1 //===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the integer arithmetic instructions in the X86
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
15 // LEA - Load Effective Address
16 let SchedRW = [WriteLEA] in {
17 let hasSideEffects = 0 in
18 def LEA16r : I<0x8D, MRMSrcMem,
19 (outs GR16:$dst), (ins anymem:$src),
20 "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize16;
21 let isReMaterializable = 1 in
22 def LEA32r : I<0x8D, MRMSrcMem,
23 (outs GR32:$dst), (ins anymem:$src),
24 "lea{l}\t{$src|$dst}, {$dst|$src}",
25 [(set GR32:$dst, lea32addr:$src)]>,
26 OpSize32, Requires<[Not64BitMode]>;
28 def LEA64_32r : I<0x8D, MRMSrcMem,
29 (outs GR32:$dst), (ins lea64_32mem:$src),
30 "lea{l}\t{$src|$dst}, {$dst|$src}",
31 [(set GR32:$dst, lea64_32addr:$src)]>,
32 OpSize32, Requires<[In64BitMode]>;
34 let isReMaterializable = 1 in
35 def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src),
36 "lea{q}\t{$src|$dst}, {$dst|$src}",
37 [(set GR64:$dst, lea64addr:$src)]>;
40 //===----------------------------------------------------------------------===//
41 // Fixed-Register Multiplication and Division Instructions.
44 // SchedModel info for instruction that loads one value and gets the second
45 // (and possibly third) value from a register.
46 // This is used for instructions that put the memory operands before other
48 class SchedLoadReg<X86FoldableSchedWrite Sched> : Sched<[Sched.Folded,
50 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
51 // Register reads (implicit or explicit).
52 Sched.ReadAfterFold, Sched.ReadAfterFold]>;
54 // Extra precision multiplication
56 // AL is really implied by AX, but the registers in Defs must match the
57 // SDNode results (i8, i32).
59 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
60 def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
61 // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
62 // This probably ought to be moved to a def : Pat<> if the
63 // syntax can be accepted.
64 [(set AL, (mul AL, GR8:$src)),
65 (implicit EFLAGS)]>, Sched<[WriteIMul8]>;
67 let Defs = [AX,DX,EFLAGS], Uses = [AX], hasSideEffects = 0 in
68 def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
70 []>, OpSize16, Sched<[WriteIMul16]>;
72 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], hasSideEffects = 0 in
73 def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
75 [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>,
76 OpSize32, Sched<[WriteIMul32]>;
78 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], hasSideEffects = 0 in
79 def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
81 [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>,
84 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
85 def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
87 // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
88 // This probably ought to be moved to a def : Pat<> if the
89 // syntax can be accepted.
90 [(set AL, (mul AL, (loadi8 addr:$src))),
91 (implicit EFLAGS)]>, SchedLoadReg<WriteIMul8>;
93 let mayLoad = 1, hasSideEffects = 0 in {
94 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
95 def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
96 "mul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul16>;
97 // EAX,EDX = EAX*[mem32]
98 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
99 def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
100 "mul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul32>;
101 // RAX,RDX = RAX*[mem64]
102 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
103 def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
104 "mul{q}\t$src", []>, SchedLoadReg<WriteIMul64>,
105 Requires<[In64BitMode]>;
108 let hasSideEffects = 0 in {
110 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
111 def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>,
114 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
115 def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>,
116 OpSize16, Sched<[WriteIMul16]>;
117 // EAX,EDX = EAX*GR32
118 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
119 def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>,
120 OpSize32, Sched<[WriteIMul32]>;
121 // RAX,RDX = RAX*GR64
122 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
123 def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>,
124 Sched<[WriteIMul64]>;
128 let Defs = [AL,EFLAGS,AX], Uses = [AL] in
129 def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
130 "imul{b}\t$src", []>, SchedLoadReg<WriteIMul8>;
131 // AX,DX = AX*[mem16]
132 let Defs = [AX,DX,EFLAGS], Uses = [AX] in
133 def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
134 "imul{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIMul16>;
135 // EAX,EDX = EAX*[mem32]
136 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
137 def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
138 "imul{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIMul32>;
139 // RAX,RDX = RAX*[mem64]
140 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in
141 def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
142 "imul{q}\t$src", []>, SchedLoadReg<WriteIMul64>,
143 Requires<[In64BitMode]>;
148 let Defs = [EFLAGS] in {
149 let Constraints = "$src1 = $dst" in {
151 let isCommutable = 1 in {
152 // X = IMUL Y, Z --> X = IMUL Z, Y
153 // Register-Register Signed Integer Multiply
154 def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
155 "imul{w}\t{$src2, $dst|$dst, $src2}",
156 [(set GR16:$dst, EFLAGS,
157 (X86smul_flag GR16:$src1, GR16:$src2))]>,
158 Sched<[WriteIMul16Reg]>, TB, OpSize16;
159 def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
160 "imul{l}\t{$src2, $dst|$dst, $src2}",
161 [(set GR32:$dst, EFLAGS,
162 (X86smul_flag GR32:$src1, GR32:$src2))]>,
163 Sched<[WriteIMul32Reg]>, TB, OpSize32;
164 def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
165 (ins GR64:$src1, GR64:$src2),
166 "imul{q}\t{$src2, $dst|$dst, $src2}",
167 [(set GR64:$dst, EFLAGS,
168 (X86smul_flag GR64:$src1, GR64:$src2))]>,
169 Sched<[WriteIMul64Reg]>, TB;
172 // Register-Memory Signed Integer Multiply
173 def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
174 (ins GR16:$src1, i16mem:$src2),
175 "imul{w}\t{$src2, $dst|$dst, $src2}",
176 [(set GR16:$dst, EFLAGS,
177 (X86smul_flag GR16:$src1, (loadi16 addr:$src2)))]>,
178 Sched<[WriteIMul16Reg.Folded, WriteIMul16Reg.ReadAfterFold]>, TB, OpSize16;
179 def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
180 (ins GR32:$src1, i32mem:$src2),
181 "imul{l}\t{$src2, $dst|$dst, $src2}",
182 [(set GR32:$dst, EFLAGS,
183 (X86smul_flag GR32:$src1, (loadi32 addr:$src2)))]>,
184 Sched<[WriteIMul32Reg.Folded, WriteIMul32Reg.ReadAfterFold]>, TB, OpSize32;
185 def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
186 (ins GR64:$src1, i64mem:$src2),
187 "imul{q}\t{$src2, $dst|$dst, $src2}",
188 [(set GR64:$dst, EFLAGS,
189 (X86smul_flag GR64:$src1, (loadi64 addr:$src2)))]>,
190 Sched<[WriteIMul64Reg.Folded, WriteIMul32Reg.ReadAfterFold]>, TB;
191 } // Constraints = "$src1 = $dst"
195 // Surprisingly enough, these are not two address instructions!
