[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / Hexagon / HexagonISelDAGToDAG.cpp
blob605fcfc25559de50889427be6ffb8d7d970b874d
1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the Hexagon target.
11 //===----------------------------------------------------------------------===//
13 #include "Hexagon.h"
14 #include "HexagonISelDAGToDAG.h"
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonTargetMachine.h"
18 #include "llvm/CodeGen/FunctionLoweringInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/Intrinsics.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 using namespace llvm;
26 #define DEBUG_TYPE "hexagon-isel"
28 static
29 cl::opt<bool>
30 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
31 cl::desc("Rebalance address calculation trees to improve "
32 "instruction selection"));
34 // Rebalance only if this allows e.g. combining a GA with an offset or
35 // factoring out a shift.
36 static
37 cl::opt<bool>
38 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
39 cl::desc("Rebalance address tree only if this allows optimizations"));
41 static
42 cl::opt<bool>
43 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
44 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
46 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
47 cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
49 //===----------------------------------------------------------------------===//
50 // Instruction Selector Implementation
51 //===----------------------------------------------------------------------===//
53 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
54 #include "HexagonGenDAGISel.inc"
56 /// createHexagonISelDag - This pass converts a legalized DAG into a
57 /// Hexagon-specific DAG, ready for instruction scheduling.
58 ///
59 namespace llvm {
60 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
61 CodeGenOpt::Level OptLevel) {
62 return new HexagonDAGToDAGISel(TM, OptLevel);
66 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
67 SDValue Chain = LD->getChain();
68 SDValue Base = LD->getBasePtr();
69 SDValue Offset = LD->getOffset();
70 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
71 EVT LoadedVT = LD->getMemoryVT();
72 unsigned Opcode = 0;
74 // Check for zero extended loads. Treat any-extend loads as zero extended
75 // loads.
76 ISD::LoadExtType ExtType = LD->getExtensionType();
77 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
78 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
80 assert(LoadedVT.isSimple());
81 switch (LoadedVT.getSimpleVT().SimpleTy) {
82 case MVT::i8:
83 if (IsZeroExt)
84 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
85 else
86 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
87 break;
88 case MVT::i16:
89 if (IsZeroExt)
90 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
91 else
92 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
93 break;
94 case MVT::i32:
95 case MVT::f32:
96 case MVT::v2i16:
97 case MVT::v4i8:
98 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
99 break;
100 case MVT::i64:
101 case MVT::f64:
102 case MVT::v2i32:
103 case MVT::v4i16:
104 case MVT::v8i8:
105 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
106 break;
107 case MVT::v64i8:
108 case MVT::v32i16:
109 case MVT::v16i32:
110 case MVT::v8i64:
111 case MVT::v128i8:
112 case MVT::v64i16:
113 case MVT::v32i32:
114 case MVT::v16i64:
115 if (isAlignedMemNode(LD)) {
116 if (LD->isNonTemporal())
117 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
118 else
119 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
120 } else {
121 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
123 break;
124 default:
125 llvm_unreachable("Unexpected memory type in indexed load");
128 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
129 MachineMemOperand *MemOp = LD->getMemOperand();
131 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
132 -> MachineSDNode* {
133 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
134 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
135 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
136 Zero, SDValue(N, 0));
138 if (ExtType == ISD::SEXTLOAD)
139 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
140 SDValue(N, 0));
141 return N;
144 // Loaded value Next address Chain
145 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
146 SDValue To[3];
148 EVT ValueVT = LD->getValueType(0);
149 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
150 // A load extending to i64 will actually produce i32, which will then
151 // need to be extended to i64.
152 assert(LoadedVT.getSizeInBits() <= 32);
153 ValueVT = MVT::i32;
156 if (IsValidInc) {
157 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
158 MVT::i32, MVT::Other, Base,
159 IncV, Chain);
160 CurDAG->setNodeMemRefs(L, {MemOp});
161 To[1] = SDValue(L, 1); // Next address.
162 To[2] = SDValue(L, 2); // Chain.
163 // Handle special case for extension to i64.
164 if (LD->getValueType(0) == MVT::i64)
165 L = getExt64(L, dl);
166 To[0] = SDValue(L, 0); // Loaded (extended) value.
167 } else {
168 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
169 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
170 Base, Zero, Chain);
171 CurDAG->setNodeMemRefs(L, {MemOp});
172 To[2] = SDValue(L, 1); // Chain.
173 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
174 Base, IncV);
175 To[1] = SDValue(A, 0); // Next address.
176 // Handle special case for extension to i64.
177 if (LD->getValueType(0) == MVT::i64)
178 L = getExt64(L, dl);
179 To[0] = SDValue(L, 0); // Loaded (extended) value.
181 ReplaceUses(From, To, 3);
182 CurDAG->RemoveDeadNode(LD);
185 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
186 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
187 return nullptr;
189 SDLoc dl(IntN);
190 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
192 static std::map<unsigned,unsigned> LoadPciMap = {
193 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
194 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
195 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
196 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
197 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
198 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
200 auto FLC = LoadPciMap.find(IntNo);
201 if (FLC != LoadPciMap.end()) {
202 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
203 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
204 // Operands: { Base, Increment, Modifier, Chain }
205 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
206 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
207 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
208 { IntN->getOperand(2), I, IntN->getOperand(4),
209 IntN->getOperand(0) });
210 return Res;
213 return nullptr;
216 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
217 SDNode *IntN) {
218 // The "LoadN" is just a machine load instruction. The intrinsic also
219 // involves storing it. Generate an appropriate store to the location
220 // given in the intrinsic's operand(3).
221 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
222 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
223 HexagonII::MemAccesSizeMask;
224 unsigned Size = 1U << (SizeBits-1);
226 SDLoc dl(IntN);
227 MachinePointerInfo PI;
228 SDValue TS;
229 SDValue Loc = IntN->getOperand(3);
231 if (Size >= 4)
232 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
233 Size);
234 else
235 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
236 PI, MVT::getIntegerVT(Size * 8), Size);
238 SDNode *StoreN;
240 HandleSDNode Handle(TS);
241 SelectStore(TS.getNode());
242 StoreN = Handle.getValue().getNode();
245 // Load's results are { Loaded value, Updated pointer, Chain }
246 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
247 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
248 return StoreN;
251 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
252 // The intrinsics for load circ/brev perform two operations:
253 // 1. Load a value V from the specified location, using the addressing
254 // mode corresponding to the intrinsic.
255 // 2. Store V into a specified location. This location is typically a
256 // local, temporary object.
257 // In many cases, the program using these intrinsics will immediately
258 // load V again from the local object. In those cases, when certain
259 // conditions are met, the last load can be removed.
260 // This function identifies and optimizes this pattern. If the pattern
261 // cannot be optimized, it returns nullptr, which will cause the load
262 // to be selected separately from the intrinsic (which will be handled
263 // in SelectIntrinsicWChain).
265 SDValue Ch = N->getOperand(0);
266 SDValue Loc = N->getOperand(1);
268 // Assume that the load and the intrinsic are connected directly with a
269 // chain:
270 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
271 // t2: i32,ch = load t1:1, Loc, ...
272 SDNode *C = Ch.getNode();
274 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
275 return false;
277 // The second load can only be eliminated if its extension type matches
278 // that of the load instruction corresponding to the intrinsic. The user
279 // can provide an address of an unsigned variable to store the result of
280 // a sign-extending intrinsic into (or the other way around).
281 ISD::LoadExtType IntExt;
282 switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
283 case Intrinsic::hexagon_circ_ldub:
284 case Intrinsic::hexagon_circ_lduh:
285 IntExt = ISD::ZEXTLOAD;
286 break;
287 case Intrinsic::hexagon_circ_ldw:
288 case Intrinsic::hexagon_circ_ldd:
289 IntExt = ISD::NON_EXTLOAD;
290 break;
291 default:
292 IntExt = ISD::SEXTLOAD;
293 break;
295 if (N->getExtensionType() != IntExt)
296 return false;
298 // Make sure the target location for the loaded value in the load intrinsic
299 // is the location from which LD (or N) is loading.
