[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / X86 / X86AvoidStoreForwardingBlocks.cpp
blob7c195e51d162930a6929f17d16442e6161d2e111
1 //===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
13 // cache or memory.
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
36 #include "X86InstrInfo.h"
37 #include "X86Subtarget.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/MC/MCInstrDesc.h"
50 using namespace llvm;
52 #define DEBUG_TYPE "x86-avoid-SFB"
54 static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
55 "x86-disable-avoid-SFB", cl::Hidden,
56 cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
58 static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
59 "x86-sfb-inspection-limit",
60 cl::desc("X86: Number of instructions backward to "
61 "inspect for store forwarding blocks."),
62 cl::init(20), cl::Hidden);
64 namespace {
66 using DisplacementSizeMap = std::map<int64_t, unsigned>;
68 class X86AvoidSFBPass : public MachineFunctionPass {
69 public:
70 static char ID;
71 X86AvoidSFBPass() : MachineFunctionPass(ID) { }
73 StringRef getPassName() const override {
74 return "X86 Avoid Store Forwarding Blocks";
77 bool runOnMachineFunction(MachineFunction &MF) override;
79 void getAnalysisUsage(AnalysisUsage &AU) const override {
80 MachineFunctionPass::getAnalysisUsage(AU);
81 AU.addRequired<AAResultsWrapperPass>();
84 private:
85 MachineRegisterInfo *MRI;
86 const X86InstrInfo *TII;
87 const X86RegisterInfo *TRI;
88 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
89 BlockedLoadsStoresPairs;
90 SmallVector<MachineInstr *, 2> ForRemoval;
91 AliasAnalysis *AA;
93 /// Returns couples of Load then Store to memory which look
94 /// like a memcpy.
95 void findPotentiallylBlockedCopies(MachineFunction &MF);
96 /// Break the memcpy's load and store into smaller copies
97 /// such that each memory load that was blocked by a smaller store
98 /// would now be copied separately.
99 void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
100 const DisplacementSizeMap &BlockingStoresDispSizeMap);
101 /// Break a copy of size Size to smaller copies.
102 void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
103 MachineInstr *StoreInst, int64_t StDispImm,
104 int64_t LMMOffset, int64_t SMMOffset);
106 void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
107 MachineInstr *StoreInst, unsigned NStoreOpcode,
108 int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
109 int64_t SMMOffset);
111 bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
113 unsigned getRegSizeInBytes(MachineInstr *Inst);
116 } // end anonymous namespace
118 char X86AvoidSFBPass::ID = 0;
120 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
121 false, false)
122 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
123 INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
124 false)
126 FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
127 return new X86AvoidSFBPass();
130 static bool isXMMLoadOpcode(unsigned Opcode) {
131 return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
132 Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
133 Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
134 Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
135 Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
136 Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
137 Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
138 Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
140 static bool isYMMLoadOpcode(unsigned Opcode) {
141 return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
142 Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
143 Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
144 Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
145 Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
146 Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
147 Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
150 static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
151 return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
154 static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
155 switch (LdOpcode) {
156 case X86::MOVUPSrm:
157 case X86::MOVAPSrm:
158 return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
159 case X86::VMOVUPSrm:
160 case X86::VMOVAPSrm:
161 return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
162 case X86::VMOVUPDrm:
163 case X86::VMOVAPDrm:
164 return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
165 case X86::VMOVDQUrm:
166 case X86::VMOVDQArm:
167 return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
168 case X86::VMOVUPSZ128rm:
