[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / BPF / BPFAbstractMemberAccess.cpp
blobe4f29fbb3dba2407c30821eec4b333aeda34c4fd
1 //===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass abstracted struct/union member accesses in order to support
10 // compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11 // which can run on different kernels. In particular, if bpf program tries to
12 // access a particular kernel data structure member, the details of the
13 // intermediate member access will be remembered so bpf loader can do
14 // necessary adjustment right before program loading.
16 // For example,
18 // struct s {
19 // int a;
20 // int b;
21 // };
22 // struct t {
23 // struct s c;
24 // int d;
25 // };
26 // struct t e;
28 // For the member access e.c.b, the compiler will generate code
29 // &e + 4
31 // The compile-once run-everywhere instead generates the following code
32 // r = 4
33 // &e + r
34 // The "4" in "r = 4" can be changed based on a particular kernel version.
35 // For example, on a particular kernel version, if struct s is changed to
37 // struct s {
38 // int new_field;
39 // int a;
40 // int b;
41 // }
43 // By repeating the member access on the host, the bpf loader can
44 // adjust "r = 4" as "r = 8".
46 // This feature relies on the following three intrinsic calls:
47 // addr = preserve_array_access_index(base, dimension, index)
48 // addr = preserve_union_access_index(base, di_index)
49 // !llvm.preserve.access.index <union_ditype>
50 // addr = preserve_struct_access_index(base, gep_index, di_index)
51 // !llvm.preserve.access.index <struct_ditype>
53 //===----------------------------------------------------------------------===//
55 #include "BPF.h"
56 #include "BPFCORE.h"
57 #include "BPFTargetMachine.h"
58 #include "llvm/IR/DebugInfoMetadata.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include <stack>
70 #define DEBUG_TYPE "bpf-abstract-member-access"
72 namespace llvm {
73 const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama";
74 const std::string BPFCoreSharedInfo::PatchableExtSecName =
75 ".BPF.patchable_externs";
76 } // namespace llvm
78 using namespace llvm;
80 namespace {
82 class BPFAbstractMemberAccess final : public ModulePass {
83 StringRef getPassName() const override {
84 return "BPF Abstract Member Access";
87 bool runOnModule(Module &M) override;
89 public:
90 static char ID;
91 BPFAbstractMemberAccess() : ModulePass(ID) {}
93 private:
94 enum : uint32_t {
95 BPFPreserveArrayAI = 1,
96 BPFPreserveUnionAI = 2,
97 BPFPreserveStructAI = 3,
100 std::map<std::string, GlobalVariable *> GEPGlobals;
101 // A map to link preserve_*_access_index instrinsic calls.
102 std::map<CallInst *, std::pair<CallInst *, uint32_t>> AIChain;
103 // A map to hold all the base preserve_*_access_index instrinsic calls.
104 // The base call is not an input of any other preserve_*_access_index
105 // intrinsics.
106 std::map<CallInst *, uint32_t> BaseAICalls;
108 bool doTransformation(Module &M);
110 void traceAICall(CallInst *Call, uint32_t Kind, const MDNode *ParentMeta,
111 uint32_t ParentAI);
112 void traceBitCast(BitCastInst *BitCast, CallInst *Parent, uint32_t Kind,
113 const MDNode *ParentMeta, uint32_t ParentAI);
114 void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, uint32_t Kind,
115 const MDNode *ParentMeta, uint32_t ParentAI);
116 void collectAICallChains(Module &M, Function &F);
118 bool IsPreserveDIAccessIndexCall(const CallInst *Call, uint32_t &Kind,
119 const MDNode *&TypeMeta, uint32_t &AccessIndex);
120 bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
121 const MDNode *ChildMeta);
122 bool removePreserveAccessIndexIntrinsic(Module &M);
123 void replaceWithGEP(std::vector<CallInst *> &CallList,
124 uint32_t NumOfZerosIndex, uint32_t DIIndex);
126 Value *computeBaseAndAccessKey(CallInst *Call, std::string &AccessKey,
127 uint32_t Kind, MDNode *&BaseMeta);
128 bool getAccessIndex(const Value *IndexValue, uint64_t &AccessIndex);
129 bool transformGEPChain(Module &M, CallInst *Call, uint32_t Kind);
131 } // End anonymous namespace
133 char BPFAbstractMemberAccess::ID = 0;
134 INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
135 "abstracting struct/union member accessees", false, false)
137 ModulePass *llvm::createBPFAbstractMemberAccess() {
138 return new BPFAbstractMemberAccess();
141 bool BPFAbstractMemberAccess::runOnModule(Module &M) {
142 LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
144 // Bail out if no debug info.
