1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
37 X86FrameLowering::X86FrameLowering(const X86Subtarget
&STI
,
38 unsigned StackAlignOverride
)
39 : TargetFrameLowering(StackGrowsDown
, StackAlignOverride
,
40 STI
.is64Bit() ? -8 : -4),
41 STI(STI
), TII(*STI
.getInstrInfo()), TRI(STI
.getRegisterInfo()) {
42 // Cache a bunch of frame-related predicates for this subtarget.
43 SlotSize
= TRI
->getSlotSize();
44 Is64Bit
= STI
.is64Bit();
45 IsLP64
= STI
.isTarget64BitLP64();
46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47 Uses64BitFramePtr
= STI
.isTarget64BitLP64() || STI
.isTargetNaCl64();
48 StackPtr
= TRI
->getStackRegister();
51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
52 return !MF
.getFrameInfo().hasVarSizedObjects() &&
53 !MF
.getInfo
<X86MachineFunctionInfo
>()->getHasPushSequences();
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified. Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction
&MF
) const {
62 return hasReservedCallFrame(MF
) ||
63 (hasFP(MF
) && !TRI
->needsStackRealignment(MF
)) ||
64 TRI
->hasBasePointer(MF
);
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction
&MF
) const {
76 return MF
.getFrameInfo().hasStackObjects() ||
77 MF
.getInfo
<X86MachineFunctionInfo
>()->getHasPushSequences();
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register. This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
83 bool X86FrameLowering::hasFP(const MachineFunction
&MF
) const {
84 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
85 return (MF
.getTarget().Options
.DisableFramePointerElim(MF
) ||
86 TRI
->needsStackRealignment(MF
) ||
87 MFI
.hasVarSizedObjects() ||
88 MFI
.isFrameAddressTaken() || MFI
.hasOpaqueSPAdjustment() ||
89 MF
.getInfo
<X86MachineFunctionInfo
>()->getForceFramePointer() ||
90 MF
.callsUnwindInit() || MF
.hasEHFunclets() || MF
.callsEHReturn() ||
91 MFI
.hasStackMap() || MFI
.hasPatchPoint() ||
92 MFI
.hasCopyImplyingStackAdjustment());
95 static unsigned getSUBriOpcode(unsigned IsLP64
, int64_t Imm
) {
99 return X86::SUB64ri32
;
102 return X86::SUB32ri8
;
107 static unsigned getADDriOpcode(unsigned IsLP64
, int64_t Imm
) {
110 return X86::ADD64ri8
;
111 return X86::ADD64ri32
;
114 return X86::ADD32ri8
;
119 static unsigned getSUBrrOpcode(unsigned isLP64
) {
120 return isLP64
? X86::SUB64rr
: X86::SUB32rr
;
123 static unsigned getADDrrOpcode(unsigned isLP64
) {
124 return isLP64
? X86::ADD64rr
: X86::ADD32rr
;
127 static unsigned getANDriOpcode(bool IsLP64
, int64_t Imm
) {
130 return X86::AND64ri8
;
131 return X86::AND64ri32
;
134 return X86::AND32ri8
;
138 static unsigned getLEArOpcode(unsigned IsLP64
) {
139 return IsLP64
? X86::LEA64r
: X86::LEA32r
;
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
145 static unsigned findDeadCallerSavedReg(MachineBasicBlock
&MBB
,
146 MachineBasicBlock::iterator
&MBBI
,
147 const X86RegisterInfo
*TRI
,
149 const MachineFunction
*MF
= MBB
.getParent();
150 if (MF
->callsEHReturn())
153 const TargetRegisterClass
&AvailableRegs
= *TRI
->getGPRsForTailCall(*MF
);
155 if (MBBI
== MBB
.end())
158 switch (MBBI
->getOpcode()) {
160 case TargetOpcode::PATCHABLE_RET
:
166 case X86::TCRETURNdi
:
167 case X86::TCRETURNri
:
168 case X86::TCRETURNmi
:
169 case X86::TCRETURNdi64
:
170 case X86::TCRETURNri64
:
171 case X86::TCRETURNmi64
:
173 case X86::EH_RETURN64
: {
174 SmallSet
<uint16_t, 8> Uses
;
175 for (unsigned i
= 0, e
= MBBI
->getNumOperands(); i
!= e
; ++i
) {
176 MachineOperand
&MO
= MBBI
->getOperand(i
);
177 if (!MO
.isReg() || MO
.isDef())
179 Register Reg
= MO
.getReg();
182 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
186 for (auto CS
: AvailableRegs
)
187 if (!Uses
.count(CS
) && CS
!= X86::RIP
&& CS
!= X86::RSP
&&
196 static bool isEAXLiveIn(MachineBasicBlock
&MBB
) {
197 for (MachineBasicBlock::RegisterMaskPair RegMask
: MBB
.liveins()) {
198 unsigned Reg
= RegMask
.PhysReg
;
200 if (Reg
== X86::RAX
|| Reg
== X86::EAX
|| Reg
== X86::AX
||
201 Reg
== X86::AH
|| Reg
== X86::AL
)
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock
&MBB
) {
214 for (const MachineInstr
&MI
: MBB
.terminators()) {
215 bool BreakNext
= false;
216 for (const MachineOperand
&MO
: MI
.operands()) {
219 Register Reg
= MO
.getReg();
220 if (Reg
!= X86::EFLAGS
)
223 // This terminator needs an eflags that is not defined
224 // by a previous another terminator:
225 // EFLAGS is live-in of the region composed by the terminators.
228 // This terminator defines the eflags, i.e., we don't need to preserve it.
229 // However, we still need to check this specific terminator does not
230 // read a live-in value.
233 // We found a definition of the eflags, no need to preserve them.
238 // None of the terminators use or define the eflags.
239 // Check if they are live-out, that would imply we need to preserve them.
240 for (const MachineBasicBlock
*Succ
: MBB
.successors())
241 if (Succ
->isLiveIn(X86::EFLAGS
))
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock
&MBB
,
250 MachineBasicBlock::iterator
&MBBI
,
252 int64_t NumBytes
, bool InEpilogue
) const {
253 bool isSub
= NumBytes
< 0;
254 uint64_t Offset
= isSub
? -NumBytes
: NumBytes
;
255 MachineInstr::MIFlag Flag
=
256 isSub
? MachineInstr::FrameSetup
: MachineInstr::FrameDestroy
;
258 uint64_t Chunk
= (1LL << 31) - 1;
260 if (Offset
> Chunk
) {
261 // Rather than emit a long series of instructions for large offsets,
262 // load the offset into a register and do one sub/add
264 unsigned Rax
= (unsigned)(Is64Bit
? X86::RAX
: X86::EAX
);
266 if (isSub
&& !isEAXLiveIn(MBB
))
269 Reg
= findDeadCallerSavedReg(MBB
, MBBI
, TRI
, Is64Bit
);
271 unsigned MovRIOpc
= Is64Bit
? X86::MOV64ri
: X86::MOV32ri
;
272 unsigned AddSubRROpc
=
273 isSub
? getSUBrrOpcode(Is64Bit
) : getADDrrOpcode(Is64Bit
);
275 BuildMI(MBB
, MBBI
, DL
, TII
.get(MovRIOpc
), Reg
)
278 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(AddSubRROpc
), StackPtr
)
281 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
283 } else if (Offset
> 8 * Chunk
) {
284 // If we would need more than 8 add or sub instructions (a >16GB stack
285 // frame), it's worth spilling RAX to materialize this immediate.
287 // movabsq +-$Offset+-SlotSize, %rax
291 assert(Is64Bit
&& "can't have 32-bit 16GB stack frame");
292 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH64r
))
293 .addReg(Rax
, RegState::Kill
)
295 // Subtract is not commutative, so negate the offset and always use add.
296 // Subtract 8 less and add 8 more to account for the PUSH we just did.
298 Offset
= -(Offset
- SlotSize
);
300 Offset
= Offset
+ SlotSize
;
301 BuildMI(MBB
, MBBI
, DL
, TII
.get(MovRIOpc
), Rax
)
304 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::ADD64rr
), Rax
)
307 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308 // Exchange the new SP in RAX with the top of the stack.
310 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::XCHG64rm
), Rax
).addReg(Rax
),
312 // Load new SP from the top of the stack into RSP.
313 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64rm
), StackPtr
),
320 uint64_t ThisVal
= std::min(Offset
, Chunk
);
321 if (ThisVal
== SlotSize
) {
322 // Use push / pop for slot sized adjustments as a size optimization. We
323 // need to find a dead register when using pop.
325 ? (unsigned)(Is64Bit
? X86::RAX
: X86::EAX
)
326 : findDeadCallerSavedReg(MBB
, MBBI
, TRI
, Is64Bit
);
329 ? (Is64Bit
? X86::PUSH64r
: X86::PUSH32r
)
330 : (Is64Bit
? X86::POP64r
: X86::POP32r
);
331 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
))
332 .addReg(Reg
, getDefRegState(!isSub
) | getUndefRegState(isSub
))
339 BuildStackAdjustment(MBB
, MBBI
, DL
, isSub
? -ThisVal
: ThisVal
, InEpilogue
)
346 MachineInstrBuilder
X86FrameLowering::BuildStackAdjustment(
347 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
348 const DebugLoc
&DL
, int64_t Offset
, bool InEpilogue
) const {
349 assert(Offset
!= 0 && "zero offset stack adjustment requested");
351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
355 // Check if inserting the prologue at the beginning
356 // of MBB would require to use LEA operations.
357 // We need to use LEA operations if EFLAGS is live in, because
358 // it means an instruction will read it before it gets defined.
359 UseLEA
= STI
.useLeaForSP() || MBB
.isLiveIn(X86::EFLAGS
);
361 // If we can use LEA for SP but we shouldn't, check that none
362 // of the terminators uses the eflags. Otherwise we will insert
363 // a ADD that will redefine the eflags and break the condition.
364 // Alternatively, we could move the ADD, but this may not be possible
365 // and is an optimization anyway.
366 UseLEA
= canUseLEAForSPInEpilogue(*MBB
.getParent());
367 if (UseLEA
&& !STI
.useLeaForSP())
368 UseLEA
= flagsNeedToBePreservedBeforeTheTerminators(MBB
);
369 // If that assert breaks, that means we do not do the right thing
370 // in canUseAsEpilogue.
371 assert((UseLEA
|| !flagsNeedToBePreservedBeforeTheTerminators(MBB
)) &&
372 "We shouldn't have allowed this insertion point");
375 MachineInstrBuilder MI
;
377 MI
= addRegOffset(BuildMI(MBB
, MBBI
, DL
,
378 TII
.get(getLEArOpcode(Uses64BitFramePtr
)),
380 StackPtr
, false, Offset
);
382 bool IsSub
= Offset
< 0;
383 uint64_t AbsOffset
= IsSub
? -Offset
: Offset
;
384 unsigned Opc
= IsSub
? getSUBriOpcode(Uses64BitFramePtr
, AbsOffset
)
385 : getADDriOpcode(Uses64BitFramePtr
, AbsOffset
);
386 MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
389 MI
->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock
&MBB
,
395 MachineBasicBlock::iterator
&MBBI
,
396 bool doMergeWithPrevious
) const {
397 if ((doMergeWithPrevious
&& MBBI
== MBB
.begin()) ||
398 (!doMergeWithPrevious
&& MBBI
== MBB
.end()))
401 MachineBasicBlock::iterator PI
= doMergeWithPrevious
? std::prev(MBBI
) : MBBI
;
403 PI
= skipDebugInstructionsBackward(PI
, MBB
.begin());
404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405 // instruction, and that there are no DBG_VALUE or other instructions between
406 // ADD/SUB/LEA and its corresponding CFI instruction.
407 /* TODO: Add support for the case where there are multiple CFI instructions
408 below the ADD/SUB/LEA, e.g.:
415 if (doMergeWithPrevious
&& PI
!= MBB
.begin() && PI
->isCFIInstruction())
418 unsigned Opc
= PI
->getOpcode();
421 if ((Opc
== X86::ADD64ri32
|| Opc
== X86::ADD64ri8
||
422 Opc
== X86::ADD32ri
|| Opc
== X86::ADD32ri8
) &&
423 PI
->getOperand(0).getReg() == StackPtr
){
424 assert(PI
->getOperand(1).getReg() == StackPtr
);
425 Offset
= PI
->getOperand(2).getImm();
426 } else if ((Opc
== X86::LEA32r
|| Opc
== X86::LEA64_32r
) &&
427 PI
->getOperand(0).getReg() == StackPtr
&&
428 PI
->getOperand(1).getReg() == StackPtr
&&
429 PI
->getOperand(2).getImm() == 1 &&
430 PI
->getOperand(3).getReg() == X86::NoRegister
&&
431 PI
->getOperand(5).getReg() == X86::NoRegister
) {
432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433 Offset
= PI
->getOperand(4).getImm();
434 } else if ((Opc
== X86::SUB64ri32
|| Opc
== X86::SUB64ri8
||
435 Opc
== X86::SUB32ri
|| Opc
== X86::SUB32ri8
) &&
436 PI
->getOperand(0).getReg() == StackPtr
) {
437 assert(PI
->getOperand(1).getReg() == StackPtr
);
438 Offset
= -PI
->getOperand(2).getImm();
443 if (PI
!= MBB
.end() && PI
->isCFIInstruction()) PI
= MBB
.erase(PI
);
444 if (!doMergeWithPrevious
)
445 MBBI
= skipDebugInstructionsForward(PI
, MBB
.end());
450 void X86FrameLowering::BuildCFI(MachineBasicBlock
&MBB
,
451 MachineBasicBlock::iterator MBBI
,
453 const MCCFIInstruction
&CFIInst
) const {
454 MachineFunction
&MF
= *MBB
.getParent();
455 unsigned CFIIndex
= MF
.addFrameInst(CFIInst
);
456 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
457 .addCFIIndex(CFIIndex
);
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
462 const DebugLoc
&DL
) const {
463 MachineFunction
&MF
= *MBB
.getParent();
464 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
465 MachineModuleInfo
&MMI
= MF
.getMMI();
466 const MCRegisterInfo
*MRI
= MMI
.getContext().getRegisterInfo();
468 // Add callee saved registers to move list.
469 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
470 if (CSI
.empty()) return;
472 // Calculate offsets.
473 for (std::vector
<CalleeSavedInfo
>::const_iterator
474 I
= CSI
.begin(), E
= CSI
.end(); I
!= E
; ++I
) {
475 int64_t Offset
= MFI
.getObjectOffset(I
->getFrameIdx());
476 unsigned Reg
= I
->getReg();
478 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
479 BuildCFI(MBB
, MBBI
, DL
,
480 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
484 void X86FrameLowering::emitStackProbe(MachineFunction
&MF
,
485 MachineBasicBlock
&MBB
,
486 MachineBasicBlock::iterator MBBI
,
487 const DebugLoc
&DL
, bool InProlog
) const {
488 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
489 if (STI
.isTargetWindowsCoreCLR()) {
491 emitStackProbeInlineStub(MF
, MBB
, MBBI
, DL
, true);
493 emitStackProbeInline(MF
, MBB
, MBBI
, DL
, false);
496 emitStackProbeCall(MF
, MBB
, MBBI
, DL
, InProlog
);
500 void X86FrameLowering::inlineStackProbe(MachineFunction
&MF
,
501 MachineBasicBlock
&PrologMBB
) const {
502 const StringRef ChkStkStubSymbol
= "__chkstk_stub";
503 MachineInstr
*ChkStkStub
= nullptr;
505 for (MachineInstr
&MI
: PrologMBB
) {
506 if (MI
.isCall() && MI
.getOperand(0).isSymbol() &&
507 ChkStkStubSymbol
== MI
.getOperand(0).getSymbolName()) {
513 if (ChkStkStub
!= nullptr) {
514 assert(!ChkStkStub
->isBundled() &&
515 "Not expecting bundled instructions here");
516 MachineBasicBlock::iterator MBBI
= std::next(ChkStkStub
->getIterator());
517 assert(std::prev(MBBI
) == ChkStkStub
&&
518 "MBBI expected after __chkstk_stub.");
519 DebugLoc DL
= PrologMBB
.findDebugLoc(MBBI
);
520 emitStackProbeInline(MF
, PrologMBB
, MBBI
, DL
, true);
521 ChkStkStub
->eraseFromParent();
525 void X86FrameLowering::emitStackProbeInline(MachineFunction
&MF
,
526 MachineBasicBlock
&MBB
,
527 MachineBasicBlock::iterator MBBI
,
529 bool InProlog
) const {
530 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
531 assert(STI
.is64Bit() && "different expansion needed for 32 bit");
532 assert(STI
.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
534 const BasicBlock
*LLVM_BB
= MBB
.getBasicBlock();
536 // RAX contains the number of bytes of desired stack adjustment.
