1 //===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to NVPTX assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "NVPTXAsmPrinter.h"
15 #include "MCTargetDesc/NVPTXBaseInfo.h"
16 #include "MCTargetDesc/NVPTXInstPrinter.h"
17 #include "MCTargetDesc/NVPTXMCAsmInfo.h"
18 #include "MCTargetDesc/NVPTXTargetStreamer.h"
20 #include "NVPTXMCExpr.h"
21 #include "NVPTXMachineFunctionInfo.h"
22 #include "NVPTXRegisterInfo.h"
23 #include "NVPTXSubtarget.h"
24 #include "NVPTXTargetMachine.h"
25 #include "NVPTXUtilities.h"
26 #include "TargetInfo/NVPTXTargetInfo.h"
27 #include "cl_common_defines.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DenseSet.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/Analysis/ConstantFolding.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineLoopInfo.h"
45 #include "llvm/CodeGen/MachineModuleInfo.h"
46 #include "llvm/CodeGen/MachineOperand.h"
47 #include "llvm/CodeGen/MachineRegisterInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/ValueTypes.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/BasicBlock.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugInfo.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/GlobalValue.h"
62 #include "llvm/IR/GlobalVariable.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/MC/MCExpr.h"
70 #include "llvm/MC/MCInst.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCStreamer.h"
73 #include "llvm/MC/MCSymbol.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/MachineValueType.h"
78 #include "llvm/Support/Path.h"
79 #include "llvm/Support/TargetRegistry.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Target/TargetLoweringObjectFile.h"
82 #include "llvm/Target/TargetMachine.h"
83 #include "llvm/Transforms/Utils/UnrollLoop.h"
94 #define DEPOTNAME "__local_depot"
96 /// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
99 DiscoverDependentGlobals(const Value
*V
,
100 DenseSet
<const GlobalVariable
*> &Globals
) {
101 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
104 if (const User
*U
= dyn_cast
<User
>(V
)) {
105 for (unsigned i
= 0, e
= U
->getNumOperands(); i
!= e
; ++i
) {
106 DiscoverDependentGlobals(U
->getOperand(i
), Globals
);
112 /// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
113 /// instances to be emitted, but only after any dependents have been added
116 VisitGlobalVariableForEmission(const GlobalVariable
*GV
,
117 SmallVectorImpl
<const GlobalVariable
*> &Order
,
118 DenseSet
<const GlobalVariable
*> &Visited
,
119 DenseSet
<const GlobalVariable
*> &Visiting
) {
120 // Have we already visited this one?
121 if (Visited
.count(GV
))
124 // Do we have a circular dependency?
125 if (!Visiting
.insert(GV
).second
)
126 report_fatal_error("Circular dependency found in global variable set");
128 // Make sure we visit all dependents first
129 DenseSet
<const GlobalVariable
*> Others
;
130 for (unsigned i
= 0, e
= GV
->getNumOperands(); i
!= e
; ++i
)
131 DiscoverDependentGlobals(GV
->getOperand(i
), Others
);
133 for (DenseSet
<const GlobalVariable
*>::iterator I
= Others
.begin(),
136 VisitGlobalVariableForEmission(*I
, Order
, Visited
, Visiting
);
138 // Now we can visit ourself
144 void NVPTXAsmPrinter::EmitInstruction(const MachineInstr
*MI
) {
146 lowerToMCInst(MI
, Inst
);
147 EmitToStreamer(*OutStreamer
, Inst
);
150 // Handle symbol backtracking for targets that do not support image handles
151 bool NVPTXAsmPrinter::lowerImageHandleOperand(const MachineInstr
*MI
,
152 unsigned OpNo
, MCOperand
&MCOp
) {
153 const MachineOperand
&MO
= MI
->getOperand(OpNo
);
154 const MCInstrDesc
&MCID
= MI
->getDesc();
156 if (MCID
.TSFlags
& NVPTXII::IsTexFlag
) {
157 // This is a texture fetch, so operand 4 is a texref and operand 5 is
159 if (OpNo
== 4 && MO
.isImm()) {
160 lowerImageHandleSymbol(MO
.getImm(), MCOp
);
163 if (OpNo
== 5 && MO
.isImm() && !(MCID
.TSFlags
& NVPTXII::IsTexModeUnifiedFlag
)) {
164 lowerImageHandleSymbol(MO
.getImm(), MCOp
);
169 } else if (MCID
.TSFlags
& NVPTXII::IsSuldMask
) {
171 1 << (((MCID
.TSFlags
& NVPTXII::IsSuldMask
) >> NVPTXII::IsSuldShift
) - 1);
173 // For a surface load of vector size N, the Nth operand will be the surfref
174 if (OpNo
== VecSize
&& MO
.isImm()) {
175 lowerImageHandleSymbol(MO
.getImm(), MCOp
);
180 } else if (MCID
.TSFlags
& NVPTXII::IsSustFlag
) {
181 // This is a surface store, so operand 0 is a surfref
182 if (OpNo
== 0 && MO
.isImm()) {
183 lowerImageHandleSymbol(MO
.getImm(), MCOp
);
188 } else if (MCID
.TSFlags
& NVPTXII::IsSurfTexQueryFlag
) {
189 // This is a query, so operand 1 is a surfref/texref
190 if (OpNo
== 1 && MO
.isImm()) {
191 lowerImageHandleSymbol(MO
.getImm(), MCOp
);
201 void NVPTXAsmPrinter::lowerImageHandleSymbol(unsigned Index
, MCOperand
&MCOp
) {
203 LLVMTargetMachine
&TM
= const_cast<LLVMTargetMachine
&>(MF
->getTarget());
204 NVPTXTargetMachine
&nvTM
= static_cast<NVPTXTargetMachine
&>(TM
);
205 const NVPTXMachineFunctionInfo
*MFI
= MF
->getInfo
<NVPTXMachineFunctionInfo
>();
206 const char *Sym
= MFI
->getImageHandleSymbol(Index
);
207 std::string
*SymNamePtr
=
208 nvTM
.getManagedStrPool()->getManagedString(Sym
);
209 MCOp
= GetSymbolRef(OutContext
.getOrCreateSymbol(StringRef(*SymNamePtr
)));
212 void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr
*MI
, MCInst
&OutMI
) {
213 OutMI
.setOpcode(MI
->getOpcode());
214 // Special: Do not mangle symbol operand of CALL_PROTOTYPE
215 if (MI
->getOpcode() == NVPTX::CALL_PROTOTYPE
) {
216 const MachineOperand
&MO
= MI
->getOperand(0);
217 OutMI
.addOperand(GetSymbolRef(
218 OutContext
.getOrCreateSymbol(Twine(MO
.getSymbolName()))));
222 const NVPTXSubtarget
&STI
= MI
->getMF()->getSubtarget
<NVPTXSubtarget
>();
223 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
224 const MachineOperand
&MO
= MI
->getOperand(i
);
227 if (!STI
.hasImageHandles()) {
228 if (lowerImageHandleOperand(MI
, i
, MCOp
)) {
229 OutMI
.addOperand(MCOp
);
234 if (lowerOperand(MO
, MCOp
))
235 OutMI
.addOperand(MCOp
);
239 bool NVPTXAsmPrinter::lowerOperand(const MachineOperand
&MO
,
241 switch (MO
.getType()) {
242 default: llvm_unreachable("unknown operand type");
243 case MachineOperand::MO_Register
:
244 MCOp
= MCOperand::createReg(encodeVirtualRegister(MO
.getReg()));
246 case MachineOperand::MO_Immediate
:
247 MCOp
= MCOperand::createImm(MO
.getImm());
249 case MachineOperand::MO_MachineBasicBlock
:
250 MCOp
= MCOperand::createExpr(MCSymbolRefExpr::create(
251 MO
.getMBB()->getSymbol(), OutContext
));
253 case MachineOperand::MO_ExternalSymbol
:
254 MCOp
= GetSymbolRef(GetExternalSymbolSymbol(MO
.getSymbolName()));
256 case MachineOperand::MO_GlobalAddress
:
257 MCOp
= GetSymbolRef(getSymbol(MO
.getGlobal()));
259 case MachineOperand::MO_FPImmediate
: {
260 const ConstantFP
*Cnt
= MO
.getFPImm();
261 const APFloat
&Val
= Cnt
->getValueAPF();
263 switch (Cnt
->getType()->getTypeID()) {
264 default: report_fatal_error("Unsupported FP type"); break;
266 MCOp
= MCOperand::createExpr(
267 NVPTXFloatMCExpr::createConstantFPHalf(Val
, OutContext
));
269 case Type::FloatTyID
:
270 MCOp
= MCOperand::createExpr(
271 NVPTXFloatMCExpr::createConstantFPSingle(Val
, OutContext
));
273 case Type::DoubleTyID
:
274 MCOp
= MCOperand::createExpr(
275 NVPTXFloatMCExpr::createConstantFPDouble(Val
, OutContext
));
284 unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg
) {
285 if (Register::isVirtualRegister(Reg
)) {
286 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
288 DenseMap
<unsigned, unsigned> &RegMap
= VRegMapping
[RC
];
289 unsigned RegNum
= RegMap
[Reg
];
291 // Encode the register class in the upper 4 bits
292 // Must be kept in sync with NVPTXInstPrinter::printRegName
294 if (RC
== &NVPTX::Int1RegsRegClass
) {
296 } else if (RC
== &NVPTX::Int16RegsRegClass
) {
298 } else if (RC
== &NVPTX::Int32RegsRegClass
) {
300 } else if (RC
== &NVPTX::Int64RegsRegClass
) {
302 } else if (RC
== &NVPTX::Float32RegsRegClass
) {
304 } else if (RC
== &NVPTX::Float64RegsRegClass
) {
306 } else if (RC
== &NVPTX::Float16RegsRegClass
) {
308 } else if (RC
== &NVPTX::Float16x2RegsRegClass
) {
311 report_fatal_error("Bad register class");
314 // Insert the vreg number
315 Ret
|= (RegNum
& 0x0FFFFFFF);
318 // Some special-use registers are actually physical registers.