169 case X86::VMOVAPSZ128rm:
170 return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
171 case X86::VMOVUPDZ128rm:
172 case X86::VMOVAPDZ128rm:
173 return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
174 case X86::VMOVUPSYrm:
175 case X86::VMOVAPSYrm:
176 return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
177 case X86::VMOVUPDYrm:
178 case X86::VMOVAPDYrm:
179 return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
180 case X86::VMOVDQUYrm:
181 case X86::VMOVDQAYrm:
182 return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
183 case X86::VMOVUPSZ256rm:
184 case X86::VMOVAPSZ256rm:
185 return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
186 case X86::VMOVUPDZ256rm:
187 case X86::VMOVAPDZ256rm:
188 return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
189 case X86::VMOVDQU64Z128rm:
190 case X86::VMOVDQA64Z128rm:
191 return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
192 case X86::VMOVDQU32Z128rm:
193 case X86::VMOVDQA32Z128rm:
194 return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
195 case X86::VMOVDQU64Z256rm:
196 case X86::VMOVDQA64Z256rm:
197 return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
198 case X86::VMOVDQU32Z256rm:
199 case X86::VMOVDQA32Z256rm:
200 return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
201 default:
202 return false;
206 static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
207 bool PBlock = false;
208 PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
209 Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
210 Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
211 Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
212 if (isYMMLoadOpcode(LoadOpcode))
213 PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
214 Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
215 Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
216 Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
217 Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
218 Opcode == X86::VMOVDQU64Z128mr ||
219 Opcode == X86::VMOVDQA64Z128mr ||
220 Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
221 return PBlock;
224 static const int MOV128SZ = 16;
225 static const int MOV64SZ = 8;
226 static const int MOV32SZ = 4;
227 static const int MOV16SZ = 2;
228 static const int MOV8SZ = 1;
230 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
231 switch (LoadOpcode) {
232 case X86::VMOVUPSYrm:
233 case X86::VMOVAPSYrm:
234 return X86::VMOVUPSrm;
235 case X86::VMOVUPDYrm:
236 case X86::VMOVAPDYrm:
237 return X86::VMOVUPDrm;
238 case X86::VMOVDQUYrm:
239 case X86::VMOVDQAYrm:
240 return X86::VMOVDQUrm;
241 case X86::VMOVUPSZ256rm:
242 case X86::VMOVAPSZ256rm:
243 return X86::VMOVUPSZ128rm;
244 case X86::VMOVUPDZ256rm:
245 case X86::VMOVAPDZ256rm:
246 return X86::VMOVUPDZ128rm;
247 case X86::VMOVDQU64Z256rm:
248 case X86::VMOVDQA64Z256rm:
249 return X86::VMOVDQU64Z128rm;
250 case X86::VMOVDQU32Z256rm:
251 case X86::VMOVDQA32Z256rm:
252 return X86::VMOVDQU32Z128rm;
253 default:
254 llvm_unreachable("Unexpected Load Instruction Opcode");
256 return 0;
259 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
260 switch (StoreOpcode) {
261 case X86::VMOVUPSYmr:
262 case X86::VMOVAPSYmr:
263 return X86::VMOVUPSmr;
264 case X86::VMOVUPDYmr:
265 case X86::VMOVAPDYmr:
266 return X86::VMOVUPDmr;
267 case X86::VMOVDQUYmr:
268 case X86::VMOVDQAYmr:
269 return X86::VMOVDQUmr;
270 case X86::VMOVUPSZ256mr:
271 case X86::VMOVAPSZ256mr:
272 return X86::VMOVUPSZ128mr;
273 case X86::VMOVUPDZ256mr:
274 case X86::VMOVAPDZ256mr:
275 return X86::VMOVUPDZ128mr;
276 case X86::VMOVDQU64Z256mr:
277 case X86::VMOVDQA64Z256mr:
278 return X86::VMOVDQU64Z128mr;
279 case X86::VMOVDQU32Z256mr:
280 case X86::VMOVDQA32Z256mr:
281 return X86::VMOVDQU32Z128mr;
282 default:
283 llvm_unreachable("Unexpected Load Instruction Opcode");
285 return 0;
288 static int getAddrOffset(MachineInstr *MI) {
289 const MCInstrDesc &Descl = MI->getDesc();
290 int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
291 assert(AddrOffset != -1 && "Expected Memory Operand");
292 AddrOffset += X86II::getOperandBias(Descl);
293 return AddrOffset;
296 static MachineOperand &getBaseOperand(MachineInstr *MI) {
297 int AddrOffset = getAddrOffset(MI);
298 return MI->getOperand(AddrOffset + X86::AddrBaseReg);
301 static MachineOperand &getDispOperand(MachineInstr *MI) {
302 int AddrOffset = getAddrOffset(MI);
303 return MI->getOperand(AddrOffset + X86::AddrDisp);
306 // Relevant addressing modes contain only base register and immediate
307 // displacement or frameindex and immediate displacement.