300 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
301 return false;
303 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
304 SDNode *S = StoreInstrForLoadIntrinsic(L, C);
305 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
306 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
307 ReplaceUses(F, T, array_lengthof(T));
308 // This transformation will leave the intrinsic dead. If it remains in
309 // the DAG, the selection code will see it again, but without the load,
310 // and it will generate a store that is normally required for it.
311 CurDAG->RemoveDeadNode(C);
312 return true;
314 return false;
317 // Convert the bit-reverse load intrinsic to appropriate target instruction.
318 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
319 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
320 return false;
322 const SDLoc &dl(IntN);
323 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
325 static const std::map<unsigned, unsigned> LoadBrevMap = {
326 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
327 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
328 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
329 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
330 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
331 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
333 auto FLI = LoadBrevMap.find(IntNo);
334 if (FLI != LoadBrevMap.end()) {
335 EVT ValTy =
336 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
337 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
338 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
339 // modifier}.
340 // Operands of target instruction: { Base, Modifier, Chain }.
341 MachineSDNode *Res = CurDAG->getMachineNode(
342 FLI->second, dl, RTys,
343 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
345 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
346 CurDAG->setNodeMemRefs(Res, {MemOp});
348 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
349 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
350 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
351 CurDAG->RemoveDeadNode(IntN);
352 return true;
354 return false;
357 /// Generate a machine instruction node for the new circlar buffer intrinsics.
358 /// The new versions use a CSx register instead of the K field.
359 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
360 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
361 return false;
363 SDLoc DL(IntN);
364 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
365 SmallVector<SDValue, 7> Ops;
367 static std::map<unsigned,unsigned> LoadNPcMap = {
368 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
369 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
370 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
371 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
372 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
373 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
374 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
375 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
376 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
377 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
378 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
379 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
381 auto FLI = LoadNPcMap.find (IntNo);
382 if (FLI != LoadNPcMap.end()) {
383 EVT ValTy = MVT::i32;
384 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
385 IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
386 ValTy = MVT::i64;
387 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
388 // Handle load.*_pci case which has 6 operands.
389 if (IntN->getNumOperands() == 6) {
390 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
391 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
392 // Operands: { Base, Increment, Modifier, Start, Chain }.
393 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
394 IntN->getOperand(0) };
395 } else
396 // Handle load.*_pcr case which has 5 operands.
397 // Operands: { Base, Modifier, Start, Chain }.
398 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
399 IntN->getOperand(0) };
400 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
401 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
402 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
403 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
404 CurDAG->RemoveDeadNode(IntN);
405 return true;
408 static std::map<unsigned,unsigned> StoreNPcMap = {
409 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
410 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
411 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
412 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
413 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
414 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
415 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
416 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
417 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
418 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
420 auto FSI = StoreNPcMap.find (IntNo);
421 if (FSI != StoreNPcMap.end()) {
422 EVT RTys[] = { MVT::i32, MVT::Other };
423 // Handle store.*_pci case which has 7 operands.
424 if (IntN->getNumOperands() == 7) {
425 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
426 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
427 // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
428 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
429 IntN->getOperand(6), IntN->getOperand(0) };
430 } else
431 // Handle store.*_pcr case which has 6 operands.
432 // Operands: { Base, Modifier, Value, Start, Chain }.
433 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
434 IntN->getOperand(5), IntN->getOperand(0) };
435 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
436 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
437 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
438 CurDAG->RemoveDeadNode(IntN);
439 return true;
442 return false;
445 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
446 SDLoc dl(N);
447 LoadSDNode *LD = cast<LoadSDNode>(N);
449 // Handle indexed loads.
450 ISD::MemIndexedMode AM = LD->getAddressingMode();
451 if (AM != ISD::UNINDEXED) {
452 SelectIndexedLoad(LD, dl);
453 return;
456 // Handle patterns using circ/brev load intrinsics.
457 if (tryLoadOfLoadIntrinsic(LD))
458 return;
460 SelectCode(LD);
463 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
464 SDValue Chain = ST->getChain();
465 SDValue Base = ST->getBasePtr();
466 SDValue Offset = ST->getOffset();
467 SDValue Value = ST->getValue();
468 // Get the constant value.
469 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
470 EVT StoredVT = ST->getMemoryVT();
471 EVT ValueVT = Value.getValueType();
473 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
474 unsigned Opcode = 0;
476 assert(StoredVT.isSimple());
477 switch (StoredVT.getSimpleVT().SimpleTy) {
478 case MVT::i8:
479 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
480 break;
481 case MVT::i16:
482 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
483 break;
484 case MVT::i32:
485 case MVT::f32:
486 case MVT::v2i16:
487 case MVT::v4i8:
488 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
489 break;
490 case MVT::i64:
491 case MVT::f64:
492 case MVT::v2i32:
493 case MVT::v4i16:
494 case MVT::v8i8:
495 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
496 break;
497 case MVT::v64i8:
498 case MVT::v32i16:
499 case MVT::v16i32:
500 case MVT::v8i64:
501 case MVT::v128i8:
502 case MVT::v64i16:
503 case MVT::v32i32:
504 case MVT::v16i64:
505 if (isAlignedMemNode(ST)) {
506 if (ST->isNonTemporal())
507 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
508 else
509 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
510 } else {
511 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
513 break;
514 default:
515 llvm_unreachable("Unexpected memory type in indexed store");
518 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
519 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
520 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
521 dl, MVT::i32, Value);
524 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
525 MachineMemOperand *MemOp = ST->getMemOperand();
527 // Next address Chain
528 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
529 SDValue To[2];
531 if (IsValidInc) {
532 // Build post increment store.
533 SDValue Ops[] = { Base, IncV, Value, Chain };
534 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
535 Ops);
536 CurDAG->setNodeMemRefs(S, {MemOp});
537 To[0] = SDValue(S, 0);
538 To[1] = SDValue(S, 1);
539 } else {
540 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
541 SDValue Ops[] = { Base, Zero, Value, Chain };
542 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
543 CurDAG->setNodeMemRefs(S, {MemOp});
544 To[1] = SDValue(S, 0);
545 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
546 Base, IncV);
547 To[0] = SDValue(A, 0);
550 ReplaceUses(From, To, 2);
551 CurDAG->RemoveDeadNode(ST);
554 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
555 SDLoc dl(N);
556 StoreSDNode *ST = cast<StoreSDNode>(N);
558 // Handle indexed stores.
559 ISD::MemIndexedMode AM = ST->getAddressingMode();
560 if (AM != ISD::UNINDEXED) {
561 SelectIndexedStore(ST, dl);
562 return;
565 SelectCode(ST);
568 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
569 SDLoc dl(N);
570 SDValue Shl_0 = N->getOperand(0);
571 SDValue Shl_1 = N->getOperand(1);
573 auto Default = [this,N] () -> void { SelectCode(N); };
575 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
576 return Default();
578 // RHS is const.
579 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
581 if (Shl_0.getOpcode() == ISD::MUL) {
582 SDValue Mul_0 = Shl_0.getOperand(0); // Val
583 SDValue Mul_1 = Shl_0.getOperand(1); // Const
584 // RHS of mul is const.
585 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
586 int32_t ValConst = C->getSExtValue() << ShlConst;
587 if (isInt<9>(ValConst)) {
588 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
589 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
590 MVT::i32, Mul_0, Val);
591 ReplaceNode(N, Result);
592 return;
595 return Default();
598 if (Shl_0.getOpcode() == ISD::SUB) {
599 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
600 SDValue Sub_1 = Shl_0.getOperand(1); // Val
601 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
602 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
603 return Default();
604 SDValue Shl2_0 = Sub_1.getOperand(0); // Val
605 SDValue Shl2_1 = Sub_1.getOperand(1); // Const
606 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
607 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
608 if (isInt<9>(-ValConst)) {
609 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
610 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
611 MVT::i32, Shl2_0, Val);
612 ReplaceNode(N, Result);
613 return;
619 return Default();
623 // Handling intrinsics for circular load and bitreverse load.