196 let Defs = [EFLAGS] in {
197 // NOTE: These are order specific, we want the ri8 forms to be listed
198 // first so that they are slightly preferred to the ri forms.
200 // Register-Integer Signed Integer Multiply
201 def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8
202 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
203 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
204 [(set GR16:$dst, EFLAGS,
205 (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
206 Sched<[WriteIMul16Imm]>, OpSize16;
207 def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16
208 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
209 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
210 [(set GR16:$dst, EFLAGS,
211 (X86smul_flag GR16:$src1, imm:$src2))]>,
212 Sched<[WriteIMul16Imm]>, OpSize16;
213 def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32
214 (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
215 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
216 [(set GR32:$dst, EFLAGS,
217 (X86smul_flag GR32:$src1, imm:$src2))]>,
218 Sched<[WriteIMul32Imm]>, OpSize32;
219 def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8
220 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
221 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
222 [(set GR32:$dst, EFLAGS,
223 (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>,
224 Sched<[WriteIMul32Imm]>, OpSize32;
225 def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
226 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
227 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
228 [(set GR64:$dst, EFLAGS,
229 (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>,
230 Sched<[WriteIMul64Imm]>;
231 def IMUL64rri32 : RIi32S<0x69, MRMSrcReg, // GR64 = GR64*I32
232 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
233 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
234 [(set GR64:$dst, EFLAGS,
235 (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>,
236 Sched<[WriteIMul64Imm]>;
238 // Memory-Integer Signed Integer Multiply
239 def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8
240 (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
241 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
242 [(set GR16:$dst, EFLAGS,
243 (X86smul_flag (loadi16 addr:$src1),
244 i16immSExt8:$src2))]>,
245 Sched<[WriteIMul16Imm.Folded]>, OpSize16;
246 def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16
247 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
248 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
249 [(set GR16:$dst, EFLAGS,
250 (X86smul_flag (loadi16 addr:$src1), imm:$src2))]>,
251 Sched<[WriteIMul16Imm.Folded]>, OpSize16;
252 def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8
253 (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
254 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
255 [(set GR32:$dst, EFLAGS,
256 (X86smul_flag (loadi32 addr:$src1),
257 i32immSExt8:$src2))]>,
258 Sched<[WriteIMul32Imm.Folded]>, OpSize32;
259 def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32
260 (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
261 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
262 [(set GR32:$dst, EFLAGS,
263 (X86smul_flag (loadi32 addr:$src1), imm:$src2))]>,
264 Sched<[WriteIMul32Imm.Folded]>, OpSize32;
265 def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
266 (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
267 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
268 [(set GR64:$dst, EFLAGS,
269 (X86smul_flag (loadi64 addr:$src1),
270 i64immSExt8:$src2))]>,
271 Sched<[WriteIMul64Imm.Folded]>;
272 def IMUL64rmi32 : RIi32S<0x69, MRMSrcMem, // GR64 = [mem64]*I32
273 (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
274 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
275 [(set GR64:$dst, EFLAGS,
276 (X86smul_flag (loadi64 addr:$src1),
277 i64immSExt32:$src2))]>,
278 Sched<[WriteIMul64Imm.Folded]>;
281 // unsigned division/remainder
282 let hasSideEffects = 1 in { // so that we don't speculatively execute
283 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
284 def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
285 "div{b}\t$src", []>, Sched<[WriteDiv8]>;
286 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
287 def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
288 "div{w}\t$src", []>, Sched<[WriteDiv16]>, OpSize16;
289 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
290 def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
291 "div{l}\t$src", []>, Sched<[WriteDiv32]>, OpSize32;
292 // RDX:RAX/r64 = RAX,RDX
293 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
294 def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
295 "div{q}\t$src", []>, Sched<[WriteDiv64]>;
298 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
299 def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
300 "div{b}\t$src", []>, SchedLoadReg<WriteDiv8>;
301 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
302 def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
303 "div{w}\t$src", []>, OpSize16, SchedLoadReg<WriteDiv16>;
304 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
305 def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
306 "div{l}\t$src", []>, SchedLoadReg<WriteDiv32>, OpSize32;
307 // RDX:RAX/[mem64] = RAX,RDX
308 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
309 def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
310 "div{q}\t$src", []>, SchedLoadReg<WriteDiv64>,
311 Requires<[In64BitMode]>;
314 // Signed division/remainder.
315 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
316 def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
317 "idiv{b}\t$src", []>, Sched<[WriteIDiv8]>;
318 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
319 def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
320 "idiv{w}\t$src", []>, Sched<[WriteIDiv16]>, OpSize16;
321 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
322 def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
323 "idiv{l}\t$src", []>, Sched<[WriteIDiv32]>, OpSize32;
324 // RDX:RAX/r64 = RAX,RDX
325 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
326 def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
327 "idiv{q}\t$src", []>, Sched<[WriteIDiv64]>;
330 let Defs = [AL,AH,EFLAGS], Uses = [AX] in
331 def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
332 "idiv{b}\t$src", []>, SchedLoadReg<WriteIDiv8>;
333 let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
334 def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
335 "idiv{w}\t$src", []>, OpSize16, SchedLoadReg<WriteIDiv16>;
336 let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
337 def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
338 "idiv{l}\t$src", []>, OpSize32, SchedLoadReg<WriteIDiv32>;
339 let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
340 def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
341 "idiv{q}\t$src", []>, SchedLoadReg<WriteIDiv64>,
342 Requires<[In64BitMode]>;
344 } // hasSideEffects = 0
346 //===----------------------------------------------------------------------===//
347 // Two address Instructions.