308 // TODO: Consider expanding to other addressing modes in the future
309 static bool isRelevantAddressingMode(MachineInstr *MI) {
310 int AddrOffset = getAddrOffset(MI);
311 MachineOperand &Base = getBaseOperand(MI);
312 MachineOperand &Disp = getDispOperand(MI);
313 MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
314 MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
315 MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
317 if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
318 return false;
319 if (!Disp.isImm())
320 return false;
321 if (Scale.getImm() != 1)
322 return false;
323 if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
324 return false;
325 if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
326 return false;
327 return true;
330 // Collect potentially blocking stores.
331 // Limit the number of instructions backwards we want to inspect
332 // since the effect of store block won't be visible if the store
333 // and load instructions have enough instructions in between to
334 // keep the core busy.
335 static SmallVector<MachineInstr *, 2>
336 findPotentialBlockers(MachineInstr *LoadInst) {
337 SmallVector<MachineInstr *, 2> PotentialBlockers;
338 unsigned BlockCount = 0;
339 const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
340 for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
341 E = LoadInst->getParent()->rend();
342 PBInst != E; ++PBInst) {
343 if (PBInst->isMetaInstruction())
344 continue;
345 BlockCount++;
346 if (BlockCount >= InspectionLimit)
347 break;
348 MachineInstr &MI = *PBInst;
349 if (MI.getDesc().isCall())
350 return PotentialBlockers;
351 PotentialBlockers.push_back(&MI);
353 // If we didn't get to the instructions limit try predecessing blocks.
354 // Ideally we should traverse the predecessor blocks in depth with some
355 // coloring algorithm, but for now let's just look at the first order
356 // predecessors.
357 if (BlockCount < InspectionLimit) {
358 MachineBasicBlock *MBB = LoadInst->getParent();
359 int LimitLeft = InspectionLimit - BlockCount;
360 for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
361 PE = MBB->pred_end();
362 PB != PE; ++PB) {
363 MachineBasicBlock *PMBB = *PB;
364 int PredCount = 0;
365 for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
366 PME = PMBB->rend();
367 PBInst != PME; ++PBInst) {
368 if (PBInst->isMetaInstruction())
369 continue;
370 PredCount++;
371 if (PredCount >= LimitLeft)
372 break;
373 if (PBInst->getDesc().isCall())
374 break;
375 PotentialBlockers.push_back(&*PBInst);
379 return PotentialBlockers;
382 void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
383 int64_t LoadDisp, MachineInstr *StoreInst,
384 unsigned NStoreOpcode, int64_t StoreDisp,
385 unsigned Size, int64_t LMMOffset,
386 int64_t SMMOffset) {
387 MachineOperand &LoadBase = getBaseOperand(LoadInst);
388 MachineOperand &StoreBase = getBaseOperand(StoreInst);
389 MachineBasicBlock *MBB = LoadInst->getParent();
390 MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
391 MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
393 Register Reg1 = MRI->createVirtualRegister(
394 TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
395 MachineInstr *NewLoad =
396 BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
397 Reg1)
398 .add(LoadBase)
399 .addImm(1)
400 .addReg(X86::NoRegister)
401 .addImm(LoadDisp)
402 .addReg(X86::NoRegister)
403 .addMemOperand(
404 MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
405 if (LoadBase.isReg())
406 getBaseOperand(NewLoad).setIsKill(false);
407 LLVM_DEBUG(NewLoad->dump());
408 // If the load and store are consecutive, use the loadInst location to
409 // reduce register pressure.
