[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / PowerPC / PPCVSXFMAMutate.cpp
blob5e150be544edb264e632c78cf0692f1da34046af
1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
10 // copies.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCInstrInfo.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
41 // Temporarily disable FMA mutation by default, since it doesn't handle
42 // cross-basic-block intervals well.
43 // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
44 // http://reviews.llvm.org/D17087
45 static cl::opt<bool> DisableVSXFMAMutate(
46 "disable-ppc-vsx-fma-mutation",
47 cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
48 cl::Hidden);
50 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
52 namespace llvm { namespace PPC {
53 int getAltVSXFMAOpcode(uint16_t Opcode);
54 } }
56 namespace {
57 // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
58 // (Altivec and scalar floating-point registers), we need to transform the
59 // copies into subregister copies with other restrictions.
60 struct PPCVSXFMAMutate : public MachineFunctionPass {
61 static char ID;
62 PPCVSXFMAMutate() : MachineFunctionPass(ID) {
63 initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
66 LiveIntervals *LIS;
67 const PPCInstrInfo *TII;
69 protected:
70 bool processBlock(MachineBasicBlock &MBB) {
71 bool Changed = false;
73 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
74 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
75 for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
76 I != IE; ++I) {
77 MachineInstr &MI = *I;
79 // The default (A-type) VSX FMA form kills the addend (it is taken from
80 // the target register, which is then updated to reflect the result of
81 // the FMA). If the instruction, however, kills one of the registers
82 // used for the product, then we can use the M-form instruction (which
83 // will take that value from the to-be-defined register).
85 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
86 if (AltOpc == -1)
87 continue;
89 // This pass is run after register coalescing, and so we're looking for
90 // a situation like this:
91 // ...
92 // %5 = COPY %9; VSLRC:%5,%9
93 // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
94 // implicit %rm; VSLRC:%5,%17,%16
95 // ...
96 // %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
97 // implicit %rm; VSLRC:%9,%17,%19
98 // ...
99 // Where we can eliminate the copy by changing from the A-type to the
100 // M-type instruction. Specifically, for this example, this means:
101 // %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
102 // implicit %rm; VSLRC:%5,%17,%16
103 // is replaced by:
104 // %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
105 // implicit %rm; VSLRC:%16,%18,%9
106 // and we remove: %5 = COPY %9; VSLRC:%5,%9
108 SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
110 VNInfo *AddendValNo =
111 LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
113 // This can be null if the register is undef.
114 if (!AddendValNo)
115 continue;
117 MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
119 // The addend and this instruction must be in the same block.
121 if (!AddendMI || AddendMI->getParent() != MI.getParent())
122 continue;
124 // The addend must be a full copy within the same register class.
126 if (!AddendMI->isFullCopy())
127 continue;
129 Register AddendSrcReg = AddendMI->getOperand(1).getReg();
130 if (Register::isVirtualRegister(AddendSrcReg)) {
131 if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
132 MRI.getRegClass(AddendSrcReg))
133 continue;
134 } else {
135 // If AddendSrcReg is a physical register, make sure the destination
136 // register class contains it.
137 if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
138 ->contains(AddendSrcReg))
139 continue;
142 // In theory, there could be other uses of the addend copy before this
143 // fma. We could deal with this, but that would require additional
144 // logic below and I suspect it will not occur in any relevant
145 // situations. Additionally, check whether the copy source is killed
146 // prior to the fma. In order to replace the addend here with the
147 // source of the copy, it must still be live here. We can't use
148 // interval testing for a physical register, so as long as we're
149 // walking the MIs we may as well test liveness here.
151 // FIXME: There is a case that occurs in practice, like this:
152 // %9 = COPY %f1; VSSRC:%9
153 // ...
154 // %6 = COPY %9; VSSRC:%6,%9
155 // %7 = COPY %9; VSSRC:%7,%9
156 // %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
157 // %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
158 // %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
159 // which prevents an otherwise-profitable transformation.
160 bool OtherUsers = false, KillsAddendSrc = false;
161 for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
162 J != JE; --J) {
163 if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
164 OtherUsers = true;
165 break;
167 if (J->modifiesRegister(AddendSrcReg, TRI) ||
168 J->killsRegister(AddendSrcReg, TRI)) {
169 KillsAddendSrc = true;
170 break;
174 if (OtherUsers || KillsAddendSrc)
175 continue;
178 // The transformation doesn't work well with things like:
179 // %5 = A-form-op %5, %11, %5;
180 // unless %11 is also a kill, so skip when it is not,
181 // and check operand 3 to see it is also a kill to handle the case:
182 // %5 = A-form-op %5, %5, %11;
183 // where %5 and %11 are both kills. This case would be skipped
184 // otherwise.
185 Register OldFMAReg = MI.getOperand(0).getReg();
187 // Find one of the product operands that is killed by this instruction.
188 unsigned KilledProdOp = 0, OtherProdOp = 0;
189 Register Reg2 = MI.getOperand(2).getReg();
190 Register Reg3 = MI.getOperand(3).getReg();
191 if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
192 && Reg2 != OldFMAReg) {
193 KilledProdOp = 2;
194 OtherProdOp = 3;
195 } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
196 && Reg3 != OldFMAReg) {
197 KilledProdOp = 3;
198 OtherProdOp = 2;
201 // If there are no usable killed product operands, then this
202 // transformation is likely not profitable.
203 if (!KilledProdOp)
204 continue;
206 // If the addend copy is used only by this MI, then the addend source
207 // register is likely not live here. This could be fixed (based on the
208 // legality checks above, the live range for the addend source register
209 // could be extended), but it seems likely that such a trivial copy can
210 // be coalesced away later, and thus is not worth the effort.