537 // The handling here assumes this value has already been updated so as to
538 // maintain stack alignment.
540 // We need to exit with RSP modified by this amount and execute suitable
541 // page touches to notify the OS that we're growing the stack responsibly.
542 // All stack probing must be done without modifying RSP.
548 // Flags, TestReg = CopyReg - SizeReg
549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550 // LimitReg = gs magic thread env access
551 // if FinalReg >= LimitReg goto ContinueMBB
553 // RoundReg = page address of FinalReg
555 // LoopReg = PHI(LimitReg,ProbeReg)
556 // ProbeReg = LoopReg - PageSize
558 // if (ProbeReg > RoundReg) goto LoopMBB
561 // [rest of original MBB]
563 // Set up the new basic blocks
564 MachineBasicBlock
*RoundMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
565 MachineBasicBlock
*LoopMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
566 MachineBasicBlock
*ContinueMBB
= MF
.CreateMachineBasicBlock(LLVM_BB
);
568 MachineFunction::iterator MBBIter
= std::next(MBB
.getIterator());
569 MF
.insert(MBBIter
, RoundMBB
);
570 MF
.insert(MBBIter
, LoopMBB
);
571 MF
.insert(MBBIter
, ContinueMBB
);
573 // Split MBB and move the tail portion down to ContinueMBB.
574 MachineBasicBlock::iterator BeforeMBBI
= std::prev(MBBI
);
575 ContinueMBB
->splice(ContinueMBB
->begin(), &MBB
, MBBI
, MBB
.end());
576 ContinueMBB
->transferSuccessorsAndUpdatePHIs(&MBB
);
578 // Some useful constants
579 const int64_t ThreadEnvironmentStackLimit
= 0x10;
580 const int64_t PageSize
= 0x1000;
581 const int64_t PageMask
= ~(PageSize
- 1);
583 // Registers we need. For the normal case we use virtual
584 // registers. For the prolog expansion we use RAX, RCX and RDX.
585 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
586 const TargetRegisterClass
*RegClass
= &X86::GR64RegClass
;
587 const Register SizeReg
= InProlog
? X86::RAX
588 : MRI
.createVirtualRegister(RegClass
),
589 ZeroReg
= InProlog
? X86::RCX
590 : MRI
.createVirtualRegister(RegClass
),
591 CopyReg
= InProlog
? X86::RDX
592 : MRI
.createVirtualRegister(RegClass
),
593 TestReg
= InProlog
? X86::RDX
594 : MRI
.createVirtualRegister(RegClass
),
595 FinalReg
= InProlog
? X86::RDX
596 : MRI
.createVirtualRegister(RegClass
),
597 RoundedReg
= InProlog
? X86::RDX
598 : MRI
.createVirtualRegister(RegClass
),
599 LimitReg
= InProlog
? X86::RCX
600 : MRI
.createVirtualRegister(RegClass
),
601 JoinReg
= InProlog
? X86::RCX
602 : MRI
.createVirtualRegister(RegClass
),
603 ProbeReg
= InProlog
? X86::RCX
604 : MRI
.createVirtualRegister(RegClass
);
606 // SP-relative offsets where we can save RCX and RDX.
607 int64_t RCXShadowSlot
= 0;
608 int64_t RDXShadowSlot
= 0;
610 // If inlining in the prolog, save RCX and RDX.
612 // Compute the offsets. We need to account for things already
613 // pushed onto the stack at this point: return address, frame
614 // pointer (if used), and callee saves.
615 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
616 const int64_t CalleeSaveSize
= X86FI
->getCalleeSavedFrameSize();
617 const bool HasFP
= hasFP(MF
);
619 // Check if we need to spill RCX and/or RDX.
620 // Here we assume that no earlier prologue instruction changes RCX and/or
621 // RDX, so checking the block live-ins is enough.
622 const bool IsRCXLiveIn
= MBB
.isLiveIn(X86::RCX
);
623 const bool IsRDXLiveIn
= MBB
.isLiveIn(X86::RDX
);
624 int64_t InitSlot
= 8 + CalleeSaveSize
+ (HasFP
? 8 : 0);
625 // Assign the initial slot to both registers, then change RDX's slot if both
626 // need to be spilled.
628 RCXShadowSlot
= InitSlot
;
630 RDXShadowSlot
= InitSlot
;
631 if (IsRDXLiveIn
&& IsRCXLiveIn
)
633 // Emit the saves if needed.
635 addRegOffset(BuildMI(&MBB
, DL
, TII
.get(X86::MOV64mr
)), X86::RSP
, false,
639 addRegOffset(BuildMI(&MBB
, DL
, TII
.get(X86::MOV64mr
)), X86::RSP
, false,
643 // Not in the prolog. Copy RAX to a virtual reg.
644 BuildMI(&MBB
, DL
, TII
.get(X86::MOV64rr
), SizeReg
).addReg(X86::RAX
);
647 // Add code to MBB to check for overflow and set the new target stack pointer
649 BuildMI(&MBB
, DL
, TII
.get(X86::XOR64rr
), ZeroReg
)
650 .addReg(ZeroReg
, RegState::Undef
)
651 .addReg(ZeroReg
, RegState::Undef
);
652 BuildMI(&MBB
, DL
, TII
.get(X86::MOV64rr
), CopyReg
).addReg(X86::RSP
);
653 BuildMI(&MBB
, DL
, TII
.get(X86::SUB64rr
), TestReg
)
656 BuildMI(&MBB
, DL
, TII
.get(X86::CMOV64rr
), FinalReg
)
659 .addImm(X86::COND_B
);
661 // FinalReg now holds final stack pointer value, or zero if
662 // allocation would overflow. Compare against the current stack
663 // limit from the thread environment block. Note this limit is the
664 // lowest touched page on the stack, not the point at which the OS
665 // will cause an overflow exception, so this is just an optimization
666 // to avoid unnecessarily touching pages that are below the current
667 // SP but already committed to the stack by the OS.
668 BuildMI(&MBB
, DL
, TII
.get(X86::MOV64rm
), LimitReg
)
672 .addImm(ThreadEnvironmentStackLimit
)
674 BuildMI(&MBB
, DL
, TII
.get(X86::CMP64rr
)).addReg(FinalReg
).addReg(LimitReg
);
675 // Jump if the desired stack pointer is at or above the stack limit.
676 BuildMI(&MBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(ContinueMBB
).addImm(X86::COND_AE
);
678 // Add code to roundMBB to round the final stack pointer to a page boundary.
679 RoundMBB
->addLiveIn(FinalReg
);
680 BuildMI(RoundMBB
, DL
, TII
.get(X86::AND64ri32
), RoundedReg
)
683 BuildMI(RoundMBB
, DL
, TII
.get(X86::JMP_1
)).addMBB(LoopMBB
);
685 // LimitReg now holds the current stack limit, RoundedReg page-rounded
686 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687 // and probe until we reach RoundedReg.
689 BuildMI(LoopMBB
, DL
, TII
.get(X86::PHI
), JoinReg
)
696 LoopMBB
->addLiveIn(JoinReg
);
697 addRegOffset(BuildMI(LoopMBB
, DL
, TII
.get(X86::LEA64r
), ProbeReg
), JoinReg
,
700 // Probe by storing a byte onto the stack.
701 BuildMI(LoopMBB
, DL
, TII
.get(X86::MOV8mi
))
709 LoopMBB
->addLiveIn(RoundedReg
);
710 BuildMI(LoopMBB
, DL
, TII
.get(X86::CMP64rr
))
713 BuildMI(LoopMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(LoopMBB
).addImm(X86::COND_NE
);
715 MachineBasicBlock::iterator ContinueMBBI
= ContinueMBB
->getFirstNonPHI();
717 // If in prolog, restore RDX and RCX.
719 if (RCXShadowSlot
) // It means we spilled RCX in the prologue.
720 addRegOffset(BuildMI(*ContinueMBB
, ContinueMBBI
, DL
,
721 TII
.get(X86::MOV64rm
), X86::RCX
),
722 X86::RSP
, false, RCXShadowSlot
);
723 if (RDXShadowSlot
) // It means we spilled RDX in the prologue.
724 addRegOffset(BuildMI(*ContinueMBB
, ContinueMBBI
, DL
,
725 TII
.get(X86::MOV64rm
), X86::RDX
),
726 X86::RSP
, false, RDXShadowSlot
);
729 // Now that the probing is done, add code to continueMBB to update
730 // the stack pointer for real.
731 ContinueMBB
->addLiveIn(SizeReg
);
732 BuildMI(*ContinueMBB
, ContinueMBBI
, DL
, TII
.get(X86::SUB64rr
), X86::RSP
)
736 // Add the control flow edges we need.
737 MBB
.addSuccessor(ContinueMBB
);
738 MBB
.addSuccessor(RoundMBB
);
739 RoundMBB
->addSuccessor(LoopMBB
);
740 LoopMBB
->addSuccessor(ContinueMBB
);
741 LoopMBB
->addSuccessor(LoopMBB
);
743 // Mark all the instructions added to the prolog as frame setup.
745 for (++BeforeMBBI
; BeforeMBBI
!= MBB
.end(); ++BeforeMBBI
) {
746 BeforeMBBI
->setFlag(MachineInstr::FrameSetup
);
748 for (MachineInstr
&MI
: *RoundMBB
) {
749 MI
.setFlag(MachineInstr::FrameSetup
);
751 for (MachineInstr
&MI
: *LoopMBB
) {
752 MI
.setFlag(MachineInstr::FrameSetup
);
754 for (MachineBasicBlock::iterator CMBBI
= ContinueMBB
->begin();
755 CMBBI
!= ContinueMBBI
; ++CMBBI
) {
756 CMBBI
->setFlag(MachineInstr::FrameSetup
);
761 void X86FrameLowering::emitStackProbeCall(MachineFunction
&MF
,
762 MachineBasicBlock
&MBB
,
763 MachineBasicBlock::iterator MBBI
,
765 bool InProlog
) const {
766 bool IsLargeCodeModel
= MF
.getTarget().getCodeModel() == CodeModel::Large
;
768 // FIXME: Add retpoline support and remove this.
769 if (Is64Bit
&& IsLargeCodeModel
&& STI
.useRetpolineIndirectCalls())
770 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771 "code model and retpoline not yet implemented.");
775 CallOp
= IsLargeCodeModel
? X86::CALL64r
: X86::CALL64pcrel32
;
777 CallOp
= X86::CALLpcrel32
;
779 StringRef Symbol
= STI
.getTargetLowering()->getStackProbeSymbolName(MF
);
781 MachineInstrBuilder CI
;
782 MachineBasicBlock::iterator ExpansionMBBI
= std::prev(MBBI
);
784 // All current stack probes take AX and SP as input, clobber flags, and
785 // preserve all registers. x86_64 probes leave RSP unmodified.
786 if (Is64Bit
&& MF
.getTarget().getCodeModel() == CodeModel::Large
) {
787 // For the large code model, we have to call through a register. Use R11,
788 // as it is scratch in all supported calling conventions.
789 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64ri
), X86::R11
)
790 .addExternalSymbol(MF
.createExternalSymbolName(Symbol
));
791 CI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(CallOp
)).addReg(X86::R11
);
793 CI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(CallOp
))
794 .addExternalSymbol(MF
.createExternalSymbolName(Symbol
));
797 unsigned AX
= Uses64BitFramePtr
? X86::RAX
: X86::EAX
;
798 unsigned SP
= Uses64BitFramePtr
? X86::RSP
: X86::ESP
;
799 CI
.addReg(AX
, RegState::Implicit
)
800 .addReg(SP
, RegState::Implicit
)
801 .addReg(AX
, RegState::Define
| RegState::Implicit
)
802 .addReg(SP
, RegState::Define
| RegState::Implicit
)
803 .addReg(X86::EFLAGS
, RegState::Define
| RegState::Implicit
);
805 if (STI
.isTargetWin64() || !STI
.isOSWindows()) {
806 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808 // themselves. They also does not clobber %rax so we can reuse it when
810 // All other platforms do not specify a particular ABI for the stack probe
811 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812 BuildMI(MBB
, MBBI
, DL
, TII
.get(getSUBrrOpcode(Uses64BitFramePtr
)), SP
)
818 // Apply the frame setup flag to all inserted instrs.
819 for (++ExpansionMBBI
; ExpansionMBBI
!= MBBI
; ++ExpansionMBBI
)
820 ExpansionMBBI
->setFlag(MachineInstr::FrameSetup
);
824 void X86FrameLowering::emitStackProbeInlineStub(
825 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
826 MachineBasicBlock::iterator MBBI
, const DebugLoc
&DL
, bool InProlog
) const {
828 assert(InProlog
&& "ChkStkStub called outside prolog!");
830 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::CALLpcrel32
))
831 .addExternalSymbol("__chkstk_stub");
834 static unsigned calculateSetFPREG(uint64_t SPAdjust
) {
835 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836 // and might require smaller successive adjustments.
837 const uint64_t Win64MaxSEHOffset
= 128;
838 uint64_t SEHFrameOffset
= std::min(SPAdjust
, Win64MaxSEHOffset
);
839 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840 return SEHFrameOffset
& -16;
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out. Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction
&MF
) const {
848 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
849 uint64_t MaxAlign
= MFI
.getMaxAlignment(); // Desired stack alignment.
850 unsigned StackAlign
= getStackAlignment();
851 if (MF
.getFunction().hasFnAttribute("stackrealign")) {
853 MaxAlign
= (StackAlign
> MaxAlign
) ? StackAlign
: MaxAlign
;
854 else if (MaxAlign
< SlotSize
)
860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock
&MBB
,
861 MachineBasicBlock::iterator MBBI
,
862 const DebugLoc
&DL
, unsigned Reg
,
863 uint64_t MaxAlign
) const {
864 uint64_t Val
= -MaxAlign
;
865 unsigned AndOp
= getANDriOpcode(Uses64BitFramePtr
, Val
);
866 MachineInstr
*MI
= BuildMI(MBB
, MBBI
, DL
, TII
.get(AndOp
), Reg
)
869 .setMIFlag(MachineInstr::FrameSetup
);
871 // The EFLAGS implicit def is dead.
872 MI
->getOperand(3).setIsDead();
875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction
& MF
) const {
876 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877 // clobbered by any interrupt handler.
