[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / X86 / X86InstructionSelector.cpp
blob01620b7b64c988f3be2f49f02c5f83ad8c21fb7c
1 //===- X86InstructionSelector.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the InstructionSelector class for
10 /// X86.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86BaseInfo.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86RegisterBankInfo.h"
18 #include "X86RegisterInfo.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
22 #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
23 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/CodeGen.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/LowLevelTypeImpl.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <tuple>
48 #define DEBUG_TYPE "X86-isel"
50 using namespace llvm;
52 namespace {
54 #define GET_GLOBALISEL_PREDICATE_BITSET
55 #include "X86GenGlobalISel.inc"
56 #undef GET_GLOBALISEL_PREDICATE_BITSET
58 class X86InstructionSelector : public InstructionSelector {
59 public:
60 X86InstructionSelector(const X86TargetMachine &TM, const X86Subtarget &STI,
61 const X86RegisterBankInfo &RBI);
63 bool select(MachineInstr &I) override;
64 static const char *getName() { return DEBUG_TYPE; }
66 private:
67 /// tblgen-erated 'select' implementation, used as the initial selector for
68 /// the patterns that don't require complex C++.
69 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
71 // TODO: remove after supported by Tablegen-erated instruction selection.
72 unsigned getLoadStoreOp(const LLT &Ty, const RegisterBank &RB, unsigned Opc,
73 uint64_t Alignment) const;
75 bool selectLoadStoreOp(MachineInstr &I, MachineRegisterInfo &MRI,
76 MachineFunction &MF) const;
77 bool selectFrameIndexOrGep(MachineInstr &I, MachineRegisterInfo &MRI,
78 MachineFunction &MF) const;
79 bool selectGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI,
80 MachineFunction &MF) const;
81 bool selectConstant(MachineInstr &I, MachineRegisterInfo &MRI,
82 MachineFunction &MF) const;
83 bool selectTruncOrPtrToInt(MachineInstr &I, MachineRegisterInfo &MRI,
84 MachineFunction &MF) const;
85 bool selectZext(MachineInstr &I, MachineRegisterInfo &MRI,
86 MachineFunction &MF) const;
87 bool selectAnyext(MachineInstr &I, MachineRegisterInfo &MRI,
88 MachineFunction &MF) const;
89 bool selectCmp(MachineInstr &I, MachineRegisterInfo &MRI,
90 MachineFunction &MF) const;
91 bool selectFCmp(MachineInstr &I, MachineRegisterInfo &MRI,
92 MachineFunction &MF) const;
93 bool selectUadde(MachineInstr &I, MachineRegisterInfo &MRI,
94 MachineFunction &MF) const;
95 bool selectCopy(MachineInstr &I, MachineRegisterInfo &MRI) const;
96 bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI,
97 MachineFunction &MF);
98 bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI,
99 MachineFunction &MF);
100 bool selectInsert(MachineInstr &I, MachineRegisterInfo &MRI,
101 MachineFunction &MF) const;
102 bool selectExtract(MachineInstr &I, MachineRegisterInfo &MRI,
103 MachineFunction &MF) const;
104 bool selectCondBranch(MachineInstr &I, MachineRegisterInfo &MRI,
105 MachineFunction &MF) const;
106 bool selectTurnIntoCOPY(MachineInstr &I, MachineRegisterInfo &MRI,
107 const unsigned DstReg,
108 const TargetRegisterClass *DstRC,
109 const unsigned SrcReg,
110 const TargetRegisterClass *SrcRC) const;
111 bool materializeFP(MachineInstr &I, MachineRegisterInfo &MRI,
112 MachineFunction &MF) const;
113 bool selectImplicitDefOrPHI(MachineInstr &I, MachineRegisterInfo &MRI) const;
114 bool selectShift(MachineInstr &I, MachineRegisterInfo &MRI,
115 MachineFunction &MF) const;
116 bool selectDivRem(MachineInstr &I, MachineRegisterInfo &MRI,
117 MachineFunction &MF) const;
118 bool selectIntrinsicWSideEffects(MachineInstr &I, MachineRegisterInfo &MRI,
119 MachineFunction &MF) const;