319 // Encode this as the register class ID of 0 and the real register ID.
320 return Reg
& 0x0FFFFFFF;
324 MCOperand
NVPTXAsmPrinter::GetSymbolRef(const MCSymbol
*Symbol
) {
326 Expr
= MCSymbolRefExpr::create(Symbol
, MCSymbolRefExpr::VK_None
,
328 return MCOperand::createExpr(Expr
);
331 void NVPTXAsmPrinter::printReturnValStr(const Function
*F
, raw_ostream
&O
) {
332 const DataLayout
&DL
= getDataLayout();
333 const NVPTXSubtarget
&STI
= TM
.getSubtarget
<NVPTXSubtarget
>(*F
);
334 const TargetLowering
*TLI
= STI
.getTargetLowering();
336 Type
*Ty
= F
->getReturnType();
338 bool isABI
= (STI
.getSmVersion() >= 20);
340 if (Ty
->getTypeID() == Type::VoidTyID
)
346 if (Ty
->isFloatingPointTy() || (Ty
->isIntegerTy() && !Ty
->isIntegerTy(128))) {
348 if (auto *ITy
= dyn_cast
<IntegerType
>(Ty
)) {
349 size
= ITy
->getBitWidth();
351 assert(Ty
->isFloatingPointTy() && "Floating point type expected here");
352 size
= Ty
->getPrimitiveSizeInBits();
354 // PTX ABI requires all scalar return values to be at least 32
355 // bits in size. fp16 normally uses .b16 as its storage type in
356 // PTX, so its size must be adjusted here, too.
360 O
<< ".param .b" << size
<< " func_retval0";
361 } else if (isa
<PointerType
>(Ty
)) {
362 O
<< ".param .b" << TLI
->getPointerTy(DL
).getSizeInBits()
364 } else if (Ty
->isAggregateType() || Ty
->isVectorTy() || Ty
->isIntegerTy(128)) {
365 unsigned totalsz
= DL
.getTypeAllocSize(Ty
);
366 unsigned retAlignment
= 0;
367 if (!getAlign(*F
, 0, retAlignment
))
368 retAlignment
= DL
.getABITypeAlignment(Ty
);
369 O
<< ".param .align " << retAlignment
<< " .b8 func_retval0[" << totalsz
372 llvm_unreachable("Unknown return type");
374 SmallVector
<EVT
, 16> vtparts
;
375 ComputeValueVTs(*TLI
, DL
, Ty
, vtparts
);
377 for (unsigned i
= 0, e
= vtparts
.size(); i
!= e
; ++i
) {
379 EVT elemtype
= vtparts
[i
];
380 if (vtparts
[i
].isVector()) {
381 elems
= vtparts
[i
].getVectorNumElements();
382 elemtype
= vtparts
[i
].getVectorElementType();
385 for (unsigned j
= 0, je
= elems
; j
!= je
; ++j
) {
386 unsigned sz
= elemtype
.getSizeInBits();
387 if (elemtype
.isInteger() && (sz
< 32))
389 O
<< ".reg .b" << sz
<< " func_retval" << idx
;
401 void NVPTXAsmPrinter::printReturnValStr(const MachineFunction
&MF
,
403 const Function
&F
= MF
.getFunction();
404 printReturnValStr(&F
, O
);
407 // Return true if MBB is the header of a loop marked with
408 // llvm.loop.unroll.disable.
409 // TODO: consider "#pragma unroll 1" which is equivalent to "#pragma nounroll".
410 bool NVPTXAsmPrinter::isLoopHeaderOfNoUnroll(
411 const MachineBasicBlock
&MBB
) const {
412 MachineLoopInfo
&LI
= getAnalysis
<MachineLoopInfo
>();
413 // We insert .pragma "nounroll" only to the loop header.
414 if (!LI
.isLoopHeader(&MBB
))
417 // llvm.loop.unroll.disable is marked on the back edges of a loop. Therefore,
418 // we iterate through each back edge of the loop with header MBB, and check
419 // whether its metadata contains llvm.loop.unroll.disable.
420 for (auto I
= MBB
.pred_begin(); I
!= MBB
.pred_end(); ++I
) {
421 const MachineBasicBlock
*PMBB
= *I
;
422 if (LI
.getLoopFor(PMBB
) != LI
.getLoopFor(&MBB
)) {
423 // Edges from other loops to MBB are not back edges.
426 if (const BasicBlock
*PBB
= PMBB
->getBasicBlock()) {
428 PBB
->getTerminator()->getMetadata(LLVMContext::MD_loop
)) {
429 if (GetUnrollMetadata(LoopID
, "llvm.loop.unroll.disable"))
437 void NVPTXAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock
&MBB
) {
438 AsmPrinter::EmitBasicBlockStart(MBB
);
439 if (isLoopHeaderOfNoUnroll(MBB
))
440 OutStreamer
->EmitRawText(StringRef("\t.pragma \"nounroll\";\n"));
443 void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
444 SmallString
<128> Str
;
445 raw_svector_ostream
O(Str
);
447 if (!GlobalsEmitted
) {
448 emitGlobals(*MF
->getFunction().getParent());
449 GlobalsEmitted
= true;
453 MRI
= &MF
->getRegInfo();
454 F
= &MF
->getFunction();
455 emitLinkageDirective(F
, O
);
456 if (isKernelFunction(*F
))
460 printReturnValStr(*MF
, O
);
463 CurrentFnSym
->print(O
, MAI
);
465 emitFunctionParamList(*MF
, O
);
467 if (isKernelFunction(*F
))
468 emitKernelFunctionDirectives(*F
, O
);
470 OutStreamer
->EmitRawText(O
.str());
473 // Emit open brace for function body.
474 OutStreamer
->EmitRawText(StringRef("{\n"));
475 setAndEmitFunctionVirtualRegisters(*MF
);
476 // Emit initial .loc debug directive for correct relocation symbol data.
477 if (MMI
&& MMI
->hasDebugInfo())
478 emitInitialRawDwarfLocDirective(*MF
);
481 bool NVPTXAsmPrinter::runOnMachineFunction(MachineFunction
&F
) {
482 bool Result
= AsmPrinter::runOnMachineFunction(F
);
483 // Emit closing brace for the body of function F.
484 // The closing brace must be emitted here because we need to emit additional
485 // debug labels/data after the last basic block.
486 // We need to emit the closing brace here because we don't have function that
487 // finished emission of the function body.
488 OutStreamer
->EmitRawText(StringRef("}\n"));
492 void NVPTXAsmPrinter::EmitFunctionBodyStart() {
493 SmallString
<128> Str
;
494 raw_svector_ostream
O(Str
);
495 emitDemotedVars(&MF
->getFunction(), O
);
496 OutStreamer
->EmitRawText(O
.str());
499 void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
503 const MCSymbol
*NVPTXAsmPrinter::getFunctionFrameSymbol() const {
504 SmallString
<128> Str
;
505 raw_svector_ostream(Str
) << DEPOTNAME
<< getFunctionNumber();
506 return OutContext
.getOrCreateSymbol(Str
);
509 void NVPTXAsmPrinter::emitImplicitDef(const MachineInstr
*MI
) const {
510 Register RegNo
= MI
->getOperand(0).getReg();
511 if (Register::isVirtualRegister(RegNo
)) {
512 OutStreamer
->AddComment(Twine("implicit-def: ") +
513 getVirtualRegisterName(RegNo
));
515 const NVPTXSubtarget
&STI
= MI
->getMF()->getSubtarget
<NVPTXSubtarget
>();
516 OutStreamer
->AddComment(Twine("implicit-def: ") +
517 STI
.getRegisterInfo()->getName(RegNo
));
519 OutStreamer
->AddBlankLine();
522 void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function
&F
,
523 raw_ostream
&O
) const {
524 // If the NVVM IR has some of reqntid* specified, then output
525 // the reqntid directive, and set the unspecified ones to 1.
526 // If none of reqntid* is specified, don't output reqntid directive.
527 unsigned reqntidx
, reqntidy
, reqntidz
;
528 bool specified
= false;
529 if (!getReqNTIDx(F
, reqntidx
))
533 if (!getReqNTIDy(F
, reqntidy
))
537 if (!getReqNTIDz(F
, reqntidz
))
543 O
<< ".reqntid " << reqntidx
<< ", " << reqntidy
<< ", " << reqntidz
546 // If the NVVM IR has some of maxntid* specified, then output
547 // the maxntid directive, and set the unspecified ones to 1.
548 // If none of maxntid* is specified, don't output maxntid directive.