878 assert(&STI
== &MF
.getSubtarget
<X86Subtarget
>() &&
879 "MF used frame lowering for wrong subtarget");
880 const Function
&Fn
= MF
.getFunction();
881 const bool IsWin64CC
= STI
.isCallingConvWin64(Fn
.getCallingConv());
882 return Is64Bit
&& !IsWin64CC
&& !Fn
.hasFnAttribute(Attribute::NoRedZone
);
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
892 Here's a gist of what gets emitted:
894 ; Establish frame pointer, if needed
897 .cfi_def_cfa_offset 16
898 .cfi_offset %rbp, -16
901 .cfi_def_cfa_register %rbp
903 ; Spill general-purpose registers
904 [for all callee-saved GPRs]
907 .cfi_def_cfa_offset (offset from RETADDR)
910 ; If the required stack alignment > default stack alignment
911 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
912 ; of unknown size in the stack frame.
913 [if stack needs re-alignment]
916 ; Allocate space for locals
917 [if target is Windows and allocated space > 4096 bytes]
918 ; Windows needs special care for allocations larger
921 call ___chkstk_ms/___chkstk
927 .seh_stackalloc (size of XMM spill slots)
928 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
933 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934 ; they may get spilled on any platform, if the current function
935 ; calls @llvm.eh.unwind.init
937 [for all callee-saved XMM registers]
938 movaps %<xmm reg>, -MMM(%rbp)
939 [for all callee-saved XMM registers]
940 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
941 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
943 [for all callee-saved XMM registers]
944 movaps %<xmm reg>, KKK(%rsp)
945 [for all callee-saved XMM registers]
946 .seh_savexmm %<xmm reg>, KKK
950 [if needs base pointer]
952 [if needs to restore base pointer]
957 [for all callee-saved registers]
958 .cfi_offset %<reg>, (offset from %rbp)
960 .cfi_def_cfa_offset (offset from RETADDR)
961 [for all callee-saved registers]
962 .cfi_offset %<reg>, (offset from %rsp)
965 - .seh directives are emitted only for Windows 64 ABI
966 - .cv_fpo directives are emitted on win32 when emitting CodeView
967 - .cfi directives are emitted for all other ABIs
968 - for 32-bit code, substitute %e?? registers for %r??
971 void X86FrameLowering::emitPrologue(MachineFunction
&MF
,
972 MachineBasicBlock
&MBB
) const {
973 assert(&STI
== &MF
.getSubtarget
<X86Subtarget
>() &&
974 "MF used frame lowering for wrong subtarget");
975 MachineBasicBlock::iterator MBBI
= MBB
.begin();
976 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
977 const Function
&Fn
= MF
.getFunction();
978 MachineModuleInfo
&MMI
= MF
.getMMI();
979 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
980 uint64_t MaxAlign
= calculateMaxStackAlign(MF
); // Desired stack alignment.
981 uint64_t StackSize
= MFI
.getStackSize(); // Number of bytes to allocate.
982 bool IsFunclet
= MBB
.isEHFuncletEntry();
983 EHPersonality Personality
= EHPersonality::Unknown
;
984 if (Fn
.hasPersonalityFn())
985 Personality
= classifyEHPersonality(Fn
.getPersonalityFn());
986 bool FnHasClrFunclet
=
987 MF
.hasEHFunclets() && Personality
== EHPersonality::CoreCLR
;
988 bool IsClrFunclet
= IsFunclet
&& FnHasClrFunclet
;
989 bool HasFP
= hasFP(MF
);
990 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
991 bool NeedsWin64CFI
= IsWin64Prologue
&& Fn
.needsUnwindTableEntry();
992 // FIXME: Emit FPO data for EH funclets.
994 !IsFunclet
&& STI
.isTargetWin32() && MMI
.getModule()->getCodeViewFlag();
995 bool NeedsWinCFI
= NeedsWin64CFI
|| NeedsWinFPO
;
997 !IsWin64Prologue
&& (MMI
.hasDebugInfo() || Fn
.needsUnwindTableEntry());
998 Register FramePtr
= TRI
->getFrameRegister(MF
);
999 const Register MachineFramePtr
=
1000 STI
.isTarget64BitILP32()
1001 ? Register(getX86SubSuperRegister(FramePtr
, 64)) : FramePtr
;
1002 Register BasePtr
= TRI
->getBaseRegister();
1003 bool HasWinCFI
= false;
1005 // Debug location must be unknown since the first debug location is used
1006 // to determine the end of the prologue.
1009 // Add RETADDR move area to callee saved frame size.
1010 int TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
1011 if (TailCallReturnAddrDelta
&& IsWin64Prologue
)
1012 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1014 if (TailCallReturnAddrDelta
< 0)
1015 X86FI
->setCalleeSavedFrameSize(
1016 X86FI
->getCalleeSavedFrameSize() - TailCallReturnAddrDelta
);
1018 bool UseStackProbe
= !STI
.getTargetLowering()->getStackProbeSymbolName(MF
).empty();
1019 unsigned StackProbeSize
= STI
.getTargetLowering()->getStackProbeSize(MF
);
1021 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1022 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1024 if (Fn
.getCallingConv() == CallingConv::X86_INTR
&& Is64Bit
&&
1025 Fn
.arg_size() == 2) {
1027 MFI
.setStackSize(StackSize
);
1028 emitSPUpdate(MBB
, MBBI
, DL
, -8, /*InEpilogue=*/false);
1031 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1032 // function, and use up to 128 bytes of stack space, don't have a frame
1033 // pointer, calls, or dynamic alloca then we do not need to adjust the
1034 // stack pointer (we fit in the Red Zone). We also check that we don't
1035 // push and pop from the stack.
1036 if (has128ByteRedZone(MF
) &&
1037 !TRI
->needsStackRealignment(MF
) &&
1038 !MFI
.hasVarSizedObjects() && // No dynamic alloca.
1039 !MFI
.adjustsStack() && // No calls.
1040 !UseStackProbe
&& // No stack probes.
1041 !MFI
.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1042 !MF
.shouldSplitStack()) { // Regular stack
1043 uint64_t MinSize
= X86FI
->getCalleeSavedFrameSize();
1044 if (HasFP
) MinSize
+= SlotSize
;
1045 X86FI
->setUsesRedZone(MinSize
> 0 || StackSize
> 0);
1046 StackSize
= std::max(MinSize
, StackSize
> 128 ? StackSize
- 128 : 0);
1047 MFI
.setStackSize(StackSize
);
1050 // Insert stack pointer adjustment for later moving of return addr. Only
1051 // applies to tail call optimized functions where the callee argument stack
1052 // size is bigger than the callers.
1053 if (TailCallReturnAddrDelta
< 0) {
1054 BuildStackAdjustment(MBB
, MBBI
, DL
, TailCallReturnAddrDelta
,
1055 /*InEpilogue=*/false)
1056 .setMIFlag(MachineInstr::FrameSetup
);
1059 // Mapping for machine moves:
1061 // DST: VirtualFP AND
1062 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1063 // ELSE => DW_CFA_def_cfa
1065 // SRC: VirtualFP AND
1066 // DST: Register => DW_CFA_def_cfa_register
1069 // OFFSET < 0 => DW_CFA_offset_extended_sf
1070 // REG < 64 => DW_CFA_offset + Reg
1071 // ELSE => DW_CFA_offset_extended
1073 uint64_t NumBytes
= 0;
1074 int stackGrowth
= -SlotSize
;
1076 // Find the funclet establisher parameter
1077 Register Establisher
= X86::NoRegister
;
1079 Establisher
= Uses64BitFramePtr
? X86::RCX
: X86::ECX
;
1081 Establisher
= Uses64BitFramePtr
? X86::RDX
: X86::EDX
;
1083 if (IsWin64Prologue
&& IsFunclet
&& !IsClrFunclet
) {
1084 // Immediately spill establisher into the home slot.
1085 // The runtime cares about this.
1086 // MOV64mr %rdx, 16(%rsp)
1087 unsigned MOVmr
= Uses64BitFramePtr
? X86::MOV64mr
: X86::MOV32mr
;
1088 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(MOVmr
)), StackPtr
, true, 16)
1089 .addReg(Establisher
)
1090 .setMIFlag(MachineInstr::FrameSetup
);
1091 MBB
.addLiveIn(Establisher
);
1095 assert(MF
.getRegInfo().isReserved(MachineFramePtr
) && "FP reserved");
1097 // Calculate required stack adjustment.
1098 uint64_t FrameSize
= StackSize
- SlotSize
;
1099 // If required, include space for extra hidden slot for stashing base pointer.
1100 if (X86FI
->getRestoreBasePointer())
1101 FrameSize
+= SlotSize
;
1103 NumBytes
= FrameSize
- X86FI
->getCalleeSavedFrameSize();
1105 // Callee-saved registers are pushed on stack before the stack is realigned.
1106 if (TRI
->needsStackRealignment(MF
) && !IsWin64Prologue
)
1107 NumBytes
= alignTo(NumBytes
, MaxAlign
);
1109 // Save EBP/RBP into the appropriate stack slot.
1110 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::PUSH64r
: X86::PUSH32r
))
1111 .addReg(MachineFramePtr
, RegState::Kill
)
1112 .setMIFlag(MachineInstr::FrameSetup
);
1114 if (NeedsDwarfCFI
) {
1115 // Mark the place where EBP/RBP was saved.
1116 // Define the current CFA rule to use the provided offset.
1118 BuildCFI(MBB
, MBBI
, DL
,
1119 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth
));
1121 // Change the rule for the FramePtr to be an "offset" rule.
1122 unsigned DwarfFramePtr
= TRI
->getDwarfRegNum(MachineFramePtr
, true);
1123 BuildCFI(MBB
, MBBI
, DL
, MCCFIInstruction::createOffset(
1124 nullptr, DwarfFramePtr
, 2 * stackGrowth
));
1129 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_PushReg
))
1131 .setMIFlag(MachineInstr::FrameSetup
);
1134 if (!IsWin64Prologue
&& !IsFunclet
) {
1135 // Update EBP with the new base value.
1136 BuildMI(MBB
, MBBI
, DL
,
1137 TII
.get(Uses64BitFramePtr
? X86::MOV64rr
: X86::MOV32rr
),
1140 .setMIFlag(MachineInstr::FrameSetup
);
1142 if (NeedsDwarfCFI
) {
1143 // Mark effective beginning of when frame pointer becomes valid.
1144 // Define the current CFA to use the EBP/RBP register.
1145 unsigned DwarfFramePtr
= TRI
->getDwarfRegNum(MachineFramePtr
, true);
1146 BuildCFI(MBB
, MBBI
, DL
, MCCFIInstruction::createDefCfaRegister(
1147 nullptr, DwarfFramePtr
));
1151 // .cv_fpo_setframe $FramePtr
1153 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_SetFrame
))
1156 .setMIFlag(MachineInstr::FrameSetup
);
1160 assert(!IsFunclet
&& "funclets without FPs not yet implemented");
1161 NumBytes
= StackSize
- X86FI
->getCalleeSavedFrameSize();
1164 // Update the offset adjustment, which is mainly used by codeview to translate
1165 // from ESP to VFRAME relative local variable offsets.
1167 if (HasFP
&& TRI
->needsStackRealignment(MF
))
1168 MFI
.setOffsetAdjustment(-NumBytes
);
1170 MFI
.setOffsetAdjustment(-StackSize
);
1173 // For EH funclets, only allocate enough space for outgoing calls. Save the
1174 // NumBytes value that we would've used for the parent frame.
1175 unsigned ParentFrameNumBytes
= NumBytes
;
1177 NumBytes
= getWinEHFuncletFrameSize(MF
);
1179 // Skip the callee-saved push instructions.
1180 bool PushedRegs
= false;
1181 int StackOffset
= 2 * stackGrowth
;
1183 while (MBBI
!= MBB
.end() &&
1184 MBBI
->getFlag(MachineInstr::FrameSetup
) &&
1185 (MBBI
->getOpcode() == X86::PUSH32r
||
1186 MBBI
->getOpcode() == X86::PUSH64r
)) {
1188 Register Reg
= MBBI
->getOperand(0).getReg();
1191 if (!HasFP
&& NeedsDwarfCFI
) {
1192 // Mark callee-saved push instruction.
1193 // Define the current CFA rule to use the provided offset.
1195 BuildCFI(MBB
, MBBI
, DL
,
1196 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset
));
1197 StackOffset
+= stackGrowth
;
1202 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_PushReg
))
1204 .setMIFlag(MachineInstr::FrameSetup
);
1208 // Realign stack after we pushed callee-saved registers (so that we'll be
1209 // able to calculate their offsets from the frame pointer).
1210 // Don't do this for Win64, it needs to realign the stack after the prologue.
1211 if (!IsWin64Prologue
&& !IsFunclet
&& TRI
->needsStackRealignment(MF
)) {
1212 assert(HasFP
&& "There should be a frame pointer if stack is realigned.");
1213 BuildStackAlignAND(MBB
, MBBI
, DL
, StackPtr
, MaxAlign
);
1217 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_StackAlign
))
1219 .setMIFlag(MachineInstr::FrameSetup
);
1223 // If there is an SUB32ri of ESP immediately before this instruction, merge
1224 // the two. This can be the case when tail call elimination is enabled and
1225 // the callee has more arguments then the caller.
1226 NumBytes
-= mergeSPUpdates(MBB
, MBBI
, true);
1228 // Adjust stack pointer: ESP -= numbytes.
1230 // Windows and cygwin/mingw require a prologue helper routine when allocating
1231 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1232 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1233 // stack and adjust the stack pointer in one go. The 64-bit version of
1234 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1235 // responsible for adjusting the stack pointer. Touching the stack at 4K
1236 // increments is necessary to ensure that the guard pages used by the OS
1237 // virtual memory manager are allocated in correct sequence.
1238 uint64_t AlignedNumBytes
= NumBytes
;
1239 if (IsWin64Prologue
&& !IsFunclet
&& TRI
->needsStackRealignment(MF
))
1240 AlignedNumBytes
= alignTo(AlignedNumBytes
, MaxAlign
);
1241 if (AlignedNumBytes
>= StackProbeSize
&& UseStackProbe
) {
1242 assert(!X86FI
->getUsesRedZone() &&
1243 "The Red Zone is not accounted for in stack probes");
1245 // Check whether EAX is livein for this block.
1246 bool isEAXAlive
= isEAXLiveIn(MBB
);
1251 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH64r
))
1252 .addReg(X86::RAX
, RegState::Kill
)
1253 .setMIFlag(MachineInstr::FrameSetup
);
1256 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::PUSH32r
))
1257 .addReg(X86::EAX
, RegState::Kill
)
1258 .setMIFlag(MachineInstr::FrameSetup
);
1263 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1264 // Function prologue is responsible for adjusting the stack pointer.
1265 int Alloc
= isEAXAlive
? NumBytes
- 8 : NumBytes
;
1266 if (isUInt
<32>(Alloc
)) {
1267 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
1269 .setMIFlag(MachineInstr::FrameSetup
);
1270 } else if (isInt
<32>(Alloc
)) {
1271 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64ri32
), X86::RAX
)
1273 .setMIFlag(MachineInstr::FrameSetup
);
1275 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64ri
), X86::RAX
)
1277 .setMIFlag(MachineInstr::FrameSetup
);
1280 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1281 // We'll also use 4 already allocated bytes for EAX.
1282 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
1283 .addImm(isEAXAlive
? NumBytes
- 4 : NumBytes
)
1284 .setMIFlag(MachineInstr::FrameSetup
);
1287 // Call __chkstk, __chkstk_ms, or __alloca.