625 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
626 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
627 StoreInstrForLoadIntrinsic(L, N);
628 CurDAG->RemoveDeadNode(N);
629 return;
632 // Handle bit-reverse load intrinsics.
633 if (SelectBrevLdIntrinsic(N))
634 return;
636 if (SelectNewCircIntrinsic(N))
637 return;
639 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
640 if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
641 IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
642 IntNo == Intrinsic::hexagon_V6_vgathermh ||
643 IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
644 IntNo == Intrinsic::hexagon_V6_vgathermhw ||
645 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
646 SelectV65Gather(N);
647 return;
649 if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
650 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
651 IntNo == Intrinsic::hexagon_V6_vgathermhq ||
652 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
653 IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
654 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
655 SelectV65GatherPred(N);
656 return;
659 SelectCode(N);
662 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
663 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
664 unsigned Bits;
665 switch (IID) {
666 case Intrinsic::hexagon_S2_vsplatrb:
667 Bits = 8;
668 break;
669 case Intrinsic::hexagon_S2_vsplatrh:
670 Bits = 16;
671 break;
672 case Intrinsic::hexagon_V6_vaddcarry:
673 case Intrinsic::hexagon_V6_vaddcarry_128B:
674 case Intrinsic::hexagon_V6_vsubcarry:
675 case Intrinsic::hexagon_V6_vsubcarry_128B:
676 SelectHVXDualOutput(N);
677 return;
678 default:
679 SelectCode(N);
680 return;
683 SDValue V = N->getOperand(1);
684 SDValue U;
685 if (keepsLowBits(V, Bits, U)) {
686 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
687 N->getOperand(0), U);
688 ReplaceNode(N, R.getNode());
689 SelectCode(R.getNode());
690 return;
692 SelectCode(N);
696 // Map floating point constant values.
698 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
699 SDLoc dl(N);
700 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
701 APInt A = CN->getValueAPF().bitcastToAPInt();
702 if (N->getValueType(0) == MVT::f32) {
703 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
704 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
705 return;
707 if (N->getValueType(0) == MVT::f64) {
708 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
709 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
710 return;
713 SelectCode(N);
717 // Map boolean values.
719 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
720 if (N->getValueType(0) == MVT::i1) {
721 assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
722 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
723 ? Hexagon::PS_true
724 : Hexagon::PS_false;
725 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
726 return;
729 SelectCode(N);
732 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
733 MachineFrameInfo &MFI = MF->getFrameInfo();
734 const HexagonFrameLowering *HFI = HST->getFrameLowering();
735 int FX = cast<FrameIndexSDNode>(N)->getIndex();
736 unsigned StkA = HFI->getStackAlignment();
737 unsigned MaxA = MFI.getMaxAlignment();
738 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
739 SDLoc DL(N);
740 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
741 SDNode *R = nullptr;
743 // Use PS_fi when:
744 // - the object is fixed, or
745 // - there are no objects with higher-than-default alignment, or
746 // - there are no dynamically allocated objects.
747 // Otherwise, use PS_fia.
748 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
749 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
750 } else {
751 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
752 unsigned AR = HMFI.getStackAlignBaseVReg();
753 SDValue CH = CurDAG->getEntryNode();
754 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
755 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
758 ReplaceNode(N, R);
761 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
762 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
763 : Hexagon::A4_subp_c;
764 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
765 { N->getOperand(0), N->getOperand(1),
766 N->getOperand(2) });
767 ReplaceNode(N, C);
770 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
771 MVT ResTy = N->getValueType(0).getSimpleVT();
772 if (HST->isHVXVectorType(ResTy, true))
773 return SelectHvxVAlign(N);
775 const SDLoc &dl(N);
776 unsigned VecLen = ResTy.getSizeInBits();
777 if (VecLen == 32) {
778 SDValue Ops[] = {
779 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
780 N->getOperand(0),
781 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
782 N->getOperand(1),
783 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
785 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
786 MVT::i64, Ops);
788 // Shift right by "(Addr & 0x3) * 8" bytes.
789 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
790 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
791 SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
792 M0, N->getOperand(2), M1);
793 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
794 SDValue(R, 0), SDValue(C, 0));
795 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
796 SDValue(S, 0));
797 ReplaceNode(N, E.getNode());
798 } else {
799 assert(VecLen == 64);
800 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
801 N->getOperand(2));
802 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
803 N->getOperand(0), N->getOperand(1),
804 SDValue(Pu,0));
805 ReplaceNode(N, VA);
809 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
810 const SDLoc &dl(N);
811 SDValue A = N->getOperand(1);
812 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
813 assert(isPowerOf2_32(-Mask));
815 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
816 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
817 N->getOperand(0), M);
818 ReplaceNode(N, AA);
821 // Handle these nodes here to avoid having to write patterns for all
822 // combinations of input/output types. In all cases, the resulting
823 // instruction is the same.
824 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
825 SDValue Op = N->getOperand(0);
826 MVT OpTy = Op.getValueType().getSimpleVT();
827 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
828 CurDAG->getVTList(OpTy), {Op});
829 ReplaceNode(T, Op.getNode());
832 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
833 MVT ResTy = N->getValueType(0).getSimpleVT();
834 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
835 N->getOperand(0));
836 ReplaceNode(N, T);
839 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
840 const SDLoc &dl(N);
841 MVT ResTy = N->getValueType(0).getSimpleVT();
842 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
843 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
844 N->getOperand(0), Zero);
845 ReplaceNode(N, T);
848 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
849 const SDLoc &dl(N);
850 MVT ResTy = N->getValueType(0).getSimpleVT();
851 // The argument to V2Q should be a single vector.
852 MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy;
853 assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits());
855 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
856 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
857 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
858 N->getOperand(0), SDValue(R,0));
859 ReplaceNode(N, T);
862 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
863 const SDLoc &dl(N);
864 MVT ResTy = N->getValueType(0).getSimpleVT();
865 // The result of V2Q should be a single vector.
866 assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits());
868 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
869 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
870 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
871 N->getOperand(0), SDValue(R,0));
872 ReplaceNode(N, T);
875 void HexagonDAGToDAGISel::Select(SDNode *N) {
876 if (N->isMachineOpcode())
877 return N->setNodeId(-1); // Already selected.
879 switch (N->getOpcode()) {
880 case ISD::Constant: return SelectConstant(N);
881 case ISD::ConstantFP: return SelectConstantFP(N);
882 case ISD::FrameIndex: return SelectFrameIndex(N);
883 case ISD::SHL: return SelectSHL(N);
884 case ISD::LOAD: return SelectLoad(N);
885 case ISD::STORE: return SelectStore(N);
886 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N);
887 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N);
889 case HexagonISD::ADDC:
890 case HexagonISD::SUBC: return SelectAddSubCarry(N);
891 case HexagonISD::VALIGN: return SelectVAlign(N);
892 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N);
893 case HexagonISD::TYPECAST: return SelectTypecast(N);
894 case HexagonISD::P2D: return SelectP2D(N);
895 case HexagonISD::D2P: return SelectD2P(N);
896 case HexagonISD::Q2V: return SelectQ2V(N);
897 case HexagonISD::V2Q: return SelectV2Q(N);
900 if (HST->useHVXOps()) {
901 switch (N->getOpcode()) {
902 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N);
903 case HexagonISD::VROR: return SelectHvxRor(N);
907 SelectCode(N);
910 bool HexagonDAGToDAGISel::
911 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
912 std::vector<SDValue> &OutOps) {
913 SDValue Inp = Op, Res;
915 switch (ConstraintID) {
916 default:
917 return true;
918 case InlineAsm::Constraint_i:
919 case InlineAsm::Constraint_o: // Offsetable.