549 unsigned maxntidx
, maxntidy
, maxntidz
;
551 if (!getMaxNTIDx(F
, maxntidx
))
555 if (!getMaxNTIDy(F
, maxntidy
))
559 if (!getMaxNTIDz(F
, maxntidz
))
565 O
<< ".maxntid " << maxntidx
<< ", " << maxntidy
<< ", " << maxntidz
569 if (getMinCTASm(F
, mincta
))
570 O
<< ".minnctapersm " << mincta
<< "\n";
573 if (getMaxNReg(F
, maxnreg
))
574 O
<< ".maxnreg " << maxnreg
<< "\n";
578 NVPTXAsmPrinter::getVirtualRegisterName(unsigned Reg
) const {
579 const TargetRegisterClass
*RC
= MRI
->getRegClass(Reg
);
582 raw_string_ostream
NameStr(Name
);
584 VRegRCMap::const_iterator I
= VRegMapping
.find(RC
);
585 assert(I
!= VRegMapping
.end() && "Bad register class");
586 const DenseMap
<unsigned, unsigned> &RegMap
= I
->second
;
588 VRegMap::const_iterator VI
= RegMap
.find(Reg
);
589 assert(VI
!= RegMap
.end() && "Bad virtual register");
590 unsigned MappedVR
= VI
->second
;
592 NameStr
<< getNVPTXRegClassStr(RC
) << MappedVR
;
598 void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr
,
600 O
<< getVirtualRegisterName(vr
);
603 void NVPTXAsmPrinter::emitDeclaration(const Function
*F
, raw_ostream
&O
) {
604 emitLinkageDirective(F
, O
);
605 if (isKernelFunction(*F
))
609 printReturnValStr(F
, O
);
610 getSymbol(F
)->print(O
, MAI
);
612 emitFunctionParamList(F
, O
);
616 static bool usedInGlobalVarDef(const Constant
*C
) {
620 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(C
)) {
621 return GV
->getName() != "llvm.used";
624 for (const User
*U
: C
->users())
625 if (const Constant
*C
= dyn_cast
<Constant
>(U
))
626 if (usedInGlobalVarDef(C
))
632 static bool usedInOneFunc(const User
*U
, Function
const *&oneFunc
) {
633 if (const GlobalVariable
*othergv
= dyn_cast
<GlobalVariable
>(U
)) {
634 if (othergv
->getName() == "llvm.used")
638 if (const Instruction
*instr
= dyn_cast
<Instruction
>(U
)) {
639 if (instr
->getParent() && instr
->getParent()->getParent()) {
640 const Function
*curFunc
= instr
->getParent()->getParent();
641 if (oneFunc
&& (curFunc
!= oneFunc
))
649 for (const User
*UU
: U
->users())
650 if (!usedInOneFunc(UU
, oneFunc
))
656 /* Find out if a global variable can be demoted to local scope.
657 * Currently, this is valid for CUDA shared variables, which have local
658 * scope and global lifetime. So the conditions to check are :
659 * 1. Is the global variable in shared address space?
660 * 2. Does it have internal linkage?
661 * 3. Is the global variable referenced only in one function?
663 static bool canDemoteGlobalVar(const GlobalVariable
*gv
, Function
const *&f
) {
664 if (!gv
->hasInternalLinkage())
666 PointerType
*Pty
= gv
->getType();
667 if (Pty
->getAddressSpace() != ADDRESS_SPACE_SHARED
)
670 const Function
*oneFunc
= nullptr;
672 bool flag
= usedInOneFunc(gv
, oneFunc
);
681 static bool useFuncSeen(const Constant
*C
,
682 DenseMap
<const Function
*, bool> &seenMap
) {
683 for (const User
*U
: C
->users()) {
684 if (const Constant
*cu
= dyn_cast
<Constant
>(U
)) {
685 if (useFuncSeen(cu
, seenMap
))
687 } else if (const Instruction
*I
= dyn_cast
<Instruction
>(U
)) {
688 const BasicBlock
*bb
= I
->getParent();
691 const Function
*caller
= bb
->getParent();
694 if (seenMap
.find(caller
) != seenMap
.end())
701 void NVPTXAsmPrinter::emitDeclarations(const Module
&M
, raw_ostream
&O
) {
702 DenseMap
<const Function
*, bool> seenMap
;
703 for (Module::const_iterator FI
= M
.begin(), FE
= M
.end(); FI
!= FE
; ++FI
) {
704 const Function
*F
= &*FI
;
706 if (F
->getAttributes().hasFnAttribute("nvptx-libcall-callee")) {
707 emitDeclaration(F
, O
);
711 if (F
->isDeclaration()) {
714 if (F
->getIntrinsicID())
716 emitDeclaration(F
, O
);
719 for (const User
*U
: F
->users()) {
720 if (const Constant
*C
= dyn_cast
<Constant
>(U
)) {
721 if (usedInGlobalVarDef(C
)) {
722 // The use is in the initialization of a global variable
723 // that is a function pointer, so print a declaration
724 // for the original function
725 emitDeclaration(F
, O
);
728 // Emit a declaration of this function if the function that
729 // uses this constant expr has already been seen.
730 if (useFuncSeen(C
, seenMap
)) {
731 emitDeclaration(F
, O
);
736 if (!isa
<Instruction
>(U
))
738 const Instruction
*instr
= cast
<Instruction
>(U
);
739 const BasicBlock
*bb
= instr
->getParent();
742 const Function
*caller
= bb
->getParent();
746 // If a caller has already been seen, then the caller is
747 // appearing in the module before the callee. so print out
748 // a declaration for the callee.
749 if (seenMap
.find(caller
) != seenMap
.end()) {
750 emitDeclaration(F
, O
);
758 static bool isEmptyXXStructor(GlobalVariable
*GV
) {
759 if (!GV
) return true;
760 const ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
761 if (!InitList
) return true; // Not an array; we don't know how to parse.
762 return InitList
->getNumOperands() == 0;
765 bool NVPTXAsmPrinter::doInitialization(Module
&M
) {
766 // Construct a default subtarget off of the TargetMachine defaults. The
767 // rest of NVPTX isn't friendly to change subtargets per function and
768 // so the default TargetMachine will have all of the options.
769 const NVPTXTargetMachine
&NTM
= static_cast<const NVPTXTargetMachine
&>(TM
);
770 const auto* STI
= static_cast<const NVPTXSubtarget
*>(NTM
.getSubtargetImpl());
772 if (M
.alias_size()) {
773 report_fatal_error("Module has aliases, which NVPTX does not support.");
774 return true; // error
776 if (!isEmptyXXStructor(M
.getNamedGlobal("llvm.global_ctors"))) {
778 "Module has a nontrivial global ctor, which NVPTX does not support.");
779 return true; // error
781 if (!isEmptyXXStructor(M
.getNamedGlobal("llvm.global_dtors"))) {
783 "Module has a nontrivial global dtor, which NVPTX does not support.");
784 return true; // error
787 SmallString
<128> Str1
;
788 raw_svector_ostream
OS1(Str1
);
790 // We need to call the parent's one explicitly.
791 bool Result
= AsmPrinter::doInitialization(M
);
793 // Emit header before any dwarf directives are emitted below.
794 emitHeader(M
, OS1
, *STI
);
795 OutStreamer
->EmitRawText(OS1
.str());
797 // Emit module-level inline asm if it exists.
798 if (!M
.getModuleInlineAsm().empty()) {
799 OutStreamer
->AddComment("Start of file scope inline assembly");
800 OutStreamer
->AddBlankLine();
801 OutStreamer
->EmitRawText(StringRef(M
.getModuleInlineAsm()));
802 OutStreamer
->AddBlankLine();
803 OutStreamer
->AddComment("End of file scope inline assembly");
804 OutStreamer
->AddBlankLine();
807 GlobalsEmitted
= false;
812 void NVPTXAsmPrinter::emitGlobals(const Module
&M
) {
813 SmallString
<128> Str2
;
814 raw_svector_ostream
OS2(Str2
);
816 emitDeclarations(M
, OS2
);
818 // As ptxas does not support forward references of globals, we need to first
819 // sort the list of module-level globals in def-use order. We visit each
820 // global variable in order, and ensure that we emit it *after* its dependent
821 // globals. We use a little extra memory maintaining both a set and a list to
822 // have fast searches while maintaining a strict ordering.
823 SmallVector
<const GlobalVariable
*, 8> Globals
;
824 DenseSet
<const GlobalVariable
*> GVVisited
;
825 DenseSet
<const GlobalVariable
*> GVVisiting
;
827 // Visit each global variable, in order
828 for (const GlobalVariable
&I
: M
.globals())
829 VisitGlobalVariableForEmission(&I
, Globals
, GVVisited
, GVVisiting
);
831 assert(GVVisited
.size() == M
.getGlobalList().size() &&
832 "Missed a global variable");
833 assert(GVVisiting
.size() == 0 && "Did not fully process a global variable");
835 // Print out module-level global variables in proper order
836 for (unsigned i
= 0, e
= Globals
.size(); i
!= e
; ++i
)
837 printModuleLevelGV(Globals
[i
], OS2
);
841 OutStreamer
->EmitRawText(OS2
.str());
844 void NVPTXAsmPrinter::emitHeader(Module
&M
, raw_ostream
&O
,
845 const NVPTXSubtarget
&STI
) {
847 O
<< "// Generated by LLVM NVPTX Back-End\n";
851 unsigned PTXVersion
= STI
.getPTXVersion();
852 O
<< ".version " << (PTXVersion
/ 10) << "." << (PTXVersion
% 10) << "\n";
855 O
<< STI
.getTargetName();
857 const NVPTXTargetMachine
&NTM
= static_cast<const NVPTXTargetMachine
&>(TM
);
858 if (NTM
.getDrvInterface() == NVPTX::NVCL
)
859 O
<< ", texmode_independent";
861 bool HasFullDebugInfo
= false;
862 for (DICompileUnit
*CU
: M
.debug_compile_units()) {
863 switch(CU
->getEmissionKind()) {
864 case DICompileUnit::NoDebug
:
865 case DICompileUnit::DebugDirectivesOnly
:
867 case DICompileUnit::LineTablesOnly
:
868 case DICompileUnit::FullDebug
:
869 HasFullDebugInfo
= true;
872 if (HasFullDebugInfo
)
875 if (MMI
&& MMI
->hasDebugInfo() && HasFullDebugInfo
)
880 O
<< ".address_size ";
890 bool NVPTXAsmPrinter::doFinalization(Module
&M
) {
891 bool HasDebugInfo
= MMI
&& MMI
->hasDebugInfo();
893 // If we did not emit any functions, then the global declarations have not
895 if (!GlobalsEmitted
) {
897 GlobalsEmitted
= true;
900 // XXX Temproarily remove global variables so that doFinalization() will not
901 // emit them again (global variables are emitted at beginning).