121 // emit insert subreg instruction and insert it before MachineInstr &I
122 bool emitInsertSubreg(unsigned DstReg, unsigned SrcReg, MachineInstr &I,
123 MachineRegisterInfo &MRI, MachineFunction &MF) const;
124 // emit extract subreg instruction and insert it before MachineInstr &I
125 bool emitExtractSubreg(unsigned DstReg, unsigned SrcReg, MachineInstr &I,
126 MachineRegisterInfo &MRI, MachineFunction &MF) const;
128 const TargetRegisterClass *getRegClass(LLT Ty, const RegisterBank &RB) const;
129 const TargetRegisterClass *getRegClass(LLT Ty, unsigned Reg,
130 MachineRegisterInfo &MRI) const;
132 const X86TargetMachine &TM;
133 const X86Subtarget &STI;
134 const X86InstrInfo &TII;
135 const X86RegisterInfo &TRI;
136 const X86RegisterBankInfo &RBI;
138 #define GET_GLOBALISEL_PREDICATES_DECL
139 #include "X86GenGlobalISel.inc"
140 #undef GET_GLOBALISEL_PREDICATES_DECL
142 #define GET_GLOBALISEL_TEMPORARIES_DECL
143 #include "X86GenGlobalISel.inc"
144 #undef GET_GLOBALISEL_TEMPORARIES_DECL
147 } // end anonymous namespace
149 #define GET_GLOBALISEL_IMPL
150 #include "X86GenGlobalISel.inc"
151 #undef GET_GLOBALISEL_IMPL
153 X86InstructionSelector::X86InstructionSelector(const X86TargetMachine &TM,
154 const X86Subtarget &STI,
155 const X86RegisterBankInfo &RBI)
156 : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
157 TRI(*STI.getRegisterInfo()), RBI(RBI),
158 #define GET_GLOBALISEL_PREDICATES_INIT
159 #include "X86GenGlobalISel.inc"
160 #undef GET_GLOBALISEL_PREDICATES_INIT
161 #define GET_GLOBALISEL_TEMPORARIES_INIT
162 #include "X86GenGlobalISel.inc"
163 #undef GET_GLOBALISEL_TEMPORARIES_INIT
167 // FIXME: This should be target-independent, inferred from the types declared
168 // for each class in the bank.
169 const TargetRegisterClass *
170 X86InstructionSelector::getRegClass(LLT Ty, const RegisterBank &RB) const {
171 if (RB.getID() == X86::GPRRegBankID) {
172 if (Ty.getSizeInBits() <= 8)
173 return &X86::GR8RegClass;
174 if (Ty.getSizeInBits() == 16)
175 return &X86::GR16RegClass;
176 if (Ty.getSizeInBits() == 32)
177 return &X86::GR32RegClass;
178 if (Ty.getSizeInBits() == 64)
179 return &X86::GR64RegClass;
181 if (RB.getID() == X86::VECRRegBankID) {
182 if (Ty.getSizeInBits() == 32)
183 return STI.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
184 if (Ty.getSizeInBits() == 64)
185 return STI.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
186 if (Ty.getSizeInBits() == 128)
187 return STI.hasAVX512() ? &X86::VR128XRegClass : &X86::VR128RegClass;
188 if (Ty.getSizeInBits() == 256)
189 return STI.hasAVX512() ? &X86::VR256XRegClass : &X86::VR256RegClass;
190 if (Ty.getSizeInBits() == 512)
191 return &X86::VR512RegClass;
194 llvm_unreachable("Unknown RegBank!");
197 const TargetRegisterClass *
198 X86InstructionSelector::getRegClass(LLT Ty, unsigned Reg,
199 MachineRegisterInfo &MRI) const {
200 const RegisterBank &RegBank = *RBI.getRegBank(Reg, MRI, TRI);
201 return getRegClass(Ty, RegBank);
204 static unsigned getSubRegIndex(const TargetRegisterClass *RC) {
205 unsigned SubIdx = X86::NoSubRegister;
206 if (RC == &X86::GR32RegClass) {
207 SubIdx = X86::sub_32bit;
208 } else if (RC == &X86::GR16RegClass) {
209 SubIdx = X86::sub_16bit;
210 } else if (RC == &X86::GR8RegClass) {
211 SubIdx = X86::sub_8bit;
214 return SubIdx;
217 static const TargetRegisterClass *getRegClassFromGRPhysReg(unsigned Reg) {
218 assert(Register::isPhysicalRegister(Reg));
219 if (X86::GR64RegClass.contains(Reg))
220 return &X86::GR64RegClass;
221 if (X86::GR32RegClass.contains(Reg))
222 return &X86::GR32RegClass;
223 if (X86::GR16RegClass.contains(Reg))
224 return &X86::GR16RegClass;
225 if (X86::GR8RegClass.contains(Reg))
226 return &X86::GR8RegClass;
228 llvm_unreachable("Unknown RegClass for PhysReg!");
231 // Set X86 Opcode and constrain DestReg.