145 if (empty(M.debug_compile_units()))
146 return false;
148 return doTransformation(M);
151 static bool SkipDIDerivedTag(unsigned Tag) {
152 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
153 Tag != dwarf::DW_TAG_volatile_type &&
154 Tag != dwarf::DW_TAG_restrict_type &&
155 Tag != dwarf::DW_TAG_member)
156 return false;
157 return true;
160 static DIType * stripQualifiers(DIType *Ty) {
161 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
162 if (!SkipDIDerivedTag(DTy->getTag()))
163 break;
164 Ty = DTy->getBaseType();
166 return Ty;
169 static const DIType * stripQualifiers(const DIType *Ty) {
170 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
171 if (!SkipDIDerivedTag(DTy->getTag()))
172 break;
173 Ty = DTy->getBaseType();
175 return Ty;
178 static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
179 DINodeArray Elements = CTy->getElements();
180 uint32_t DimSize = 1;
181 for (uint32_t I = StartDim; I < Elements.size(); ++I) {
182 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
183 if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
184 const DISubrange *SR = cast<DISubrange>(Element);
185 auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
186 DimSize *= CI->getSExtValue();
190 return DimSize;
193 /// Check whether a call is a preserve_*_access_index intrinsic call or not.
194 bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
195 uint32_t &Kind,
196 const MDNode *&TypeMeta,
197 uint32_t &AccessIndex) {
198 if (!Call)
199 return false;
201 const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue());
202 if (!GV)
203 return false;
204 if (GV->getName().startswith("llvm.preserve.array.access.index")) {
205 Kind = BPFPreserveArrayAI;
206 TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
207 if (!TypeMeta)
208 report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
209 AccessIndex = cast<ConstantInt>(Call->getArgOperand(2))
210 ->getZExtValue();
211 return true;
213 if (GV->getName().startswith("llvm.preserve.union.access.index")) {
214 Kind = BPFPreserveUnionAI;
215 TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
216 if (!TypeMeta)
217 report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
218 AccessIndex = cast<ConstantInt>(Call->getArgOperand(1))
219 ->getZExtValue();
220 return true;
222 if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
223 Kind = BPFPreserveStructAI;
224 TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
225 if (!TypeMeta)
226 report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
227 AccessIndex = cast<ConstantInt>(Call->getArgOperand(2))
228 ->getZExtValue();
229 return true;
232 return false;
235 void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
236 uint32_t DimensionIndex,
237 uint32_t GEPIndex) {
238 for (auto Call : CallList) {
239 uint32_t Dimension = 1;
240 if (DimensionIndex > 0)
241 Dimension = cast<ConstantInt>(Call->getArgOperand(DimensionIndex))
242 ->getZExtValue();
244 Constant *Zero =
245 ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
246 SmallVector<Value *, 4> IdxList;
247 for (unsigned I = 0; I < Dimension; ++I)
248 IdxList.push_back(Zero);
249 IdxList.push_back(Call->getArgOperand(GEPIndex));
251 auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
252 IdxList, "", Call);
253 Call->replaceAllUsesWith(GEP);
254 Call->eraseFromParent();
258 bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
259 std::vector<CallInst *> PreserveArrayIndexCalls;
260 std::vector<CallInst *> PreserveUnionIndexCalls;
261 std::vector<CallInst *> PreserveStructIndexCalls;
262 bool Found = false;
264 for (Function &F : M)
265 for (auto &BB : F)
266 for (auto &I : BB) {
267 auto *Call = dyn_cast<CallInst>(&I);
268 uint32_t Kind;
269 const MDNode *TypeMeta;
270 uint32_t AccessIndex;
271 if (!IsPreserveDIAccessIndexCall(Call, Kind, TypeMeta, AccessIndex))
272 continue;
274 Found = true;
275 if (Kind == BPFPreserveArrayAI)
276 PreserveArrayIndexCalls.push_back(Call);
277 else if (Kind == BPFPreserveUnionAI)
278 PreserveUnionIndexCalls.push_back(Call);
279 else
280 PreserveStructIndexCalls.push_back(Call);
283 // do the following transformation:
284 // . addr = preserve_array_access_index(base, dimension, index)
285 // is transformed to
286 // addr = GEP(base, dimenion's zero's, index)
287 // . addr = preserve_union_access_index(base, di_index)
288 // is transformed to
289 // addr = base, i.e., all usages of "addr" are replaced by "base".