350 // unary instructions
351 let CodeSize = 2 in {
352 let Defs = [EFLAGS] in {
353 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
354 def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
356 [(set GR8:$dst, (ineg GR8:$src1)),
358 def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
360 [(set GR16:$dst, (ineg GR16:$src1)),
361 (implicit EFLAGS)]>, OpSize16;
362 def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
364 [(set GR32:$dst, (ineg GR32:$src1)),
365 (implicit EFLAGS)]>, OpSize32;
366 def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
367 [(set GR64:$dst, (ineg GR64:$src1)),
369 } // Constraints = "$src1 = $dst", SchedRW
371 // Read-modify-write negate.
372 let SchedRW = [WriteALURMW] in {
373 def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
375 [(store (ineg (loadi8 addr:$dst)), addr:$dst),
377 def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
379 [(store (ineg (loadi16 addr:$dst)), addr:$dst),
380 (implicit EFLAGS)]>, OpSize16;
381 def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
383 [(store (ineg (loadi32 addr:$dst)), addr:$dst),
384 (implicit EFLAGS)]>, OpSize32;
385 def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
386 [(store (ineg (loadi64 addr:$dst)), addr:$dst),
388 Requires<[In64BitMode]>;
393 // Note: NOT does not set EFLAGS!
395 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
396 def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
398 [(set GR8:$dst, (not GR8:$src1))]>;
399 def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
401 [(set GR16:$dst, (not GR16:$src1))]>, OpSize16;
402 def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
404 [(set GR32:$dst, (not GR32:$src1))]>, OpSize32;
405 def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
406 [(set GR64:$dst, (not GR64:$src1))]>;
407 } // Constraints = "$src1 = $dst", SchedRW
409 let SchedRW = [WriteALURMW] in {
410 def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
412 [(store (not (loadi8 addr:$dst)), addr:$dst)]>;
413 def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
415 [(store (not (loadi16 addr:$dst)), addr:$dst)]>,
417 def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
419 [(store (not (loadi32 addr:$dst)), addr:$dst)]>,
421 def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
422 [(store (not (loadi64 addr:$dst)), addr:$dst)]>,
423 Requires<[In64BitMode]>;
427 def X86add_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs),
428 (X86add_flag node:$lhs, node:$rhs), [{
429 return hasNoCarryFlagUses(SDValue(N, 1));
432 def X86sub_flag_nocf : PatFrag<(ops node:$lhs, node:$rhs),
433 (X86sub_flag node:$lhs, node:$rhs), [{
434 // Only use DEC if the result is used.
435 return !SDValue(N, 0).use_empty() && hasNoCarryFlagUses(SDValue(N, 1));
438 // TODO: inc/dec is slow for P4, but fast for Pentium-M.
439 let Defs = [EFLAGS] in {
440 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
441 let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
442 def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
444 [(set GR8:$dst, EFLAGS, (X86add_flag_nocf GR8:$src1, 1))]>;
445 def INC16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
447 [(set GR16:$dst, EFLAGS, (X86add_flag_nocf GR16:$src1, 1))]>,
449 def INC32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
451 [(set GR32:$dst, EFLAGS, (X86add_flag_nocf GR32:$src1, 1))]>,
453 def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
454 [(set GR64:$dst, EFLAGS, (X86add_flag_nocf GR64:$src1, 1))]>;
455 } // isConvertibleToThreeAddress = 1, CodeSize = 2
457 // Short forms only valid in 32-bit mode. Selected during MCInst lowering.
458 let CodeSize = 1, hasSideEffects = 0 in {
459 def INC16r_alt : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
461 OpSize16, Requires<[Not64BitMode]>;
462 def INC32r_alt : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
464 OpSize32, Requires<[Not64BitMode]>;
465 } // CodeSize = 1, hasSideEffects = 0
466 } // Constraints = "$src1 = $dst", SchedRW
468 let CodeSize = 2, SchedRW = [WriteALURMW] in {
469 let Predicates = [UseIncDec] in {
470 def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
471 [(store (add (loadi8 addr:$dst), 1), addr:$dst),
473 def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
474 [(store (add (loadi16 addr:$dst), 1), addr:$dst),
475 (implicit EFLAGS)]>, OpSize16;
476 def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
477 [(store (add (loadi32 addr:$dst), 1), addr:$dst),
478 (implicit EFLAGS)]>, OpSize32;
480 let Predicates = [UseIncDec, In64BitMode] in {
481 def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
482 [(store (add (loadi64 addr:$dst), 1), addr:$dst),
485 } // CodeSize = 2, SchedRW
487 let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in {
488 let isConvertibleToThreeAddress = 1, CodeSize = 2 in { // Can xform into LEA.
489 def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
491 [(set GR8:$dst, EFLAGS, (X86sub_flag_nocf GR8:$src1, 1))]>;
492 def DEC16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
494 [(set GR16:$dst, EFLAGS, (X86sub_flag_nocf GR16:$src1, 1))]>,
496 def DEC32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
498 [(set GR32:$dst, EFLAGS, (X86sub_flag_nocf GR32:$src1, 1))]>,
500 def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
501 [(set GR64:$dst, EFLAGS, (X86sub_flag_nocf GR64:$src1, 1))]>;
502 } // isConvertibleToThreeAddress = 1, CodeSize = 2
504 // Short forms only valid in 32-bit mode. Selected during MCInst lowering.
505 let CodeSize = 1, hasSideEffects = 0 in {
506 def DEC16r_alt : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
508 OpSize16, Requires<[Not64BitMode]>;
509 def DEC32r_alt : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
511 OpSize32, Requires<[Not64BitMode]>;
512 } // CodeSize = 1, hasSideEffects = 0
513 } // Constraints = "$src1 = $dst", SchedRW
516 let CodeSize = 2, SchedRW = [WriteALURMW] in {
517 let Predicates = [UseIncDec] in {
518 def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
519 [(store (add (loadi8 addr:$dst), -1), addr:$dst),
521 def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
522 [(store (add (loadi16 addr:$dst), -1), addr:$dst),
523 (implicit EFLAGS)]>, OpSize16;
524 def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
525 [(store (add (loadi32 addr:$dst), -1), addr:$dst),
526 (implicit EFLAGS)]>, OpSize32;
528 let Predicates = [UseIncDec, In64BitMode] in {
529 def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
530 [(store (add (loadi64 addr:$dst), -1), addr:$dst),
533 } // CodeSize = 2, SchedRW
536 /// X86TypeInfo - This is a bunch of information that describes relevant X86
537 /// information about value types. For example, it can tell you what the
538 /// register class and preferred load to use.
