[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / X86 / X86CallLowering.cpp
blob1dddf7878bca4ac7e3d85ef83263a583a1071eea
1 //===- llvm/lib/Target/X86/X86CallLowering.cpp - Call lowering ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
13 //===----------------------------------------------------------------------===//
15 #include "X86CallLowering.h"
16 #include "X86CallingConv.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/GlobalISel/Utils.h"
27 #include "llvm/CodeGen/LowLevelType.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Support/LowLevelTypeImpl.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include <cassert>
46 #include <cstdint>
48 using namespace llvm;
50 X86CallLowering::X86CallLowering(const X86TargetLowering &TLI)
51 : CallLowering(&TLI) {}
53 bool X86CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
54 SmallVectorImpl<ArgInfo> &SplitArgs,
55 const DataLayout &DL,
56 MachineRegisterInfo &MRI,
57 SplitArgTy PerformArgSplit) const {
58 const X86TargetLowering &TLI = *getTLI<X86TargetLowering>();
59 LLVMContext &Context = OrigArg.Ty->getContext();
61 SmallVector<EVT, 4> SplitVTs;
62 SmallVector<uint64_t, 4> Offsets;
63 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
64 assert(OrigArg.Regs.size() == 1 && "Can't handle multple regs yet");
66 if (OrigArg.Ty->isVoidTy())
67 return true;
69 EVT VT = SplitVTs[0];
70 unsigned NumParts = TLI.getNumRegisters(Context, VT);
72 if (NumParts == 1) {
73 // replace the original type ( pointer -> GPR ).
74 SplitArgs.emplace_back(OrigArg.Regs[0], VT.getTypeForEVT(Context),
75 OrigArg.Flags, OrigArg.IsFixed);
76 return true;
79 SmallVector<Register, 8> SplitRegs;
81 EVT PartVT = TLI.getRegisterType(Context, VT);
82 Type *PartTy = PartVT.getTypeForEVT(Context);
84 for (unsigned i = 0; i < NumParts; ++i) {
85 ArgInfo Info =
86 ArgInfo{MRI.createGenericVirtualRegister(getLLTForType(*PartTy, DL)),
87 PartTy, OrigArg.Flags};
88 SplitArgs.push_back(Info);
89 SplitRegs.push_back(Info.Regs[0]);
92 PerformArgSplit(SplitRegs);
93 return true;
96 namespace {
98 struct OutgoingValueHandler : public CallLowering::ValueHandler {
99 OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
100 MachineInstrBuilder &MIB, CCAssignFn *AssignFn)
101 : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
102 DL(MIRBuilder.getMF().getDataLayout()),
103 STI(MIRBuilder.getMF().getSubtarget<X86Subtarget>()) {}
105 Register getStackAddress(uint64_t Size, int64_t Offset,
106 MachinePointerInfo &MPO) override {
107 LLT p0 = LLT::pointer(0, DL.getPointerSizeInBits(0));
108 LLT SType = LLT::scalar(DL.getPointerSizeInBits(0));
109 Register SPReg = MRI.createGenericVirtualRegister(p0);
110 MIRBuilder.buildCopy(SPReg, STI.getRegisterInfo()->getStackRegister());
112 Register OffsetReg = MRI.createGenericVirtualRegister(SType);
113 MIRBuilder.buildConstant(OffsetReg, Offset);
115 Register AddrReg = MRI.createGenericVirtualRegister(p0);
116 MIRBuilder.buildGEP(AddrReg, SPReg, OffsetReg);
118 MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
119 return AddrReg;
122 void assignValueToReg(Register ValVReg, Register PhysReg,
123 CCValAssign &VA) override {
124 MIB.addUse(PhysReg, RegState::Implicit);
126 Register ExtReg;
127 // If we are copying the value to a physical register with the
128 // size larger than the size of the value itself - build AnyExt
129 // to the size of the register first and only then do the copy.
130 // The example of that would be copying from s32 to xmm0, for which
131 // case ValVT == LocVT == MVT::f32. If LocSize and ValSize are not equal
132 // we expect normal extendRegister mechanism to work.