232 bool X86InstructionSelector::selectCopy(MachineInstr &I,
233 MachineRegisterInfo &MRI) const {
234 Register DstReg = I.getOperand(0).getReg();
235 const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
236 const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
238 Register SrcReg = I.getOperand(1).getReg();
239 const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
240 const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
242 if (Register::isPhysicalRegister(DstReg)) {
243 assert(I.isCopy() && "Generic operators do not allow physical registers");
245 if (DstSize > SrcSize && SrcRegBank.getID() == X86::GPRRegBankID &&
246 DstRegBank.getID() == X86::GPRRegBankID) {
248 const TargetRegisterClass *SrcRC =
249 getRegClass(MRI.getType(SrcReg), SrcRegBank);
250 const TargetRegisterClass *DstRC = getRegClassFromGRPhysReg(DstReg);
252 if (SrcRC != DstRC) {
253 // This case can be generated by ABI lowering, performe anyext
254 Register ExtSrc = MRI.createVirtualRegister(DstRC);
255 BuildMI(*I.getParent(), I, I.getDebugLoc(),
256 TII.get(TargetOpcode::SUBREG_TO_REG))
257 .addDef(ExtSrc)
258 .addImm(0)
259 .addReg(SrcReg)
260 .addImm(getSubRegIndex(SrcRC));
262 I.getOperand(1).setReg(ExtSrc);
266 return true;
269 assert((!Register::isPhysicalRegister(SrcReg) || I.isCopy()) &&
270 "No phys reg on generic operators");
271 assert((DstSize == SrcSize ||
272 // Copies are a mean to setup initial types, the number of
273 // bits may not exactly match.
274 (Register::isPhysicalRegister(SrcReg) &&
275 DstSize <= RBI.getSizeInBits(SrcReg, MRI, TRI))) &&
276 "Copy with different width?!");
278 const TargetRegisterClass *DstRC =
279 getRegClass(MRI.getType(DstReg), DstRegBank);
281 if (SrcRegBank.getID() == X86::GPRRegBankID &&
282 DstRegBank.getID() == X86::GPRRegBankID && SrcSize > DstSize &&
283 Register::isPhysicalRegister(SrcReg)) {
284 // Change the physical register to performe truncate.
286 const TargetRegisterClass *SrcRC = getRegClassFromGRPhysReg(SrcReg);
288 if (DstRC != SrcRC) {
289 I.getOperand(1).setSubReg(getSubRegIndex(DstRC));
290 I.getOperand(1).substPhysReg(SrcReg, TRI);
294 // No need to constrain SrcReg. It will get constrained when
295 // we hit another of its use or its defs.
296 // Copies do not have constraints.
297 const TargetRegisterClass *OldRC = MRI.getRegClassOrNull(DstReg);
298 if (!OldRC || !DstRC->hasSubClassEq(OldRC)) {
299 if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
300 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
301 << " operand\n");
302 return false;
305 I.setDesc(TII.get(X86::COPY));
306 return true;
309 bool X86InstructionSelector::select(MachineInstr &I) {
310 assert(I.getParent() && "Instruction should be in a basic block!");
311 assert(I.getParent()->getParent() && "Instruction should be in a function!");
313 MachineBasicBlock &MBB = *I.getParent();
314 MachineFunction &MF = *MBB.getParent();
315 MachineRegisterInfo &MRI = MF.getRegInfo();
317 unsigned Opcode = I.getOpcode();
318 if (!isPreISelGenericOpcode(Opcode)) {
319 // Certain non-generic instructions also need some special handling.
321 if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
322 return false;
324 if (I.isCopy())
325 return selectCopy(I, MRI);
327 return true;
330 assert(I.getNumOperands() == I.getNumExplicitOperands() &&
331 "Generic instruction has unexpected implicit operands\n");
333 if (selectImpl(I, *CoverageInfo))
334 return true;
336 LLVM_DEBUG(dbgs() << " C++ instruction selection: "; I.print(dbgs()));
338 // TODO: This should be implemented by tblgen.