410 MachineInstr *StInst = StoreInst;
411 auto PrevInstrIt = skipDebugInstructionsBackward(
412 std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
413 MBB->instr_begin());
414 if (PrevInstrIt.getNodePtr() == LoadInst)
415 StInst = LoadInst;
416 MachineInstr *NewStore =
417 BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
418 .add(StoreBase)
419 .addImm(1)
420 .addReg(X86::NoRegister)
421 .addImm(StoreDisp)
422 .addReg(X86::NoRegister)
423 .addReg(Reg1)
424 .addMemOperand(
425 MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
426 if (StoreBase.isReg())
427 getBaseOperand(NewStore).setIsKill(false);
428 MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
429 assert(StoreSrcVReg.isReg() && "Expected virtual register");
430 NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
431 LLVM_DEBUG(NewStore->dump());
434 void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
435 int64_t LdDispImm, MachineInstr *StoreInst,
436 int64_t StDispImm, int64_t LMMOffset,
437 int64_t SMMOffset) {
438 int LdDisp = LdDispImm;
439 int StDisp = StDispImm;
440 while (Size > 0) {
441 if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
442 Size = Size - MOV128SZ;
443 buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
444 StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
445 StDisp, MOV128SZ, LMMOffset, SMMOffset);
446 LdDisp += MOV128SZ;
447 StDisp += MOV128SZ;
448 LMMOffset += MOV128SZ;
449 SMMOffset += MOV128SZ;
450 continue;
452 if (Size - MOV64SZ >= 0) {
453 Size = Size - MOV64SZ;
454 buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
455 MOV64SZ, LMMOffset, SMMOffset);
456 LdDisp += MOV64SZ;
457 StDisp += MOV64SZ;
458 LMMOffset += MOV64SZ;
459 SMMOffset += MOV64SZ;
460 continue;
462 if (Size - MOV32SZ >= 0) {
463 Size = Size - MOV32SZ;
464 buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
465 MOV32SZ, LMMOffset, SMMOffset);
466 LdDisp += MOV32SZ;
467 StDisp += MOV32SZ;
468 LMMOffset += MOV32SZ;
469 SMMOffset += MOV32SZ;
470 continue;
472 if (Size - MOV16SZ >= 0) {
473 Size = Size - MOV16SZ;
474 buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
475 MOV16SZ, LMMOffset, SMMOffset);
476 LdDisp += MOV16SZ;
477 StDisp += MOV16SZ;
478 LMMOffset += MOV16SZ;
479 SMMOffset += MOV16SZ;
480 continue;
482 if (Size - MOV8SZ >= 0) {
483 Size = Size - MOV8SZ;
484 buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
485 MOV8SZ, LMMOffset, SMMOffset);
486 LdDisp += MOV8SZ;
487 StDisp += MOV8SZ;
488 LMMOffset += MOV8SZ;
489 SMMOffset += MOV8SZ;
490 continue;
493 assert(Size == 0 && "Wrong size division");
496 static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
497 MachineOperand &LoadBase = getBaseOperand(LoadInst);
498 MachineOperand &StoreBase = getBaseOperand(StoreInst);
499 auto StorePrevNonDbgInstr = skipDebugInstructionsBackward(
500 std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
501 LoadInst->getParent()->instr_begin()).getNodePtr();
502 if (LoadBase.isReg()) {
503 MachineInstr *LastLoad = LoadInst->getPrevNode();
504 // If the original load and store to xmm/ymm were consecutive
505 // then the partial copies were also created in
506 // a consecutive order to reduce register pressure,
507 // and the location of the last load is before the last store.