133 unsigned PhysRegSize =
134 MRI.getTargetRegisterInfo()->getRegSizeInBits(PhysReg, MRI);
135 unsigned ValSize = VA.getValVT().getSizeInBits();
136 unsigned LocSize = VA.getLocVT().getSizeInBits();
137 if (PhysRegSize > ValSize && LocSize == ValSize) {
138 assert((PhysRegSize == 128 || PhysRegSize == 80) && "We expect that to be 128 bit");
139 auto MIB = MIRBuilder.buildAnyExt(LLT::scalar(PhysRegSize), ValVReg);
140 ExtReg = MIB->getOperand(0).getReg();
141 } else
142 ExtReg = extendRegister(ValVReg, VA);
144 MIRBuilder.buildCopy(PhysReg, ExtReg);
147 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
148 MachinePointerInfo &MPO, CCValAssign &VA) override {
149 Register ExtReg = extendRegister(ValVReg, VA);
150 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
151 MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(),
152 /* Alignment */ 1);
153 MIRBuilder.buildStore(ExtReg, Addr, *MMO);
156 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
157 CCValAssign::LocInfo LocInfo,
158 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
159 CCState &State) override {
160 bool Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
161 StackSize = State.getNextStackOffset();
163 static const MCPhysReg XMMArgRegs[] = {X86::XMM0, X86::XMM1, X86::XMM2,
164 X86::XMM3, X86::XMM4, X86::XMM5,
165 X86::XMM6, X86::XMM7};
166 if (!Info.IsFixed)
167 NumXMMRegs = State.getFirstUnallocated(XMMArgRegs);
169 return Res;
172 uint64_t getStackSize() { return StackSize; }
173 uint64_t getNumXmmRegs() { return NumXMMRegs; }
175 protected:
176 MachineInstrBuilder &MIB;
177 uint64_t StackSize = 0;
178 const DataLayout &DL;
179 const X86Subtarget &STI;
180 unsigned NumXMMRegs = 0;
183 } // end anonymous namespace
185 bool X86CallLowering::lowerReturn(
186 MachineIRBuilder &MIRBuilder, const Value *Val,
187 ArrayRef<Register> VRegs) const {
188 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
189 "Return value without a vreg");
190 auto MIB = MIRBuilder.buildInstrNoInsert(X86::RET).addImm(0);
192 if (!VRegs.empty()) {
193 MachineFunction &MF = MIRBuilder.getMF();
194 const Function &F = MF.getFunction();
195 MachineRegisterInfo &MRI = MF.getRegInfo();
196 auto &DL = MF.getDataLayout();
197 LLVMContext &Ctx = Val->getType()->getContext();
198 const X86TargetLowering &TLI = *getTLI<X86TargetLowering>();
200 SmallVector<EVT, 4> SplitEVTs;
201 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
202 assert(VRegs.size() == SplitEVTs.size() &&
203 "For each split Type there should be exactly one VReg.");
205 SmallVector<ArgInfo, 8> SplitArgs;
206 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
207 ArgInfo CurArgInfo = ArgInfo{VRegs[i], SplitEVTs[i].getTypeForEVT(Ctx)};
208 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
209 if (!splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI,
210 [&](ArrayRef<Register> Regs) {
211 MIRBuilder.buildUnmerge(Regs, VRegs[i]);
213 return false;
216 OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, RetCC_X86);
217 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
218 return false;
221 MIRBuilder.insertInstr(MIB);
222 return true;
225 namespace {
227 struct IncomingValueHandler : public CallLowering::ValueHandler {
228 IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
229 CCAssignFn *AssignFn)
230 : ValueHandler(MIRBuilder, MRI, AssignFn),
231 DL(MIRBuilder.getMF().getDataLayout()) {}
233 bool isIncomingArgumentHandler() const override { return true; }
235 Register getStackAddress(uint64_t Size, int64_t Offset,
236 MachinePointerInfo &MPO) override {
237 auto &MFI = MIRBuilder.getMF().getFrameInfo();
238 int FI = MFI.CreateFixedObject(Size, Offset, true);
239 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
241 Register AddrReg = MRI.createGenericVirtualRegister(
242 LLT::pointer(0, DL.getPointerSizeInBits(0)));
243 MIRBuilder.buildFrameIndex(AddrReg, FI);
244 return AddrReg;
247 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
248 MachinePointerInfo &MPO, CCValAssign &VA) override {
249 auto MMO = MIRBuilder.getMF().getMachineMemOperand(
250 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size,
252 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
255 void assignValueToReg(Register ValVReg, Register PhysReg,
256 CCValAssign &VA) override {
257 markPhysRegUsed(PhysReg);
259 switch (VA.getLocInfo()) {
260 default: {
261 // If we are copying the value from a physical register with the
262 // size larger than the size of the value itself - build the copy
263 // of the phys reg first and then build the truncation of that copy.