339 switch (I.getOpcode()) {
340 default:
341 return false;
342 case TargetOpcode::G_STORE:
343 case TargetOpcode::G_LOAD:
344 return selectLoadStoreOp(I, MRI, MF);
345 case TargetOpcode::G_GEP:
346 case TargetOpcode::G_FRAME_INDEX:
347 return selectFrameIndexOrGep(I, MRI, MF);
348 case TargetOpcode::G_GLOBAL_VALUE:
349 return selectGlobalValue(I, MRI, MF);
350 case TargetOpcode::G_CONSTANT:
351 return selectConstant(I, MRI, MF);
352 case TargetOpcode::G_FCONSTANT:
353 return materializeFP(I, MRI, MF);
354 case TargetOpcode::G_PTRTOINT:
355 case TargetOpcode::G_TRUNC:
356 return selectTruncOrPtrToInt(I, MRI, MF);
357 case TargetOpcode::G_INTTOPTR:
358 return selectCopy(I, MRI);
359 case TargetOpcode::G_ZEXT:
360 return selectZext(I, MRI, MF);
361 case TargetOpcode::G_ANYEXT:
362 return selectAnyext(I, MRI, MF);
363 case TargetOpcode::G_ICMP:
364 return selectCmp(I, MRI, MF);
365 case TargetOpcode::G_FCMP:
366 return selectFCmp(I, MRI, MF);
367 case TargetOpcode::G_UADDE:
368 return selectUadde(I, MRI, MF);
369 case TargetOpcode::G_UNMERGE_VALUES:
370 return selectUnmergeValues(I, MRI, MF);
371 case TargetOpcode::G_MERGE_VALUES:
372 case TargetOpcode::G_CONCAT_VECTORS:
373 return selectMergeValues(I, MRI, MF);
374 case TargetOpcode::G_EXTRACT:
375 return selectExtract(I, MRI, MF);
376 case TargetOpcode::G_INSERT:
377 return selectInsert(I, MRI, MF);
378 case TargetOpcode::G_BRCOND:
379 return selectCondBranch(I, MRI, MF);
380 case TargetOpcode::G_IMPLICIT_DEF:
381 case TargetOpcode::G_PHI:
382 return selectImplicitDefOrPHI(I, MRI);
383 case TargetOpcode::G_SHL:
384 case TargetOpcode::G_ASHR:
385 case TargetOpcode::G_LSHR:
386 return selectShift(I, MRI, MF);
387 case TargetOpcode::G_SDIV:
388 case TargetOpcode::G_UDIV:
389 case TargetOpcode::G_SREM:
390 case TargetOpcode::G_UREM:
391 return selectDivRem(I, MRI, MF);
392 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
393 return selectIntrinsicWSideEffects(I, MRI, MF);
396 return false;
399 unsigned X86InstructionSelector::getLoadStoreOp(const LLT &Ty,
400 const RegisterBank &RB,
401 unsigned Opc,
402 uint64_t Alignment) const {
403 bool Isload = (Opc == TargetOpcode::G_LOAD);
404 bool HasAVX = STI.hasAVX();
405 bool HasAVX512 = STI.hasAVX512();
406 bool HasVLX = STI.hasVLX();
408 if (Ty == LLT::scalar(8)) {
409 if (X86::GPRRegBankID == RB.getID())
410 return Isload ? X86::MOV8rm : X86::MOV8mr;
411 } else if (Ty == LLT::scalar(16)) {
412 if (X86::GPRRegBankID == RB.getID())
413 return Isload ? X86::MOV16rm : X86::MOV16mr;
414 } else if (Ty == LLT::scalar(32) || Ty == LLT::pointer(0, 32)) {
415 if (X86::GPRRegBankID == RB.getID())
416 return Isload ? X86::MOV32rm : X86::MOV32mr;
417 if (X86::VECRRegBankID == RB.getID())
418 return Isload ? (HasAVX512 ? X86::VMOVSSZrm_alt :
419 HasAVX ? X86::VMOVSSrm_alt :
420 X86::MOVSSrm_alt)
421 : (HasAVX512 ? X86::VMOVSSZmr :
422 HasAVX ? X86::VMOVSSmr :
423 X86::MOVSSmr);
424 } else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64)) {
425 if (X86::GPRRegBankID == RB.getID())
426 return Isload ? X86::MOV64rm : X86::MOV64mr;
427 if (X86::VECRRegBankID == RB.getID())
428 return Isload ? (HasAVX512 ? X86::VMOVSDZrm_alt :
429 HasAVX ? X86::VMOVSDrm_alt :
430 X86::MOVSDrm_alt)
431 : (HasAVX512 ? X86::VMOVSDZmr :
432 HasAVX ? X86::VMOVSDmr :
433 X86::MOVSDmr);
434 } else if (Ty.isVector() && Ty.getSizeInBits() == 128) {
435 if (Alignment >= 16)
436 return Isload ? (HasVLX ? X86::VMOVAPSZ128rm
437 : HasAVX512
438 ? X86::VMOVAPSZ128rm_NOVLX
439 : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm)
440 : (HasVLX ? X86::VMOVAPSZ128mr
441 : HasAVX512
442 ? X86::VMOVAPSZ128mr_NOVLX
443 : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
444 else
445 return Isload ? (HasVLX ? X86::VMOVUPSZ128rm
446 : HasAVX512
447 ? X86::VMOVUPSZ128rm_NOVLX
448 : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm)
449 : (HasVLX ? X86::VMOVUPSZ128mr
450 : HasAVX512
451 ? X86::VMOVUPSZ128mr_NOVLX
452 : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
453 } else if (Ty.isVector() && Ty.getSizeInBits() == 256) {
454 if (Alignment >= 32)
455 return Isload ? (HasVLX ? X86::VMOVAPSZ256rm
456 : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
457 : X86::VMOVAPSYrm)
458 : (HasVLX ? X86::VMOVAPSZ256mr
459 : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
460 : X86::VMOVAPSYmr);
461 else
462 return Isload ? (HasVLX ? X86::VMOVUPSZ256rm
463 : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
464 : X86::VMOVUPSYrm)
465 : (HasVLX ? X86::VMOVUPSZ256mr
466 : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
467 : X86::VMOVUPSYmr);
468 } else if (Ty.isVector() && Ty.getSizeInBits() == 512) {
469 if (Alignment >= 64)
470 return Isload ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
471 else
472 return Isload ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
474 return Opc;
477 // Fill in an address from the given instruction.