211 if (Register::isVirtualRegister(AddendSrcReg) &&
212 !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
213 continue;
215 // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
217 Register KilledProdReg = MI.getOperand(KilledProdOp).getReg();
218 Register OtherProdReg = MI.getOperand(OtherProdOp).getReg();
220 unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
221 unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
222 unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
224 bool AddRegKill = AddendMI->getOperand(1).isKill();
225 bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
226 bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
228 bool AddRegUndef = AddendMI->getOperand(1).isUndef();
229 bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
230 bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
232 // If there isn't a class that fits, we can't perform the transform.
233 // This is needed for correctness with a mixture of VSX and Altivec
234 // instructions to make sure that a low VSX register is not assigned to
235 // the Altivec instruction.
236 if (!MRI.constrainRegClass(KilledProdReg,
237 MRI.getRegClass(OldFMAReg)))
238 continue;
240 assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
241 "Addend copy not tied to old FMA output!");
243 LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n " << MI);
245 MI.getOperand(0).setReg(KilledProdReg);
246 MI.getOperand(1).setReg(KilledProdReg);
247 MI.getOperand(3).setReg(AddendSrcReg);
249 MI.getOperand(0).setSubReg(KilledProdSubReg);
250 MI.getOperand(1).setSubReg(KilledProdSubReg);
251 MI.getOperand(3).setSubReg(AddSubReg);
253 MI.getOperand(1).setIsKill(KilledProdRegKill);
254 MI.getOperand(3).setIsKill(AddRegKill);
256 MI.getOperand(1).setIsUndef(KilledProdRegUndef);
257 MI.getOperand(3).setIsUndef(AddRegUndef);
259 MI.setDesc(TII->get(AltOpc));
261 // If the addend is also a multiplicand, replace it with the addend
262 // source in both places.
263 if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
264 MI.getOperand(2).setReg(AddendSrcReg);
265 MI.getOperand(2).setSubReg(AddSubReg);
266 MI.getOperand(2).setIsKill(AddRegKill);
267 MI.getOperand(2).setIsUndef(AddRegUndef);
268 } else {
269 MI.getOperand(2).setReg(OtherProdReg);
270 MI.getOperand(2).setSubReg(OtherProdSubReg);
271 MI.getOperand(2).setIsKill(OtherProdRegKill);
272 MI.getOperand(2).setIsUndef(OtherProdRegUndef);
275 LLVM_DEBUG(dbgs() << " -> " << MI);
277 // The killed product operand was killed here, so we can reuse it now
278 // for the result of the fma.
280 LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
281 VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
282 for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
283 UI != UE;) {
284 MachineOperand &UseMO = *UI;
285 MachineInstr *UseMI = UseMO.getParent();
286 ++UI;
288 // Don't replace the result register of the copy we're about to erase.
289 if (UseMI == AddendMI)
290 continue;
292 UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
295 // Extend the live intervals of the killed product operand to hold the
296 // fma result.
298 LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
299 for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
300 AI != AE; ++AI) {
301 // Don't add the segment that corresponds to the original copy.
302 if (AI->valno == AddendValNo)
303 continue;
305 VNInfo *NewFMAValNo =
306 NewFMAInt.getNextValue(AI->start,
307 LIS->getVNInfoAllocator());
309 NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
310 NewFMAValNo));
312 LLVM_DEBUG(dbgs() << " extended: " << NewFMAInt << '\n');
314 // Extend the live interval of the addend source (it might end at the
315 // copy to be removed, or somewhere in between there and here). This
316 // is necessary only if it is a physical register.
317 if (!Register::isVirtualRegister(AddendSrcReg))
318 for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
319 ++Units) {
320 unsigned Unit = *Units;
322 LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
323 AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
324 FMAIdx.getRegSlot());
325 LLVM_DEBUG(dbgs() << " extended: " << AddendSrcRange << '\n');
328 FMAInt.removeValNo(FMAValNo);
329 LLVM_DEBUG(dbgs() << " trimmed: " << FMAInt << '\n');
331 // Remove the (now unused) copy.
333 LLVM_DEBUG(dbgs() << " removing: " << *AddendMI << '\n');
334 LIS->RemoveMachineInstrFromMaps(*AddendMI);
335 AddendMI->eraseFromParent();
337 Changed = true;
340 return Changed;
343 public:
344 bool runOnMachineFunction(MachineFunction &MF) override {
345 if (skipFunction(MF.getFunction()))
346 return false;
348 // If we don't have VSX then go ahead and return without doing
349 // anything.
350 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
351 if (!STI.hasVSX())
352 return false;
354 LIS = &getAnalysis<LiveIntervals>();
356 TII = STI.getInstrInfo();
358 bool Changed = false;
360 if (DisableVSXFMAMutate)
361 return Changed;
363 for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
364 MachineBasicBlock &B = *I++;
365 if (processBlock(B))
366 Changed = true;
369 return Changed;
372 void getAnalysisUsage(AnalysisUsage &AU) const override {
373 AU.addRequired<LiveIntervals>();
374 AU.addPreserved<LiveIntervals>();
375 AU.addRequired<SlotIndexes>();
376 AU.addPreserved<SlotIndexes>();
377 AU.addRequired<MachineDominatorTree>();
378 AU.addPreserved<MachineDominatorTree>();
379 MachineFunctionPass::getAnalysisUsage(AU);
384 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
385 "PowerPC VSX FMA Mutation", false, false)
386 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
387 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
388 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
389 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
390 "PowerPC VSX FMA Mutation", false, false)
392 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
394 char PPCVSXFMAMutate::ID = 0;
395 FunctionPass *llvm::createPPCVSXFMAMutatePass() {
396 return new PPCVSXFMAMutate();