264 // The example of that would be copying from xmm0 to s32, for which
265 // case ValVT == LocVT == MVT::f32. If LocSize and ValSize are not equal
266 // we expect this to be handled in SExt/ZExt/AExt case.
267 unsigned PhysRegSize =
268 MRI.getTargetRegisterInfo()->getRegSizeInBits(PhysReg, MRI);
269 unsigned ValSize = VA.getValVT().getSizeInBits();
270 unsigned LocSize = VA.getLocVT().getSizeInBits();
271 if (PhysRegSize > ValSize && LocSize == ValSize) {
272 auto Copy = MIRBuilder.buildCopy(LLT::scalar(PhysRegSize), PhysReg);
273 MIRBuilder.buildTrunc(ValVReg, Copy);
274 return;
277 MIRBuilder.buildCopy(ValVReg, PhysReg);
278 break;
280 case CCValAssign::LocInfo::SExt:
281 case CCValAssign::LocInfo::ZExt:
282 case CCValAssign::LocInfo::AExt: {
283 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
284 MIRBuilder.buildTrunc(ValVReg, Copy);
285 break;
290 /// How the physical register gets marked varies between formal
291 /// parameters (it's a basic-block live-in), and a call instruction
292 /// (it's an implicit-def of the BL).
293 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
295 protected:
296 const DataLayout &DL;
299 struct FormalArgHandler : public IncomingValueHandler {
300 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
301 CCAssignFn *AssignFn)
302 : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {}
304 void markPhysRegUsed(unsigned PhysReg) override {
305 MIRBuilder.getMRI()->addLiveIn(PhysReg);
306 MIRBuilder.getMBB().addLiveIn(PhysReg);
310 struct CallReturnHandler : public IncomingValueHandler {
311 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
312 CCAssignFn *AssignFn, MachineInstrBuilder &MIB)
313 : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
315 void markPhysRegUsed(unsigned PhysReg) override {
316 MIB.addDef(PhysReg, RegState::Implicit);
319 protected:
320 MachineInstrBuilder &MIB;
323 } // end anonymous namespace
325 bool X86CallLowering::lowerFormalArguments(
326 MachineIRBuilder &MIRBuilder, const Function &F,
327 ArrayRef<ArrayRef<Register>> VRegs) const {
328 if (F.arg_empty())
329 return true;
331 // TODO: handle variadic function
332 if (F.isVarArg())
333 return false;
335 MachineFunction &MF = MIRBuilder.getMF();
336 MachineRegisterInfo &MRI = MF.getRegInfo();
337 auto DL = MF.getDataLayout();
339 SmallVector<ArgInfo, 8> SplitArgs;
340 unsigned Idx = 0;
341 for (auto &Arg : F.args()) {
343 // TODO: handle not simple cases.
344 if (Arg.hasAttribute(Attribute::ByVal) ||
345 Arg.hasAttribute(Attribute::InReg) ||
346 Arg.hasAttribute(Attribute::StructRet) ||
347 Arg.hasAttribute(Attribute::SwiftSelf) ||
348 Arg.hasAttribute(Attribute::SwiftError) ||
349 Arg.hasAttribute(Attribute::Nest) || VRegs[Idx].size() > 1)
350 return false;
352 ArgInfo OrigArg(VRegs[Idx], Arg.getType());
353 setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
354 if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI,
355 [&](ArrayRef<Register> Regs) {
356 MIRBuilder.buildMerge(VRegs[Idx][0], Regs);
358 return false;
359 Idx++;
362 MachineBasicBlock &MBB = MIRBuilder.getMBB();
363 if (!MBB.empty())
364 MIRBuilder.setInstr(*MBB.begin());
366 FormalArgHandler Handler(MIRBuilder, MRI, CC_X86);
367 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
368 return false;
370 // Move back to the end of the basic block.