920 case InlineAsm::Constraint_v: // Not offsetable.
921 case InlineAsm::Constraint_m: // Memory.
922 if (SelectAddrFI(Inp, Res))
923 OutOps.push_back(Res);
924 else
925 OutOps.push_back(Inp);
926 break;
929 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
930 return false;
934 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
935 // I is an operand of U. Check if U is an arithmetic (binary) operation
936 // usable in a memop, where the other operand is a loaded value, and the
937 // result of U is stored in the same location.
939 if (!U->hasOneUse())
940 return false;
941 unsigned Opc = U->getOpcode();
942 switch (Opc) {
943 case ISD::ADD:
944 case ISD::SUB:
945 case ISD::AND:
946 case ISD::OR:
947 break;
948 default:
949 return false;
952 SDValue S0 = U->getOperand(0);
953 SDValue S1 = U->getOperand(1);
954 SDValue SY = (S0.getNode() == I) ? S1 : S0;
956 SDNode *UUse = *U->use_begin();
957 if (UUse->getNumValues() != 1)
958 return false;
960 // Check if one of the inputs to U is a load instruction and the output
961 // is used by a store instruction. If so and they also have the same
962 // base pointer, then don't preoprocess this node sequence as it
963 // can be matched to a memop.
964 SDNode *SYNode = SY.getNode();
965 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
966 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
967 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
968 if (LDBasePtr == STBasePtr)
969 return true;
971 return false;
975 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
976 // (or (select c 0 y) z) -> (select c z (or y z))
977 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
978 SelectionDAG &DAG = *CurDAG;
980 for (auto I : Nodes) {
981 if (I->getOpcode() != ISD::OR)
982 continue;
984 auto IsZero = [] (const SDValue &V) -> bool {
985 if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
986 return SC->isNullValue();
987 return false;
989 auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
990 if (Op.getOpcode() != ISD::SELECT)
991 return false;
992 return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
995 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
996 EVT VT = I->getValueType(0);
997 bool SelN0 = IsSelect0(N0);
998 SDValue SOp = SelN0 ? N0 : N1;
999 SDValue VOp = SelN0 ? N1 : N0;
1001 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1002 SDValue SC = SOp.getOperand(0);
1003 SDValue SX = SOp.getOperand(1);
1004 SDValue SY = SOp.getOperand(2);
1005 SDLoc DLS = SOp;
1006 if (IsZero(SY)) {
1007 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1008 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1009 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1010 } else if (IsZero(SX)) {
1011 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1012 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1013 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1019 // Transform: (store ch val (add x (add (shl y c) e)))
1020 // to: (store ch val (add x (shl (add y d) c))),
1021 // where e = (shl d c) for some integer d.
1022 // The purpose of this is to enable generation of loads/stores with
1023 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1024 // value c must be 0, 1 or 2.
1025 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1026 SelectionDAG &DAG = *CurDAG;
1028 for (auto I : Nodes) {
1029 if (I->getOpcode() != ISD::STORE)
1030 continue;
1032 // I matched: (store ch val Off)
1033 SDValue Off = I->getOperand(2);
1034 // Off needs to match: (add x (add (shl y c) (shl d c))))
1035 if (Off.getOpcode() != ISD::ADD)
1036 continue;
1037 // Off matched: (add x T0)
1038 SDValue T0 = Off.getOperand(1);
1039 // T0 needs to match: (add T1 T2):
1040 if (T0.getOpcode() != ISD::ADD)
1041 continue;
1042 // T0 matched: (add T1 T2)
1043 SDValue T1 = T0.getOperand(0);
1044 SDValue T2 = T0.getOperand(1);
1045 // T1 needs to match: (shl y c)
1046 if (T1.getOpcode() != ISD::SHL)
1047 continue;
1048 SDValue C = T1.getOperand(1);
1049 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1050 if (CN == nullptr)
1051 continue;
1052 unsigned CV = CN->getZExtValue();
1053 if (CV > 2)
1054 continue;
1055 // T2 needs to match e, where e = (shl d c) for some d.
1056 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1057 if (EN == nullptr)
1058 continue;
1059 unsigned EV = EN->getZExtValue();
1060 if (EV % (1 << CV) != 0)
1061 continue;
1062 unsigned DV = EV / (1 << CV);
1064 // Replace T0 with: (shl (add y d) c)
1065 SDLoc DL = SDLoc(I);
1066 EVT VT = T0.getValueType();
1067 SDValue D = DAG.getConstant(DV, DL, VT);
1068 // NewAdd = (add y d)
1069 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1070 // NewShl = (shl NewAdd c)
1071 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1072 ReplaceNode(T0.getNode(), NewShl.getNode());
1076 // Transform: (load ch (add x (and (srl y c) Mask)))
1077 // to: (load ch (add x (shl (srl y d) d-c)))
1078 // where
1079 // Mask = 00..0 111..1 0.0
1080 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1081 // | +-------- 1s
1082 // +-------------- at most c 0s
1083 // Motivating example:
1084 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1085 // to (add x (and (srl y 3) 1FFFFFFC))
1086 // which results in a constant-extended and(##...,lsr). This transformation
1087 // undoes this simplification for cases where the shl can be folded into
1088 // an addressing mode.
1089 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1090 SelectionDAG &DAG = *CurDAG;
1092 for (SDNode *N : Nodes) {
1093 unsigned Opc = N->getOpcode();
1094 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1095 continue;
1096 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1097 // Addr must match: (add x T0)
1098 if (Addr.getOpcode() != ISD::ADD)
1099 continue;
1100 SDValue T0 = Addr.getOperand(1);
1101 // T0 must match: (and T1 Mask)
1102 if (T0.getOpcode() != ISD::AND)
1103 continue;
1105 // We have an AND.
1107 // Check the first operand. It must be: (srl y c).
1108 SDValue S = T0.getOperand(0);
1109 if (S.getOpcode() != ISD::SRL)
1110 continue;
1111 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1112 if (SN == nullptr)
1113 continue;
1114 if (SN->getAPIntValue().getBitWidth() != 32)
1115 continue;
1116 uint32_t CV = SN->getZExtValue();
1118 // Check the second operand: the supposed mask.
1119 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1120 if (MN == nullptr)
1121 continue;
1122 if (MN->getAPIntValue().getBitWidth() != 32)
1123 continue;
1124 uint32_t Mask = MN->getZExtValue();
1125 // Examine the mask.
1126 uint32_t TZ = countTrailingZeros(Mask);
1127 uint32_t M1 = countTrailingOnes(Mask >> TZ);
1128 uint32_t LZ = countLeadingZeros(Mask);
1129 // Trailing zeros + middle ones + leading zeros must equal the width.
1130 if (TZ + M1 + LZ != 32)
1131 continue;
1132 // The number of trailing zeros will be encoded in the addressing mode.
1133 if (TZ > 2)
1134 continue;
1135 // The number of leading zeros must be at most c.
1136 if (LZ > CV)
1137 continue;
1139 // All looks good.
1140 SDValue Y = S.getOperand(0);
1141 EVT VT = Addr.getValueType();
1142 SDLoc dl(S);
1143 // TZ = D-C, so D = TZ+C.
1144 SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1145 SDValue DC = DAG.getConstant(TZ, dl, VT);
1146 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1147 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1148 ReplaceNode(T0.getNode(), NewShl.getNode());
1152 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1153 // (op ... 1 ...))
1154 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1155 SelectionDAG &DAG = *CurDAG;
1157 for (SDNode *N : Nodes) {
1158 unsigned Opc = N->getOpcode();
1159 if (Opc != ISD::ZERO_EXTEND)
1160 continue;
1161 SDValue OpI1 = N->getOperand(0);
1162 EVT OpVT = OpI1.getValueType();
1163 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1164 continue;
1165 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1166 SDNode *U = *I;
1167 if (U->getNumValues() != 1)
1168 continue;
1169 EVT UVT = U->getValueType(0);
1170 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1171 continue;
1172 if (isMemOPCandidate(N, U))
1173 continue;
1175 // Potentially simplifiable operation.