290 // . addr = preserve_struct_access_index(base, gep_index, di_index)
291 // is transformed to
292 // addr = GEP(base, 0, gep_index)
293 replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
294 replaceWithGEP(PreserveStructIndexCalls, 0, 1);
295 for (auto Call : PreserveUnionIndexCalls) {
296 Call->replaceAllUsesWith(Call->getArgOperand(0));
297 Call->eraseFromParent();
300 return Found;
303 /// Check whether the access index chain is valid. We check
304 /// here because there may be type casts between two
305 /// access indexes. We want to ensure memory access still valid.
306 bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
307 uint32_t ParentAI,
308 const MDNode *ChildType) {
309 const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
310 const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
312 // Child is a derived/pointer type, which is due to type casting.
313 // Pointer type cannot be in the middle of chain.
314 if (isa<DIDerivedType>(CType))
315 return false;
317 // Parent is a pointer type.
318 if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
319 if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
320 return false;
321 return stripQualifiers(PtrTy->getBaseType()) == CType;
324 // Otherwise, struct/union/array types
325 const auto *PTy = dyn_cast<DICompositeType>(PType);
326 const auto *CTy = dyn_cast<DICompositeType>(CType);
327 assert(PTy && CTy && "ParentType or ChildType is null or not composite");
329 uint32_t PTyTag = PTy->getTag();
330 assert(PTyTag == dwarf::DW_TAG_array_type ||
331 PTyTag == dwarf::DW_TAG_structure_type ||
332 PTyTag == dwarf::DW_TAG_union_type);
334 uint32_t CTyTag = CTy->getTag();
335 assert(CTyTag == dwarf::DW_TAG_array_type ||
336 CTyTag == dwarf::DW_TAG_structure_type ||
337 CTyTag == dwarf::DW_TAG_union_type);
339 // Multi dimensional arrays, base element should be the same
340 if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
341 return PTy->getBaseType() == CTy->getBaseType();
343 DIType *Ty;
344 if (PTyTag == dwarf::DW_TAG_array_type)
345 Ty = PTy->getBaseType();
346 else
347 Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
349 return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
352 void BPFAbstractMemberAccess::traceAICall(CallInst *Call, uint32_t Kind,
353 const MDNode *ParentMeta,
354 uint32_t ParentAI) {
355 for (User *U : Call->users()) {
356 Instruction *Inst = dyn_cast<Instruction>(U);
357 if (!Inst)
358 continue;
360 if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
361 traceBitCast(BI, Call, Kind, ParentMeta, ParentAI);
362 } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
363 uint32_t CIKind;
364 const MDNode *ChildMeta;
365 uint32_t ChildAI;
366 if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
367 IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
368 AIChain[CI] = std::make_pair(Call, Kind);
369 traceAICall(CI, CIKind, ChildMeta, ChildAI);
370 } else {
371 BaseAICalls[Call] = Kind;
373 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
374 if (GI->hasAllZeroIndices())
375 traceGEP(GI, Call, Kind, ParentMeta, ParentAI);
376 else
377 BaseAICalls[Call] = Kind;
382 void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
383 CallInst *Parent, uint32_t Kind,
384 const MDNode *ParentMeta,
385 uint32_t ParentAI) {
386 for (User *U : BitCast->users()) {
387 Instruction *Inst = dyn_cast<Instruction>(U);
388 if (!Inst)
389 continue;
391 if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
392 traceBitCast(BI, Parent, Kind, ParentMeta, ParentAI);
393 } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
394 uint32_t CIKind;
395 const MDNode *ChildMeta;
396 uint32_t ChildAI;
397 if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
398 IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
399 AIChain[CI] = std::make_pair(Parent, Kind);
400 traceAICall(CI, CIKind, ChildMeta, ChildAI);
401 } else {
402 BaseAICalls[Parent] = Kind;
404 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
405 if (GI->hasAllZeroIndices())
406 traceGEP(GI, Parent, Kind, ParentMeta, ParentAI);
407 else
408 BaseAICalls[Parent] = Kind;
413 void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
414 uint32_t Kind, const MDNode *ParentMeta,
415 uint32_t ParentAI) {
416 for (User *U : GEP->users()) {
417 Instruction *Inst = dyn_cast<Instruction>(U);
418 if (!Inst)
419 continue;
421 if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
422 traceBitCast(BI, Parent, Kind, ParentMeta, ParentAI);
423 } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
424 uint32_t CIKind;
425 const MDNode *ChildMeta;
426 uint32_t ChildAI;
427 if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
428 IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
429 AIChain[CI] = std::make_pair(Parent, Kind);
430 traceAICall(CI, CIKind, ChildMeta, ChildAI);
431 } else {
432 BaseAICalls[Parent] = Kind;
434 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
435 if (GI->hasAllZeroIndices())
436 traceGEP(GI, Parent, Kind, ParentMeta, ParentAI);
437 else
438 BaseAICalls[Parent] = Kind;
443 void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
444 AIChain.clear();
445 BaseAICalls.clear();
447 for (auto &BB : F)
448 for (auto &I : BB) {
449 uint32_t Kind;
450 const MDNode *TypeMeta;
451 uint32_t AccessIndex;
452 auto *Call = dyn_cast<CallInst>(&I);
453 if (!IsPreserveDIAccessIndexCall(Call, Kind, TypeMeta, AccessIndex) ||
454 AIChain.find(Call) != AIChain.end())
455 continue;
457 traceAICall(Call, Kind, TypeMeta, AccessIndex);
461 /// Get access index from the preserve_*_access_index intrinsic calls.