478 static void X86SelectAddress(const MachineInstr &I,
479 const MachineRegisterInfo &MRI,
480 X86AddressMode &AM) {
481 assert(I.getOperand(0).isReg() && "unsupported opperand.");
482 assert(MRI.getType(I.getOperand(0).getReg()).isPointer() &&
483 "unsupported type.");
485 if (I.getOpcode() == TargetOpcode::G_GEP) {
486 if (auto COff = getConstantVRegVal(I.getOperand(2).getReg(), MRI)) {
487 int64_t Imm = *COff;
488 if (isInt<32>(Imm)) { // Check for displacement overflow.
489 AM.Disp = static_cast<int32_t>(Imm);
490 AM.Base.Reg = I.getOperand(1).getReg();
491 return;
494 } else if (I.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
495 AM.Base.FrameIndex = I.getOperand(1).getIndex();
496 AM.BaseType = X86AddressMode::FrameIndexBase;
497 return;
500 // Default behavior.
501 AM.Base.Reg = I.getOperand(0).getReg();
504 bool X86InstructionSelector::selectLoadStoreOp(MachineInstr &I,
505 MachineRegisterInfo &MRI,
506 MachineFunction &MF) const {
507 unsigned Opc = I.getOpcode();
509 assert((Opc == TargetOpcode::G_STORE || Opc == TargetOpcode::G_LOAD) &&
510 "unexpected instruction");
512 const Register DefReg = I.getOperand(0).getReg();
513 LLT Ty = MRI.getType(DefReg);
514 const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
516 assert(I.hasOneMemOperand());
517 auto &MemOp = **I.memoperands_begin();
518 if (MemOp.isAtomic()) {
519 // Note: for unordered operations, we rely on the fact the appropriate MMO
520 // is already on the instruction we're mutating, and thus we don't need to
521 // make any changes. So long as we select an opcode which is capable of
522 // loading or storing the appropriate size atomically, the rest of the
523 // backend is required to respect the MMO state.
524 if (!MemOp.isUnordered()) {
525 LLVM_DEBUG(dbgs() << "Atomic ordering not supported yet\n");
526 return false;
528 if (MemOp.getAlignment() < Ty.getSizeInBits()/8) {
529 LLVM_DEBUG(dbgs() << "Unaligned atomics not supported yet\n");
530 return false;
534 unsigned NewOpc = getLoadStoreOp(Ty, RB, Opc, MemOp.getAlignment());
535 if (NewOpc == Opc)
536 return false;
538 X86AddressMode AM;
539 X86SelectAddress(*MRI.getVRegDef(I.getOperand(1).getReg()), MRI, AM);
541 I.setDesc(TII.get(NewOpc));
542 MachineInstrBuilder MIB(MF, I);
543 if (Opc == TargetOpcode::G_LOAD) {
544 I.RemoveOperand(1);
545 addFullAddress(MIB, AM);
546 } else {
547 // G_STORE (VAL, Addr), X86Store instruction (Addr, VAL)
548 I.RemoveOperand(1);
549 I.RemoveOperand(0);
550 addFullAddress(MIB, AM).addUse(DefReg);
552 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
555 static unsigned getLeaOP(LLT Ty, const X86Subtarget &STI) {
556 if (Ty == LLT::pointer(0, 64))
557 return X86::LEA64r;
558 else if (Ty == LLT::pointer(0, 32))
559 return STI.isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r;
560 else
561 llvm_unreachable("Can't get LEA opcode. Unsupported type.");
564 bool X86InstructionSelector::selectFrameIndexOrGep(MachineInstr &I,
565 MachineRegisterInfo &MRI,
566 MachineFunction &MF) const {
567 unsigned Opc = I.getOpcode();
569 assert((Opc == TargetOpcode::G_FRAME_INDEX || Opc == TargetOpcode::G_GEP) &&
570 "unexpected instruction");
572 const Register DefReg = I.getOperand(0).getReg();
573 LLT Ty = MRI.getType(DefReg);
575 // Use LEA to calculate frame index and GEP
576 unsigned NewOpc = getLeaOP(Ty, STI);
577 I.setDesc(TII.get(NewOpc));
578 MachineInstrBuilder MIB(MF, I);
580 if (Opc == TargetOpcode::G_FRAME_INDEX) {
581 addOffset(MIB, 0);
582 } else {
583 MachineOperand &InxOp = I.getOperand(2);
584 I.addOperand(InxOp); // set IndexReg
585 InxOp.ChangeToImmediate(1); // set Scale
586 MIB.addImm(0).addReg(0);
589 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
592 bool X86InstructionSelector::selectGlobalValue(MachineInstr &I,
593 MachineRegisterInfo &MRI,
594 MachineFunction &MF) const {
595 assert((I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE) &&
596 "unexpected instruction");
598 auto GV = I.getOperand(1).getGlobal();
599 if (GV->isThreadLocal()) {
600 return false; // TODO: we don't support TLS yet.