1176 unsigned I1N = I.getOperandNo();
1177 SmallVector<SDValue,2> Ops(U->getNumOperands());
1178 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1179 Ops[i] = U->getOperand(i);
1180 EVT BVT = Ops[I1N].getValueType();
1182 SDLoc dl(U);
1183 SDValue C0 = DAG.getConstant(0, dl, BVT);
1184 SDValue C1 = DAG.getConstant(1, dl, BVT);
1185 SDValue If0, If1;
1187 if (isa<MachineSDNode>(U)) {
1188 unsigned UseOpc = U->getMachineOpcode();
1189 Ops[I1N] = C0;
1190 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1191 Ops[I1N] = C1;
1192 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1193 } else {
1194 unsigned UseOpc = U->getOpcode();
1195 Ops[I1N] = C0;
1196 If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1197 Ops[I1N] = C1;
1198 If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1200 SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0);
1201 DAG.ReplaceAllUsesWith(U, Sel.getNode());
1206 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1207 // Repack all nodes before calling each preprocessing function,
1208 // because each of them can modify the set of nodes.
1209 auto getNodes = [this] () -> std::vector<SDNode*> {
1210 std::vector<SDNode*> T;
1211 T.reserve(CurDAG->allnodes_size());
1212 for (SDNode &N : CurDAG->allnodes())
1213 T.push_back(&N);
1214 return T;
1217 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
1218 // (or (select c 0 y) z) -> (select c z (or y z))
1219 ppSimplifyOrSelect0(getNodes());
1221 // Transform: (store ch val (add x (add (shl y c) e)))
1222 // to: (store ch val (add x (shl (add y d) c))),
1223 // where e = (shl d c) for some integer d.
1224 // The purpose of this is to enable generation of loads/stores with
1225 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1226 // value c must be 0, 1 or 2.
1227 ppAddrReorderAddShl(getNodes());
1229 // Transform: (load ch (add x (and (srl y c) Mask)))
1230 // to: (load ch (add x (shl (srl y d) d-c)))
1231 // where
1232 // Mask = 00..0 111..1 0.0
1233 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1234 // | +-------- 1s
1235 // +-------------- at most c 0s
1236 // Motivating example:
1237 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1238 // to (add x (and (srl y 3) 1FFFFFFC))
1239 // which results in a constant-extended and(##...,lsr). This transformation
1240 // undoes this simplification for cases where the shl can be folded into
1241 // an addressing mode.
1242 ppAddrRewriteAndSrl(getNodes());
1244 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1245 // (op ... 1 ...))
1246 ppHoistZextI1(getNodes());
1248 DEBUG_WITH_TYPE("isel", {
1249 dbgs() << "Preprocessed (Hexagon) selection DAG:";
1250 CurDAG->dump();
1253 if (EnableAddressRebalancing) {
1254 rebalanceAddressTrees();
1256 DEBUG_WITH_TYPE("isel", {
1257 dbgs() << "Address tree balanced selection DAG:";
1258 CurDAG->dump();
1263 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
1264 auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
1265 auto &HFI = *HST.getFrameLowering();
1266 if (!HFI.needsAligna(*MF))
1267 return;
1269 MachineFrameInfo &MFI = MF->getFrameInfo();
1270 MachineBasicBlock *EntryBB = &MF->front();
1271 unsigned AR = FuncInfo->CreateReg(MVT::i32);
1272 unsigned MaxA = MFI.getMaxAlignment();
1273 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
1274 .addImm(MaxA);
1275 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
1278 // Match a frame index that can be used in an addressing mode.
1279 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1280 if (N.getOpcode() != ISD::FrameIndex)
1281 return false;
1282 auto &HFI = *HST->getFrameLowering();
1283 MachineFrameInfo &MFI = MF->getFrameInfo();
1284 int FX = cast<FrameIndexSDNode>(N)->getIndex();
1285 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1286 return false;
1287 R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1288 return true;
1291 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1292 return SelectGlobalAddress(N, R, false, 0);
1295 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1296 return SelectGlobalAddress(N, R, true, 0);
1299 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1300 return SelectAnyImmediate(N, R, 0);
1303 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1304 return SelectAnyImmediate(N, R, 0);
1306 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1307 return SelectAnyImmediate(N, R, 1);
1309 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1310 return SelectAnyImmediate(N, R, 2);
1312 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1313 return SelectAnyImmediate(N, R, 3);
1316 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1317 EVT T = N.getValueType();
1318 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1319 return false;
1320 R = N;
1321 return true;
1324 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1325 uint32_t LogAlign) {
1326 auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1327 return alignTo(V, (uint64_t)1 << LogAlign) == V;
1330 switch (N.getOpcode()) {
1331 case ISD::Constant: {
1332 if (N.getValueType() != MVT::i32)
1333 return false;
1334 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1335 if (!IsAligned(V))
1336 return false;
1337 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1338 return true;
1340 case HexagonISD::JT:
1341 case HexagonISD::CP:
1342 // These are assumed to always be aligned at least 8-byte boundary.
1343 if (LogAlign > 3)
1344 return false;
1345 R = N.getOperand(0);
1346 return true;
1347 case ISD::ExternalSymbol:
1348 // Symbols may be aligned at any boundary.
1349 if (LogAlign > 0)
1350 return false;
1351 R = N;
1352 return true;
1353 case ISD::BlockAddress:
1354 // Block address is always aligned at least 4-byte boundary.
1355 if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset()))
1356 return false;
1357 R = N;
1358 return true;
1361 if (SelectGlobalAddress(N, R, false, LogAlign) ||
1362 SelectGlobalAddress(N, R, true, LogAlign))
1363 return true;
1365 return false;
1368 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1369 bool UseGP, uint32_t LogAlign) {
1370 auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1371 return alignTo(V, (uint64_t)1 << LogAlign) == V;
1374 switch (N.getOpcode()) {
1375 case ISD::ADD: {
1376 SDValue N0 = N.getOperand(0);
1377 SDValue N1 = N.getOperand(1);
1378 unsigned GAOpc = N0.getOpcode();
1379 if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1380 return false;
1381 if (!UseGP && GAOpc != HexagonISD::CONST32)
1382 return false;
1383 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1384 SDValue Addr = N0.getOperand(0);
1385 // For the purpose of alignment, sextvalue and zextvalue are the same.
1386 if (!IsAligned(Const->getZExtValue()))
1387 return false;
1388 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1389 if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1390 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1391 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1392 N.getValueType(), NewOff);
1393 return true;
1397 break;
1399 case HexagonISD::CP:
1400 case HexagonISD::JT:
1401 case HexagonISD::CONST32:
1402 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1403 // want in the instruction.
1404 if (!UseGP)
1405 R = N.getOperand(0);
1406 return !UseGP;
1407 case HexagonISD::CONST32_GP:
1408 if (UseGP)
1409 R = N.getOperand(0);
1410 return UseGP;
1411 default:
1412 return false;
1415 return false;
1418 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1419 // This (complex pattern) function is meant to detect a sign-extension
1420 // i32->i64 on a per-operand basis. This would allow writing single
1421 // patterns that would cover a number of combinations of different ways
1422 // a sign-extensions could be written. For example:
1423 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1424 // could match either one of these:
1425 // (mul (sext x) (sext_inreg y))
1426 // (mul (sext-load *p) (sext_inreg y))
1427 // (mul (sext_inreg x) (sext y))
1428 // etc.
1430 // The returned value will have type i64 and its low word will
1431 // contain the value being extended. The high bits are not specified.
1432 // The returned type is i64 because the original type of N was i64,
1433 // but the users of this function should only use the low-word of the
1434 // result, e.g.