539 class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
540 PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
541 Operand immoperand, SDPatternOperator immoperator,
542 Operand imm8operand, SDPatternOperator imm8operator,
543 bit hasOddOpcode, OperandSize opSize,
544 bit hasREX_WPrefix> {
545 /// VT - This is the value type itself.
548 /// InstrSuffix - This is the suffix used on instructions with this type. For
549 /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
550 string InstrSuffix = instrsuffix;
552 /// RegClass - This is the register class associated with this type. For
553 /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
554 RegisterClass RegClass = regclass;
556 /// LoadNode - This is the load node associated with this type. For
557 /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
558 PatFrag LoadNode = loadnode;
560 /// MemOperand - This is the memory operand associated with this type. For
561 /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
562 X86MemOperand MemOperand = memoperand;
564 /// ImmEncoding - This is the encoding of an immediate of this type. For
565 /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
566 /// since the immediate fields of i64 instructions is a 32-bit sign extended
568 ImmType ImmEncoding = immkind;
570 /// ImmOperand - This is the operand kind of an immediate of this type. For
571 /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
572 /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
574 Operand ImmOperand = immoperand;
576 /// ImmOperator - This is the operator that should be used to match an
577 /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
578 SDPatternOperator ImmOperator = immoperator;
580 /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
581 /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is
582 /// only used for instructions that have a sign-extended imm8 field form.
583 Operand Imm8Operand = imm8operand;
585 /// Imm8Operator - This is the operator that should be used to match an 8-bit
586 /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
587 SDPatternOperator Imm8Operator = imm8operator;
589 /// HasOddOpcode - This bit is true if the instruction should have an odd (as
590 /// opposed to even) opcode. Operations on i8 are usually even, operations on
591 /// other datatypes are odd.
592 bit HasOddOpcode = hasOddOpcode;
594 /// OpSize - Selects whether the instruction needs a 0x66 prefix based on
595 /// 16-bit vs 32-bit mode. i8/i64 set this to OpSizeFixed. i16 sets this
596 /// to Opsize16. i32 sets this to OpSize32.
597 OperandSize OpSize = opSize;
599 /// HasREX_WPrefix - This bit is set to true if the instruction should have
600 /// the 0x40 REX prefix. This is set for i64 types.
601 bit HasREX_WPrefix = hasREX_WPrefix;
604 def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
607 def Xi8 : X86TypeInfo<i8, "b", GR8, loadi8, i8mem,
608 Imm8, i8imm, relocImm8_su, i8imm, invalid_node,
610 def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
611 Imm16, i16imm, relocImm16_su, i16i8imm, i16immSExt8_su,
613 def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
614 Imm32, i32imm, relocImm32_su, i32i8imm, i32immSExt8_su,
616 def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
617 Imm32S, i64i32imm, i64relocImmSExt32_su, i64i8imm, i64immSExt8_su,
620 /// ITy - This instruction base class takes the type info for the instruction.
622 /// 1. Concatenates together the instruction mnemonic with the appropriate
623 /// suffix letter, a tab, and the arguments.
624 /// 2. Infers whether the instruction should have a 0x66 prefix byte.
625 /// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
626 /// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
627 /// or 1 (for i16,i32,i64 operations).
628 class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
629 string mnemonic, string args, list<dag> pattern>
630 : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
631 opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
633 !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> {
635 // Infer instruction prefixes from type info.
636 let OpSize = typeinfo.OpSize;
637 let hasREX_WPrefix = typeinfo.HasREX_WPrefix;
640 // BinOpRR - Instructions like "add reg, reg, reg".
641 class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
642 dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
643 : ITy<opcode, MRMDestReg, typeinfo, outlist,
644 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
645 mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
648 // BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
649 // just a EFLAGS as a result.
650 class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
651 SDPatternOperator opnode>
652 : BinOpRR<opcode, mnemonic, typeinfo, (outs), WriteALU,
654 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
656 // BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
657 // both a regclass and EFLAGS as a result.
658 class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
660 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
661 [(set typeinfo.RegClass:$dst, EFLAGS,
662 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
664 // BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
665 // both a regclass and EFLAGS as a result, and has EFLAGS as input.
666 class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
668 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC,
669 [(set typeinfo.RegClass:$dst, EFLAGS,
670 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
673 // BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
674 class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
675 X86FoldableSchedWrite sched = WriteALU>
676 : ITy<opcode, MRMSrcReg, typeinfo,
677 (outs typeinfo.RegClass:$dst),
678 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
679 mnemonic, "{$src2, $dst|$dst, $src2}", []>,
681 // The disassembler should know about this, but not the asmparser.
682 let isCodeGenOnly = 1;
683 let ForceDisassemble = 1;
684 let hasSideEffects = 0;
687 // BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding).
688 class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
689 : BinOpRR_Rev<opcode, mnemonic, typeinfo, WriteADC>;
691 // BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding).
692 class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
693 : ITy<opcode, MRMSrcReg, typeinfo, (outs),
694 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
695 mnemonic, "{$src2, $src1|$src1, $src2}", []>,
697 // The disassembler should know about this, but not the asmparser.
698 let isCodeGenOnly = 1;
699 let ForceDisassemble = 1;
700 let hasSideEffects = 0;
703 // BinOpRM - Instructions like "add reg, reg, [mem]".
704 class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
705 dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
706 : ITy<opcode, MRMSrcMem, typeinfo, outlist,
707 (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
708 mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
709 Sched<[sched.Folded, sched.ReadAfterFold]>;
711 // BinOpRM_F - Instructions like "cmp reg, [mem]".
712 class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
714 : BinOpRM<opcode, mnemonic, typeinfo, (outs), WriteALU,
716 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
718 // BinOpRM_RF - Instructions like "add reg, reg, [mem]".
719 class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
721 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteALU,
722 [(set typeinfo.RegClass:$dst, EFLAGS,
723 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
725 // BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
726 class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
728 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), WriteADC,
729 [(set typeinfo.RegClass:$dst, EFLAGS,
730 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
733 // BinOpRI - Instructions like "add reg, reg, imm".
734 class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
735 Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
736 : ITy<opcode, f, typeinfo, outlist,
737 (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
738 mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
740 let ImmT = typeinfo.ImmEncoding;
743 // BinOpRI_F - Instructions like "cmp reg, imm".