508 if (StorePrevNonDbgInstr == LoadInst)
509 LastLoad = LoadInst->getPrevNode()->getPrevNode();
510 getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
512 if (StoreBase.isReg()) {
513 MachineInstr *StInst = StoreInst;
514 if (StorePrevNonDbgInstr == LoadInst)
515 StInst = LoadInst;
516 getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
520 bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
521 const MachineMemOperand &Op2) const {
522 if (!Op1.getValue() || !Op2.getValue())
523 return true;
525 int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
526 int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
527 int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
529 AliasResult AAResult =
530 AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
531 MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
532 return AAResult != NoAlias;
535 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
536 for (auto &MBB : MF)
537 for (auto &MI : MBB) {
538 if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
539 continue;
540 int DefVR = MI.getOperand(0).getReg();
541 if (!MRI->hasOneNonDBGUse(DefVR))
542 continue;
543 for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
544 UI != UE;) {
545 MachineOperand &StoreMO = *UI++;
546 MachineInstr &StoreMI = *StoreMO.getParent();
547 // Skip cases where the memcpy may overlap.
548 if (StoreMI.getParent() == MI.getParent() &&
549 isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
550 isRelevantAddressingMode(&MI) &&
551 isRelevantAddressingMode(&StoreMI)) {
552 assert(MI.hasOneMemOperand() &&
553 "Expected one memory operand for load instruction");
554 assert(StoreMI.hasOneMemOperand() &&
555 "Expected one memory operand for store instruction");
556 if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
557 BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
563 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
564 auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
565 *LoadInst->getParent()->getParent());
566 return TRI->getRegSizeInBits(*TRC) / 8;
569 void X86AvoidSFBPass::breakBlockedCopies(
570 MachineInstr *LoadInst, MachineInstr *StoreInst,
571 const DisplacementSizeMap &BlockingStoresDispSizeMap) {
572 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
573 int64_t StDispImm = getDispOperand(StoreInst).getImm();
574 int64_t LMMOffset = 0;
575 int64_t SMMOffset = 0;
577 int64_t LdDisp1 = LdDispImm;
578 int64_t LdDisp2 = 0;
579 int64_t StDisp1 = StDispImm;
580 int64_t StDisp2 = 0;
581 unsigned Size1 = 0;
582 unsigned Size2 = 0;
583 int64_t LdStDelta = StDispImm - LdDispImm;
585 for (auto DispSizePair : BlockingStoresDispSizeMap) {
586 LdDisp2 = DispSizePair.first;
587 StDisp2 = DispSizePair.first + LdStDelta;
588 Size2 = DispSizePair.second;
589 // Avoid copying overlapping areas.
590 if (LdDisp2 < LdDisp1) {
591 int OverlapDelta = LdDisp1 - LdDisp2;
592 LdDisp2 += OverlapDelta;
593 StDisp2 += OverlapDelta;
594 Size2 -= OverlapDelta;
596 Size1 = LdDisp2 - LdDisp1;
598 // Build a copy for the point until the current blocking store's
599 // displacement.
600 buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
601 SMMOffset);
602 // Build a copy for the current blocking store.
603 buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
604 SMMOffset + Size1);
605 LdDisp1 = LdDisp2 + Size2;
606 StDisp1 = StDisp2 + Size2;
607 LMMOffset += Size1 + Size2;
608 SMMOffset += Size1 + Size2;
610 unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
611 buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
612 LMMOffset);
615 static bool hasSameBaseOpValue(MachineInstr *LoadInst,
616 MachineInstr *StoreInst) {
617 MachineOperand &LoadBase = getBaseOperand(LoadInst);
618 MachineOperand &StoreBase = getBaseOperand(StoreInst);
619 if (LoadBase.isReg() != StoreBase.isReg())
620 return false;
621 if (LoadBase.isReg())
622 return LoadBase.getReg() == StoreBase.getReg();
623 return LoadBase.getIndex() == StoreBase.getIndex();
626 static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
627 int64_t StoreDispImm, unsigned StoreSize) {
628 return ((StoreDispImm >= LoadDispImm) &&
629 (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
632 // Keep track of all stores blocking a load
633 static void
634 updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
635 int64_t DispImm, unsigned Size) {
636 if (BlockingStoresDispSizeMap.count(DispImm)) {
637 // Choose the smallest blocking store starting at this displacement.