1288 emitStackProbe(MF
, MBB
, MBBI
, DL
, true);
1294 MI
= addRegOffset(BuildMI(MF
, DL
, TII
.get(X86::MOV64rm
), X86::RAX
),
1295 StackPtr
, false, NumBytes
- 8);
1297 MI
= addRegOffset(BuildMI(MF
, DL
, TII
.get(X86::MOV32rm
), X86::EAX
),
1298 StackPtr
, false, NumBytes
- 4);
1299 MI
->setFlag(MachineInstr::FrameSetup
);
1300 MBB
.insert(MBBI
, MI
);
1302 } else if (NumBytes
) {
1303 emitSPUpdate(MBB
, MBBI
, DL
, -(int64_t)NumBytes
, /*InEpilogue=*/false);
1306 if (NeedsWinCFI
&& NumBytes
) {
1308 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_StackAlloc
))
1310 .setMIFlag(MachineInstr::FrameSetup
);
1313 int SEHFrameOffset
= 0;
1314 unsigned SPOrEstablisher
;
1317 // The establisher parameter passed to a CLR funclet is actually a pointer
1318 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1319 // to find the root function establisher frame by loading the PSPSym from
1320 // the intermediate frame.
1321 unsigned PSPSlotOffset
= getPSPSlotOffsetFromSP(MF
);
1322 MachinePointerInfo NoInfo
;
1323 MBB
.addLiveIn(Establisher
);
1324 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64rm
), Establisher
),
1325 Establisher
, false, PSPSlotOffset
)
1326 .addMemOperand(MF
.getMachineMemOperand(
1327 NoInfo
, MachineMemOperand::MOLoad
, SlotSize
, SlotSize
));
1329 // Save the root establisher back into the current funclet's (mostly
1330 // empty) frame, in case a sub-funclet or the GC needs it.
1331 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64mr
)), StackPtr
,
1332 false, PSPSlotOffset
)
1333 .addReg(Establisher
)
1335 MF
.getMachineMemOperand(NoInfo
, MachineMemOperand::MOStore
|
1336 MachineMemOperand::MOVolatile
,
1337 SlotSize
, SlotSize
));
1339 SPOrEstablisher
= Establisher
;
1341 SPOrEstablisher
= StackPtr
;
1344 if (IsWin64Prologue
&& HasFP
) {
1345 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1346 // this calculation on the incoming establisher, which holds the value of
1347 // RSP from the parent frame at the end of the prologue.
1348 SEHFrameOffset
= calculateSetFPREG(ParentFrameNumBytes
);
1350 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA64r
), FramePtr
),
1351 SPOrEstablisher
, false, SEHFrameOffset
);
1353 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64rr
), FramePtr
)
1354 .addReg(SPOrEstablisher
);
1356 // If this is not a funclet, emit the CFI describing our frame pointer.
1357 if (NeedsWinCFI
&& !IsFunclet
) {
1358 assert(!NeedsWinFPO
&& "this setframe incompatible with FPO data");
1360 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_SetFrame
))
1362 .addImm(SEHFrameOffset
)
1363 .setMIFlag(MachineInstr::FrameSetup
);
1364 if (isAsynchronousEHPersonality(Personality
))
1365 MF
.getWinEHFuncInfo()->SEHSetFrameOffset
= SEHFrameOffset
;
1367 } else if (IsFunclet
&& STI
.is32Bit()) {
1368 // Reset EBP / ESI to something good for funclets.
1369 MBBI
= restoreWin32EHStackPointers(MBB
, MBBI
, DL
);
1370 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1371 // into the registration node so that the runtime will restore it for us.
1372 if (!MBB
.isCleanupFuncletEntry()) {
1373 assert(Personality
== EHPersonality::MSVC_CXX
);
1375 int FI
= MF
.getWinEHFuncInfo()->EHRegNodeFrameIndex
;
1376 int64_t EHRegOffset
= getFrameIndexReference(MF
, FI
, FrameReg
);
1377 // ESP is the first field, so no extra displacement is needed.
1378 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32mr
)), FrameReg
,
1384 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
)) {
1385 const MachineInstr
&FrameInstr
= *MBBI
;
1390 if (unsigned Reg
= TII
.isStoreToStackSlot(FrameInstr
, FI
)) {
1391 if (X86::FR64RegClass
.contains(Reg
)) {
1393 unsigned IgnoredFrameReg
;
1394 if (IsWin64Prologue
&& IsFunclet
)
1395 Offset
= getWin64EHFrameIndexRef(MF
, FI
, IgnoredFrameReg
);
1397 Offset
= getFrameIndexReference(MF
, FI
, IgnoredFrameReg
) +
1401 assert(!NeedsWinFPO
&& "SEH_SaveXMM incompatible with FPO data");
1402 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_SaveXMM
))
1405 .setMIFlag(MachineInstr::FrameSetup
);
1411 if (NeedsWinCFI
&& HasWinCFI
)
1412 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_EndPrologue
))
1413 .setMIFlag(MachineInstr::FrameSetup
);
1415 if (FnHasClrFunclet
&& !IsFunclet
) {
1416 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1417 // immediately after the prolog) into the PSPSlot so that funclets
1418 // and the GC can recover it.
1419 unsigned PSPSlotOffset
= getPSPSlotOffsetFromSP(MF
);
1420 auto PSPInfo
= MachinePointerInfo::getFixedStack(
1421 MF
, MF
.getWinEHFuncInfo()->PSPSymFrameIdx
);
1422 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64mr
)), StackPtr
, false,
1425 .addMemOperand(MF
.getMachineMemOperand(
1426 PSPInfo
, MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
,
1427 SlotSize
, SlotSize
));
1430 // Realign stack after we spilled callee-saved registers (so that we'll be
1431 // able to calculate their offsets from the frame pointer).
1432 // Win64 requires aligning the stack after the prologue.
1433 if (IsWin64Prologue
&& TRI
->needsStackRealignment(MF
)) {
1434 assert(HasFP
&& "There should be a frame pointer if stack is realigned.");
1435 BuildStackAlignAND(MBB
, MBBI
, DL
, SPOrEstablisher
, MaxAlign
);
1438 // We already dealt with stack realignment and funclets above.
1439 if (IsFunclet
&& STI
.is32Bit())
1442 // If we need a base pointer, set it up here. It's whatever the value
1443 // of the stack pointer is at this point. Any variable size objects
1444 // will be allocated after this, so we can still use the base pointer
1445 // to reference locals.
1446 if (TRI
->hasBasePointer(MF
)) {
1447 // Update the base pointer with the current stack pointer.
1448 unsigned Opc
= Uses64BitFramePtr
? X86::MOV64rr
: X86::MOV32rr
;
1449 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), BasePtr
)
1450 .addReg(SPOrEstablisher
)
1451 .setMIFlag(MachineInstr::FrameSetup
);
1452 if (X86FI
->getRestoreBasePointer()) {
1453 // Stash value of base pointer. Saving RSP instead of EBP shortens
1454 // dependence chain. Used by SjLj EH.
1455 unsigned Opm
= Uses64BitFramePtr
? X86::MOV64mr
: X86::MOV32mr
;
1456 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(Opm
)),
1457 FramePtr
, true, X86FI
->getRestoreBasePointerOffset())
1458 .addReg(SPOrEstablisher
)
1459 .setMIFlag(MachineInstr::FrameSetup
);
1462 if (X86FI
->getHasSEHFramePtrSave() && !IsFunclet
) {
1463 // Stash the value of the frame pointer relative to the base pointer for
1464 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1465 // it recovers the frame pointer from the base pointer rather than the
1466 // other way around.
1467 unsigned Opm
= Uses64BitFramePtr
? X86::MOV64mr
: X86::MOV32mr
;
1470 getFrameIndexReference(MF
, X86FI
->getSEHFramePtrSaveIndex(), UsedReg
);
1471 assert(UsedReg
== BasePtr
);
1472 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(Opm
)), UsedReg
, true, Offset
)
1474 .setMIFlag(MachineInstr::FrameSetup
);
1478 if (((!HasFP
&& NumBytes
) || PushedRegs
) && NeedsDwarfCFI
) {
1479 // Mark end of stack pointer adjustment.
1480 if (!HasFP
&& NumBytes
) {
1481 // Define the current CFA rule to use the provided offset.
1483 BuildCFI(MBB
, MBBI
, DL
, MCCFIInstruction::createDefCfaOffset(
1484 nullptr, -StackSize
+ stackGrowth
));
1487 // Emit DWARF info specifying the offsets of the callee-saved registers.
1488 emitCalleeSavedFrameMoves(MBB
, MBBI
, DL
);
1491 // X86 Interrupt handling function cannot assume anything about the direction
1492 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1493 // in each prologue of interrupt handler function.
1495 // FIXME: Create "cld" instruction only in these cases:
1496 // 1. The interrupt handling function uses any of the "rep" instructions.
1497 // 2. Interrupt handling function calls another function.
1499 if (Fn
.getCallingConv() == CallingConv::X86_INTR
)
1500 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::CLD
))
1501 .setMIFlag(MachineInstr::FrameSetup
);
1503 // At this point we know if the function has WinCFI or not.
1504 MF
.setHasWinCFI(HasWinCFI
);
1507 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1508 const MachineFunction
&MF
) const {
1509 // We can't use LEA instructions for adjusting the stack pointer if we don't
1510 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1511 // to deallocate the stack.
1512 // This means that we can use LEA for SP in two situations:
1513 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1514 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1515 return !MF
.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF
);
1518 static bool isFuncletReturnInstr(MachineInstr
&MI
) {
1519 switch (MI
.getOpcode()) {
1521 case X86::CLEANUPRET
:
1526 llvm_unreachable("impossible");
1529 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1530 // stack. It holds a pointer to the bottom of the root function frame. The
1531 // establisher frame pointer passed to a nested funclet may point to the
1532 // (mostly empty) frame of its parent funclet, but it will need to find
1533 // the frame of the root function to access locals. To facilitate this,
1534 // every funclet copies the pointer to the bottom of the root function
1535 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1536 // same offset for the PSPSym in the root function frame that's used in the
1537 // funclets' frames allows each funclet to dynamically accept any ancestor
1538 // frame as its establisher argument (the runtime doesn't guarantee the
1539 // immediate parent for some reason lost to history), and also allows the GC,
1540 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1541 // frame with only a single offset reported for the entire method.
1543 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction
&MF
) const {
1544 const WinEHFuncInfo
&Info
= *MF
.getWinEHFuncInfo();
1546 int Offset
= getFrameIndexReferencePreferSP(MF
, Info
.PSPSymFrameIdx
, SPReg
,
1547 /*IgnoreSPUpdates*/ true);
1548 assert(Offset
>= 0 && SPReg
== TRI
->getStackRegister());
1549 return static_cast<unsigned>(Offset
);
1553 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction
&MF
) const {
1554 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1555 // This is the size of the pushed CSRs.
1556 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
1557 // This is the size of callee saved XMMs.
1558 const auto& WinEHXMMSlotInfo
= X86FI
->getWinEHXMMSlotInfo();
1559 unsigned XMMSize
= WinEHXMMSlotInfo
.size() *
1560 TRI
->getSpillSize(X86::VR128RegClass
);
1561 // This is the amount of stack a funclet needs to allocate.
1563 EHPersonality Personality
=
1564 classifyEHPersonality(MF
.getFunction().getPersonalityFn());
1565 if (Personality
== EHPersonality::CoreCLR
) {
1566 // CLR funclets need to hold enough space to include the PSPSym, at the
1567 // same offset from the stack pointer (immediately after the prolog) as it
1568 // resides at in the main function.
1569 UsedSize
= getPSPSlotOffsetFromSP(MF
) + SlotSize
;
1571 // Other funclets just need enough stack for outgoing call arguments.
1572 UsedSize
= MF
.getFrameInfo().getMaxCallFrameSize();
1574 // RBP is not included in the callee saved register block. After pushing RBP,
1575 // everything is 16 byte aligned. Everything we allocate before an outgoing
1576 // call must also be 16 byte aligned.
1577 unsigned FrameSizeMinusRBP
= alignTo(CSSize
+ UsedSize
, getStackAlignment());
1578 // Subtract out the size of the callee saved registers. This is how much stack
1579 // each funclet will allocate.
1580 return FrameSizeMinusRBP
+ XMMSize
- CSSize
;
1583 static bool isTailCallOpcode(unsigned Opc
) {
1584 return Opc
== X86::TCRETURNri
|| Opc
== X86::TCRETURNdi
||
1585 Opc
== X86::TCRETURNmi
||
1586 Opc
== X86::TCRETURNri64
|| Opc
== X86::TCRETURNdi64
||
1587 Opc
== X86::TCRETURNmi64
;
1590 void X86FrameLowering::emitEpilogue(MachineFunction
&MF
,
1591 MachineBasicBlock
&MBB
) const {
1592 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1593 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1594 MachineBasicBlock::iterator Terminator
= MBB
.getFirstTerminator();
1595 MachineBasicBlock::iterator MBBI
= Terminator
;
1597 if (MBBI
!= MBB
.end())
1598 DL
= MBBI
->getDebugLoc();
1599 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1600 const bool Is64BitILP32
= STI
.isTarget64BitILP32();
1601 Register FramePtr
= TRI
->getFrameRegister(MF
);
1602 unsigned MachineFramePtr
=
1603 Is64BitILP32
? Register(getX86SubSuperRegister(FramePtr
, 64)) : FramePtr
;
1605 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
1606 bool NeedsWin64CFI
=
1607 IsWin64Prologue
&& MF
.getFunction().needsUnwindTableEntry();
1608 bool IsFunclet
= MBBI
== MBB
.end() ? false : isFuncletReturnInstr(*MBBI
);
1610 // Get the number of bytes to allocate from the FrameInfo.
1611 uint64_t StackSize
= MFI
.getStackSize();
1612 uint64_t MaxAlign
= calculateMaxStackAlign(MF
);
1613 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
1614 bool HasFP
= hasFP(MF
);
1615 uint64_t NumBytes
= 0;
1617 bool NeedsDwarfCFI
=
1618 (!MF
.getTarget().getTargetTriple().isOSDarwin() &&
1619 !MF
.getTarget().getTargetTriple().isOSWindows()) &&
1620 (MF
.getMMI().hasDebugInfo() || MF
.getFunction().needsUnwindTableEntry());
1623 assert(HasFP
&& "EH funclets without FP not yet implemented");
1624 NumBytes
= getWinEHFuncletFrameSize(MF
);
1626 // Calculate required stack adjustment.
1627 uint64_t FrameSize
= StackSize
- SlotSize
;
1628 NumBytes
= FrameSize
- CSSize
;
1630 // Callee-saved registers were pushed on stack before the stack was
1632 if (TRI
->needsStackRealignment(MF
) && !IsWin64Prologue
)
1633 NumBytes
= alignTo(FrameSize
, MaxAlign
);
1635 NumBytes
= StackSize
- CSSize
;
1637 uint64_t SEHStackAllocAmt
= NumBytes
;
1641 BuildMI(MBB
, MBBI
, DL
, TII
.get(Is64Bit
? X86::POP64r
: X86::POP32r
),
1643 .setMIFlag(MachineInstr::FrameDestroy
);
1644 if (NeedsDwarfCFI
) {
1645 unsigned DwarfStackPtr
=
1646 TRI
->getDwarfRegNum(Is64Bit
? X86::RSP
: X86::ESP
, true);
1647 BuildCFI(MBB
, MBBI
, DL
, MCCFIInstruction::createDefCfa(
1648 nullptr, DwarfStackPtr
, -SlotSize
));
1653 MachineBasicBlock::iterator FirstCSPop
= MBBI
;
1654 // Skip the callee-saved pop instructions.
1655 while (MBBI
!= MBB
.begin()) {
1656 MachineBasicBlock::iterator PI
= std::prev(MBBI
);
1657 unsigned Opc
= PI
->getOpcode();
1659 if (Opc
!= X86::DBG_VALUE
&& !PI
->isTerminator()) {
1660 if ((Opc
!= X86::POP32r
|| !PI
->getFlag(MachineInstr::FrameDestroy
)) &&
1661 (Opc
!= X86::POP64r
|| !PI
->getFlag(MachineInstr::FrameDestroy
)))
1670 if (IsFunclet
&& Terminator
->getOpcode() == X86::CATCHRET
)
1671 emitCatchRetReturnValue(MBB
, FirstCSPop
, &*Terminator
);
1673 if (MBBI
!= MBB
.end())
1674 DL
= MBBI
->getDebugLoc();
1676 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1677 // instruction, merge the two instructions.