744 class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
745 SDPatternOperator opnode, Format f>
746 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), WriteALU,
748 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
750 // BinOpRI_RF - Instructions like "add reg, reg, imm".
751 class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
752 SDNode opnode, Format f>
753 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU,
754 [(set typeinfo.RegClass:$dst, EFLAGS,
755 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
756 // BinOpRI_RFF - Instructions like "adc reg, reg, imm".
757 class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
758 SDNode opnode, Format f>
759 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC,
760 [(set typeinfo.RegClass:$dst, EFLAGS,
761 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
764 // BinOpRI8 - Instructions like "add reg, reg, imm8".
765 class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
766 Format f, dag outlist, X86FoldableSchedWrite sched, list<dag> pattern>
767 : ITy<opcode, f, typeinfo, outlist,
768 (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
769 mnemonic, "{$src2, $src1|$src1, $src2}", pattern>,
771 let ImmT = Imm8; // Always 8-bit immediate.
774 // BinOpRI8_F - Instructions like "cmp reg, imm8".
775 class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
776 SDPatternOperator opnode, Format f>
777 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), WriteALU,
779 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
781 // BinOpRI8_RF - Instructions like "add reg, reg, imm8".
782 class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
783 SDPatternOperator opnode, Format f>
784 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteALU,
785 [(set typeinfo.RegClass:$dst, EFLAGS,
786 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
788 // BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
789 class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
790 SDPatternOperator opnode, Format f>
791 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), WriteADC,
792 [(set typeinfo.RegClass:$dst, EFLAGS,
793 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
796 // BinOpMR - Instructions like "add [mem], reg".
797 class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
799 : ITy<opcode, MRMDestMem, typeinfo,
800 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
801 mnemonic, "{$src, $dst|$dst, $src}", pattern>;
803 // BinOpMR_RMW - Instructions like "add [mem], reg".
804 class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
806 : BinOpMR<opcode, mnemonic, typeinfo,
807 [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
808 (implicit EFLAGS)]>, Sched<[WriteALURMW]>;
810 // BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
811 class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
813 : BinOpMR<opcode, mnemonic, typeinfo,
814 [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
816 (implicit EFLAGS)]>, Sched<[WriteADCRMW]>;
818 // BinOpMR_F - Instructions like "cmp [mem], reg".
819 class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
820 SDPatternOperator opnode>
821 : BinOpMR<opcode, mnemonic, typeinfo,
822 [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
823 typeinfo.RegClass:$src))]>,
824 Sched<[WriteALU.Folded, ReadDefault, ReadDefault, ReadDefault,
825 ReadDefault, ReadDefault, WriteALU.ReadAfterFold]>;
827 // BinOpMI - Instructions like "add [mem], imm".
828 class BinOpMI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
829 Format f, list<dag> pattern>
830 : ITy<opcode, f, typeinfo,
831 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
832 mnemonic, "{$src, $dst|$dst, $src}", pattern> {
833 let ImmT = typeinfo.ImmEncoding;
836 // BinOpMI_RMW - Instructions like "add [mem], imm".
837 class BinOpMI_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
838 SDNode opnode, Format f>
839 : BinOpMI<opcode, mnemonic, typeinfo, f,
840 [(store (opnode (typeinfo.VT (load addr:$dst)),
841 typeinfo.ImmOperator:$src), addr:$dst),
842 (implicit EFLAGS)]>, Sched<[WriteALURMW]>;
843 // BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
844 class BinOpMI_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
845 SDNode opnode, Format f>
846 : BinOpMI<opcode, mnemonic, typeinfo, f,
847 [(store (opnode (typeinfo.VT (load addr:$dst)),
848 typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
849 (implicit EFLAGS)]>, Sched<[WriteADCRMW]>;
851 // BinOpMI_F - Instructions like "cmp [mem], imm".
852 class BinOpMI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
853 SDPatternOperator opnode, Format f>
854 : BinOpMI<opcode, mnemonic, typeinfo, f,
855 [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
856 typeinfo.ImmOperator:$src))]>,
857 Sched<[WriteALU.Folded]>;
859 // BinOpMI8 - Instructions like "add [mem], imm8".
860 class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
861 Format f, list<dag> pattern>
862 : ITy<0x82, f, typeinfo,
863 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
864 mnemonic, "{$src, $dst|$dst, $src}", pattern> {
865 let ImmT = Imm8; // Always 8-bit immediate.
868 // BinOpMI8_RMW - Instructions like "add [mem], imm8".
869 class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
870 SDPatternOperator opnode, Format f>
871 : BinOpMI8<mnemonic, typeinfo, f,
872 [(store (opnode (load addr:$dst),
873 typeinfo.Imm8Operator:$src), addr:$dst),
874 (implicit EFLAGS)]>, Sched<[WriteALURMW]>;
876 // BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
877 class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
878 SDPatternOperator opnode, Format f>
879 : BinOpMI8<mnemonic, typeinfo, f,
880 [(store (opnode (load addr:$dst),
881 typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
882 (implicit EFLAGS)]>, Sched<[WriteADCRMW]>;
884 // BinOpMI8_F - Instructions like "cmp [mem], imm8".
885 class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
886 SDPatternOperator opnode, Format f>
887 : BinOpMI8<mnemonic, typeinfo, f,
888 [(set EFLAGS, (opnode (typeinfo.LoadNode addr:$dst),
889 typeinfo.Imm8Operator:$src))]>,
890 Sched<[WriteALU.Folded]>;
892 // BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS.
893 class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
894 Register areg, string operands, X86FoldableSchedWrite sched = WriteALU>
895 : ITy<opcode, RawFrm, typeinfo,
896 (outs), (ins typeinfo.ImmOperand:$src),
897 mnemonic, operands, []>, Sched<[sched]> {
898 let ImmT = typeinfo.ImmEncoding;
900 let Defs = [areg, EFLAGS];
901 let hasSideEffects = 0;
904 // BinOpAI_RFF - Instructions like "adc %eax, %eax, imm", that implicitly define
906 class BinOpAI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
907 Register areg, string operands>
908 : BinOpAI<opcode, mnemonic, typeinfo, areg, operands, WriteADC> {
909 let Uses = [areg, EFLAGS];
912 // BinOpAI_F - Instructions like "cmp %eax, %eax, imm", that imp-def EFLAGS.