638 if (BlockingStoresDispSizeMap[DispImm] > Size)
639 BlockingStoresDispSizeMap[DispImm] = Size;
641 } else
642 BlockingStoresDispSizeMap[DispImm] = Size;
645 // Remove blocking stores contained in each other.
646 static void
647 removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
648 if (BlockingStoresDispSizeMap.size() <= 1)
649 return;
651 SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack;
652 for (auto DispSizePair : BlockingStoresDispSizeMap) {
653 int64_t CurrDisp = DispSizePair.first;
654 unsigned CurrSize = DispSizePair.second;
655 while (DispSizeStack.size()) {
656 int64_t PrevDisp = DispSizeStack.back().first;
657 unsigned PrevSize = DispSizeStack.back().second;
658 if (CurrDisp + CurrSize > PrevDisp + PrevSize)
659 break;
660 DispSizeStack.pop_back();
662 DispSizeStack.push_back(DispSizePair);
664 BlockingStoresDispSizeMap.clear();
665 for (auto Disp : DispSizeStack)
666 BlockingStoresDispSizeMap.insert(Disp);
669 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
670 bool Changed = false;
672 if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
673 !MF.getSubtarget<X86Subtarget>().is64Bit())
674 return false;
676 MRI = &MF.getRegInfo();
677 assert(MRI->isSSA() && "Expected MIR to be in SSA form");
678 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
679 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
680 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
681 LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
682 // Look for a load then a store to XMM/YMM which look like a memcpy
683 findPotentiallylBlockedCopies(MF);
685 for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
686 MachineInstr *LoadInst = LoadStoreInstPair.first;
687 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
688 DisplacementSizeMap BlockingStoresDispSizeMap;
690 SmallVector<MachineInstr *, 2> PotentialBlockers =
691 findPotentialBlockers(LoadInst);
692 for (auto PBInst : PotentialBlockers) {
693 if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
694 LoadInst->getOpcode()) ||
695 !isRelevantAddressingMode(PBInst))
696 continue;
697 int64_t PBstDispImm = getDispOperand(PBInst).getImm();
698 assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
699 unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
700 // This check doesn't cover all cases, but it will suffice for now.
701 // TODO: take branch probability into consideration, if the blocking
702 // store is in an unreached block, breaking the memcopy could lose
703 // performance.
704 if (hasSameBaseOpValue(LoadInst, PBInst) &&
705 isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
706 PBstSize))
707 updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
708 PBstSize);
711 if (BlockingStoresDispSizeMap.empty())
712 continue;
714 // We found a store forward block, break the memcpy's load and store
715 // into smaller copies such that each smaller store that was causing
716 // a store block would now be copied separately.
717 MachineInstr *StoreInst = LoadStoreInstPair.second;
718 LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
719 LLVM_DEBUG(LoadInst->dump());
720 LLVM_DEBUG(StoreInst->dump());
721 LLVM_DEBUG(dbgs() << "Replaced with:\n");
722 removeRedundantBlockingStores(BlockingStoresDispSizeMap);
723 breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
724 updateKillStatus(LoadInst, StoreInst);
725 ForRemoval.push_back(LoadInst);
726 ForRemoval.push_back(StoreInst);
728 for (auto RemovedInst : ForRemoval) {
729 RemovedInst->eraseFromParent();
731 ForRemoval.clear();
732 BlockedLoadsStoresPairs.clear();
733 LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
735 return Changed;