1678 if (NumBytes
|| MFI
.hasVarSizedObjects())
1679 NumBytes
+= mergeSPUpdates(MBB
, MBBI
, true);
1681 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1682 // slot before popping them off! Same applies for the case, when stack was
1683 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1684 // will not do realignment or dynamic stack allocation.
1685 if ((TRI
->needsStackRealignment(MF
) || MFI
.hasVarSizedObjects()) &&
1687 if (TRI
->needsStackRealignment(MF
))
1689 unsigned SEHFrameOffset
= calculateSetFPREG(SEHStackAllocAmt
);
1690 uint64_t LEAAmount
=
1691 IsWin64Prologue
? SEHStackAllocAmt
- SEHFrameOffset
: -CSSize
;
1693 // There are only two legal forms of epilogue:
1694 // - add SEHAllocationSize, %rsp
1695 // - lea SEHAllocationSize(%FramePtr), %rsp
1697 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1698 // However, we may use this sequence if we have a frame pointer because the
1699 // effects of the prologue can safely be undone.
1700 if (LEAAmount
!= 0) {
1701 unsigned Opc
= getLEArOpcode(Uses64BitFramePtr
);
1702 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
),
1703 FramePtr
, false, LEAAmount
);
1706 unsigned Opc
= (Uses64BitFramePtr
? X86::MOV64rr
: X86::MOV32rr
);
1707 BuildMI(MBB
, MBBI
, DL
, TII
.get(Opc
), StackPtr
)
1711 } else if (NumBytes
) {
1712 // Adjust stack pointer back: ESP += numbytes.
1713 emitSPUpdate(MBB
, MBBI
, DL
, NumBytes
, /*InEpilogue=*/true);
1714 if (!hasFP(MF
) && NeedsDwarfCFI
) {
1715 // Define the current CFA rule to use the provided offset.
1716 BuildCFI(MBB
, MBBI
, DL
, MCCFIInstruction::createDefCfaOffset(
1717 nullptr, -CSSize
- SlotSize
));
1722 // Windows unwinder will not invoke function's exception handler if IP is
1723 // either in prologue or in epilogue. This behavior causes a problem when a
1724 // call immediately precedes an epilogue, because the return address points
1725 // into the epilogue. To cope with that, we insert an epilogue marker here,
1726 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1727 // final emitted code.
1728 if (NeedsWin64CFI
&& MF
.hasWinCFI())
1729 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::SEH_Epilogue
));
1731 if (!hasFP(MF
) && NeedsDwarfCFI
) {
1733 int64_t Offset
= -CSSize
- SlotSize
;
1734 // Mark callee-saved pop instruction.
1735 // Define the current CFA rule to use the provided offset.
1736 while (MBBI
!= MBB
.end()) {
1737 MachineBasicBlock::iterator PI
= MBBI
;
1738 unsigned Opc
= PI
->getOpcode();
1740 if (Opc
== X86::POP32r
|| Opc
== X86::POP64r
) {
1742 BuildCFI(MBB
, MBBI
, DL
,
1743 MCCFIInstruction::createDefCfaOffset(nullptr, Offset
));
1748 if (Terminator
== MBB
.end() || !isTailCallOpcode(Terminator
->getOpcode())) {
1749 // Add the return addr area delta back since we are not tail calling.
1750 int Offset
= -1 * X86FI
->getTCReturnAddrDelta();
1751 assert(Offset
>= 0 && "TCDelta should never be positive");
1753 // Check for possible merge with preceding ADD instruction.
1754 Offset
+= mergeSPUpdates(MBB
, Terminator
, true);
1755 emitSPUpdate(MBB
, Terminator
, DL
, Offset
, /*InEpilogue=*/true);
1760 int X86FrameLowering::getFrameIndexReference(const MachineFunction
&MF
, int FI
,
1761 unsigned &FrameReg
) const {
1762 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1764 bool IsFixed
= MFI
.isFixedObjectIndex(FI
);
1765 // We can't calculate offset from frame pointer if the stack is realigned,
1766 // so enforce usage of stack/base pointer. The base pointer is used when we
1767 // have dynamic allocas in addition to dynamic realignment.
1768 if (TRI
->hasBasePointer(MF
))
1769 FrameReg
= IsFixed
? TRI
->getFramePtr() : TRI
->getBaseRegister();
1770 else if (TRI
->needsStackRealignment(MF
))
1771 FrameReg
= IsFixed
? TRI
->getFramePtr() : TRI
->getStackRegister();
1773 FrameReg
= TRI
->getFrameRegister(MF
);
1775 // Offset will hold the offset from the stack pointer at function entry to the
1777 // We need to factor in additional offsets applied during the prologue to the
1778 // frame, base, and stack pointer depending on which is used.
1779 int Offset
= MFI
.getObjectOffset(FI
) - getOffsetOfLocalArea();
1780 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1781 unsigned CSSize
= X86FI
->getCalleeSavedFrameSize();
1782 uint64_t StackSize
= MFI
.getStackSize();
1783 bool HasFP
= hasFP(MF
);
1784 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
1785 int64_t FPDelta
= 0;
1787 // In an x86 interrupt, remove the offset we added to account for the return
1788 // address from any stack object allocated in the caller's frame. Interrupts
1789 // do not have a standard return address. Fixed objects in the current frame,
1790 // such as SSE register spills, should not get this treatment.
1791 if (MF
.getFunction().getCallingConv() == CallingConv::X86_INTR
&&
1793 Offset
+= getOffsetOfLocalArea();
1796 if (IsWin64Prologue
) {
1797 assert(!MFI
.hasCalls() || (StackSize
% 16) == 8);
1799 // Calculate required stack adjustment.
1800 uint64_t FrameSize
= StackSize
- SlotSize
;
1801 // If required, include space for extra hidden slot for stashing base pointer.
1802 if (X86FI
->getRestoreBasePointer())
1803 FrameSize
+= SlotSize
;
1804 uint64_t NumBytes
= FrameSize
- CSSize
;
1806 uint64_t SEHFrameOffset
= calculateSetFPREG(NumBytes
);
1807 if (FI
&& FI
== X86FI
->getFAIndex())
1808 return -SEHFrameOffset
;
1810 // FPDelta is the offset from the "traditional" FP location of the old base
1811 // pointer followed by return address and the location required by the
1812 // restricted Win64 prologue.
1813 // Add FPDelta to all offsets below that go through the frame pointer.
1814 FPDelta
= FrameSize
- SEHFrameOffset
;
1815 assert((!MFI
.hasCalls() || (FPDelta
% 16) == 0) &&
1816 "FPDelta isn't aligned per the Win64 ABI!");
1820 if (TRI
->hasBasePointer(MF
)) {
1821 assert(HasFP
&& "VLAs and dynamic stack realign, but no FP?!");
1823 // Skip the saved EBP.
1824 return Offset
+ SlotSize
+ FPDelta
;
1826 assert((-(Offset
+ StackSize
)) % MFI
.getObjectAlignment(FI
) == 0);
1827 return Offset
+ StackSize
;
1829 } else if (TRI
->needsStackRealignment(MF
)) {
1831 // Skip the saved EBP.
1832 return Offset
+ SlotSize
+ FPDelta
;
1834 assert((-(Offset
+ StackSize
)) % MFI
.getObjectAlignment(FI
) == 0);
1835 return Offset
+ StackSize
;
1837 // FIXME: Support tail calls
1840 return Offset
+ StackSize
;
1842 // Skip the saved EBP.
1845 // Skip the RETADDR move area
1846 int TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
1847 if (TailCallReturnAddrDelta
< 0)
1848 Offset
-= TailCallReturnAddrDelta
;
1851 return Offset
+ FPDelta
;
1854 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction
&MF
,
1855 int FI
, unsigned &FrameReg
) const {
1856 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1857 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1858 const auto& WinEHXMMSlotInfo
= X86FI
->getWinEHXMMSlotInfo();
1859 const auto it
= WinEHXMMSlotInfo
.find(FI
);
1861 if (it
== WinEHXMMSlotInfo
.end())
1862 return getFrameIndexReference(MF
, FI
, FrameReg
);
1864 FrameReg
= TRI
->getStackRegister();
1865 return alignTo(MFI
.getMaxCallFrameSize(), getStackAlignment()) + it
->second
;
1868 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction
&MF
,
1869 int FI
, unsigned &FrameReg
,
1870 int Adjustment
) const {
1871 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1872 FrameReg
= TRI
->getStackRegister();
1873 return MFI
.getObjectOffset(FI
) - getOffsetOfLocalArea() + Adjustment
;
1877 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction
&MF
,
1878 int FI
, unsigned &FrameReg
,
1879 bool IgnoreSPUpdates
) const {
1881 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1882 // Does not include any dynamic realign.
1883 const uint64_t StackSize
= MFI
.getStackSize();
1884 // LLVM arranges the stack as follows:
1889 // PUSH RBP <-- RBP points here
1891 // ~~~~~~~ <-- possible stack realignment (non-win64)
1894 // ... <-- RSP after prologue points here
1895 // ~~~~~~~ <-- possible stack realignment (win64)
1897 // if (hasVarSizedObjects()):
1898 // ... <-- "base pointer" (ESI/RBX) points here
1900 // ... <-- RSP points here
1902 // Case 1: In the simple case of no stack realignment and no dynamic
1903 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1904 // with fixed offsets from RSP.
1906 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1907 // stack objects are addressed with RBP and regular stack objects with RSP.
1909 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1910 // to address stack arguments for outgoing calls and nothing else. The "base
1911 // pointer" points to local variables, and RBP points to fixed objects.
1913 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1914 // answer we give is relative to the SP after the prologue, and not the
1915 // SP in the middle of the function.
1917 if (MFI
.isFixedObjectIndex(FI
) && TRI
->needsStackRealignment(MF
) &&
1918 !STI
.isTargetWin64())
1919 return getFrameIndexReference(MF
, FI
, FrameReg
);
1921 // If !hasReservedCallFrame the function might have SP adjustement in the
1922 // body. So, even though the offset is statically known, it depends on where
1923 // we are in the function.
1924 if (!IgnoreSPUpdates
&& !hasReservedCallFrame(MF
))
1925 return getFrameIndexReference(MF
, FI
, FrameReg
);
1927 // We don't handle tail calls, and shouldn't be seeing them either.
1928 assert(MF
.getInfo
<X86MachineFunctionInfo
>()->getTCReturnAddrDelta() >= 0 &&
1929 "we don't handle this case!");
1931 // This is how the math works out:
1933 // %rsp grows (i.e. gets lower) left to right. Each box below is
1934 // one word (eight bytes). Obj0 is the stack slot we're trying to
1937 // ----------------------------------
1938 // | BP | Obj0 | Obj1 | ... | ObjN |
1939 // ----------------------------------
1943 // A is the incoming stack pointer.
1944 // (B - A) is the local area offset (-8 for x86-64) [1]
1945 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1947 // |(E - B)| is the StackSize (absolute value, positive). For a
1948 // stack that grown down, this works out to be (B - E). [3]
1950 // E is also the value of %rsp after stack has been set up, and we
1951 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1952 // (C - E) == (C - A) - (B - A) + (B - E)
1953 // { Using [1], [2] and [3] above }
1954 // == getObjectOffset - LocalAreaOffset + StackSize
1956 return getFrameIndexReferenceSP(MF
, FI
, FrameReg
, StackSize
);
1959 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1960 MachineFunction
&MF
, const TargetRegisterInfo
*TRI
,
1961 std::vector
<CalleeSavedInfo
> &CSI
) const {
1962 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1963 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
1965 unsigned CalleeSavedFrameSize
= 0;
1966 unsigned XMMCalleeSavedFrameSize
= 0;
1967 auto &WinEHXMMSlotInfo
= X86FI
->getWinEHXMMSlotInfo();
1968 int SpillSlotOffset
= getOffsetOfLocalArea() + X86FI
->getTCReturnAddrDelta();
1970 int64_t TailCallReturnAddrDelta
= X86FI
->getTCReturnAddrDelta();
1972 if (TailCallReturnAddrDelta
< 0) {
1973 // create RETURNADDR area
1982 MFI
.CreateFixedObject(-TailCallReturnAddrDelta
,
1983 TailCallReturnAddrDelta
- SlotSize
, true);
1986 // Spill the BasePtr if it's used.
1987 if (this->TRI
->hasBasePointer(MF
)) {
1988 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1989 if (MF
.hasEHFunclets()) {
1990 int FI
= MFI
.CreateSpillStackObject(SlotSize
, SlotSize
);
1991 X86FI
->setHasSEHFramePtrSave(true);
1992 X86FI
->setSEHFramePtrSaveIndex(FI
);
1997 // emitPrologue always spills frame register the first thing.
1998 SpillSlotOffset
-= SlotSize
;
1999 MFI
.CreateFixedSpillStackObject(SlotSize
, SpillSlotOffset
);
2001 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2002 // the frame register, we can delete it from CSI list and not have to worry
2003 // about avoiding it later.
2004 Register FPReg
= TRI
->getFrameRegister(MF
);
2005 for (unsigned i
= 0; i
< CSI
.size(); ++i
) {
2006 if (TRI
->regsOverlap(CSI
[i
].getReg(),FPReg
)) {
2007 CSI
.erase(CSI
.begin() + i
);
2013 // Assign slots for GPRs. It increases frame size.
2014 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2015 unsigned Reg
= CSI
[i
- 1].getReg();
2017 if (!X86::GR64RegClass
.contains(Reg
) && !X86::GR32RegClass
.contains(Reg
))
2020 SpillSlotOffset
-= SlotSize
;
2021 CalleeSavedFrameSize
+= SlotSize
;
2023 int SlotIndex
= MFI
.CreateFixedSpillStackObject(SlotSize
, SpillSlotOffset
);
2024 CSI
[i
- 1].setFrameIdx(SlotIndex
);
2027 X86FI
->setCalleeSavedFrameSize(CalleeSavedFrameSize
);
2028 MFI
.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize
);
2030 // Assign slots for XMMs.
2031 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2032 unsigned Reg
= CSI
[i
- 1].getReg();
2033 if (X86::GR64RegClass
.contains(Reg
) || X86::GR32RegClass
.contains(Reg
))
2036 // If this is k-register make sure we lookup via the largest legal type.
2037 MVT VT
= MVT::Other
;
2038 if (X86::VK16RegClass
.contains(Reg
))
2039 VT
= STI
.hasBWI() ? MVT::v64i1
: MVT::v16i1
;
2041 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
, VT
);
2042 unsigned Size
= TRI
->getSpillSize(*RC
);
2043 unsigned Align
= TRI
->getSpillAlignment(*RC
);
2045 assert(SpillSlotOffset
< 0 && "SpillSlotOffset should always < 0 on X86");
2046 SpillSlotOffset
= -alignTo(-SpillSlotOffset
, Align
);
2049 SpillSlotOffset
-= Size
;
2050 int SlotIndex
= MFI
.CreateFixedSpillStackObject(Size
, SpillSlotOffset
);
2051 CSI
[i
- 1].setFrameIdx(SlotIndex
);
2052 MFI
.ensureMaxAlignment(Align
);
2054 // Save the start offset and size of XMM in stack frame for funclets.