462 bool BPFAbstractMemberAccess::getAccessIndex(const Value *IndexValue,
463 uint64_t &AccessIndex) {
464 const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
465 if (!CV)
466 return false;
468 AccessIndex = CV->getValue().getZExtValue();
469 return true;
472 /// Compute the base of the whole preserve_*_access_index chains, i.e., the base
473 /// pointer of the first preserve_*_access_index call, and construct the access
474 /// string, which will be the name of a global variable.
475 Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
476 std::string &AccessKey,
477 uint32_t Kind,
478 MDNode *&TypeMeta) {
479 Value *Base = nullptr;
480 std::string TypeName;
481 std::stack<std::pair<CallInst *, uint32_t>> CallStack;
483 // Put the access chain into a stack with the top as the head of the chain.
484 while (Call) {
485 CallStack.push(std::make_pair(Call, Kind));
486 Kind = AIChain[Call].second;
487 Call = AIChain[Call].first;
490 // The access offset from the base of the head of chain is also
491 // calculated here as all debuginfo types are available.
493 // Get type name and calculate the first index.
494 // We only want to get type name from structure or union.
495 // If user wants a relocation like
496 // int *p; ... __builtin_preserve_access_index(&p[4]) ...
497 // or
498 // int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
499 // we will skip them.
500 uint32_t FirstIndex = 0;
501 uint32_t AccessOffset = 0;
502 while (CallStack.size()) {
503 auto StackElem = CallStack.top();
504 Call = StackElem.first;
505 Kind = StackElem.second;
507 if (!Base)
508 Base = Call->getArgOperand(0);
510 MDNode *MDN = Call->getMetadata(LLVMContext::MD_preserve_access_index);
511 DIType *Ty = stripQualifiers(cast<DIType>(MDN));
512 if (Kind == BPFPreserveUnionAI || Kind == BPFPreserveStructAI) {
513 // struct or union type
514 TypeName = Ty->getName();
515 TypeMeta = Ty;
516 AccessOffset += FirstIndex * Ty->getSizeInBits() >> 3;
517 break;
520 // Array entries will always be consumed for accumulative initial index.
521 CallStack.pop();
523 // BPFPreserveArrayAI
524 uint64_t AccessIndex;
525 if (!getAccessIndex(Call->getArgOperand(2), AccessIndex))
526 return nullptr;
528 DIType *BaseTy = nullptr;
529 bool CheckElemType = false;
530 if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
531 // array type
532 assert(CTy->getTag() == dwarf::DW_TAG_array_type);
535 FirstIndex += AccessIndex * calcArraySize(CTy, 1);
536 BaseTy = stripQualifiers(CTy->getBaseType());
537 CheckElemType = CTy->getElements().size() == 1;
538 } else {
539 // pointer type
540 auto *DTy = cast<DIDerivedType>(Ty);
541 assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
543 BaseTy = stripQualifiers(DTy->getBaseType());
544 CTy = dyn_cast<DICompositeType>(BaseTy);
545 if (!CTy) {
546 CheckElemType = true;
547 } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
548 FirstIndex += AccessIndex;
549 CheckElemType = true;
550 } else {
551 FirstIndex += AccessIndex * calcArraySize(CTy, 0);
555 if (CheckElemType) {
556 auto *CTy = dyn_cast<DICompositeType>(BaseTy);
557 if (!CTy)
558 return nullptr;
560 unsigned CTag = CTy->getTag();
561 if (CTag != dwarf::DW_TAG_structure_type && CTag != dwarf::DW_TAG_union_type)
562 return nullptr;
563 else
564 TypeName = CTy->getName();
565 TypeMeta = CTy;
566 AccessOffset += FirstIndex * CTy->getSizeInBits() >> 3;
567 break;
570 assert(TypeName.size());
571 AccessKey += std::to_string(FirstIndex);
573 // Traverse the rest of access chain to complete offset calculation
574 // and access key construction.