903 Module::GlobalListType
&global_list
= M
.getGlobalList();
904 int i
, n
= global_list
.size();
905 GlobalVariable
**gv_array
= new GlobalVariable
*[n
];
907 // first, back-up GlobalVariable in gv_array
909 for (Module::global_iterator I
= global_list
.begin(), E
= global_list
.end();
913 // second, empty global_list
914 while (!global_list
.empty())
915 global_list
.remove(global_list
.begin());
917 // call doFinalization
918 bool ret
= AsmPrinter::doFinalization(M
);
920 // now we restore global variables
921 for (i
= 0; i
< n
; i
++)
922 global_list
.insert(global_list
.end(), gv_array
[i
]);
924 clearAnnotationCache(&M
);
927 // Close the last emitted section
929 static_cast<NVPTXTargetStreamer
*>(OutStreamer
->getTargetStreamer())
930 ->closeLastSection();
931 // Emit empty .debug_loc section for better support of the empty files.
932 OutStreamer
->EmitRawText("\t.section\t.debug_loc\t{\t}");
935 // Output last DWARF .file directives, if any.
936 static_cast<NVPTXTargetStreamer
*>(OutStreamer
->getTargetStreamer())
937 ->outputDwarfFileDirectives();
941 //bool Result = AsmPrinter::doFinalization(M);
942 // Instead of calling the parents doFinalization, we may
943 // clone parents doFinalization and customize here.
944 // Currently, we if NVISA out the EmitGlobals() in
945 // parent's doFinalization, which is too intrusive.
947 // Same for the doInitialization.
951 // This function emits appropriate linkage directives for
952 // functions and global variables.
954 // extern function declaration -> .extern
955 // extern function definition -> .visible
956 // external global variable with init -> .visible
957 // external without init -> .extern
958 // appending -> not allowed, assert.
959 // for any linkage other than
960 // internal, private, linker_private,
961 // linker_private_weak, linker_private_weak_def_auto,
964 void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue
*V
,
966 if (static_cast<NVPTXTargetMachine
&>(TM
).getDrvInterface() == NVPTX::CUDA
) {
967 if (V
->hasExternalLinkage()) {
968 if (isa
<GlobalVariable
>(V
)) {
969 const GlobalVariable
*GVar
= cast
<GlobalVariable
>(V
);
971 if (GVar
->hasInitializer())
976 } else if (V
->isDeclaration())
980 } else if (V
->hasAppendingLinkage()) {
982 msg
.append("Error: ");
983 msg
.append("Symbol ");
985 msg
.append(V
->getName());
986 msg
.append("has unsupported appending linkage type");
987 llvm_unreachable(msg
.c_str());
988 } else if (!V
->hasInternalLinkage() &&
989 !V
->hasPrivateLinkage()) {
995 void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable
*GVar
,
997 bool processDemoted
) {
999 if (GVar
->hasSection()) {
1000 if (GVar
->getSection() == "llvm.metadata")
1004 // Skip LLVM intrinsic global variables
1005 if (GVar
->getName().startswith("llvm.") ||
1006 GVar
->getName().startswith("nvvm."))
1009 const DataLayout
&DL
= getDataLayout();
1011 // GlobalVariables are always constant pointers themselves.
1012 PointerType
*PTy
= GVar
->getType();
1013 Type
*ETy
= GVar
->getValueType();
1015 if (GVar
->hasExternalLinkage()) {
1016 if (GVar
->hasInitializer())
1020 } else if (GVar
->hasLinkOnceLinkage() || GVar
->hasWeakLinkage() ||
1021 GVar
->hasAvailableExternallyLinkage() ||
1022 GVar
->hasCommonLinkage()) {
1026 if (isTexture(*GVar
)) {
1027 O
<< ".global .texref " << getTextureName(*GVar
) << ";\n";
1031 if (isSurface(*GVar
)) {
1032 O
<< ".global .surfref " << getSurfaceName(*GVar
) << ";\n";
1036 if (GVar
->isDeclaration()) {
1037 // (extern) declarations, no definition or initializer
1038 // Currently the only known declaration is for an automatic __local
1039 // (.shared) promoted to global.
1040 emitPTXGlobalVariable(GVar
, O
);
1045 if (isSampler(*GVar
)) {
1046 O
<< ".global .samplerref " << getSamplerName(*GVar
);
1048 const Constant
*Initializer
= nullptr;
1049 if (GVar
->hasInitializer())
1050 Initializer
= GVar
->getInitializer();
1051 const ConstantInt
*CI
= nullptr;
1053 CI
= dyn_cast
<ConstantInt
>(Initializer
);
1055 unsigned sample
= CI
->getZExtValue();
1060 addr
= ((sample
& __CLK_ADDRESS_MASK
) >> __CLK_ADDRESS_BASE
);
1062 O
<< "addr_mode_" << i
<< " = ";
1068 O
<< "clamp_to_border";
1071 O
<< "clamp_to_edge";
1082 O
<< "filter_mode = ";
1083 switch ((sample
& __CLK_FILTER_MASK
) >> __CLK_FILTER_BASE
) {
1091 llvm_unreachable("Anisotropic filtering is not supported");
1096 if (!((sample
& __CLK_NORMALIZED_MASK
) >> __CLK_NORMALIZED_BASE
)) {
1097 O
<< ", force_unnormalized_coords = 1";
1106 if (GVar
->hasPrivateLinkage()) {
1107 if (strncmp(GVar
->getName().data(), "unrollpragma", 12) == 0)
1110 // FIXME - need better way (e.g. Metadata) to avoid generating this global
1111 if (strncmp(GVar
->getName().data(), "filename", 8) == 0)
1113 if (GVar
->use_empty())
1117 const Function
*demotedFunc
= nullptr;
1118 if (!processDemoted
&& canDemoteGlobalVar(GVar
, demotedFunc
)) {
1119 O
<< "// " << GVar
->getName() << " has been demoted\n";
1120 if (localDecls
.find(demotedFunc
) != localDecls
.end())
1121 localDecls
[demotedFunc
].push_back(GVar
);
1123 std::vector
<const GlobalVariable
*> temp
;
1124 temp
.push_back(GVar
);
1125 localDecls
[demotedFunc
] = temp
;
1131 emitPTXAddressSpace(PTy
->getAddressSpace(), O
);
1133 if (isManaged(*GVar
)) {
1134 O
<< " .attribute(.managed)";
1137 if (GVar
->getAlignment() == 0)
1138 O
<< " .align " << (int)DL
.getPrefTypeAlignment(ETy
);
1140 O
<< " .align " << GVar
->getAlignment();
1142 if (ETy
->isFloatingPointTy() || ETy
->isPointerTy() ||
1143 (ETy
->isIntegerTy() && ETy
->getScalarSizeInBits() <= 64)) {
1145 // Special case: ABI requires that we use .u8 for predicates
1146 if (ETy
->isIntegerTy(1))
1149 O
<< getPTXFundamentalTypeStr(ETy
, false);
1151 getSymbol(GVar
)->print(O
, MAI
);
1153 // Ptx allows variable initilization only for constant and global state
1155 if (GVar
->hasInitializer()) {
1156 if ((PTy
->getAddressSpace() == ADDRESS_SPACE_GLOBAL
) ||
1157 (PTy
->getAddressSpace() == ADDRESS_SPACE_CONST
)) {
1158 const Constant
*Initializer
= GVar
->getInitializer();
1159 // 'undef' is treated as there is no value specified.
1160 if (!Initializer
->isNullValue() && !isa
<UndefValue
>(Initializer
)) {
1162 printScalarConstant(Initializer
, O
);
1165 // The frontend adds zero-initializer to device and constant variables
1166 // that don't have an initial value, and UndefValue to shared
1167 // variables, so skip warning for this case.
1168 if (!GVar
->getInitializer()->isNullValue() &&
1169 !isa
<UndefValue
>(GVar
->getInitializer())) {
1170 report_fatal_error("initial value of '" + GVar
->getName() +
1171 "' is not allowed in addrspace(" +
1172 Twine(PTy
->getAddressSpace()) + ")");
1177 unsigned int ElementSize
= 0;
1179 // Although PTX has direct support for struct type and array type and
1180 // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1181 // targets that support these high level field accesses. Structs, arrays
1182 // and vectors are lowered into arrays of bytes.
1183 switch (ETy
->getTypeID()) {
1184 case Type::IntegerTyID
: // Integers larger than 64 bits
1185 case Type::StructTyID
:
1186 case Type::ArrayTyID
:
1187 case Type::VectorTyID
:
1188 ElementSize
= DL
.getTypeStoreSize(ETy
);
1189 // Ptx allows variable initilization only for constant and
1190 // global state spaces.