2055 if (X86::VR128RegClass
.contains(Reg
)) {
2056 WinEHXMMSlotInfo
[SlotIndex
] = XMMCalleeSavedFrameSize
;
2057 XMMCalleeSavedFrameSize
+= Size
;
2064 bool X86FrameLowering::spillCalleeSavedRegisters(
2065 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2066 const std::vector
<CalleeSavedInfo
> &CSI
,
2067 const TargetRegisterInfo
*TRI
) const {
2068 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2070 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2071 // for us, and there are no XMM CSRs on Win32.
2072 if (MBB
.isEHFuncletEntry() && STI
.is32Bit() && STI
.isOSWindows())
2075 // Push GPRs. It increases frame size.
2076 const MachineFunction
&MF
= *MBB
.getParent();
2077 unsigned Opc
= STI
.is64Bit() ? X86::PUSH64r
: X86::PUSH32r
;
2078 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2079 unsigned Reg
= CSI
[i
- 1].getReg();
2081 if (!X86::GR64RegClass
.contains(Reg
) && !X86::GR32RegClass
.contains(Reg
))
2084 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2085 bool isLiveIn
= MRI
.isLiveIn(Reg
);
2089 // Decide whether we can add a kill flag to the use.
2090 bool CanKill
= !isLiveIn
;
2091 // Check if any subregister is live-in
2093 for (MCRegAliasIterator
AReg(Reg
, TRI
, false); AReg
.isValid(); ++AReg
) {
2094 if (MRI
.isLiveIn(*AReg
)) {
2101 // Do not set a kill flag on values that are also marked as live-in. This
2102 // happens with the @llvm-returnaddress intrinsic and with arguments
2103 // passed in callee saved registers.
2104 // Omitting the kill flags is conservatively correct even if the live-in
2105 // is not used after all.
2106 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
)).addReg(Reg
, getKillRegState(CanKill
))
2107 .setMIFlag(MachineInstr::FrameSetup
);
2110 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2111 // It can be done by spilling XMMs to stack frame.
2112 for (unsigned i
= CSI
.size(); i
!= 0; --i
) {
2113 unsigned Reg
= CSI
[i
-1].getReg();
2114 if (X86::GR64RegClass
.contains(Reg
) || X86::GR32RegClass
.contains(Reg
))
2117 // If this is k-register make sure we lookup via the largest legal type.
2118 MVT VT
= MVT::Other
;
2119 if (X86::VK16RegClass
.contains(Reg
))
2120 VT
= STI
.hasBWI() ? MVT::v64i1
: MVT::v16i1
;
2122 // Add the callee-saved register as live-in. It's killed at the spill.
2124 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
, VT
);
2126 TII
.storeRegToStackSlot(MBB
, MI
, Reg
, true, CSI
[i
- 1].getFrameIdx(), RC
,
2129 MI
->setFlag(MachineInstr::FrameSetup
);
2136 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock
&MBB
,
2137 MachineBasicBlock::iterator MBBI
,
2138 MachineInstr
*CatchRet
) const {
2139 // SEH shouldn't use catchret.
2140 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2141 MBB
.getParent()->getFunction().getPersonalityFn())) &&
2142 "SEH should not use CATCHRET");
2143 DebugLoc DL
= CatchRet
->getDebugLoc();
2144 MachineBasicBlock
*CatchRetTarget
= CatchRet
->getOperand(0).getMBB();
2146 // Fill EAX/RAX with the address of the target block.
2147 if (STI
.is64Bit()) {
2148 // LEA64r CatchRetTarget(%rip), %rax
2149 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA64r
), X86::RAX
)
2153 .addMBB(CatchRetTarget
)
2156 // MOV32ri $CatchRetTarget, %eax
2157 BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32ri
), X86::EAX
)
2158 .addMBB(CatchRetTarget
);
2161 // Record that we've taken the address of CatchRetTarget and no longer just
2162 // reference it in a terminator.
2163 CatchRetTarget
->setHasAddressTaken();
2166 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock
&MBB
,
2167 MachineBasicBlock::iterator MI
,
2168 std::vector
<CalleeSavedInfo
> &CSI
,
2169 const TargetRegisterInfo
*TRI
) const {
2173 if (MI
!= MBB
.end() && isFuncletReturnInstr(*MI
) && STI
.isOSWindows()) {
2174 // Don't restore CSRs in 32-bit EH funclets. Matches
2175 // spillCalleeSavedRegisters.
2178 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2179 // funclets. emitEpilogue transforms these to normal jumps.
2180 if (MI
->getOpcode() == X86::CATCHRET
) {
2181 const Function
&F
= MBB
.getParent()->getFunction();
2182 bool IsSEH
= isAsynchronousEHPersonality(
2183 classifyEHPersonality(F
.getPersonalityFn()));
2189 DebugLoc DL
= MBB
.findDebugLoc(MI
);
2191 // Reload XMMs from stack frame.
2192 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2193 unsigned Reg
= CSI
[i
].getReg();
2194 if (X86::GR64RegClass
.contains(Reg
) ||
2195 X86::GR32RegClass
.contains(Reg
))
2198 // If this is k-register make sure we lookup via the largest legal type.
2199 MVT VT
= MVT::Other
;
2200 if (X86::VK16RegClass
.contains(Reg
))
2201 VT
= STI
.hasBWI() ? MVT::v64i1
: MVT::v16i1
;
2203 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
, VT
);
2204 TII
.loadRegFromStackSlot(MBB
, MI
, Reg
, CSI
[i
].getFrameIdx(), RC
, TRI
);
2208 unsigned Opc
= STI
.is64Bit() ? X86::POP64r
: X86::POP32r
;
2209 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2210 unsigned Reg
= CSI
[i
].getReg();
2211 if (!X86::GR64RegClass
.contains(Reg
) &&
2212 !X86::GR32RegClass
.contains(Reg
))
2215 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), Reg
)
2216 .setMIFlag(MachineInstr::FrameDestroy
);
2221 void X86FrameLowering::determineCalleeSaves(MachineFunction
&MF
,
2222 BitVector
&SavedRegs
,
2223 RegScavenger
*RS
) const {
2224 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
2226 // Spill the BasePtr if it's used.
2227 if (TRI
->hasBasePointer(MF
)){
2228 Register BasePtr
= TRI
->getBaseRegister();
2229 if (STI
.isTarget64BitILP32())
2230 BasePtr
= getX86SubSuperRegister(BasePtr
, 64);
2231 SavedRegs
.set(BasePtr
);
2236 HasNestArgument(const MachineFunction
*MF
) {
2237 const Function
&F
= MF
->getFunction();
2238 for (Function::const_arg_iterator I
= F
.arg_begin(), E
= F
.arg_end();
2240 if (I
->hasNestAttr() && !I
->use_empty())
2246 /// GetScratchRegister - Get a temp register for performing work in the
2247 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2248 /// and the properties of the function either one or two registers will be
2249 /// needed. Set primary to true for the first register, false for the second.
2251 GetScratchRegister(bool Is64Bit
, bool IsLP64
, const MachineFunction
&MF
, bool Primary
) {
2252 CallingConv::ID CallingConvention
= MF
.getFunction().getCallingConv();
2255 if (CallingConvention
== CallingConv::HiPE
) {
2257 return Primary
? X86::R14
: X86::R13
;
2259 return Primary
? X86::EBX
: X86::EDI
;
2264 return Primary
? X86::R11
: X86::R12
;
2266 return Primary
? X86::R11D
: X86::R12D
;
2269 bool IsNested
= HasNestArgument(&MF
);
2271 if (CallingConvention
== CallingConv::X86_FastCall
||
2272 CallingConvention
== CallingConv::Fast
) {
2274 report_fatal_error("Segmented stacks does not support fastcall with "
2275 "nested function.");
2276 return Primary
? X86::EAX
: X86::ECX
;
2279 return Primary
? X86::EDX
: X86::EAX
;
2280 return Primary
? X86::ECX
: X86::EAX
;
2283 // The stack limit in the TCB is set to this many bytes above the actual stack
2285 static const uint64_t kSplitStackAvailable
= 256;
2287 void X86FrameLowering::adjustForSegmentedStacks(
2288 MachineFunction
&MF
, MachineBasicBlock
&PrologueMBB
) const {
2289 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2291 unsigned TlsReg
, TlsOffset
;
2294 // To support shrink-wrapping we would need to insert the new blocks
2295 // at the right place and update the branches to PrologueMBB.
2296 assert(&(*MF
.begin()) == &PrologueMBB
&& "Shrink-wrapping not supported yet");
2298 unsigned ScratchReg
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, true);
2299 assert(!MF
.getRegInfo().isLiveIn(ScratchReg
) &&
2300 "Scratch register is live-in");
2302 if (MF
.getFunction().isVarArg())
2303 report_fatal_error("Segmented stacks do not support vararg functions.");
2304 if (!STI
.isTargetLinux() && !STI
.isTargetDarwin() && !STI
.isTargetWin32() &&
2305 !STI
.isTargetWin64() && !STI
.isTargetFreeBSD() &&
2306 !STI
.isTargetDragonFly())
2307 report_fatal_error("Segmented stacks not supported on this platform.");
2309 // Eventually StackSize will be calculated by a link-time pass; which will
2310 // also decide whether checking code needs to be injected into this particular
2312 StackSize
= MFI
.getStackSize();
2314 // Do not generate a prologue for leaf functions with a stack of size zero.
2315 // For non-leaf functions we have to allow for the possibility that the
2316 // callis to a non-split function, as in PR37807. This function could also
2317 // take the address of a non-split function. When the linker tries to adjust
2318 // its non-existent prologue, it would fail with an error. Mark the object
2319 // file so that such failures are not errors. See this Go language bug-report
2320 // https://go-review.googlesource.com/c/go/+/148819/
2321 if (StackSize
== 0 && !MFI
.hasTailCall()) {
2322 MF
.getMMI().setHasNosplitStack(true);
2326 MachineBasicBlock
*allocMBB
= MF
.CreateMachineBasicBlock();
2327 MachineBasicBlock
*checkMBB
= MF
.CreateMachineBasicBlock();
2328 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2329 bool IsNested
= false;
2331 // We need to know if the function has a nest argument only in 64 bit mode.
2333 IsNested
= HasNestArgument(&MF
);
2335 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2336 // allocMBB needs to be last (terminating) instruction.
2338 for (const auto &LI
: PrologueMBB
.liveins()) {
2339 allocMBB
->addLiveIn(LI
);
2340 checkMBB
->addLiveIn(LI
);
2344 allocMBB
->addLiveIn(IsLP64
? X86::R10
: X86::R10D
);
2346 MF
.push_front(allocMBB
);
2347 MF
.push_front(checkMBB
);
2349 // When the frame size is less than 256 we just compare the stack
2350 // boundary directly to the value of the stack pointer, per gcc.
2351 bool CompareStackPointer
= StackSize
< kSplitStackAvailable
;
2353 // Read the limit off the current stacklet off the stack_guard location.
2355 if (STI
.isTargetLinux()) {
2357 TlsOffset
= IsLP64
? 0x70 : 0x40;
2358 } else if (STI
.isTargetDarwin()) {
2360 TlsOffset
= 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2361 } else if (STI
.isTargetWin64()) {
2363 TlsOffset
= 0x28; // pvArbitrary, reserved for application use
2364 } else if (STI
.isTargetFreeBSD()) {
2367 } else if (STI
.isTargetDragonFly()) {
2369 TlsOffset
= 0x20; // use tls_tcb.tcb_segstack
2371 report_fatal_error("Segmented stacks not supported on this platform.");
2374 if (CompareStackPointer
)
2375 ScratchReg
= IsLP64
? X86::RSP
: X86::ESP
;
2377 BuildMI(checkMBB
, DL
, TII
.get(IsLP64
? X86::LEA64r
: X86::LEA64_32r
), ScratchReg
).addReg(X86::RSP
)
2378 .addImm(1).addReg(0).addImm(-StackSize
).addReg(0);
2380 BuildMI(checkMBB
, DL
, TII
.get(IsLP64
? X86::CMP64rm
: X86::CMP32rm
)).addReg(ScratchReg
)
2381 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset
).addReg(TlsReg
);
2383 if (STI
.isTargetLinux()) {
2386 } else if (STI
.isTargetDarwin()) {
2388 TlsOffset
= 0x48 + 90*4;
2389 } else if (STI
.isTargetWin32()) {
2391 TlsOffset
= 0x14; // pvArbitrary, reserved for application use
2392 } else if (STI
.isTargetDragonFly()) {
2394 TlsOffset
= 0x10; // use tls_tcb.tcb_segstack
2395 } else if (STI
.isTargetFreeBSD()) {
2396 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2398 report_fatal_error("Segmented stacks not supported on this platform.");
2401 if (CompareStackPointer
)
2402 ScratchReg
= X86::ESP
;
2404 BuildMI(checkMBB
, DL
, TII
.get(X86::LEA32r
), ScratchReg
).addReg(X86::ESP
)
2405 .addImm(1).addReg(0).addImm(-StackSize
).addReg(0);
2407 if (STI
.isTargetLinux() || STI
.isTargetWin32() || STI
.isTargetWin64() ||
2408 STI
.isTargetDragonFly()) {
2409 BuildMI(checkMBB
, DL
, TII
.get(X86::CMP32rm
)).addReg(ScratchReg
)
2410 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset
).addReg(TlsReg
);
2411 } else if (STI
.isTargetDarwin()) {
2413 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2414 unsigned ScratchReg2
;
2416 if (CompareStackPointer
) {
2417 // The primary scratch register is available for holding the TLS offset.
2418 ScratchReg2
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, true);
2419 SaveScratch2
= false;
2421 // Need to use a second register to hold the TLS offset
2422 ScratchReg2
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, false);
2424 // Unfortunately, with fastcc the second scratch register may hold an
2426 SaveScratch2
= MF
.getRegInfo().isLiveIn(ScratchReg2
);
2429 // If Scratch2 is live-in then it needs to be saved.
2430 assert((!MF
.getRegInfo().isLiveIn(ScratchReg2
) || SaveScratch2
) &&
2431 "Scratch register is live-in and not saved");
2434 BuildMI(checkMBB
, DL
, TII
.get(X86::PUSH32r
))
2435 .addReg(ScratchReg2
, RegState::Kill
);
2437 BuildMI(checkMBB
, DL
, TII
.get(X86::MOV32ri
), ScratchReg2
)
2439 BuildMI(checkMBB
, DL
, TII
.get(X86::CMP32rm
))
2441 .addReg(ScratchReg2
).addImm(1).addReg(0)
2446 BuildMI(checkMBB
, DL
, TII
.get(X86::POP32r
), ScratchReg2
);
2450 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2451 // It jumps to normal execution of the function body.
2452 BuildMI(checkMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(&PrologueMBB
).addImm(X86::COND_A
);
2454 // On 32 bit we first push the arguments size and then the frame size. On 64
2455 // bit, we pass the stack frame size in r10 and the argument size in r11.