603 // Can't handle alternate code models yet.
604 if (TM.getCodeModel() != CodeModel::Small)
605 return false;
607 X86AddressMode AM;
608 AM.GV = GV;
609 AM.GVOpFlags = STI.classifyGlobalReference(GV);
611 // TODO: The ABI requires an extra load. not supported yet.
612 if (isGlobalStubReference(AM.GVOpFlags))
613 return false;
615 // TODO: This reference is relative to the pic base. not supported yet.
616 if (isGlobalRelativeToPICBase(AM.GVOpFlags))
617 return false;
619 if (STI.isPICStyleRIPRel()) {
620 // Use rip-relative addressing.
621 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
622 AM.Base.Reg = X86::RIP;
625 const Register DefReg = I.getOperand(0).getReg();
626 LLT Ty = MRI.getType(DefReg);
627 unsigned NewOpc = getLeaOP(Ty, STI);
629 I.setDesc(TII.get(NewOpc));
630 MachineInstrBuilder MIB(MF, I);
632 I.RemoveOperand(1);
633 addFullAddress(MIB, AM);
635 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
638 bool X86InstructionSelector::selectConstant(MachineInstr &I,
639 MachineRegisterInfo &MRI,
640 MachineFunction &MF) const {
641 assert((I.getOpcode() == TargetOpcode::G_CONSTANT) &&
642 "unexpected instruction");
644 const Register DefReg = I.getOperand(0).getReg();
645 LLT Ty = MRI.getType(DefReg);
647 if (RBI.getRegBank(DefReg, MRI, TRI)->getID() != X86::GPRRegBankID)
648 return false;
650 uint64_t Val = 0;
651 if (I.getOperand(1).isCImm()) {
652 Val = I.getOperand(1).getCImm()->getZExtValue();
653 I.getOperand(1).ChangeToImmediate(Val);
654 } else if (I.getOperand(1).isImm()) {
655 Val = I.getOperand(1).getImm();
656 } else
657 llvm_unreachable("Unsupported operand type.");
659 unsigned NewOpc;
660 switch (Ty.getSizeInBits()) {
661 case 8:
662 NewOpc = X86::MOV8ri;
663 break;
664 case 16:
665 NewOpc = X86::MOV16ri;
666 break;
667 case 32:
668 NewOpc = X86::MOV32ri;
669 break;
670 case 64:
671 // TODO: in case isUInt<32>(Val), X86::MOV32ri can be used
672 if (isInt<32>(Val))
673 NewOpc = X86::MOV64ri32;
674 else
675 NewOpc = X86::MOV64ri;
676 break;
677 default:
678 llvm_unreachable("Can't select G_CONSTANT, unsupported type.");
681 I.setDesc(TII.get(NewOpc));
682 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
685 // Helper function for selectTruncOrPtrToInt and selectAnyext.
686 // Returns true if DstRC lives on a floating register class and
687 // SrcRC lives on a 128-bit vector class.