1191 if (((PTy
->getAddressSpace() == ADDRESS_SPACE_GLOBAL
) ||
1192 (PTy
->getAddressSpace() == ADDRESS_SPACE_CONST
)) &&
1193 GVar
->hasInitializer()) {
1194 const Constant
*Initializer
= GVar
->getInitializer();
1195 if (!isa
<UndefValue
>(Initializer
) && !Initializer
->isNullValue()) {
1196 AggBuffer
aggBuffer(ElementSize
, O
, *this);
1197 bufferAggregateConstant(Initializer
, &aggBuffer
);
1198 if (aggBuffer
.numSymbols
) {
1199 if (static_cast<const NVPTXTargetMachine
&>(TM
).is64Bit()) {
1201 getSymbol(GVar
)->print(O
, MAI
);
1203 O
<< ElementSize
/ 8;
1206 getSymbol(GVar
)->print(O
, MAI
);
1208 O
<< ElementSize
/ 4;
1213 getSymbol(GVar
)->print(O
, MAI
);
1223 getSymbol(GVar
)->print(O
, MAI
);
1232 getSymbol(GVar
)->print(O
, MAI
);
1241 llvm_unreachable("type not supported yet");
1247 void NVPTXAsmPrinter::emitDemotedVars(const Function
*f
, raw_ostream
&O
) {
1248 if (localDecls
.find(f
) == localDecls
.end())
1251 std::vector
<const GlobalVariable
*> &gvars
= localDecls
[f
];
1253 for (unsigned i
= 0, e
= gvars
.size(); i
!= e
; ++i
) {
1254 O
<< "\t// demoted variable\n\t";
1255 printModuleLevelGV(gvars
[i
], O
, true);
1259 void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace
,
1260 raw_ostream
&O
) const {
1261 switch (AddressSpace
) {
1262 case ADDRESS_SPACE_LOCAL
:
1265 case ADDRESS_SPACE_GLOBAL
:
1268 case ADDRESS_SPACE_CONST
:
1271 case ADDRESS_SPACE_SHARED
:
1275 report_fatal_error("Bad address space found while emitting PTX: " +
1276 llvm::Twine(AddressSpace
));
1282 NVPTXAsmPrinter::getPTXFundamentalTypeStr(Type
*Ty
, bool useB4PTR
) const {
1283 switch (Ty
->getTypeID()) {
1285 llvm_unreachable("unexpected type");
1287 case Type::IntegerTyID
: {
1288 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
1291 else if (NumBits
<= 64) {
1292 std::string name
= "u";
1293 return name
+ utostr(NumBits
);
1295 llvm_unreachable("Integer too large");
1300 case Type::HalfTyID
:
1301 // fp16 is stored as .b16 for compatibility with pre-sm_53 PTX assembly.
1303 case Type::FloatTyID
:
1305 case Type::DoubleTyID
:
1307 case Type::PointerTyID
:
1308 if (static_cast<const NVPTXTargetMachine
&>(TM
).is64Bit())
1318 llvm_unreachable("unexpected type");
1322 void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable
*GVar
,
1324 const DataLayout
&DL
= getDataLayout();
1326 // GlobalVariables are always constant pointers themselves.
1327 Type
*ETy
= GVar
->getValueType();
1330 emitPTXAddressSpace(GVar
->getType()->getAddressSpace(), O
);
1331 if (GVar
->getAlignment() == 0)
1332 O
<< " .align " << (int)DL
.getPrefTypeAlignment(ETy
);
1334 O
<< " .align " << GVar
->getAlignment();
1336 // Special case for i128
1337 if (ETy
->isIntegerTy(128)) {
1339 getSymbol(GVar
)->print(O
, MAI
);
1344 if (ETy
->isFloatingPointTy() || ETy
->isIntOrPtrTy()) {
1346 O
<< getPTXFundamentalTypeStr(ETy
);
1348 getSymbol(GVar
)->print(O
, MAI
);
1352 int64_t ElementSize
= 0;
1354 // Although PTX has direct support for struct type and array type and LLVM IR
1355 // is very similar to PTX, the LLVM CodeGen does not support for targets that
1356 // support these high level field accesses. Structs and arrays are lowered
1357 // into arrays of bytes.
1358 switch (ETy
->getTypeID()) {
1359 case Type::StructTyID
:
1360 case Type::ArrayTyID
:
1361 case Type::VectorTyID
:
1362 ElementSize
= DL
.getTypeStoreSize(ETy
);
1364 getSymbol(GVar
)->print(O
, MAI
);
1372 llvm_unreachable("type not supported yet");
1376 static unsigned int getOpenCLAlignment(const DataLayout
&DL
, Type
*Ty
) {
1377 if (Ty
->isSingleValueType())
1378 return DL
.getPrefTypeAlignment(Ty
);
1380 auto *ATy
= dyn_cast
<ArrayType
>(Ty
);
1382 return getOpenCLAlignment(DL
, ATy
->getElementType());
1384 auto *STy
= dyn_cast
<StructType
>(Ty
);
1386 unsigned int alignStruct
= 1;
1387 // Go through each element of the struct and find the
1388 // largest alignment.
1389 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; i
++) {
1390 Type
*ETy
= STy
->getElementType(i
);
1391 unsigned int align
= getOpenCLAlignment(DL
, ETy
);
1392 if (align
> alignStruct
)
1393 alignStruct
= align
;
1398 auto *FTy
= dyn_cast
<FunctionType
>(Ty
);
1400 return DL
.getPointerPrefAlignment();
1401 return DL
.getPrefTypeAlignment(Ty
);
1404 void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I
,
1405 int paramIndex
, raw_ostream
&O
) {
1406 getSymbol(I
->getParent())->print(O
, MAI
);
1407 O
<< "_param_" << paramIndex
;
1410 void NVPTXAsmPrinter::emitFunctionParamList(const Function
*F
, raw_ostream
&O
) {
1411 const DataLayout
&DL
= getDataLayout();
1412 const AttributeList
&PAL
= F
->getAttributes();
1413 const NVPTXSubtarget
&STI
= TM
.getSubtarget
<NVPTXSubtarget
>(*F
);
1414 const TargetLowering
*TLI
= STI
.getTargetLowering();
1415 Function::const_arg_iterator I
, E
;
1416 unsigned paramIndex
= 0;
1418 bool isKernelFunc
= isKernelFunction(*F
);
1419 bool isABI
= (STI
.getSmVersion() >= 20);
1420 bool hasImageHandles
= STI
.hasImageHandles();
1421 MVT thePointerTy
= TLI
->getPointerTy(DL
);
1423 if (F
->arg_empty()) {
1430 for (I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
; ++I
, paramIndex
++) {
1431 Type
*Ty
= I
->getType();
1438 // Handle image/sampler parameters
1439 if (isKernelFunction(*F
)) {
1440 if (isSampler(*I
) || isImage(*I
)) {
1442 std::string sname
= I
->getName();
1443 if (isImageWriteOnly(*I
) || isImageReadWrite(*I
)) {
1444 if (hasImageHandles
)
1445 O
<< "\t.param .u64 .ptr .surfref ";
1447 O
<< "\t.param .surfref ";
1448 CurrentFnSym
->print(O
, MAI
);
1449 O
<< "_param_" << paramIndex
;
1451 else { // Default image is read_only
1452 if (hasImageHandles
)
1453 O
<< "\t.param .u64 .ptr .texref ";
1455 O
<< "\t.param .texref ";
1456 CurrentFnSym
->print(O
, MAI
);
1457 O
<< "_param_" << paramIndex
;
1460 if (hasImageHandles
)
1461 O
<< "\t.param .u64 .ptr .samplerref ";
1463 O
<< "\t.param .samplerref ";
1464 CurrentFnSym
->print(O
, MAI
);
1465 O
<< "_param_" << paramIndex
;
1471 if (!PAL
.hasParamAttribute(paramIndex
, Attribute::ByVal
)) {
1472 if (Ty
->isAggregateType() || Ty
->isVectorTy() || Ty
->isIntegerTy(128)) {
1473 // Just print .param .align <a> .b8 .param[size];
1474 // <a> = PAL.getparamalignment
1475 // size = typeallocsize of element type
1476 unsigned align
= PAL
.getParamAlignment(paramIndex
);
1478 align
= DL
.getABITypeAlignment(Ty
);
1480 unsigned sz
= DL
.getTypeAllocSize(Ty
);
1481 O
<< "\t.param .align " << align
<< " .b8 ";
1482 printParamName(I
, paramIndex
, O
);
1483 O
<< "[" << sz
<< "]";
1488 auto *PTy
= dyn_cast
<PointerType
>(Ty
);
1491 // Special handling for pointer arguments to kernel
1492 O
<< "\t.param .u" << thePointerTy
.getSizeInBits() << " ";
1494 if (static_cast<NVPTXTargetMachine
&>(TM
).getDrvInterface() !=
1496 Type
*ETy
= PTy
->getElementType();
1497 int addrSpace
= PTy
->getAddressSpace();
1498 switch (addrSpace
) {
1502 case ADDRESS_SPACE_CONST
:
1503 O
<< ".ptr .const ";
1505 case ADDRESS_SPACE_SHARED
:
1506 O
<< ".ptr .shared ";
1508 case ADDRESS_SPACE_GLOBAL
:
1509 O
<< ".ptr .global ";
1512 O
<< ".align " << (int)getOpenCLAlignment(DL
, ETy
) << " ";
1514 printParamName(I
, paramIndex
, O
);
1518 // non-pointer scalar to kernel func
1520 // Special case: predicate operands become .u8 types
1521 if (Ty
->isIntegerTy(1))
1524 O
<< getPTXFundamentalTypeStr(Ty
);
1526 printParamName(I
, paramIndex
, O
);
1529 // Non-kernel function, just print .param .b<size> for ABI
1530 // and .reg .b<size> for non-ABI
1532 if (isa
<IntegerType
>(Ty
)) {
1533 sz
= cast
<IntegerType
>(Ty
)->getBitWidth();
1536 } else if (isa
<PointerType
>(Ty
))
1537 sz
= thePointerTy
.getSizeInBits();
1538 else if (Ty
->isHalfTy())
1539 // PTX ABI requires all scalar parameters to be at least 32
1540 // bits in size. fp16 normally uses .b16 as its storage type
1541 // in PTX, so its size must be adjusted here, too.