913 class BinOpAI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
914 Register areg, string operands>
915 : BinOpAI<opcode, mnemonic, typeinfo, areg, operands> {
919 /// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
920 /// defined with "(set GPR:$dst, EFLAGS, (...".
922 /// It would be nice to get rid of the second and third argument here, but
923 /// tblgen can't handle dependent type references aggressively enough: PR8330
924 multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
925 string mnemonic, Format RegMRM, Format MemMRM,
926 SDNode opnodeflag, SDNode opnode,
927 bit CommutableRR, bit ConvertibleToThreeAddress,
928 bit ConvertibleToThreeAddressRR> {
929 let Defs = [EFLAGS] in {
930 let Constraints = "$src1 = $dst" in {
931 let isCommutable = CommutableRR in {
932 let isConvertibleToThreeAddress = ConvertibleToThreeAddressRR in {
933 def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
934 def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
935 def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
936 def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
937 } // isConvertibleToThreeAddress
940 def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
941 def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
942 def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
943 def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
945 def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
946 def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
947 def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
948 def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
950 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
951 def NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
953 // NOTE: These are order specific, we want the ri8 forms to be listed
954 // first so that they are slightly preferred to the ri forms.
955 def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
956 def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
957 def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
959 def NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
960 def NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
961 def NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
963 } // Constraints = "$src1 = $dst"
965 let mayLoad = 1, mayStore = 1 in {
966 def NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
967 def NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
968 def NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
969 def NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
972 // NOTE: These are order specific, we want the mi8 forms to be listed
973 // first so that they are slightly preferred to the mi forms.
974 def NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
975 def NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
976 let Predicates = [In64BitMode] in
977 def NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
979 def NAME#8mi : BinOpMI_RMW<0x80, mnemonic, Xi8 , opnode, MemMRM>;
980 def NAME#16mi : BinOpMI_RMW<0x80, mnemonic, Xi16, opnode, MemMRM>;
981 def NAME#32mi : BinOpMI_RMW<0x80, mnemonic, Xi32, opnode, MemMRM>;
982 let Predicates = [In64BitMode] in
983 def NAME#64mi32 : BinOpMI_RMW<0x80, mnemonic, Xi64, opnode, MemMRM>;
985 // These are for the disassembler since 0x82 opcode behaves like 0x80, but
986 // not in 64-bit mode.
987 let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
988 hasSideEffects = 0 in {
989 let Constraints = "$src1 = $dst" in
990 def NAME#8ri8 : BinOpRI8_RF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
991 let mayLoad = 1, mayStore = 1 in
992 def NAME#8mi8 : BinOpMI8_RMW<mnemonic, Xi8, null_frag, MemMRM>;
996 def NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL,
997 "{$src, %al|al, $src}">;
998 def NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX,
999 "{$src, %ax|ax, $src}">;
1000 def NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX,
1001 "{$src, %eax|eax, $src}">;
1002 def NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX,
1003 "{$src, %rax|rax, $src}">;
1006 /// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
1007 /// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
1010 /// It would be nice to get rid of the second and third argument here, but
1011 /// tblgen can't handle dependent type references aggressively enough: PR8330
1012 multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1013 string mnemonic, Format RegMRM, Format MemMRM,
1014 SDNode opnode, bit CommutableRR,
1015 bit ConvertibleToThreeAddress> {
1016 let Uses = [EFLAGS], Defs = [EFLAGS] in {
1017 let Constraints = "$src1 = $dst" in {
1018 let isCommutable = CommutableRR in {
1019 def NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
1020 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1021 def NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
1022 def NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
1023 def NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
1024 } // isConvertibleToThreeAddress
1027 def NAME#8rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
1028 def NAME#16rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
1029 def NAME#32rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
1030 def NAME#64rr_REV : BinOpRR_RFF_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
1032 def NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
1033 def NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
1034 def NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
1035 def NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
1037 def NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1039 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1040 // NOTE: These are order specific, we want the ri8 forms to be listed
1041 // first so that they are slightly preferred to the ri forms.
1042 def NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
1043 def NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
1044 def NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
1046 def NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
1047 def NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
1048 def NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
1050 } // Constraints = "$src1 = $dst"
1052 def NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
1053 def NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
1054 def NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
1055 def NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
1057 // NOTE: These are order specific, we want the mi8 forms to be listed
1058 // first so that they are slightly preferred to the mi forms.
1059 def NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
1060 def NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
1061 let Predicates = [In64BitMode] in
1062 def NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
1064 def NAME#8mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi8 , opnode, MemMRM>;
1065 def NAME#16mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi16, opnode, MemMRM>;
1066 def NAME#32mi : BinOpMI_RMW_FF<0x80, mnemonic, Xi32, opnode, MemMRM>;
1067 let Predicates = [In64BitMode] in
1068 def NAME#64mi32 : BinOpMI_RMW_FF<0x80, mnemonic, Xi64, opnode, MemMRM>;
1070 // These are for the disassembler since 0x82 opcode behaves like 0x80, but
1071 // not in 64-bit mode.
1072 let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
1073 hasSideEffects = 0 in {
1074 let Constraints = "$src1 = $dst" in
1075 def NAME#8ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi8, null_frag, RegMRM>;
1076 let mayLoad = 1, mayStore = 1 in
1077 def NAME#8mi8 : BinOpMI8_RMW_FF<mnemonic, Xi8, null_frag, MemMRM>;
1079 } // Uses = [EFLAGS], Defs = [EFLAGS]
1081 def NAME#8i8 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi8 , AL,
1082 "{$src, %al|al, $src}">;
1083 def NAME#16i16 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi16, AX,
1084 "{$src, %ax|ax, $src}">;
1085 def NAME#32i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi32, EAX,
1086 "{$src, %eax|eax, $src}">;
1087 def NAME#64i32 : BinOpAI_RFF<BaseOpc4, mnemonic, Xi64, RAX,
1088 "{$src, %rax|rax, $src}">;
1091 /// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
1092 /// defined with "(set EFLAGS, (...". It would be really nice to find a way
1093 /// to factor this with the other ArithBinOp_*.