688 static bool canTurnIntoCOPY(const TargetRegisterClass *DstRC,
689 const TargetRegisterClass *SrcRC) {
690 return (DstRC == &X86::FR32RegClass || DstRC == &X86::FR32XRegClass ||
691 DstRC == &X86::FR64RegClass || DstRC == &X86::FR64XRegClass) &&
692 (SrcRC == &X86::VR128RegClass || SrcRC == &X86::VR128XRegClass);
695 bool X86InstructionSelector::selectTurnIntoCOPY(
696 MachineInstr &I, MachineRegisterInfo &MRI, const unsigned DstReg,
697 const TargetRegisterClass *DstRC, const unsigned SrcReg,
698 const TargetRegisterClass *SrcRC) const {
700 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
701 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
702 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
703 << " operand\n");
704 return false;
706 I.setDesc(TII.get(X86::COPY));
707 return true;
710 bool X86InstructionSelector::selectTruncOrPtrToInt(MachineInstr &I,
711 MachineRegisterInfo &MRI,
712 MachineFunction &MF) const {
713 assert((I.getOpcode() == TargetOpcode::G_TRUNC ||
714 I.getOpcode() == TargetOpcode::G_PTRTOINT) &&
715 "unexpected instruction");
717 const Register DstReg = I.getOperand(0).getReg();
718 const Register SrcReg = I.getOperand(1).getReg();
720 const LLT DstTy = MRI.getType(DstReg);
721 const LLT SrcTy = MRI.getType(SrcReg);
723 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
724 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
726 if (DstRB.getID() != SrcRB.getID()) {
727 LLVM_DEBUG(dbgs() << TII.getName(I.getOpcode())
728 << " input/output on different banks\n");
729 return false;
732 const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB);
733 const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB);
735 if (!DstRC || !SrcRC)
736 return false;
738 // If that's truncation of the value that lives on the vector class and goes
739 // into the floating class, just replace it with copy, as we are able to
740 // select it as a regular move.
741 if (canTurnIntoCOPY(DstRC, SrcRC))
742 return selectTurnIntoCOPY(I, MRI, DstReg, DstRC, SrcReg, SrcRC);
744 if (DstRB.getID() != X86::GPRRegBankID)
745 return false;
747 unsigned SubIdx;
748 if (DstRC == SrcRC) {
749 // Nothing to be done
750 SubIdx = X86::NoSubRegister;
751 } else if (DstRC == &X86::GR32RegClass) {
752 SubIdx = X86::sub_32bit;
753 } else if (DstRC == &X86::GR16RegClass) {
754 SubIdx = X86::sub_16bit;
755 } else if (DstRC == &X86::GR8RegClass) {
756 SubIdx = X86::sub_8bit;
757 } else {
758 return false;
761 SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubIdx);
763 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
764 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
765 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
766 << "\n");
767 return false;
770 I.getOperand(1).setSubReg(SubIdx);
772 I.setDesc(TII.get(X86::COPY));
773 return true;
776 bool X86InstructionSelector::selectZext(MachineInstr &I,
777 MachineRegisterInfo &MRI,
778 MachineFunction &MF) const {
779 assert((I.getOpcode() == TargetOpcode::G_ZEXT) && "unexpected instruction");
781 const Register DstReg = I.getOperand(0).getReg();
782 const Register SrcReg = I.getOperand(1).getReg();
784 const LLT DstTy = MRI.getType(DstReg);
785 const LLT SrcTy = MRI.getType(SrcReg);
787 assert(!(SrcTy == LLT::scalar(8) && DstTy == LLT::scalar(32)) &&
788 "8=>32 Zext is handled by tablegen");
789 assert(!(SrcTy == LLT::scalar(16) && DstTy == LLT::scalar(32)) &&
790 "16=>32 Zext is handled by tablegen");
792 const static struct ZextEntry {
793 LLT SrcTy;
794 LLT DstTy;
795 unsigned MovOp;
796 bool NeedSubregToReg;
797 } OpTable[] = {
798 {LLT::scalar(8), LLT::scalar(16), X86::MOVZX16rr8, false}, // i8 => i16
799 {LLT::scalar(8), LLT::scalar(64), X86::MOVZX32rr8, true}, // i8 => i64
800 {LLT::scalar(16), LLT::scalar(64), X86::MOVZX32rr16, true}, // i16 => i64
801 {LLT::scalar(32), LLT::scalar(64), 0, true} // i32 => i64
804 auto ZextEntryIt =
805 std::find_if(std::begin(OpTable), std::end(OpTable),
806 [SrcTy, DstTy](const ZextEntry &El) {
807 return El.DstTy == DstTy && El.SrcTy == SrcTy;
810 // Here we try to select Zext into a MOVZ and/or SUBREG_TO_REG instruction.
811 if (ZextEntryIt != std::end(OpTable)) {
812 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
813 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
814 const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB);
815 const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB);
817 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
818 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
819 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
820 << " operand\n");
821 return false;
824 unsigned TransitRegTo = DstReg;
825 unsigned TransitRegFrom = SrcReg;
826 if (ZextEntryIt->MovOp) {
827 // If we select Zext into MOVZ + SUBREG_TO_REG, we need to have
828 // a transit register in between: create it here.