1544 sz
= Ty
->getPrimitiveSizeInBits();
1546 O
<< "\t.param .b" << sz
<< " ";
1548 O
<< "\t.reg .b" << sz
<< " ";
1549 printParamName(I
, paramIndex
, O
);
1553 // param has byVal attribute. So should be a pointer
1554 auto *PTy
= dyn_cast
<PointerType
>(Ty
);
1555 assert(PTy
&& "Param with byval attribute should be a pointer type");
1556 Type
*ETy
= PTy
->getElementType();
1558 if (isABI
|| isKernelFunc
) {
1559 // Just print .param .align <a> .b8 .param[size];
1560 // <a> = PAL.getparamalignment
1561 // size = typeallocsize of element type
1562 unsigned align
= PAL
.getParamAlignment(paramIndex
);
1564 align
= DL
.getABITypeAlignment(ETy
);
1565 // Work around a bug in ptxas. When PTX code takes address of
1566 // byval parameter with alignment < 4, ptxas generates code to
1567 // spill argument into memory. Alas on sm_50+ ptxas generates
1568 // SASS code that fails with misaligned access. To work around
1569 // the problem, make sure that we align byval parameters by at
1570 // least 4. Matching change must be made in LowerCall() where we
1571 // prepare parameters for the call.
1573 // TODO: this will need to be undone when we get to support multi-TU
1574 // device-side compilation as it breaks ABI compatibility with nvcc.
1575 // Hopefully ptxas bug is fixed by then.
1576 if (!isKernelFunc
&& align
< 4)
1578 unsigned sz
= DL
.getTypeAllocSize(ETy
);
1579 O
<< "\t.param .align " << align
<< " .b8 ";
1580 printParamName(I
, paramIndex
, O
);
1581 O
<< "[" << sz
<< "]";
1584 // Split the ETy into constituent parts and
1585 // print .param .b<size> <name> for each part.
1586 // Further, if a part is vector, print the above for
1587 // each vector element.
1588 SmallVector
<EVT
, 16> vtparts
;
1589 ComputeValueVTs(*TLI
, DL
, ETy
, vtparts
);
1590 for (unsigned i
= 0, e
= vtparts
.size(); i
!= e
; ++i
) {
1592 EVT elemtype
= vtparts
[i
];
1593 if (vtparts
[i
].isVector()) {
1594 elems
= vtparts
[i
].getVectorNumElements();
1595 elemtype
= vtparts
[i
].getVectorElementType();
1598 for (unsigned j
= 0, je
= elems
; j
!= je
; ++j
) {
1599 unsigned sz
= elemtype
.getSizeInBits();
1600 if (elemtype
.isInteger() && (sz
< 32))
1602 O
<< "\t.reg .b" << sz
<< " ";
1603 printParamName(I
, paramIndex
, O
);
1619 void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction
&MF
,
1621 const Function
&F
= MF
.getFunction();
1622 emitFunctionParamList(&F
, O
);
1625 void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1626 const MachineFunction
&MF
) {
1627 SmallString
<128> Str
;
1628 raw_svector_ostream
O(Str
);
1630 // Map the global virtual register number to a register class specific
1631 // virtual register number starting from 1 with that class.
1632 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1633 //unsigned numRegClasses = TRI->getNumRegClasses();
1635 // Emit the Fake Stack Object
1636 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1637 int NumBytes
= (int) MFI
.getStackSize();
1639 O
<< "\t.local .align " << MFI
.getMaxAlignment() << " .b8 \t" << DEPOTNAME
1640 << getFunctionNumber() << "[" << NumBytes
<< "];\n";
1641 if (static_cast<const NVPTXTargetMachine
&>(MF
.getTarget()).is64Bit()) {
1642 O
<< "\t.reg .b64 \t%SP;\n";
1643 O
<< "\t.reg .b64 \t%SPL;\n";
1645 O
<< "\t.reg .b32 \t%SP;\n";
1646 O
<< "\t.reg .b32 \t%SPL;\n";
1650 // Go through all virtual registers to establish the mapping between the
1652 // register number and the per class virtual register number.
1653 // We use the per class virtual register number in the ptx output.
1654 unsigned int numVRs
= MRI
->getNumVirtRegs();
1655 for (unsigned i
= 0; i
< numVRs
; i
++) {
1656 unsigned int vr
= Register::index2VirtReg(i
);
1657 const TargetRegisterClass
*RC
= MRI
->getRegClass(vr
);
1658 DenseMap
<unsigned, unsigned> ®map
= VRegMapping
[RC
];
1659 int n
= regmap
.size();
1660 regmap
.insert(std::make_pair(vr
, n
+ 1));
1663 // Emit register declarations
1664 // @TODO: Extract out the real register usage
1665 // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1666 // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1667 // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1668 // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1669 // O << "\t.reg .s64 %rd<" << NVPTXNumRegisters << ">;\n";
1670 // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1671 // O << "\t.reg .f64 %fd<" << NVPTXNumRegisters << ">;\n";
1673 // Emit declaration of the virtual registers or 'physical' registers for
1674 // each register class
1675 for (unsigned i
=0; i
< TRI
->getNumRegClasses(); i
++) {
1676 const TargetRegisterClass
*RC
= TRI
->getRegClass(i
);
1677 DenseMap
<unsigned, unsigned> ®map
= VRegMapping
[RC
];
1678 std::string rcname
= getNVPTXRegClassName(RC
);
1679 std::string rcStr
= getNVPTXRegClassStr(RC
);
1680 int n
= regmap
.size();
1682 // Only declare those registers that may be used.
1684 O
<< "\t.reg " << rcname
<< " \t" << rcStr
<< "<" << (n
+1)
1689 OutStreamer
->EmitRawText(O
.str());
1692 void NVPTXAsmPrinter::printFPConstant(const ConstantFP
*Fp
, raw_ostream
&O
) {
1693 APFloat APF
= APFloat(Fp
->getValueAPF()); // make a copy
1695 unsigned int numHex
;
1698 if (Fp
->getType()->getTypeID() == Type::FloatTyID
) {
1701 APF
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
, &ignored
);
1702 } else if (Fp
->getType()->getTypeID() == Type::DoubleTyID
) {
1705 APF
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &ignored
);
1707 llvm_unreachable("unsupported fp type");
1709 APInt API
= APF
.bitcastToAPInt();
1710 O
<< lead
<< format_hex_no_prefix(API
.getZExtValue(), numHex
, /*Upper=*/true);
1713 void NVPTXAsmPrinter::printScalarConstant(const Constant
*CPV
, raw_ostream
&O
) {
1714 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CPV
)) {
1715 O
<< CI
->getValue();
1718 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CPV
)) {
1719 printFPConstant(CFP
, O
);
1722 if (isa
<ConstantPointerNull
>(CPV
)) {
1726 if (const GlobalValue
*GVar
= dyn_cast
<GlobalValue
>(CPV
)) {
1727 bool IsNonGenericPointer
= false;
1728 if (GVar
->getType()->getAddressSpace() != 0) {
1729 IsNonGenericPointer
= true;
1731 if (EmitGeneric
&& !isa
<Function
>(CPV
) && !IsNonGenericPointer
) {
1733 getSymbol(GVar
)->print(O
, MAI
);
1736 getSymbol(GVar
)->print(O
, MAI
);
1740 if (const ConstantExpr
*Cexpr
= dyn_cast
<ConstantExpr
>(CPV
)) {
1741 const Value
*v
= Cexpr
->stripPointerCasts();
1742 PointerType
*PTy
= dyn_cast
<PointerType
>(Cexpr
->getType());
1743 bool IsNonGenericPointer
= false;
1744 if (PTy
&& PTy
->getAddressSpace() != 0) {
1745 IsNonGenericPointer
= true;
1747 if (const GlobalValue
*GVar
= dyn_cast
<GlobalValue
>(v
)) {
1748 if (EmitGeneric
&& !isa
<Function
>(v
) && !IsNonGenericPointer
) {
1750 getSymbol(GVar
)->print(O
, MAI
);
1753 getSymbol(GVar
)->print(O
, MAI
);
1757 lowerConstant(CPV
)->print(O
, MAI
);
1761 llvm_unreachable("Not scalar type found in printScalarConstant()");
1764 // These utility functions assure we get the right sequence of bytes for a given
1765 // type even for big-endian machines
1766 template <typename T
> static void ConvertIntToBytes(unsigned char *p
, T val
) {
1767 int64_t vp
= (int64_t)val
;
1768 for (unsigned i
= 0; i
< sizeof(T
); ++i
) {
1769 p
[i
] = (unsigned char)vp
;
1773 static void ConvertFloatToBytes(unsigned char *p
, float val
) {
1774 int32_t *vp
= (int32_t *)&val
;
1775 for (unsigned i
= 0; i
< sizeof(int32_t); ++i
) {
1776 p
[i
] = (unsigned char)*vp
;
1780 static void ConvertDoubleToBytes(unsigned char *p
, double val
) {
1781 int64_t *vp
= (int64_t *)&val
;
1782 for (unsigned i
= 0; i
