfo.HighLatencyCPSR) {
1047 HighLatencyCPSR = true;
1048 break;
1052 // If this BB loops back to itself, conservatively avoid narrowing the
1053 // first instruction that does partial flag update.
1054 bool IsSelfLoop = MBB.isSuccessor(&MBB);
1055 MachineBasicBlock::instr_iterator MII = MBB.instr_begin(),E = MBB.instr_end();
1056 MachineBasicBlock::instr_iterator NextMII;
1057 for (; MII != E; MII = NextMII) {
1058 NextMII = std::next(MII);
1060 MachineInstr *MI = &*MII;
1061 if (MI->isBundle()) {
1062 BundleMI = MI;
1063 continue;
1065 if (MI->isDebugInstr())
1066 continue;
1068 LiveCPSR = UpdateCPSRUse(*MI, LiveCPSR);
1070 // Does NextMII belong to the same bundle as MI?
1071 bool NextInSameBundle = NextMII != E && NextMII->isBundledWithPred();
1073 if (ReduceMI(MBB, MI, LiveCPSR, IsSelfLoop)) {
1074 Modified = true;
1075 MachineBasicBlock::instr_iterator I = std::prev(NextMII);
1076 MI = &*I;
1077 // Removing and reinserting the first instruction in a bundle will break
1078 // up the bundle. Fix the bundling if it was broken.
1079 if (NextInSameBundle && !NextMII->isBundledWithPred())
1080 NextMII->bundleWithPred();
1083 if (BundleMI && !NextInSameBundle && MI->isInsideBundle()) {
1084 // FIXME: Since post-ra scheduler operates on bundles, the CPSR kill
1085 // marker is only on the BUNDLE instruction. Process the BUNDLE
1086 // instruction as we finish with the bundled instruction to work around
1087 // the inconsistency.
1088 if (BundleMI->killsRegister(ARM::CPSR))
1089 LiveCPSR = false;
1090 MachineOperand *MO = BundleMI->findRegisterDefOperand(ARM::CPSR);
1091 if (MO && !MO->isDead())
1092 LiveCPSR = true;
1093 MO = BundleMI->findRegisterUseOperand(ARM::CPSR);
1094 if (MO && !MO->isKill())
1095 LiveCPSR = true;
1098 bool DefCPSR = false;
1099 LiveCPSR = UpdateCPSRDef(*MI, LiveCPSR, DefCPSR);
1100 if (MI->isCall()) {
1101 // Calls don't really set CPSR.
1102 CPSRDef = nullptr;
1103 HighLatencyCPSR = false;
1104 IsSelfLoop = false;
1105 } else if (DefCPSR) {
1106 // This is the last CPSR defining instruction.
1107 CPSRDef = MI;
1108 HighLatencyCPSR = isHighLatencyCPSR(CPSRDef);
1109 IsSelfLoop = false;
1113 MBBInfo &Info = BlockInfo[MBB.getNumber()];
1114 Info.HighLatencyCPSR = HighLatencyCPSR;
1115 Info.Visited = true;
1116 return Modified;
1119 bool Thumb2SizeReduce::runOnMachineFunction(MachineFunction &MF) {
1120 if (PredicateFtor && !PredicateFtor(MF.getFunction()))
1121 return false;
1123 STI = &static_cast<const ARMSubtarget &>(MF.getSubtarget());
1124 if (STI->isThumb1Only() || STI->prefers32BitThumb())
1125 return false;
1127 TII = static_cast<const Thumb2InstrInfo *>(STI->getInstrInfo());
1129 // Optimizing / minimizing size? Minimizing size implies optimizing for size.
1130 OptimizeSize = MF.getFunction().hasOptSize();
1131 MinimizeSize = STI->hasMinSize();
1133 BlockInfo.clear();
1134 BlockInfo.resize(MF.getNumBlockIDs());
1136 // Visit blocks in reverse post-order so LastCPSRDef is known for all
1137 // predecessors.
1138 ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
1139 bool Modified = false;
1140 for (ReversePostOrderTraversal<MachineFunction*>::rpo_iterator
1141 I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
1142 Modified |= ReduceMBB(**I);
1143 return Modified;
1146 /// createThumb2SizeReductionPass - Returns an instance of the Thumb2 size
1147 /// reduction pass.
1148 FunctionPass *llvm::createThumb2SizeReductionPass(
1149 std::function<bool(const Function &)> Ftor) {
1150 return new Thumb2SizeReduce(std::move(Ftor));