2457 // Functions with nested arguments use R10, so it needs to be saved across
2458 // the call to _morestack
2460 const unsigned RegAX
= IsLP64
? X86::RAX
: X86::EAX
;
2461 const unsigned Reg10
= IsLP64
? X86::R10
: X86::R10D
;
2462 const unsigned Reg11
= IsLP64
? X86::R11
: X86::R11D
;
2463 const unsigned MOVrr
= IsLP64
? X86::MOV64rr
: X86::MOV32rr
;
2464 const unsigned MOVri
= IsLP64
? X86::MOV64ri
: X86::MOV32ri
;
2467 BuildMI(allocMBB
, DL
, TII
.get(MOVrr
), RegAX
).addReg(Reg10
);
2469 BuildMI(allocMBB
, DL
, TII
.get(MOVri
), Reg10
)
2471 BuildMI(allocMBB
, DL
, TII
.get(MOVri
), Reg11
)
2472 .addImm(X86FI
->getArgumentStackSize());
2474 BuildMI(allocMBB
, DL
, TII
.get(X86::PUSHi32
))
2475 .addImm(X86FI
->getArgumentStackSize());
2476 BuildMI(allocMBB
, DL
, TII
.get(X86::PUSHi32
))
2480 // __morestack is in libgcc
2481 if (Is64Bit
&& MF
.getTarget().getCodeModel() == CodeModel::Large
) {
2482 // Under the large code model, we cannot assume that __morestack lives
2483 // within 2^31 bytes of the call site, so we cannot use pc-relative
2484 // addressing. We cannot perform the call via a temporary register,
2485 // as the rax register may be used to store the static chain, and all
2486 // other suitable registers may be either callee-save or used for
2487 // parameter passing. We cannot use the stack at this point either
2488 // because __morestack manipulates the stack directly.
2490 // To avoid these issues, perform an indirect call via a read-only memory
2491 // location containing the address.
2493 // This solution is not perfect, as it assumes that the .rodata section
2494 // is laid out within 2^31 bytes of each function body, but this seems
2495 // to be sufficient for JIT.
2496 // FIXME: Add retpoline support and remove the error here..
2497 if (STI
.useRetpolineIndirectCalls())
2498 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2499 "code model and retpoline not yet implemented.");
2500 BuildMI(allocMBB
, DL
, TII
.get(X86::CALL64m
))
2504 .addExternalSymbol("__morestack_addr")
2506 MF
.getMMI().setUsesMorestackAddr(true);
2509 BuildMI(allocMBB
, DL
, TII
.get(X86::CALL64pcrel32
))
2510 .addExternalSymbol("__morestack");
2512 BuildMI(allocMBB
, DL
, TII
.get(X86::CALLpcrel32
))
2513 .addExternalSymbol("__morestack");
2517 BuildMI(allocMBB
, DL
, TII
.get(X86::MORESTACK_RET_RESTORE_R10
));
2519 BuildMI(allocMBB
, DL
, TII
.get(X86::MORESTACK_RET
));
2521 allocMBB
->addSuccessor(&PrologueMBB
);
2523 checkMBB
->addSuccessor(allocMBB
, BranchProbability::getZero());
2524 checkMBB
->addSuccessor(&PrologueMBB
, BranchProbability::getOne());
2526 #ifdef EXPENSIVE_CHECKS
2531 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2532 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2533 /// to fields it needs, through a named metadata node "hipe.literals" containing
2534 /// name-value pairs.
2535 static unsigned getHiPELiteral(
2536 NamedMDNode
*HiPELiteralsMD
, const StringRef LiteralName
) {
2537 for (int i
= 0, e
= HiPELiteralsMD
->getNumOperands(); i
!= e
; ++i
) {
2538 MDNode
*Node
= HiPELiteralsMD
->getOperand(i
);
2539 if (Node
->getNumOperands() != 2) continue;
2540 MDString
*NodeName
= dyn_cast
<MDString
>(Node
->getOperand(0));
2541 ValueAsMetadata
*NodeVal
= dyn_cast
<ValueAsMetadata
>(Node
->getOperand(1));
2542 if (!NodeName
|| !NodeVal
) continue;
2543 ConstantInt
*ValConst
= dyn_cast_or_null
<ConstantInt
>(NodeVal
->getValue());
2544 if (ValConst
&& NodeName
->getString() == LiteralName
) {
2545 return ValConst
->getZExtValue();
2549 report_fatal_error("HiPE literal " + LiteralName
2550 + " required but not provided");
2553 // Return true if there are no non-ehpad successors to MBB and there are no
2554 // non-meta instructions between MBBI and MBB.end().
2555 bool blockEndIsUnreachable(const MachineBasicBlock
&MBB
,
2556 MachineBasicBlock::const_iterator MBBI
) {
2558 MBB
.succ_begin(), MBB
.succ_end(),
2559 [](const MachineBasicBlock
*Succ
) { return Succ
->isEHPad(); }) &&
2560 std::all_of(MBBI
, MBB
.end(), [](const MachineInstr
&MI
) {
2561 return MI
.isMetaInstruction();
2565 /// Erlang programs may need a special prologue to handle the stack size they
2566 /// might need at runtime. That is because Erlang/OTP does not implement a C
2567 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2568 /// (for more information see Eric Stenman's Ph.D. thesis:
2569 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2572 /// temp0 = sp - MaxStack
2573 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2577 /// call inc_stack # doubles the stack space
2578 /// temp0 = sp - MaxStack
2579 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2580 void X86FrameLowering::adjustForHiPEPrologue(
2581 MachineFunction
&MF
, MachineBasicBlock
&PrologueMBB
) const {
2582 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2585 // To support shrink-wrapping we would need to insert the new blocks
2586 // at the right place and update the branches to PrologueMBB.
2587 assert(&(*MF
.begin()) == &PrologueMBB
&& "Shrink-wrapping not supported yet");
2589 // HiPE-specific values
2590 NamedMDNode
*HiPELiteralsMD
= MF
.getMMI().getModule()
2591 ->getNamedMetadata("hipe.literals");
2592 if (!HiPELiteralsMD
)
2594 "Can't generate HiPE prologue without runtime parameters");
2595 const unsigned HipeLeafWords
2596 = getHiPELiteral(HiPELiteralsMD
,
2597 Is64Bit
? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2598 const unsigned CCRegisteredArgs
= Is64Bit
? 6 : 5;
2599 const unsigned Guaranteed
= HipeLeafWords
* SlotSize
;
2600 unsigned CallerStkArity
= MF
.getFunction().arg_size() > CCRegisteredArgs
?
2601 MF
.getFunction().arg_size() - CCRegisteredArgs
: 0;
2602 unsigned MaxStack
= MFI
.getStackSize() + CallerStkArity
*SlotSize
+ SlotSize
;
2604 assert(STI
.isTargetLinux() &&
2605 "HiPE prologue is only supported on Linux operating systems.");
2607 // Compute the largest caller's frame that is needed to fit the callees'
2608 // frames. This 'MaxStack' is computed from:
2610 // a) the fixed frame size, which is the space needed for all spilled temps,
2611 // b) outgoing on-stack parameter areas, and
2612 // c) the minimum stack space this function needs to make available for the
2613 // functions it calls (a tunable ABI property).
2614 if (MFI
.hasCalls()) {
2615 unsigned MoreStackForCalls
= 0;
2617 for (auto &MBB
: MF
) {
2618 for (auto &MI
: MBB
) {
2622 // Get callee operand.
2623 const MachineOperand
&MO
= MI
.getOperand(0);
2625 // Only take account of global function calls (no closures etc.).
2629 const Function
*F
= dyn_cast
<Function
>(MO
.getGlobal());
2633 // Do not update 'MaxStack' for primitive and built-in functions
2634 // (encoded with names either starting with "erlang."/"bif_" or not
2635 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2636 // "_", such as the BIF "suspend_0") as they are executed on another
2638 if (F
->getName().find("erlang.") != StringRef::npos
||
2639 F
->getName().find("bif_") != StringRef::npos
||
2640 F
->getName().find_first_of("._") == StringRef::npos
)
2643 unsigned CalleeStkArity
=
2644 F
->arg_size() > CCRegisteredArgs
? F
->arg_size()-CCRegisteredArgs
: 0;
2645 if (HipeLeafWords
- 1 > CalleeStkArity
)
2646 MoreStackForCalls
= std::max(MoreStackForCalls
,
2647 (HipeLeafWords
- 1 - CalleeStkArity
) * SlotSize
);
2650 MaxStack
+= MoreStackForCalls
;
2653 // If the stack frame needed is larger than the guaranteed then runtime checks
2654 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2655 if (MaxStack
> Guaranteed
) {
2656 MachineBasicBlock
*stackCheckMBB
= MF
.CreateMachineBasicBlock();
2657 MachineBasicBlock
*incStackMBB
= MF
.CreateMachineBasicBlock();
2659 for (const auto &LI
: PrologueMBB
.liveins()) {
2660 stackCheckMBB
->addLiveIn(LI
);
2661 incStackMBB
->addLiveIn(LI
);
2664 MF
.push_front(incStackMBB
);
2665 MF
.push_front(stackCheckMBB
);
2667 unsigned ScratchReg
, SPReg
, PReg
, SPLimitOffset
;
2668 unsigned LEAop
, CMPop
, CALLop
;
2669 SPLimitOffset
= getHiPELiteral(HiPELiteralsMD
, "P_NSP_LIMIT");
2673 LEAop
= X86::LEA64r
;
2674 CMPop
= X86::CMP64rm
;
2675 CALLop
= X86::CALL64pcrel32
;
2679 LEAop
= X86::LEA32r
;
2680 CMPop
= X86::CMP32rm
;
2681 CALLop
= X86::CALLpcrel32
;
2684 ScratchReg
= GetScratchRegister(Is64Bit
, IsLP64
, MF
, true);
2685 assert(!MF
.getRegInfo().isLiveIn(ScratchReg
) &&
2686 "HiPE prologue scratch register is live-in");
2688 // Create new MBB for StackCheck:
2689 addRegOffset(BuildMI(stackCheckMBB
, DL
, TII
.get(LEAop
), ScratchReg
),
2690 SPReg
, false, -MaxStack
);
2691 // SPLimitOffset is in a fixed heap location (pointed by BP).
2692 addRegOffset(BuildMI(stackCheckMBB
, DL
, TII
.get(CMPop
))
2693 .addReg(ScratchReg
), PReg
, false, SPLimitOffset
);
2694 BuildMI(stackCheckMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(&PrologueMBB
).addImm(X86::COND_AE
);
2696 // Create new MBB for IncStack:
2697 BuildMI(incStackMBB
, DL
, TII
.get(CALLop
)).
2698 addExternalSymbol("inc_stack_0");
2699 addRegOffset(BuildMI(incStackMBB
, DL
, TII
.get(LEAop
), ScratchReg
),
2700 SPReg
, false, -MaxStack
);
2701 addRegOffset(BuildMI(incStackMBB
, DL
, TII
.get(CMPop
))
2702 .addReg(ScratchReg
), PReg
, false, SPLimitOffset
);
2703 BuildMI(incStackMBB
, DL
, TII
.get(X86::JCC_1
)).addMBB(incStackMBB
).addImm(X86::COND_LE
);
2705 stackCheckMBB
->addSuccessor(&PrologueMBB
, {99, 100});
2706 stackCheckMBB
->addSuccessor(incStackMBB
, {1, 100});
2707 incStackMBB
->addSuccessor(&PrologueMBB
, {99, 100});
2708 incStackMBB
->addSuccessor(incStackMBB
, {1, 100});
2710 #ifdef EXPENSIVE_CHECKS
2715 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock
&MBB
,
2716 MachineBasicBlock::iterator MBBI
,
2723 if (Offset
% SlotSize
)
2726 int NumPops
= Offset
/ SlotSize
;
2727 // This is only worth it if we have at most 2 pops.
2728 if (NumPops
!= 1 && NumPops
!= 2)
2731 // Handle only the trivial case where the adjustment directly follows
2732 // a call. This is the most common one, anyway.
2733 if (MBBI
== MBB
.begin())
2735 MachineBasicBlock::iterator Prev
= std::prev(MBBI
);
2736 if (!Prev
->isCall() || !Prev
->getOperand(1).isRegMask())
2740 unsigned FoundRegs
= 0;
2742 auto &MRI
= MBB
.getParent()->getRegInfo();
2743 auto RegMask
= Prev
->getOperand(1);
2746 Is64Bit
? X86::GR64_NOREX_NOSPRegClass
: X86::GR32_NOREX_NOSPRegClass
;
2747 // Try to find up to NumPops free registers.
2748 for (auto Candidate
: RegClass
) {
2750 // Poor man's liveness:
2751 // Since we're immediately after a call, any register that is clobbered
2752 // by the call and not defined by it can be considered dead.
2753 if (!RegMask
.clobbersPhysReg(Candidate
))
2756 // Don't clobber reserved registers
2757 if (MRI
.isReserved(Candidate
))
2761 for (const MachineOperand
&MO
: Prev
->implicit_operands()) {
2762 if (MO
.isReg() && MO
.isDef() &&
2763 TRI
->isSuperOrSubRegisterEq(MO
.getReg(), Candidate
)) {
2772 Regs
[FoundRegs
++] = Candidate
;
2773 if (FoundRegs
== (unsigned)NumPops
)
2780 // If we found only one free register, but need two, reuse the same one twice.
2781 while (FoundRegs
< (unsigned)NumPops
)
2782 Regs
[FoundRegs
++] = Regs
[0];
2784 for (int i
= 0; i
< NumPops
; ++i
)
2785 BuildMI(MBB
, MBBI
, DL
,
2786 TII
.get(STI
.is64Bit() ? X86::POP64r
: X86::POP32r
), Regs
[i
]);
2791 MachineBasicBlock::iterator
X86FrameLowering::
2792 eliminateCallFramePseudoInstr(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
2793 MachineBasicBlock::iterator I
) const {
2794 bool reserveCallFrame
= hasReservedCallFrame(MF
);
2795 unsigned Opcode
= I
->getOpcode();
2796 bool isDestroy
= Opcode
== TII
.getCallFrameDestroyOpcode();
2797 DebugLoc DL
= I
->getDebugLoc();
2798 uint64_t Amount
= TII
.getFrameSize(*I
);
2799 uint64_t InternalAmt
= (isDestroy
|| Amount
) ? TII
.getFrameAdjustment(*I
) : 0;
2801 auto InsertPos
= skipDebugInstructionsForward(I
, MBB
.end());
2803 if (!reserveCallFrame
) {
2804 // If the stack pointer can be changed after prologue, turn the
2805 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2806 // adjcallstackdown instruction into 'add ESP, <amt>'
2808 // We need to keep the stack aligned properly. To do this, we round the
2809 // amount of space needed for the outgoing arguments up to the next
2810 // alignment boundary.
2811 unsigned StackAlign
= getStackAlignment();
2812 Amount
= alignTo(Amount
, StackAlign
);
2814 MachineModuleInfo
&MMI
= MF
.getMMI();
2815 const Function
&F
= MF
.getFunction();
2816 bool WindowsCFI
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
2817 bool DwarfCFI
= !WindowsCFI
&&
2818 (MMI
.hasDebugInfo() || F
.needsUnwindTableEntry());
2820 // If we have any exception handlers in this function, and we adjust
2821 // the SP before calls, we may need to indicate this to the unwinder
2822 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2823 // Amount == 0, because the preceding function may have set a non-0
2825 // TODO: We don't need to reset this between subsequent functions,
2826 // if it didn't change.
2827 bool HasDwarfEHHandlers
= !WindowsCFI
&& !MF
.getLandingPads().empty();
2829 if (HasDwarfEHHandlers
&& !isDestroy
&&
2830 MF
.getInfo
<X86MachineFunctionInfo
>()->getHasPushSequences())
2831 BuildCFI(MBB
, InsertPos
, DL
,
2832 MCCFIInstruction::createGnuArgsSize(nullptr, Amount
));
2837 // Factor out the amount that gets handled inside the sequence
2838 // (Pushes of argument for frame setup, callee pops for frame destroy)
2839 Amount
-= InternalAmt
;
2841 // TODO: This is needed only if we require precise CFA.
2842 // If this is a callee-pop calling convention, emit a CFA adjust for
2843 // the amount the callee popped.
2844 if (isDestroy
&& InternalAmt
&& DwarfCFI
&& !hasFP(MF
))
2845 BuildCFI(MBB
, InsertPos
, DL
,
2846 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt
));
2848 // Add Amount to SP to destroy a frame, or subtract to setup.