< sizeof(int64_t); ++i
) {
1783 p
[i
] = (unsigned char)*vp
;
1788 void NVPTXAsmPrinter::bufferLEByte(const Constant
*CPV
, int Bytes
,
1789 AggBuffer
*aggBuffer
) {
1790 const DataLayout
&DL
= getDataLayout();
1792 if (isa
<UndefValue
>(CPV
) || CPV
->isNullValue()) {
1793 int s
= DL
.getTypeAllocSize(CPV
->getType());
1796 aggBuffer
->addZeros(s
);
1800 unsigned char ptr
[8];
1801 switch (CPV
->getType()->getTypeID()) {
1803 case Type::IntegerTyID
: {
1804 Type
*ETy
= CPV
->getType();
1805 if (ETy
== Type::getInt8Ty(CPV
->getContext())) {
1806 unsigned char c
= (unsigned char)cast
<ConstantInt
>(CPV
)->getZExtValue();
1807 ConvertIntToBytes
<>(ptr
, c
);
1808 aggBuffer
->addBytes(ptr
, 1, Bytes
);
1809 } else if (ETy
== Type::getInt16Ty(CPV
->getContext())) {
1810 short int16
= (short)cast
<ConstantInt
>(CPV
)->getZExtValue();
1811 ConvertIntToBytes
<>(ptr
, int16
);
1812 aggBuffer
->addBytes(ptr
, 2, Bytes
);
1813 } else if (ETy
== Type::getInt32Ty(CPV
->getContext())) {
1814 if (const ConstantInt
*constInt
= dyn_cast
<ConstantInt
>(CPV
)) {
1815 int int32
= (int)(constInt
->getZExtValue());
1816 ConvertIntToBytes
<>(ptr
, int32
);
1817 aggBuffer
->addBytes(ptr
, 4, Bytes
);
1819 } else if (const auto *Cexpr
= dyn_cast
<ConstantExpr
>(CPV
)) {
1820 if (const auto *constInt
= dyn_cast_or_null
<ConstantInt
>(
1821 ConstantFoldConstant(Cexpr
, DL
))) {
1822 int int32
= (int)(constInt
->getZExtValue());
1823 ConvertIntToBytes
<>(ptr
, int32
);
1824 aggBuffer
->addBytes(ptr
, 4, Bytes
);
1827 if (Cexpr
->getOpcode() == Instruction::PtrToInt
) {
1828 Value
*v
= Cexpr
->getOperand(0)->stripPointerCasts();
1829 aggBuffer
->addSymbol(v
, Cexpr
->getOperand(0));
1830 aggBuffer
->addZeros(4);
1834 llvm_unreachable("unsupported integer const type");
1835 } else if (ETy
== Type::getInt64Ty(CPV
->getContext())) {
1836 if (const ConstantInt
*constInt
= dyn_cast
<ConstantInt
>(CPV
)) {
1837 long long int64
= (long long)(constInt
->getZExtValue());
1838 ConvertIntToBytes
<>(ptr
, int64
);
1839 aggBuffer
->addBytes(ptr
, 8, Bytes
);
1841 } else if (const ConstantExpr
*Cexpr
= dyn_cast
<ConstantExpr
>(CPV
)) {
1842 if (const auto *constInt
= dyn_cast_or_null
<ConstantInt
>(
1843 ConstantFoldConstant(Cexpr
, DL
))) {
1844 long long int64
= (long long)(constInt
->getZExtValue());
1845 ConvertIntToBytes
<>(ptr
, int64
);
1846 aggBuffer
->addBytes(ptr
, 8, Bytes
);
1849 if (Cexpr
->getOpcode() == Instruction::PtrToInt
) {
1850 Value
*v
= Cexpr
->getOperand(0)->stripPointerCasts();
1851 aggBuffer
->addSymbol(v
, Cexpr
->getOperand(0));
1852 aggBuffer
->addZeros(8);
1856 llvm_unreachable("unsupported integer const type");
1858 llvm_unreachable("unsupported integer const type");
1861 case Type::HalfTyID
:
1862 case Type::FloatTyID
:
1863 case Type::DoubleTyID
: {
1864 const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CPV
);
1865 Type
*Ty
= CFP
->getType();
1866 if (Ty
== Type::getHalfTy(CPV
->getContext())) {
1867 APInt API
= CFP
->getValueAPF().bitcastToAPInt();
1868 uint16_t float16
= API
.getLoBits(16).getZExtValue();
1869 ConvertIntToBytes
<>(ptr
, float16
);
1870 aggBuffer
->addBytes(ptr
, 2, Bytes
);
1871 } else if (Ty
== Type::getFloatTy(CPV
->getContext())) {
1872 float float32
= (float) CFP
->getValueAPF().convertToFloat();
1873 ConvertFloatToBytes(ptr
, float32
);
1874 aggBuffer
->addBytes(ptr
, 4, Bytes
);
1875 } else if (Ty
== Type::getDoubleTy(CPV
->getContext())) {
1876 double float64
= CFP
->getValueAPF().convertToDouble();
1877 ConvertDoubleToBytes(ptr
, float64
);
1878 aggBuffer
->addBytes(ptr
, 8, Bytes
);
1880 llvm_unreachable("unsupported fp const type");
1884 case Type::PointerTyID
: {
1885 if (const GlobalValue
*GVar
= dyn_cast
<GlobalValue
>(CPV
)) {
1886 aggBuffer
->addSymbol(GVar
, GVar
);
1887 } else if (const ConstantExpr
*Cexpr
= dyn_cast
<ConstantExpr
>(CPV
)) {
1888 const Value
*v
= Cexpr
->stripPointerCasts();
1889 aggBuffer
->addSymbol(v
, Cexpr
);
1891 unsigned int s
= DL
.getTypeAllocSize(CPV
->getType());
1892 aggBuffer
->addZeros(s
);
1896 case Type::ArrayTyID
:
1897 case Type::VectorTyID
:
1898 case Type::StructTyID
: {
1899 if (isa
<ConstantAggregate
>(CPV
) || isa
<ConstantDataSequential
>(CPV
)) {
1900 int ElementSize
= DL
.getTypeAllocSize(CPV
->getType());
1901 bufferAggregateConstant(CPV
, aggBuffer
);
1902 if (Bytes
> ElementSize
)
1903 aggBuffer
->addZeros(Bytes
- ElementSize
);
1904 } else if (isa
<ConstantAggregateZero
>(CPV
))
1905 aggBuffer
->addZeros(Bytes
);
1907 llvm_unreachable("Unexpected Constant type");
1912 llvm_unreachable("unsupported type");
1916 void NVPTXAsmPrinter::bufferAggregateConstant(const Constant
*CPV
,
1917 AggBuffer
*aggBuffer
) {
1918 const DataLayout
&DL
= getDataLayout();
1921 // Integers of arbitrary width
1922 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CPV
)) {
1923 APInt Val
= CI
->getValue();
1924 for (unsigned I
= 0, E
= DL
.getTypeAllocSize(CPV
->getType()); I
< E
; ++I
) {
1925 uint8_t Byte
= Val
.getLoBits(8).getZExtValue();
1926 aggBuffer
->addBytes(&Byte
, 1, 1);
1933 if (isa
<ConstantArray
>(CPV
) || isa
<ConstantVector
>(CPV
)) {
1934 if (CPV
->getNumOperands())
1935 for (unsigned i
= 0, e
= CPV
->getNumOperands(); i
!= e
; ++i
)
1936 bufferLEByte(cast
<Constant
>(CPV
->getOperand(i
)), 0, aggBuffer
);
1940 if (const ConstantDataSequential
*CDS
=
1941 dyn_cast
<ConstantDataSequential
>(CPV
)) {
1942 if (CDS
->getNumElements())
1943 for (unsigned i
= 0; i
< CDS
->getNumElements(); ++i
)
1944 bufferLEByte(cast
<Constant
>(CDS
->getElementAsConstant(i
)), 0,
1949 if (isa
<ConstantStruct
>(CPV
)) {
1950 if (CPV
->getNumOperands()) {
1951 StructType
*ST
= cast
<StructType
>(CPV
->getType());
1952 for (unsigned i
= 0, e
= CPV
->getNumOperands(); i
!= e
; ++i
) {
1954 Bytes
= DL
.getStructLayout(ST
)->getElementOffset(0) +
1955 DL
.getTypeAllocSize(ST
) -
1956 DL
.getStructLayout(ST
)->getElementOffset(i
);
1958 Bytes
= DL
.getStructLayout(ST
)->getElementOffset(i
+ 1) -
1959 DL
.getStructLayout(ST
)->getElementOffset(i
);
1960 bufferLEByte(cast
<Constant
>(CPV
->getOperand(i
)), Bytes
, aggBuffer
);
1965 llvm_unreachable("unsupported constant type in printAggregateConstant()");
1968 /// lowerConstantForGV - Return an MCExpr for the given Constant. This is mostly
1969 /// a copy from AsmPrinter::lowerConstant, except customized to only handle
1970 /// expressions that are representable in PTX and create
1971 /// NVPTXGenericMCSymbolRefExpr nodes for addrspacecast instructions.
1973 NVPTXAsmPrinter::lowerConstantForGV(const Constant
*CV
, bool ProcessingGeneric
) {
1974 MCContext
&Ctx
= OutContext
;
1976 if (CV
->isNullValue() || isa
<UndefValue
>(CV
))
1977 return MCConstantExpr::create(0, Ctx
);
1979 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CV
))
1980 return MCConstantExpr::create(CI
->getZExtValue(), Ctx
);
1982 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CV
)) {
1983 const MCSymbolRefExpr
*Expr
=
1984 MCSymbolRefExpr::create(getSymbol(GV
), Ctx
);
1985 if (ProcessingGeneric
) {
1986 return NVPTXGenericMCSymbolRefExpr::create(Expr
, Ctx
);
1992 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CV
);
1994 llvm_unreachable("Unknown constant value to lower!");
1997 switch (CE
->getOpcode()) {
1999 // If the code isn't optimized, there may be outstanding folding
2000 // opportunities. Attempt to fold the expression using DataLayout as a
2001 // last resort before giving up.
2002 if (Constant
*C
= ConstantFoldConstant(CE
, getDataLayout()))
2004 return lowerConstantForGV(C
, ProcessingGeneric
);
2006 // Otherwise report the problem to the user.