1095 multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
1096 string mnemonic, Format RegMRM, Format MemMRM,
1098 bit CommutableRR, bit ConvertibleToThreeAddress> {
1099 let Defs = [EFLAGS] in {
1100 let isCommutable = CommutableRR in {
1101 def NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1102 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1103 def NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
1104 def NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
1105 def NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
1109 def NAME#8rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi8>, FoldGenData<NAME#8rr>;
1110 def NAME#16rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi16>, FoldGenData<NAME#16rr>;
1111 def NAME#32rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi32>, FoldGenData<NAME#32rr>;
1112 def NAME#64rr_REV : BinOpRR_F_Rev<BaseOpc2, mnemonic, Xi64>, FoldGenData<NAME#64rr>;
1114 def NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
1115 def NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
1116 def NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
1117 def NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
1119 def NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
1121 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
1122 // NOTE: These are order specific, we want the ri8 forms to be listed
1123 // first so that they are slightly preferred to the ri forms.
1124 def NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
1125 def NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
1126 def NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
1128 def NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
1129 def NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
1130 def NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
1133 def NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
1134 def NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
1135 def NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
1136 def NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
1138 // NOTE: These are order specific, we want the mi8 forms to be listed
1139 // first so that they are slightly preferred to the mi forms.
1140 def NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
1141 def NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
1142 let Predicates = [In64BitMode] in
1143 def NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
1145 def NAME#8mi : BinOpMI_F<0x80, mnemonic, Xi8 , opnode, MemMRM>;
1146 def NAME#16mi : BinOpMI_F<0x80, mnemonic, Xi16, opnode, MemMRM>;
1147 def NAME#32mi : BinOpMI_F<0x80, mnemonic, Xi32, opnode, MemMRM>;
1148 let Predicates = [In64BitMode] in
1149 def NAME#64mi32 : BinOpMI_F<0x80, mnemonic, Xi64, opnode, MemMRM>;
1151 // These are for the disassembler since 0x82 opcode behaves like 0x80, but
1152 // not in 64-bit mode.
1153 let Predicates = [Not64BitMode], isCodeGenOnly = 1, ForceDisassemble = 1,
1154 hasSideEffects = 0 in {
1155 def NAME#8ri8 : BinOpRI8_F<0x82, mnemonic, Xi8, null_frag, RegMRM>;
1157 def NAME#8mi8 : BinOpMI8_F<mnemonic, Xi8, null_frag, MemMRM>;
1159 } // Defs = [EFLAGS]
1161 def NAME#8i8 : BinOpAI_F<BaseOpc4, mnemonic, Xi8 , AL,
1162 "{$src, %al|al, $src}">;
1163 def NAME#16i16 : BinOpAI_F<BaseOpc4, mnemonic, Xi16, AX,
1164 "{$src, %ax|ax, $src}">;
1165 def NAME#32i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi32, EAX,
1166 "{$src, %eax|eax, $src}">;
1167 def NAME#64i32 : BinOpAI_F<BaseOpc4, mnemonic, Xi64, RAX,
1168 "{$src, %rax|rax, $src}">;
1172 defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
1173 X86and_flag, and, 1, 0, 0>;
1174 defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
1175 X86or_flag, or, 1, 0, 0>;
1176 defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
1177 X86xor_flag, xor, 1, 0, 0>;
1178 defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
1179 X86add_flag, add, 1, 1, 1>;
1180 let isCompare = 1 in {
1181 defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
1182 X86sub_flag, sub, 0, 1, 0>;
1186 defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
1188 defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
1191 let isCompare = 1 in {
1192 defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
1195 // Patterns to recognize loads on the LHS of an ADC. We can't make X86adc_flag
1196 // commutable since it has EFLAGs as an input.
1197 def : Pat<(X86adc_flag (loadi8 addr:$src2), GR8:$src1, EFLAGS),
1198 (ADC8rm GR8:$src1, addr:$src2)>;
1199 def : Pat<(X86adc_flag (loadi16 addr:$src2), GR16:$src1, EFLAGS),
1200 (ADC16rm GR16:$src1, addr:$src2)>;
1201 def : Pat<(X86adc_flag (loadi32 addr:$src2), GR32:$src1, EFLAGS),
1202 (ADC32rm GR32:$src1, addr:$src2)>;
1203 def : Pat<(X86adc_flag (loadi64 addr:$src2), GR64:$src1, EFLAGS),
1204 (ADC64rm GR64:$src1, addr:$src2)>;
1206 // Patterns to recognize RMW ADC with loads in operand 1.
1207 def : Pat<(store (X86adc_flag GR8:$src, (loadi8 addr:$dst), EFLAGS),
1209 (ADC8mr addr:$dst, GR8:$src)>;
1210 def : Pat<(store (X86adc_flag GR16:$src, (loadi16 addr:$dst), EFLAGS),
1212 (ADC16mr addr:$dst, GR16:$src)>;
1213 def : Pat<(store (X86adc_flag GR32:$src, (loadi32 addr:$dst), EFLAGS),
1215 (ADC32mr addr:$dst, GR32:$src)>;
1216 def : Pat<(store (X86adc_flag GR64:$src, (loadi64 addr:$dst), EFLAGS),
1218 (ADC64mr addr:$dst, GR64:$src)>;
1220 //===----------------------------------------------------------------------===//
1221 // Semantically, test instructions are similar like AND, except they don't
1222 // generate a result. From an encoding perspective, they are very different:
1223 // they don't have all the usual imm8 and REV forms, and are encoded into a
1225 def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
1226 (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
1228 let isCompare = 1 in {
1229 let Defs = [EFLAGS] in {
1230 let isCommutable = 1 in {
1231 // Avoid selecting these and instead use a test+and. Post processing will
1232 // combine them. This gives bunch of other patterns that start with
1233 // and a chance to match.