575 while (CallStack.size()) {
576 auto StackElem = CallStack.top();
577 Call = StackElem.first;
578 Kind = StackElem.second;
579 CallStack.pop();
581 // Access Index
582 uint64_t AccessIndex;
583 uint32_t ArgIndex = (Kind == BPFPreserveUnionAI) ? 1 : 2;
584 if (!getAccessIndex(Call->getArgOperand(ArgIndex), AccessIndex))
585 return nullptr;
586 AccessKey += ":" + std::to_string(AccessIndex);
588 MDNode *MDN = Call->getMetadata(LLVMContext::MD_preserve_access_index);
589 // At this stage, it cannot be pointer type.
590 auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
591 uint32_t Tag = CTy->getTag();
592 if (Tag == dwarf::DW_TAG_structure_type) {
593 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
594 AccessOffset += MemberTy->getOffsetInBits() >> 3;
595 } else if (Tag == dwarf::DW_TAG_array_type) {
596 auto *EltTy = stripQualifiers(CTy->getBaseType());
597 AccessOffset += AccessIndex * calcArraySize(CTy, 1) *
598 EltTy->getSizeInBits() >> 3;
602 // Access key is the type name + access string, uniquely identifying
603 // one kernel memory access.
604 AccessKey = TypeName + ":" + std::to_string(AccessOffset) + "$" + AccessKey;
606 return Base;
609 /// Call/Kind is the base preserve_*_access_index() call. Attempts to do
610 /// transformation to a chain of relocable GEPs.
611 bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
612 uint32_t Kind) {
613 std::string AccessKey;
614 MDNode *TypeMeta;
615 Value *Base =
616 computeBaseAndAccessKey(Call, AccessKey, Kind, TypeMeta);
617 if (!Base)
618 return false;
620 // Do the transformation
621 // For any original GEP Call and Base %2 like
622 // %4 = bitcast %struct.net_device** %dev1 to i64*
623 // it is transformed to:
624 // %6 = load sk_buff:50:$0:0:0:2:0
625 // %7 = bitcast %struct.sk_buff* %2 to i8*
626 // %8 = getelementptr i8, i8* %7, %6
627 // %9 = bitcast i8* %8 to i64*
628 // using %9 instead of %4
629 // The original Call inst is removed.
630 BasicBlock *BB = Call->getParent();
631 GlobalVariable *GV;
633 if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
634 GV = new GlobalVariable(M, Type::getInt64Ty(BB->getContext()), false,
635 GlobalVariable::ExternalLinkage, NULL, AccessKey);
636 GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
637 GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
638 GEPGlobals[AccessKey] = GV;
639 } else {
640 GV = GEPGlobals[AccessKey];
643 // Load the global variable.
644 auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV);
645 BB->getInstList().insert(Call->getIterator(), LDInst);
647 // Generate a BitCast
648 auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
649 BB->getInstList().insert(Call->getIterator(), BCInst);
651 // Generate a GetElementPtr
652 auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
653 BCInst, LDInst);
654 BB->getInstList().insert(Call->getIterator(), GEP);
656 // Generate a BitCast
657 auto *BCInst2 = new BitCastInst(GEP, Call->getType());
658 BB->getInstList().insert(Call->getIterator(), BCInst2);
660 Call->replaceAllUsesWith(BCInst2);
661 Call->eraseFromParent();
663 return true;
666 bool BPFAbstractMemberAccess::doTransformation(Module &M) {
667 bool Transformed = false;
669 for (Function &F : M) {
670 // Collect PreserveDIAccessIndex Intrinsic call chains.
671 // The call chains will be used to generate the access
672 // patterns similar to GEP.
673 collectAICallChains(M, F);
675 for (auto &C : BaseAICalls)
676 Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
679 return removePreserveAccessIndexIntrinsic(M) || Transformed;