371 MIRBuilder.setMBB(MBB);
373 return true;
376 bool X86CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
377 CallLoweringInfo &Info) const {
378 MachineFunction &MF = MIRBuilder.getMF();
379 const Function &F = MF.getFunction();
380 MachineRegisterInfo &MRI = MF.getRegInfo();
381 auto &DL = F.getParent()->getDataLayout();
382 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
383 const TargetInstrInfo &TII = *STI.getInstrInfo();
384 auto TRI = STI.getRegisterInfo();
386 // Handle only Linux C, X86_64_SysV calling conventions for now.
387 if (!STI.isTargetLinux() || !(Info.CallConv == CallingConv::C ||
388 Info.CallConv == CallingConv::X86_64_SysV))
389 return false;
391 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
392 auto CallSeqStart = MIRBuilder.buildInstr(AdjStackDown);
394 // Create a temporarily-floating call instruction so we can add the implicit
395 // uses of arg registers.
396 bool Is64Bit = STI.is64Bit();
397 unsigned CallOpc = Info.Callee.isReg()
398 ? (Is64Bit ? X86::CALL64r : X86::CALL32r)
399 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
401 auto MIB = MIRBuilder.buildInstrNoInsert(CallOpc)
402 .add(Info.Callee)
403 .addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv));
405 SmallVector<ArgInfo, 8> SplitArgs;
406 for (const auto &OrigArg : Info.OrigArgs) {
408 // TODO: handle not simple cases.
409 if (OrigArg.Flags[0].isByVal())
410 return false;
412 if (OrigArg.Regs.size() > 1)
413 return false;
415 if (!splitToValueTypes(OrigArg, SplitArgs, DL, MRI,
416 [&](ArrayRef<Register> Regs) {
417 MIRBuilder.buildUnmerge(Regs, OrigArg.Regs[0]);
419 return false;
421 // Do the actual argument marshalling.
422 OutgoingValueHandler Handler(MIRBuilder, MRI, MIB, CC_X86);
423 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
424 return false;
426 bool IsFixed = Info.OrigArgs.empty() ? true : Info.OrigArgs.back().IsFixed;
427 if (STI.is64Bit() && !IsFixed && !STI.isCallingConvWin64(Info.CallConv)) {
428 // From AMD64 ABI document:
429 // For calls that may call functions that use varargs or stdargs
430 // (prototype-less calls or calls to functions containing ellipsis (...) in
431 // the declaration) %al is used as hidden argument to specify the number
432 // of SSE registers used. The contents of %al do not need to match exactly
433 // the number of registers, but must be an ubound on the number of SSE
434 // registers used and is in the range 0 - 8 inclusive.
436 MIRBuilder.buildInstr(X86::MOV8ri)
437 .addDef(X86::AL)
438 .addImm(Handler.getNumXmmRegs());
439 MIB.addUse(X86::AL, RegState::Implicit);
442 // Now we can add the actual call instruction to the correct basic block.
443 MIRBuilder.insertInstr(MIB);
445 // If Callee is a reg, since it is used by a target specific
446 // instruction, it must have a register class matching the
447 // constraint of that instruction.
448 if (Info.Callee.isReg())
449 MIB->getOperand(0).setReg(constrainOperandRegClass(
450 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
451 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
452 0));
454 // Finally we can copy the returned value back into its virtual-register. In
455 // symmetry with the arguments, the physical register must be an
456 // implicit-define of the call instruction.
458 if (!Info.OrigRet.Ty->isVoidTy()) {
459 if (Info.OrigRet.Regs.size() > 1)
460 return false;
462 SplitArgs.clear();
463 SmallVector<Register, 8> NewRegs;
465 if (!splitToValueTypes(Info.OrigRet, SplitArgs, DL, MRI,
466 [&](ArrayRef<Register> Regs) {
467 NewRegs.assign(Regs.begin(), Regs.end());
469 return false;
471 CallReturnHandler Handler(MIRBuilder, MRI, RetCC_X86, MIB);
472 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
473 return false;
475 if (!NewRegs.empty())
476 MIRBuilder.buildMerge(Info.OrigRet.Regs[0], NewRegs);
479 CallSeqStart.addImm(Handler.getStackSize())
480 .addImm(0 /* see getFrameTotalSize */)
481 .addImm(0 /* see getFrameAdjustment */);
483 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
484 MIRBuilder.buildInstr(AdjStackUp)
485 .addImm(Handler.getStackSize())
486 .addImm(0 /* NumBytesForCalleeToPop */);
488 return true;