2009 raw_string_ostream
OS(S
);
2010 OS
<< "Unsupported expression in static initializer: ";
2011 CE
->printAsOperand(OS
, /*PrintType=*/false,
2012 !MF
? nullptr : MF
->getFunction().getParent());
2013 report_fatal_error(OS
.str());
2016 case Instruction::AddrSpaceCast
: {
2017 // Strip the addrspacecast and pass along the operand
2018 PointerType
*DstTy
= cast
<PointerType
>(CE
->getType());
2019 if (DstTy
->getAddressSpace() == 0) {
2020 return lowerConstantForGV(cast
<const Constant
>(CE
->getOperand(0)), true);
2023 raw_string_ostream
OS(S
);
2024 OS
<< "Unsupported expression in static initializer: ";
2025 CE
->printAsOperand(OS
, /*PrintType=*/ false,
2026 !MF
? nullptr : MF
->getFunction().getParent());
2027 report_fatal_error(OS
.str());
2030 case Instruction::GetElementPtr
: {
2031 const DataLayout
&DL
= getDataLayout();
2033 // Generate a symbolic expression for the byte address
2034 APInt
OffsetAI(DL
.getPointerTypeSizeInBits(CE
->getType()), 0);
2035 cast
<GEPOperator
>(CE
)->accumulateConstantOffset(DL
, OffsetAI
);
2037 const MCExpr
*Base
= lowerConstantForGV(CE
->getOperand(0),
2042 int64_t Offset
= OffsetAI
.getSExtValue();
2043 return MCBinaryExpr::createAdd(Base
, MCConstantExpr::create(Offset
, Ctx
),
2047 case Instruction::Trunc
:
2048 // We emit the value and depend on the assembler to truncate the generated
2049 // expression properly. This is important for differences between
2050 // blockaddress labels. Since the two labels are in the same function, it
2051 // is reasonable to treat their delta as a 32-bit value.
2053 case Instruction::BitCast
:
2054 return lowerConstantForGV(CE
->getOperand(0), ProcessingGeneric
);
2056 case Instruction::IntToPtr
: {
2057 const DataLayout
&DL
= getDataLayout();
2059 // Handle casts to pointers by changing them into casts to the appropriate
2060 // integer type. This promotes constant folding and simplifies this code.
2061 Constant
*Op
= CE
->getOperand(0);
2062 Op
= ConstantExpr::getIntegerCast(Op
, DL
.getIntPtrType(CV
->getType()),
2064 return lowerConstantForGV(Op
, ProcessingGeneric
);
2067 case Instruction::PtrToInt
: {
2068 const DataLayout
&DL
= getDataLayout();
2070 // Support only foldable casts to/from pointers that can be eliminated by
2071 // changing the pointer to the appropriately sized integer type.
2072 Constant
*Op
= CE
->getOperand(0);
2073 Type
*Ty
= CE
->getType();
2075 const MCExpr
*OpExpr
= lowerConstantForGV(Op
, ProcessingGeneric
);
2077 // We can emit the pointer value into this slot if the slot is an
2078 // integer slot equal to the size of the pointer.
2079 if (DL
.getTypeAllocSize(Ty
) == DL
.getTypeAllocSize(Op
->getType()))
2082 // Otherwise the pointer is smaller than the resultant integer, mask off
2083 // the high bits so we are sure to get a proper truncation if the input is
2085 unsigned InBits
= DL
.getTypeAllocSizeInBits(Op
->getType());
2086 const MCExpr
*MaskExpr
= MCConstantExpr::create(~0ULL >> (64-InBits
), Ctx
);
2087 return MCBinaryExpr::createAnd(OpExpr
, MaskExpr
, Ctx
);
2090 // The MC library also has a right-shift operator, but it isn't consistently
2091 // signed or unsigned between different targets.
2092 case Instruction::Add
: {
2093 const MCExpr
*LHS
= lowerConstantForGV(CE
->getOperand(0), ProcessingGeneric
);
2094 const MCExpr
*RHS
= lowerConstantForGV(CE
->getOperand(1), ProcessingGeneric
);
2095 switch (CE
->getOpcode()) {
2096 default: llvm_unreachable("Unknown binary operator constant cast expr");
2097 case Instruction::Add
: return MCBinaryExpr::createAdd(LHS
, RHS
, Ctx
);
2103 // Copy of MCExpr::print customized for NVPTX
2104 void NVPTXAsmPrinter::printMCExpr(const MCExpr
&Expr
, raw_ostream
&OS
) {
2105 switch (Expr
.getKind()) {
2106 case MCExpr::Target
:
2107 return cast
<MCTargetExpr
>(&Expr
)->printImpl(OS
, MAI
);
2108 case MCExpr::Constant
:
2109 OS
<< cast
<MCConstantExpr
>(Expr
).getValue();
2112 case MCExpr::SymbolRef
: {
2113 const MCSymbolRefExpr
&SRE
= cast
<MCSymbolRefExpr
>(Expr
);
2114 const MCSymbol
&Sym
= SRE
.getSymbol();
2119 case MCExpr::Unary
: {
2120 const MCUnaryExpr
&UE
= cast
<MCUnaryExpr
>(Expr
);
2121 switch (UE
.getOpcode()) {
2122 case MCUnaryExpr::LNot
: OS
<< '!'; break;
2123 case MCUnaryExpr::Minus
: OS
<< '-'; break;
2124 case MCUnaryExpr::Not
: OS
<< '~'; break;
2125 case MCUnaryExpr::Plus
: OS
<< '+'; break;
2127 printMCExpr(*UE
.getSubExpr(), OS
);
2131 case MCExpr::Binary
: {
2132 const MCBinaryExpr
&BE
= cast
<MCBinaryExpr
>(Expr
);
2134 // Only print parens around the LHS if it is non-trivial.
2135 if (isa
<MCConstantExpr
>(BE
.getLHS()) || isa
<MCSymbolRefExpr
>(BE
.getLHS()) ||
2136 isa
<NVPTXGenericMCSymbolRefExpr
>(BE
.getLHS())) {
2137 printMCExpr(*BE
.getLHS(), OS
);
2140 printMCExpr(*BE
.getLHS(), OS
);
2144 switch (BE
.getOpcode()) {
2145 case MCBinaryExpr::Add
:
2146 // Print "X-42" instead of "X+-42".
2147 if (const MCConstantExpr
*RHSC
= dyn_cast
<MCConstantExpr
>(BE
.getRHS())) {
2148 if (RHSC
->getValue() < 0) {
2149 OS
<< RHSC
->getValue();
2156 default: llvm_unreachable("Unhandled binary operator");
2159 // Only print parens around the LHS if it is non-trivial.
2160 if (isa
<MCConstantExpr
>(BE
.getRHS()) || isa
<MCSymbolRefExpr
>(BE
.getRHS())) {
2161 printMCExpr(*BE
.getRHS(), OS
);
2164 printMCExpr(*BE
.getRHS(), OS
);
2171 llvm_unreachable("Invalid expression kind!");
2174 /// PrintAsmOperand - Print out an operand for an inline asm expression.
2176 bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr
*MI
, unsigned OpNo
,
2177 const char *ExtraCode
, raw_ostream
&O
) {
2178 if (ExtraCode
&& ExtraCode
[0]) {
2179 if (ExtraCode
[1] != 0)
2180 return true; // Unknown modifier.
2182 switch (ExtraCode
[0]) {
2184 // See if this is a generic print operand
2185 return AsmPrinter::PrintAsmOperand(MI
, OpNo
, ExtraCode
, O
);
2191 printOperand(MI
, OpNo
, O
);
2196 bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr
*MI
,
2198 const char *ExtraCode
,
2200 if (ExtraCode
&& ExtraCode
[0])
2201 return true; // Unknown modifier
2204 printMemOperand(MI
, OpNo
, O
);
2210 void NVPTXAsmPrinter::printOperand(const MachineInstr
*MI
, int opNum
,
2212 const MachineOperand
&MO
= MI
->getOperand(opNum
);
2213 switch (MO
.getType()) {
2214 case MachineOperand::MO_Register
:
2215 if (Register::isPhysicalRegister(MO
.getReg())) {
2216 if (MO
.getReg() == NVPTX::VRDepot
)
2217 O
<< DEPOTNAME
<< getFunctionNumber();
2219 O
<< NVPTXInstPrinter::getRegisterName(MO
.getReg());
2221 emitVirtualRegister(MO
.getReg(), O
);
2225 case MachineOperand::MO_Immediate
:
2229 case MachineOperand::MO_FPImmediate
:
2230 printFPConstant(MO
.getFPImm(), O
);
2233 case MachineOperand::MO_GlobalAddress
:
2234 PrintSymbolOperand(MO
, O
);
2237 case MachineOperand::MO_MachineBasicBlock
:
2238 MO
.getMBB()->getSymbol()->print(O
, MAI
);
2242 llvm_unreachable("Operand type not supported.");
2246 void NVPTXAsmPrinter::printMemOperand(const MachineInstr
*MI
, int opNum
,
2247 raw_ostream
&O
, const char *Modifier
) {
2248 printOperand(MI
, opNum
, O
);
2250 if (Modifier
&& strcmp(Modifier
, "add") == 0) {
2252 printOperand(MI
, opNum
+ 1, O
);
2254 if (MI
->getOperand(opNum
+ 1).isImm() &&
2255 MI
->getOperand(opNum
+ 1).getImm() == 0)
2256 return; // don't print ',0' or '+0'
2258 printOperand(MI
, opNum
+ 1, O
);
2262 // Force static initialization.
2263 extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2264 RegisterAsmPrinter
<NVPTXAsmPrinter
> X(getTheNVPTXTarget32());
2265 RegisterAsmPrinter
<NVPTXAsmPrinter
> Y(getTheNVPTXTarget64());