1234 def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , null_frag>;
1235 def TEST16rr : BinOpRR_F<0x84, "test", Xi16, null_frag>;
1236 def TEST32rr : BinOpRR_F<0x84, "test", Xi32, null_frag>;
1237 def TEST64rr : BinOpRR_F<0x84, "test", Xi64, null_frag>;
1240 let hasSideEffects = 0, mayLoad = 1 in {
1241 def TEST8mr : BinOpMR_F<0x84, "test", Xi8 , null_frag>;
1242 def TEST16mr : BinOpMR_F<0x84, "test", Xi16, null_frag>;
1243 def TEST32mr : BinOpMR_F<0x84, "test", Xi32, null_frag>;
1244 def TEST64mr : BinOpMR_F<0x84, "test", Xi64, null_frag>;
1247 def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
1248 def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
1249 def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
1250 let Predicates = [In64BitMode] in
1251 def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
1253 def TEST8mi : BinOpMI_F<0xF6, "test", Xi8 , X86testpat, MRM0m>;
1254 def TEST16mi : BinOpMI_F<0xF6, "test", Xi16, X86testpat, MRM0m>;
1255 def TEST32mi : BinOpMI_F<0xF6, "test", Xi32, X86testpat, MRM0m>;
1256 let Predicates = [In64BitMode] in
1257 def TEST64mi32 : BinOpMI_F<0xF6, "test", Xi64, X86testpat, MRM0m>;
1258 } // Defs = [EFLAGS]
1260 def TEST8i8 : BinOpAI_F<0xA8, "test", Xi8 , AL,
1261 "{$src, %al|al, $src}">;
1262 def TEST16i16 : BinOpAI_F<0xA8, "test", Xi16, AX,
1263 "{$src, %ax|ax, $src}">;
1264 def TEST32i32 : BinOpAI_F<0xA8, "test", Xi32, EAX,
1265 "{$src, %eax|eax, $src}">;
1266 def TEST64i32 : BinOpAI_F<0xA8, "test", Xi64, RAX,
1267 "{$src, %rax|rax, $src}">;
1270 //===----------------------------------------------------------------------===//
1273 multiclass bmi_andn<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1275 def rr : I<0xF2, MRMSrcReg, (outs RC:$dst), (ins RC:$src1, RC:$src2),
1276 !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1277 [(set RC:$dst, EFLAGS, (X86and_flag (not RC:$src1), RC:$src2))]>,
1279 def rm : I<0xF2, MRMSrcMem, (outs RC:$dst), (ins RC:$src1, x86memop:$src2),
1280 !strconcat(mnemonic, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
1281 [(set RC:$dst, EFLAGS,
1282 (X86and_flag (not RC:$src1), (ld_frag addr:$src2)))]>,
1283 Sched<[WriteALU.Folded, WriteALU.ReadAfterFold]>;
1286 // Complexity is reduced to give and with immediate a chance to match first.
1287 let Predicates = [HasBMI], Defs = [EFLAGS], AddedComplexity = -6 in {
1288 defm ANDN32 : bmi_andn<"andn{l}", GR32, i32mem, loadi32>, T8PS, VEX_4V;
1289 defm ANDN64 : bmi_andn<"andn{q}", GR64, i64mem, loadi64>, T8PS, VEX_4V, VEX_W;
1292 let Predicates = [HasBMI], AddedComplexity = -6 in {
1293 def : Pat<(and (not GR32:$src1), GR32:$src2),
1294 (ANDN32rr GR32:$src1, GR32:$src2)>;
1295 def : Pat<(and (not GR64:$src1), GR64:$src2),
1296 (ANDN64rr GR64:$src1, GR64:$src2)>;
1297 def : Pat<(and (not GR32:$src1), (loadi32 addr:$src2)),
1298 (ANDN32rm GR32:$src1, addr:$src2)>;
1299 def : Pat<(and (not GR64:$src1), (loadi64 addr:$src2)),
1300 (ANDN64rm GR64:$src1, addr:$src2)>;
1303 //===----------------------------------------------------------------------===//
1306 multiclass bmi_mulx<string mnemonic, RegisterClass RC, X86MemOperand x86memop,
1307 X86FoldableSchedWrite sched> {
1308 let hasSideEffects = 0 in {
1309 let isCommutable = 1 in
1310 def rr : I<0xF6, MRMSrcReg, (outs RC:$dst1, RC:$dst2), (ins RC:$src),
1311 !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1312 []>, T8XD, VEX_4V, Sched<[sched, WriteIMulH]>;
1315 def rm : I<0xF6, MRMSrcMem, (outs RC:$dst1, RC:$dst2), (ins x86memop:$src),
1316 !strconcat(mnemonic, "\t{$src, $dst2, $dst1|$dst1, $dst2, $src}"),
1317 []>, T8XD, VEX_4V, Sched<[sched.Folded, WriteIMulH]>;
1321 let Predicates = [HasBMI2] in {
1323 defm MULX32 : bmi_mulx<"mulx{l}", GR32, i32mem, WriteIMul32>;
1325 defm MULX64 : bmi_mulx<"mulx{q}", GR64, i64mem, WriteIMul64>, VEX_W;
1328 //===----------------------------------------------------------------------===//
1329 // ADCX and ADOX Instructions
1331 // We don't have patterns for these as there is no advantage over ADC for
1333 let Predicates = [HasADX], Defs = [EFLAGS], Uses = [EFLAGS],
1334 Constraints = "$src1 = $dst", hasSideEffects = 0 in {
1335 let SchedRW = [WriteADC], isCommutable = 1 in {
1336 def ADCX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst),
1337 (ins GR32:$src1, GR32:$src2),
1338 "adcx{l}\t{$src2, $dst|$dst, $src2}", []>, T8PD;
1339 def ADCX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst),
1340 (ins GR64:$src1, GR64:$src2),
1341 "adcx{q}\t{$src2, $dst|$dst, $src2}", []>, T8PD;
1343 def ADOX32rr : I<0xF6, MRMSrcReg, (outs GR32:$dst),
1344 (ins GR32:$src1, GR32:$src2),
1345 "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1347 def ADOX64rr : RI<0xF6, MRMSrcReg, (outs GR64:$dst),
1348 (ins GR64:$src1, GR64:$src2),
1349 "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1352 let mayLoad = 1, SchedRW = [WriteADC.Folded, WriteADC.ReadAfterFold] in {
1353 def ADCX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst),
1354 (ins GR32:$src1, i32mem:$src2),
1355 "adcx{l}\t{$src2, $dst|$dst, $src2}", []>, T8PD;
1357 def ADCX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst),
1358 (ins GR64:$src1, i64mem:$src2),
1359 "adcx{q}\t{$src2, $dst|$dst, $src2}", []>, T8PD;
1361 def ADOX32rm : I<0xF6, MRMSrcMem, (outs GR32:$dst),
1362 (ins GR32:$src1, i32mem:$src2),
1363 "adox{l}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1365 def ADOX64rm : RI<0xF6, MRMSrcMem, (outs GR64:$dst),
1366 (ins GR64:$src1, i64mem:$src2),
1367 "adox{q}\t{$src2, $dst|$dst, $src2}", []>, T8XS;
1368 } // mayLoad, SchedRW