1435 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1437 if (N.getValueType() != MVT::i64)
1438 return false;
1439 unsigned Opc = N.getOpcode();
1440 switch (Opc) {
1441 case ISD::SIGN_EXTEND:
1442 case ISD::SIGN_EXTEND_INREG: {
1443 // sext_inreg has the source type as a separate operand.
1444 EVT T = Opc == ISD::SIGN_EXTEND
1445 ? N.getOperand(0).getValueType()
1446 : cast<VTSDNode>(N.getOperand(1))->getVT();
1447 unsigned SW = T.getSizeInBits();
1448 if (SW == 32)
1449 R = N.getOperand(0);
1450 else if (SW < 32)
1451 R = N;
1452 else
1453 return false;
1454 break;
1456 case ISD::LOAD: {
1457 LoadSDNode *L = cast<LoadSDNode>(N);
1458 if (L->getExtensionType() != ISD::SEXTLOAD)
1459 return false;
1460 // All extending loads extend to i32, so even if the value in
1461 // memory is shorter than 32 bits, it will be i32 after the load.
1462 if (L->getMemoryVT().getSizeInBits() > 32)
1463 return false;
1464 R = N;
1465 break;
1467 case ISD::SRA: {
1468 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1469 if (!S || S->getZExtValue() != 32)
1470 return false;
1471 R = N;
1472 break;
1474 default:
1475 return false;
1477 EVT RT = R.getValueType();
1478 if (RT == MVT::i64)
1479 return true;
1480 assert(RT == MVT::i32);
1481 // This is only to produce a value of type i64. Do not rely on the
1482 // high bits produced by this.
1483 const SDLoc &dl(N);
1484 SDValue Ops[] = {
1485 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1486 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1487 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1489 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1490 MVT::i64, Ops);
1491 R = SDValue(T, 0);
1492 return true;
1495 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1496 SDValue &Src) {
1497 unsigned Opc = Val.getOpcode();
1498 switch (Opc) {
1499 case ISD::SIGN_EXTEND:
1500 case ISD::ZERO_EXTEND:
1501 case ISD::ANY_EXTEND: {
1502 const SDValue &Op0 = Val.getOperand(0);
1503 EVT T = Op0.getValueType();
1504 if (T.isInteger() && T.getSizeInBits() == NumBits) {
1505 Src = Op0;
1506 return true;
1508 break;
1510 case ISD::SIGN_EXTEND_INREG:
1511 case ISD::AssertSext:
1512 case ISD::AssertZext:
1513 if (Val.getOperand(0).getValueType().isInteger()) {
1514 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1515 if (T->getVT().getSizeInBits() == NumBits) {
1516 Src = Val.getOperand(0);
1517 return true;
1520 break;
1521 case ISD::AND: {
1522 // Check if this is an AND with NumBits of lower bits set to 1.
1523 uint64_t Mask = (1 << NumBits) - 1;
1524 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1525 if (C->getZExtValue() == Mask) {
1526 Src = Val.getOperand(1);
1527 return true;
1530 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1531 if (C->getZExtValue() == Mask) {
1532 Src = Val.getOperand(0);
1533 return true;
1536 break;
1538 case ISD::OR:
1539 case ISD::XOR: {
1540 // OR/XOR with the lower NumBits bits set to 0.
1541 uint64_t Mask = (1 << NumBits) - 1;
1542 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1543 if ((C->getZExtValue() & Mask) == 0) {
1544 Src = Val.getOperand(1);
1545 return true;
1548 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1549 if ((C->getZExtValue() & Mask) == 0) {
1550 Src = Val.getOperand(0);
1551 return true;
1554 break;
1556 default:
1557 break;
1559 return false;
1562 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1563 return N->getAlignment() >= N->getMemoryVT().getStoreSize();
1566 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1567 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1568 switch (N->getMemoryVT().getStoreSize()) {
1569 case 1:
1570 return StackSize <= 56; // 1*2^6 - 8
1571 case 2:
1572 return StackSize <= 120; // 2*2^6 - 8
1573 case 4:
1574 return StackSize <= 248; // 4*2^6 - 8
1575 default:
1576 return false;
1580 // Return true when the given node fits in a positive half word.
1581 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1582 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1583 int64_t V = CN->getSExtValue();
1584 return V > 0 && isInt<16>(V);
1586 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1587 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1588 return VN->getVT().getSizeInBits() <= 16;
1590 return false;
1593 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1594 return !CheckSingleUse || N->hasOneUse();
1597 ////////////////////////////////////////////////////////////////////////////////
1598 // Rebalancing of address calculation trees
1600 static bool isOpcodeHandled(const SDNode *N) {
1601 switch (N->getOpcode()) {
1602 case ISD::ADD:
1603 case ISD::MUL:
1604 return true;
1605 case ISD::SHL:
1606 // We only handle constant shifts because these can be easily flattened
1607 // into multiplications by 2^Op1.
1608 return isa<ConstantSDNode>(N->getOperand(1).getNode());
1609 default:
1610 return false;
1614 /// Return the weight of an SDNode
1615 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1616 if (!isOpcodeHandled(N))
1617 return 1;
1618 assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1619 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1620 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1621 return RootWeights[N];
1624 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1625 if (!isOpcodeHandled(N))
1626 return 0;
1627 assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1628 "Cannot query height of unvisited/RAUW'd node!");
1629 return RootHeights[N];
1632 namespace {
1633 struct WeightedLeaf {
1634 SDValue Value;
1635 int Weight;
1636 int InsertionOrder;
1638 WeightedLeaf() : Value(SDValue()) { }
1640 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1641 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1642 assert(Weight >= 0 && "Weight must be >= 0");
1645 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1646 assert(A.Value.getNode() && B.Value.getNode());
1647 return A.Weight == B.Weight ?
1648 (A.InsertionOrder > B.InsertionOrder) :
1649 (A.Weight > B.Weight);
1653 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1654 /// constants and allows removal of non-top elements while maintaining the
1655 /// priority order.
1656 class LeafPrioQueue {
1657 SmallVector<WeightedLeaf, 8> Q;
1658 bool HaveConst;
1659 WeightedLeaf ConstElt;
1660 unsigned Opcode;
1662 public:
1663 bool empty() {
1664 return (!HaveConst && Q.empty());
1667 size_t size() {
1668 return Q.size() + HaveConst;
1671 bool hasConst() {
1672 return HaveConst;
1675 const WeightedLeaf &top() {
1676 if (HaveConst)
1677 return ConstElt;
1678 return Q.front();
1681 WeightedLeaf pop() {
1682 if (HaveConst) {
1683 HaveConst = false;
1684 return ConstElt;
1686 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1687 return Q.pop_back_val();
1690 void push(WeightedLeaf L, bool SeparateConst=true) {
1691 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1692 if (Opcode == ISD::MUL &&
1693 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1694 return;
1695 if (Opcode == ISD::ADD &&
1696 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1697 return;
1699 HaveConst = true;
1700 ConstElt = L;
1701 } else {
1702 Q.push_back(L);
1703 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1707 /// Push L to the bottom of the queue regardless of its weight. If L is
1708 /// constant, it will not be folded with other constants in the queue.
1709 void pushToBottom(WeightedLeaf L) {
1710 L.Weight = 1000;
1711 push(L, false);
1714 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1715 /// lowest weight and remove it from the queue.