2849 int64_t StackAdjustment
= isDestroy
? Amount
: -Amount
;
2851 if (StackAdjustment
) {
2852 // Merge with any previous or following adjustment instruction. Note: the
2853 // instructions merged with here do not have CFI, so their stack
2854 // adjustments do not feed into CfaAdjustment.
2855 StackAdjustment
+= mergeSPUpdates(MBB
, InsertPos
, true);
2856 StackAdjustment
+= mergeSPUpdates(MBB
, InsertPos
, false);
2858 if (StackAdjustment
) {
2859 if (!(F
.hasMinSize() &&
2860 adjustStackWithPops(MBB
, InsertPos
, DL
, StackAdjustment
)))
2861 BuildStackAdjustment(MBB
, InsertPos
, DL
, StackAdjustment
,
2862 /*InEpilogue=*/false);
2866 if (DwarfCFI
&& !hasFP(MF
)) {
2867 // If we don't have FP, but need to generate unwind information,
2868 // we need to set the correct CFA offset after the stack adjustment.
2869 // How much we adjust the CFA offset depends on whether we're emitting
2870 // CFI only for EH purposes or for debugging. EH only requires the CFA
2871 // offset to be correct at each call site, while for debugging we want
2872 // it to be more precise.
2874 int64_t CfaAdjustment
= -StackAdjustment
;
2875 // TODO: When not using precise CFA, we also need to adjust for the
2876 // InternalAmt here.
2877 if (CfaAdjustment
) {
2878 BuildCFI(MBB
, InsertPos
, DL
,
2879 MCCFIInstruction::createAdjustCfaOffset(nullptr,
2887 if (isDestroy
&& InternalAmt
&& !blockEndIsUnreachable(MBB
, I
)) {
2888 // If we are performing frame pointer elimination and if the callee pops
2889 // something off the stack pointer, add it back. We do this until we have
2890 // more advanced stack pointer tracking ability.
2891 // We are not tracking the stack pointer adjustment by the callee, so make
2892 // sure we restore the stack pointer immediately after the call, there may
2893 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2894 MachineBasicBlock::iterator CI
= I
;
2895 MachineBasicBlock::iterator B
= MBB
.begin();
2896 while (CI
!= B
&& !std::prev(CI
)->isCall())
2898 BuildStackAdjustment(MBB
, CI
, DL
, -InternalAmt
, /*InEpilogue=*/false);
2904 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock
&MBB
) const {
2905 assert(MBB
.getParent() && "Block is not attached to a function!");
2906 const MachineFunction
&MF
= *MBB
.getParent();
2907 return !TRI
->needsStackRealignment(MF
) || !MBB
.isLiveIn(X86::EFLAGS
);
2910 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock
&MBB
) const {
2911 assert(MBB
.getParent() && "Block is not attached to a function!");
2913 // Win64 has strict requirements in terms of epilogue and we are
2914 // not taking a chance at messing with them.
2915 // I.e., unless this block is already an exit block, we can't use
2916 // it as an epilogue.
2917 if (STI
.isTargetWin64() && !MBB
.succ_empty() && !MBB
.isReturnBlock())
2920 if (canUseLEAForSPInEpilogue(*MBB
.getParent()))
2923 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2924 // clobbers the EFLAGS. Check that we do not need to preserve it,
2925 // otherwise, conservatively assume this is not
2926 // safe to insert the epilogue here.
2927 return !flagsNeedToBePreservedBeforeTheTerminators(MBB
);
2930 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction
&MF
) const {
2931 // If we may need to emit frameless compact unwind information, give
2932 // up as this is currently broken: PR25614.
2933 return (MF
.getFunction().hasFnAttribute(Attribute::NoUnwind
) || hasFP(MF
)) &&
2934 // The lowering of segmented stack and HiPE only support entry blocks
2935 // as prologue blocks: PR26107.
2936 // This limitation may be lifted if we fix:
2937 // - adjustForSegmentedStacks
2938 // - adjustForHiPEPrologue
2939 MF
.getFunction().getCallingConv() != CallingConv::HiPE
&&
2940 !MF
.shouldSplitStack();
2943 MachineBasicBlock::iterator
X86FrameLowering::restoreWin32EHStackPointers(
2944 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
2945 const DebugLoc
&DL
, bool RestoreSP
) const {
2946 assert(STI
.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2947 assert(STI
.isTargetWin32() && "EBP/ESI restoration only required on win32");
2948 assert(STI
.is32Bit() && !Uses64BitFramePtr
&&
2949 "restoring EBP/ESI on non-32-bit target");
2951 MachineFunction
&MF
= *MBB
.getParent();
2952 Register FramePtr
= TRI
->getFrameRegister(MF
);
2953 Register BasePtr
= TRI
->getBaseRegister();
2954 WinEHFuncInfo
&FuncInfo
= *MF
.getWinEHFuncInfo();
2955 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
2956 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2958 // FIXME: Don't set FrameSetup flag in catchret case.
2960 int FI
= FuncInfo
.EHRegNodeFrameIndex
;
2961 int EHRegSize
= MFI
.getObjectSize(FI
);
2964 // MOV32rm -EHRegSize(%ebp), %esp
2965 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32rm
), X86::ESP
),
2966 X86::EBP
, true, -EHRegSize
)
2967 .setMIFlag(MachineInstr::FrameSetup
);
2971 int EHRegOffset
= getFrameIndexReference(MF
, FI
, UsedReg
);
2972 int EndOffset
= -EHRegOffset
- EHRegSize
;
2973 FuncInfo
.EHRegNodeEndOffset
= EndOffset
;
2975 if (UsedReg
== FramePtr
) {
2976 // ADD $offset, %ebp
2977 unsigned ADDri
= getADDriOpcode(false, EndOffset
);
2978 BuildMI(MBB
, MBBI
, DL
, TII
.get(ADDri
), FramePtr
)
2981 .setMIFlag(MachineInstr::FrameSetup
)
2984 assert(EndOffset
>= 0 &&
2985 "end of registration object above normal EBP position!");
2986 } else if (UsedReg
== BasePtr
) {
2987 // LEA offset(%ebp), %esi
2988 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::LEA32r
), BasePtr
),
2989 FramePtr
, false, EndOffset
)
2990 .setMIFlag(MachineInstr::FrameSetup
);
2991 // MOV32rm SavedEBPOffset(%esi), %ebp
2992 assert(X86FI
->getHasSEHFramePtrSave());
2994 getFrameIndexReference(MF
, X86FI
->getSEHFramePtrSaveIndex(), UsedReg
);
2995 assert(UsedReg
== BasePtr
);
2996 addRegOffset(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV32rm
), FramePtr
),
2997 UsedReg
, true, Offset
)
2998 .setMIFlag(MachineInstr::FrameSetup
);
3000 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
3005 int X86FrameLowering::getInitialCFAOffset(const MachineFunction
&MF
) const {
3006 return TRI
->getSlotSize();
3009 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction
&MF
)
3011 return TRI
->getDwarfRegNum(StackPtr
, true);
3015 // Struct used by orderFrameObjects to help sort the stack objects.
3016 struct X86FrameSortingObject
{
3017 bool IsValid
= false; // true if we care about this Object.
3018 unsigned ObjectIndex
= 0; // Index of Object into MFI list.
3019 unsigned ObjectSize
= 0; // Size of Object in bytes.
3020 unsigned ObjectAlignment
= 1; // Alignment of Object in bytes.
3021 unsigned ObjectNumUses
= 0; // Object static number of uses.
3024 // The comparison function we use for std::sort to order our local
3025 // stack symbols. The current algorithm is to use an estimated
3026 // "density". This takes into consideration the size and number of
3027 // uses each object has in order to roughly minimize code size.
3028 // So, for example, an object of size 16B that is referenced 5 times
3029 // will get higher priority than 4 4B objects referenced 1 time each.
3030 // It's not perfect and we may be able to squeeze a few more bytes out of
3031 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3032 // fringe end can have special consideration, given their size is less
3033 // important, etc.), but the algorithmic complexity grows too much to be
3034 // worth the extra gains we get. This gets us pretty close.
3035 // The final order leaves us with objects with highest priority going
3036 // at the end of our list.
3037 struct X86FrameSortingComparator
{
3038 inline bool operator()(const X86FrameSortingObject
&A
,
3039 const X86FrameSortingObject
&B
) {
3040 uint64_t DensityAScaled
, DensityBScaled
;
3042 // For consistency in our comparison, all invalid objects are placed
3043 // at the end. This also allows us to stop walking when we hit the
3044 // first invalid item after it's all sorted.
3050 // The density is calculated by doing :
3051 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3052 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3053 // Since this approach may cause inconsistencies in
3054 // the floating point <, >, == comparisons, depending on the floating
3055 // point model with which the compiler was built, we're going
3056 // to scale both sides by multiplying with
3057 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3058 // the division and, with it, the need for any floating point
3060 DensityAScaled
= static_cast<uint64_t>(A
.ObjectNumUses
) *
3061 static_cast<uint64_t>(B
.ObjectSize
);
3062 DensityBScaled
= static_cast<uint64_t>(B
.ObjectNumUses
) *
3063 static_cast<uint64_t>(A
.ObjectSize
);
3065 // If the two densities are equal, prioritize highest alignment
3066 // objects. This allows for similar alignment objects
3067 // to be packed together (given the same density).
3068 // There's room for improvement here, also, since we can pack
3069 // similar alignment (different density) objects next to each
3070 // other to save padding. This will also require further
3071 // complexity/iterations, and the overall gain isn't worth it,
3072 // in general. Something to keep in mind, though.
3073 if (DensityAScaled
== DensityBScaled
)
3074 return A
.ObjectAlignment
< B
.ObjectAlignment
;
3076 return DensityAScaled
< DensityBScaled
;
3081 // Order the symbols in the local stack.
3082 // We want to place the local stack objects in some sort of sensible order.
3083 // The heuristic we use is to try and pack them according to static number
3084 // of uses and size of object in order to minimize code size.
3085 void X86FrameLowering::orderFrameObjects(
3086 const MachineFunction
&MF
, SmallVectorImpl
<int> &ObjectsToAllocate
) const {
3087 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3089 // Don't waste time if there's nothing to do.
3090 if (ObjectsToAllocate
.empty())
3093 // Create an array of all MFI objects. We won't need all of these
3094 // objects, but we're going to create a full array of them to make
3095 // it easier to index into when we're counting "uses" down below.
3096 // We want to be able to easily/cheaply access an object by simply
3097 // indexing into it, instead of having to search for it every time.
3098 std::vector
<X86FrameSortingObject
> SortingObjects(MFI
.getObjectIndexEnd());
3100 // Walk the objects we care about and mark them as such in our working
3102 for (auto &Obj
: ObjectsToAllocate
) {
3103 SortingObjects
[Obj
].IsValid
= true;
3104 SortingObjects
[Obj
].ObjectIndex
= Obj
;
3105 SortingObjects
[Obj
].ObjectAlignment
= MFI
.getObjectAlignment(Obj
);
3107 int ObjectSize
= MFI
.getObjectSize(Obj
);
3108 if (ObjectSize
== 0)
3109 // Variable size. Just use 4.
3110 SortingObjects
[Obj
].ObjectSize
= 4;
3112 SortingObjects
[Obj
].ObjectSize
= ObjectSize
;
3115 // Count the number of uses for each object.
3116 for (auto &MBB
: MF
) {
3117 for (auto &MI
: MBB
) {
3118 if (MI
.isDebugInstr())
3120 for (const MachineOperand
&MO
: MI
.operands()) {
3121 // Check to see if it's a local stack symbol.
3124 int Index
= MO
.getIndex();
3125 // Check to see if it falls within our range, and is tagged
3126 // to require ordering.
3127 if (Index
>= 0 && Index
< MFI
.getObjectIndexEnd() &&
3128 SortingObjects
[Index
].IsValid
)
3129 SortingObjects
[Index
].ObjectNumUses
++;
3134 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3136 llvm::stable_sort(SortingObjects
, X86FrameSortingComparator());
3138 // Now modify the original list to represent the final order that
3139 // we want. The order will depend on whether we're going to access them
3140 // from the stack pointer or the frame pointer. For SP, the list should
3141 // end up with the END containing objects that we want with smaller offsets.
3142 // For FP, it should be flipped.
3144 for (auto &Obj
: SortingObjects
) {
3145 // All invalid items are sorted at the end, so it's safe to stop.
3148 ObjectsToAllocate
[i
++] = Obj
.ObjectIndex
;
3151 // Flip it if we're accessing off of the FP.
3152 if (!TRI
->needsStackRealignment(MF
) && hasFP(MF
))
3153 std::reverse(ObjectsToAllocate
.begin(), ObjectsToAllocate
.end());
3157 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction
&MF
) const {
3158 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3159 unsigned Offset
= 16;
3160 // RBP is immediately pushed.
3162 // All callee-saved registers are then pushed.
3163 Offset
+= MF
.getInfo
<X86MachineFunctionInfo
>()->getCalleeSavedFrameSize();
3164 // Every funclet allocates enough stack space for the largest outgoing call.
3165 Offset
+= getWinEHFuncletFrameSize(MF
);
3169 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3170 MachineFunction
&MF
, RegScavenger
*RS
) const {
3171 // Mark the function as not having WinCFI. We will set it back to true in
3172 // emitPrologue if it gets called and emits CFI.
3173 MF
.setHasWinCFI(false);
3175 // If this function isn't doing Win64-style C++ EH, we don't need to do
3177 const Function
&F
= MF
.getFunction();
3178 if (!STI
.is64Bit() || !MF
.hasEHFunclets() ||
3179 classifyEHPersonality(F
.getPersonalityFn()) != EHPersonality::MSVC_CXX
)
3182 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3183 // relative to RSP after the prologue. Find the offset of the last fixed
3184 // object, so that we can allocate a slot immediately following it. If there
3185 // were no fixed objects, use offset -SlotSize, which is immediately after the
3186 // return address. Fixed objects have negative frame indices.
3187 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3188 WinEHFuncInfo
&EHInfo
= *MF
.getWinEHFuncInfo();
3189 int64_t MinFixedObjOffset
= -SlotSize
;
3190 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
)
3191 MinFixedObjOffset
= std::min(MinFixedObjOffset
, MFI
.getObjectOffset(I
));
3193 for (WinEHTryBlockMapEntry
&TBME
: EHInfo
.TryBlockMap
) {
3194 for (WinEHHandlerType
&H
: TBME
.HandlerArray
) {
3195 int FrameIndex
= H
.CatchObj
.FrameIndex
;
3196 if (FrameIndex
!= INT_MAX
) {
3197 // Ensure alignment.
3198 unsigned Align
= MFI
.getObjectAlignment(FrameIndex
);
3199 MinFixedObjOffset
-= std::abs(MinFixedObjOffset
) % Align
;
3200 MinFixedObjOffset
-= MFI
.getObjectSize(FrameIndex
);
3201 MFI
.setObjectOffset(FrameIndex
, MinFixedObjOffset
);
3206 // Ensure alignment.
3207 MinFixedObjOffset
-= std::abs(MinFixedObjOffset
) % 8;
3208 int64_t UnwindHelpOffset
= MinFixedObjOffset
- SlotSize
;
3210 MFI
.CreateFixedObject(SlotSize
, UnwindHelpOffset
, /*IsImmutable=*/false);
3211 EHInfo
.UnwindHelpFrameIdx
= UnwindHelpFI
;
3213 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3214 // other frame setup instructions.
3215 MachineBasicBlock
&MBB
= MF
.front();
3216 auto MBBI
= MBB
.begin();
3217 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
))
3220 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
3221 addFrameReference(BuildMI(MBB
, MBBI
, DL
, TII
.get(X86::MOV64mi32
)),