1716 WeightedLeaf findSHL(uint64_t MaxAmount);
1718 WeightedLeaf findMULbyConst();
1720 LeafPrioQueue(unsigned Opcode) :
1721 HaveConst(false), Opcode(Opcode) { }
1723 } // end anonymous namespace
1725 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1726 int ResultPos;
1727 WeightedLeaf Result;
1729 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1730 const WeightedLeaf &L = Q[Pos];
1731 const SDValue &Val = L.Value;
1732 if (Val.getOpcode() != ISD::SHL ||
1733 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1734 Val.getConstantOperandVal(1) > MaxAmount)
1735 continue;
1736 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1737 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1739 Result = L;
1740 ResultPos = Pos;
1744 if (Result.Value.getNode()) {
1745 Q.erase(&Q[ResultPos]);
1746 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1749 return Result;
1752 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1753 int ResultPos;
1754 WeightedLeaf Result;
1756 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1757 const WeightedLeaf &L = Q[Pos];
1758 const SDValue &Val = L.Value;
1759 if (Val.getOpcode() != ISD::MUL ||
1760 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1761 Val.getConstantOperandVal(1) > 127)
1762 continue;
1763 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1764 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1766 Result = L;
1767 ResultPos = Pos;
1771 if (Result.Value.getNode()) {
1772 Q.erase(&Q[ResultPos]);
1773 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1776 return Result;
1779 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1780 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1781 return CurDAG->getConstant(MulFactor, SDLoc(N),
1782 N->getOperand(1).getValueType());
1785 /// @returns the value x for which 2^x is a factor of Val
1786 static unsigned getPowerOf2Factor(SDValue Val) {
1787 if (Val.getOpcode() == ISD::MUL) {
1788 unsigned MaxFactor = 0;
1789 for (int i = 0; i < 2; ++i) {
1790 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1791 if (!C)
1792 continue;
1793 const APInt &CInt = C->getAPIntValue();
1794 if (CInt.getBoolValue())
1795 MaxFactor = CInt.countTrailingZeros();
1797 return MaxFactor;
1799 if (Val.getOpcode() == ISD::SHL) {
1800 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1801 return 0;
1802 return (unsigned) Val.getConstantOperandVal(1);
1805 return 0;
1808 /// @returns true if V>>Amount will eliminate V's operation on its child
1809 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1810 if (V.getOpcode() == ISD::MUL) {
1811 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1812 for (int i = 0; i < 2; ++i)
1813 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1814 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1815 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1816 return (NewConst == 1);
1818 } else if (V.getOpcode() == ISD::SHL) {
1819 return (Amount == V.getConstantOperandVal(1));
1822 return false;
1825 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1826 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1827 if (V.getOpcode() == ISD::MUL) {
1828 for (int i=0; i < 2; ++i) {
1829 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1830 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1831 uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1832 if (NewConst == 1)
1833 return Ops[!i];
1834 Ops[i] = CurDAG->getConstant(NewConst,
1835 SDLoc(V), V.getValueType());
1836 break;
1839 } else if (V.getOpcode() == ISD::SHL) {
1840 uint64_t ShiftAmount = V.getConstantOperandVal(1);
1841 if (ShiftAmount == Power)
1842 return Ops[0];
1843 Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1844 SDLoc(V), V.getValueType());
1847 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1850 static bool isTargetConstant(const SDValue &V) {
1851 return V.getOpcode() == HexagonISD::CONST32 ||
1852 V.getOpcode() == HexagonISD::CONST32_GP;
1855 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1856 if (GAUsesInFunction.count(V))
1857 return GAUsesInFunction[V];
1859 unsigned Result = 0;
1860 const Function &CurF = CurDAG->getMachineFunction().getFunction();
1861 for (const User *U : V->users()) {
1862 if (isa<Instruction>(U) &&
1863 cast<Instruction>(U)->getParent()->getParent() == &CurF)
1864 ++Result;
1867 GAUsesInFunction[V] = Result;
1869 return Result;
1872 /// Note - After calling this, N may be dead. It may have been replaced by a
1873 /// new node, so always use the returned value in place of N.
1875 /// @returns The SDValue taking the place of N (which could be N if it is
1876 /// unchanged)
1877 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1878 assert(RootWeights.count(N) && "Cannot balance non-root node.");
1879 assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1880 assert(!TopLevel || N->getOpcode() == ISD::ADD);
1882 // Return early if this node was already visited
1883 if (RootWeights[N] != -1)
1884 return SDValue(N, 0);
1886 assert(isOpcodeHandled(N));
1888 SDValue Op0 = N->getOperand(0);
1889 SDValue Op1 = N->getOperand(1);
1891 // Return early if the operands will remain unchanged or are all roots
1892 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1893 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1894 SDNode *Op0N = Op0.getNode();
1895 int Weight;
1896 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1897 Weight = getWeight(balanceSubTree(Op0N).getNode());
1898 // Weight = calculateWeight(Op0N);
1899 } else
1900 Weight = getWeight(Op0N);
1902 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1903 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1904 Weight += getWeight(balanceSubTree(Op1N).getNode());
1905 // Weight += calculateWeight(Op1N);
1906 } else
1907 Weight += getWeight(Op1N);
1909 RootWeights[N] = Weight;
1910 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1911 getHeight(N->getOperand(1).getNode())) + 1;
1913 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1914 << " Height=" << RootHeights[N] << "): ");
1915 LLVM_DEBUG(N->dump(CurDAG));
1917 return SDValue(N, 0);
1920 LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1921 LLVM_DEBUG(N->dump(CurDAG));
1923 unsigned NOpcode = N->getOpcode();
1925 LeafPrioQueue Leaves(NOpcode);
1926 SmallVector<SDValue, 4> Worklist;
1927 Worklist.push_back(SDValue(N, 0));
1929 // SHL nodes will be converted to MUL nodes
1930 if (NOpcode == ISD::SHL)
1931 NOpcode = ISD::MUL;
1933 bool CanFactorize = false;
1934 WeightedLeaf Mul1, Mul2;
1935 unsigned MaxPowerOf2 = 0;
1936 WeightedLeaf GA;
1938 // Do not try to factor out a shift if there is already a shift at the tip of
1939 // the tree.
1940 bool HaveTopLevelShift = false;
1941 if (TopLevel &&
1942 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
1943 Op0.getConstantOperandVal(1) < 4) ||
1944 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
1945 Op1.getConstantOperandVal(1) < 4)))
1946 HaveTopLevelShift = true;
1948 // Flatten the subtree into an ordered list of leaves; at the same time
1949 // determine whether the tree is already balanced.
1950 int InsertionOrder = 0;
1951 SmallDenseMap<SDValue, int> NodeHeights;
1952 bool Imbalanced = false;
1953 int CurrentWeight = 0;
1954 while (!Worklist.empty()) {
1955 SDValue Child = Worklist.pop_back_val();
1957 if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
1958 // CASE 1: Child is a root note
1960 int Weight = RootWeights[Child.getNode()];
1961 if (Weight == -1) {
1962 Child = balanceSubTree(Child.getNode());
1963 // calculateWeight(Child.getNode());
1964 Weight = getWeight(Child.getNode());
1965 } else if (Weight == -2) {
1966 // Whoops, this node was RAUWd by one of the balanceSubTree calls we
1967 // made. Our worklist isn't up to date anymore.
1968 // Restart the whole process.
1969 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
1970 return balanceSubTree(N, TopLevel);
1973 NodeHeights[Child] = 1;
1974 CurrentWeight += Weight;
1976 unsigned PowerOf2;
1977 if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
1978 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
1979 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
1980 // Try to identify two factorizable MUL/SHL children greedily. Leave
1981 // them out of the priority queue for now so we can deal with them
1982 // after.
1983 if (!Mul1.Value.getNode()) {
1984 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
1985 MaxPowerOf2 = PowerOf2;
1986 } else {
1987 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
1988 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
1990 // Our addressing modes can only shift by a maximum of 3
1991 if (MaxPowerOf2 > 3)
1992 MaxPowerOf2 = 3;
1994 CanFactorize = true;
1996 } else
1997 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
1998 } else if (!isOpcodeHandled(Child.getNode())) {
1999 // CASE 2: Child is an unhandled kind of node (e.g. constant)
2000 int Weight = getWeight(Child.getNode());
2002 NodeHeights[Child] = getHeight(Child.getNode());
2003 CurrentWeight += Weight;
2005 if (isTargetConstant(Child) && !GA.Value.getNode())
2006 GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2007 else
2008 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2009 } else {
2010 // CASE 3: Child is a subtree of same opcode
2011 // Visit children first, then flatten.
2012 unsigned ChildOpcode = Child.getOpcode();
2013 assert(ChildOpcode == NOpcode ||
2014 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2016 // Convert SHL to MUL
2017 SDValue Op1;
2018 if (ChildOpcode == ISD::SHL)
2019 Op1 = getMultiplierForSHL(Child.getNode());
2020 else
2021 Op1 = Child->getOperand(1);
2023 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2024 assert(!NodeHeights.count(Child) && "Parent visited before children?");
2025 // Visit children first, then re-visit this node
2026 Worklist.push_back(Child);
2027 Worklist.push_back(Op1);
2028 Worklist.push_back(Child->getOperand(0));
2029 } else {
2030 // Back at this node after visiting the children
2031 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2032 Imbalanced = true;
2034 NodeHeights[Child] = std::max(NodeHeights[Op1],
2035 NodeHeights[Child->getOperand(0)]) + 1;
2040 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2041 << " weight=" << CurrentWeight
2042 << " imbalanced=" << Imbalanced << "\n");
2044 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2045 // This factors out a shift in order to match memw(a<<Y+b).
2046 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2047 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2048 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2049 int Weight = Mul1.Weight + Mul2.Weight;
2050 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2051 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2052 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2053 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2054 Mul1Factored, Mul2Factored);
2055 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2056 Mul1.Value.getValueType());
2057 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2058 Sum, Const);
2059 NodeHeights[New] = Height;
2060 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2061 } else if (Mul1.Value.getNode()) {
2062 // We failed to factorize two MULs, so now the Muls are left outside the
2063 // queue... add them back.
2064 Leaves.push(Mul1);
2065 if (Mul2.Value.getNode())
2066 Leaves.push(Mul2);
2067 CanFactorize = false;
2070 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2071 // and the root node itself is not used more than twice. This reduces the
2072 // amount of additional constant extenders introduced by this optimization.
2073 bool CombinedGA = false;
2074 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2075 GA.Value.hasOneUse() && N->use_size() < 3) {
2076 GlobalAddressSDNode *GANode =
2077 cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2078 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2080 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2081 getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2082 LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2083 << Offset->getSExtValue() << "): ");
2084 LLVM_DEBUG(GANode->dump(CurDAG));
2086 SDValue NewTGA =
2087 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2088 GANode->getValueType(0),
2089 GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2090 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2091 GA.Value.getValueType(), NewTGA);
2092 GA.Weight += Leaves.top().Weight;
2094 NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2095 CombinedGA = true;
2097 Leaves.pop(); // Remove the offset constant from the queue
2101 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2102 (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2103 RootWeights[N] = CurrentWeight;
2104 RootHeights[N] = NodeHeights[SDValue(N, 0)];
2106 return SDValue(N, 0);
2109 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2110 if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2111 WeightedLeaf SHL = Leaves.findSHL(31);
2112 if (SHL.Value.getNode()) {
2113 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2114 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2115 GA.Value.getValueType(),
2116 GA.Value, SHL.Value);
2117 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2118 NodeHeights[GA.Value] = Height;
2122 if (GA.Value.getNode())
2123 Leaves.push(GA);
2125 // If this is the top level and we haven't factored out a shift, we should try
2126 // to move a constant to the bottom to match addressing modes like memw(rX+C)
2127 if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2128 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2129 Leaves.pushToBottom(Leaves.pop());
2132 const DataLayout &DL = CurDAG->getDataLayout();
2133 const TargetLowering &TLI = *getTargetLowering();
2135 // Rebuild the tree using Huffman's algorithm
2136 while (Leaves.size() > 1) {
2137 WeightedLeaf L0 = Leaves.pop();
2139 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2140 // otherwise just get the next leaf
2141 WeightedLeaf L1 = Leaves.findMULbyConst();
2142 if (!L1.Value.getNode())
2143 L1 = Leaves.pop();
2145 assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2147 SDValue V0 = L0.Value;
2148 int V0Weight = L0.Weight;
2149 SDValue V1 = L1.Value;
2150 int V1Weight = L1.Weight;
2152 // Make sure that none of these nodes have been RAUW'd
2153 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2154 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2155 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2156 return balanceSubTree(N, TopLevel);
2159 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2160 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2161 EVT VT = N->getValueType(0);
2162 SDValue NewNode;
2164 if (V0C && !V1C) {
2165 std::swap(V0, V1);
2166 std::swap(V0C, V1C);
2169 // Calculate height of this node
2170 assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2171 "Children must have been visited before re-combining them!");
2172 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2174 // Rebuild this node (and restore SHL from MUL if needed)
2175 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2176 NewNode = CurDAG->getNode(
2177 ISD::SHL, SDLoc(V0), VT, V0,
2178 CurDAG->getConstant(
2179 V1C->getAPIntValue().logBase2(), SDLoc(N),
2180 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2181 else
2182 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2184 NodeHeights[NewNode] = Height;
2186 int Weight = V0Weight + V1Weight;
2187 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2189 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2190 << ",Height=" << Height << "):\n");
2191 LLVM_DEBUG(NewNode.dump());
2194 assert(Leaves.size() == 1);
2195 SDValue NewRoot = Leaves.top().Value;
2197 assert(NodeHeights.count(NewRoot));
2198 int Height = NodeHeights[NewRoot];
2200 // Restore SHL if we earlier converted it to a MUL
2201 if (NewRoot.getOpcode() == ISD::MUL) {
2202 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2203 if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2204 EVT VT = NewRoot.getValueType();
2205 SDValue V0 = NewRoot.getOperand(0);
2206 NewRoot = CurDAG->getNode(
2207 ISD::SHL, SDLoc(NewRoot), VT, V0,
2208 CurDAG->getConstant(
2209 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2210 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2214 if (N != NewRoot.getNode()) {
2215 LLVM_DEBUG(dbgs() << "--> Root is now: ");
2216 LLVM_DEBUG(NewRoot.dump());
2218 // Replace all uses of old root by new root
2219 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2220 // Mark that we have RAUW'd N
2221 RootWeights[N] = -2;
2222 } else {
2223 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2226 RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2227 RootHeights[NewRoot.getNode()] = Height;
2229 return NewRoot;
2232 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2233 for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
2234 SDNode *N = &*I++;
2235 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2236 continue;
2238 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2239 if (BasePtr.getOpcode() != ISD::ADD)
2240 continue;
2242 // We've already processed this node
2243 if (RootWeights.count(BasePtr.getNode()))
2244 continue;
2246 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2247 LLVM_DEBUG(N->dump(CurDAG));
2249 // FindRoots
2250 SmallVector<SDNode *, 4> Worklist;
2252 Worklist.push_back(BasePtr.getOperand(0).getNode());
2253 Worklist.push_back(BasePtr.getOperand(1).getNode());
2255 while (!Worklist.empty()) {
2256 SDNode *N = Worklist.pop_back_val();
2257 unsigned Opcode = N->getOpcode();
2259 if (!isOpcodeHandled(N))
2260 continue;
2262 Worklist.push_back(N->getOperand(0).getNode());
2263 Worklist.push_back(N->getOperand(1).getNode());
2265 // Not a root if it has only one use and same opcode as its parent
2266 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2267 continue;
2269 // This root node has already been processed
2270 if (RootWeights.count(N))
2271 continue;
2273 RootWeights[N] = -1;
2276 // Balance node itself
2277 RootWeights[BasePtr.getNode()] = -1;
2278 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2280 if (N->getOpcode() == ISD::LOAD)
2281 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2282 NewBasePtr, N->getOperand(2));
2283 else
2284 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2285 NewBasePtr, N->getOperand(3));
2287 LLVM_DEBUG(dbgs() << "--> Final node: ");
2288 LLVM_DEBUG(N->dump(CurDAG));
2291 CurDAG->RemoveDeadNodes();
2292 GAUsesInFunction.clear();
2293 RootHeights.clear();
2294 RootWeights.clear();