829 if (ZextEntryIt->NeedSubregToReg) {
830 TransitRegFrom = MRI.createVirtualRegister(
831 getRegClass(LLT::scalar(32), DstReg, MRI));
832 TransitRegTo = TransitRegFrom;
835 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(ZextEntryIt->MovOp))
836 .addDef(TransitRegTo)
837 .addReg(SrcReg);
839 if (ZextEntryIt->NeedSubregToReg) {
840 BuildMI(*I.getParent(), I, I.getDebugLoc(),
841 TII.get(TargetOpcode::SUBREG_TO_REG))
842 .addDef(DstReg)
843 .addImm(0)
844 .addReg(TransitRegFrom)
845 .addImm(X86::sub_32bit);
847 I.eraseFromParent();
848 return true;
851 if (SrcTy != LLT::scalar(1))
852 return false;
854 unsigned AndOpc;
855 if (DstTy == LLT::scalar(8))
856 AndOpc = X86::AND8ri;
857 else if (DstTy == LLT::scalar(16))
858 AndOpc = X86::AND16ri8;
859 else if (DstTy == LLT::scalar(32))
860 AndOpc = X86::AND32ri8;
861 else if (DstTy == LLT::scalar(64))
862 AndOpc = X86::AND64ri8;
863 else
864 return false;
866 unsigned DefReg = SrcReg;
867 if (DstTy != LLT::scalar(8)) {
868 DefReg = MRI.createVirtualRegister(getRegClass(DstTy, DstReg, MRI));
869 BuildMI(*I.getParent(), I, I.getDebugLoc(),
870 TII.get(TargetOpcode::SUBREG_TO_REG), DefReg)
871 .addImm(0)
872 .addReg(SrcReg)
873 .addImm(X86::sub_8bit);
876 MachineInstr &AndInst =
877 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AndOpc), DstReg)
878 .addReg(DefReg)
879 .addImm(1);
881 constrainSelectedInstRegOperands(AndInst, TII, TRI, RBI);
883 I.eraseFromParent();
884 return true;
887 bool X86InstructionSelector::selectAnyext(MachineInstr &I,
888 MachineRegisterInfo &MRI,
889 MachineFunction &MF) const {
890 assert((I.getOpcode() == TargetOpcode::G_ANYEXT) && "unexpected instruction");
892 const Register DstReg = I.getOperand(0).getReg();
893 const Register SrcReg = I.getOperand(1).getReg();
895 const LLT DstTy = MRI.getType(DstReg);
896 const LLT SrcTy = MRI.getType(SrcReg);
898 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
899 const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
901 assert(DstRB.getID() == SrcRB.getID() &&
902 "G_ANYEXT input/output on different banks\n");
904 assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() &&
905 "G_ANYEXT incorrect operand size");
907 const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB);
908 const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB);
910 // If that's ANY_EXT of the value that lives on the floating class and goes
911 // into the vector class, just replace it with copy, as we are able to select
912 // it as a regular move.
913 if (canTurnIntoCOPY(SrcRC, DstRC))
914 return selectTurnIntoCOPY(I, MRI, SrcReg, SrcRC, DstReg, DstRC);
916 if (DstRB.getID() != X86::GPRRegBankID)
917 return false;
919 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
920 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
921 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
922 << " operand\n");
923 return false;
926 if (SrcRC == DstRC) {
927 I.setDesc(TII.get(X86::COPY));
928 return true;
931 BuildMI(*I.getParent(), I, I.getDebugLoc(),
932 TII.get(TargetOpcode::SUBREG_TO_REG))
933 .addDef(DstReg)
934 .addImm(0)
935 .addReg(SrcReg)
936 .addImm(getSubRegIndex(SrcRC));
938 I.eraseFromParent();
939 return true;
942 bool X86InstructionSelector::selectCmp(MachineInstr &I,
943 MachineRegisterInfo &MRI,
944 MachineFunction &MF) const {
945 assert((I.getOpcode() == TargetOpcode::G_ICMP) && "unexpected instruction");
947 X86::CondCode CC;
948 bool SwapArgs;
949 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(
950 (CmpInst::Predicate)I.getOperand(1).getPredicate());
952 Register LHS = I.getOperand(2).getReg();
953 Register RHS = I.getOperand(3).getReg();
955 if (SwapArgs)
956 std::swap(LHS, RHS);
958 unsigned OpCmp;
959 LLT Ty = MRI.getType(LHS);
961 switch (Ty.getSizeInBits()) {
962 default:
963 return false;
964 case 8:
965 OpCmp = X86::CMP8rr;
966 break;
967 case 16:
968 OpCmp = X86::CMP16rr;
969 break;
970 case 32:
971 OpCmp = X86::CMP32rr;
972 break;
973 case 64:
974 OpCmp = X86::CMP64rr;
975 break;
978 MachineInstr &CmpInst =
979 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp))
980 .addReg(LHS)
981 .addReg(RHS);
983 MachineInstr &SetInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
984 TII.get(X86::SETCCr), I.getOperand(0).getReg()).addImm(CC);
986 constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI);
987 constrainSelectedInstRegOperands(SetInst, TII, TRI, RBI);
989 I.eraseFromParent();
990 return true;
993 bool X86InstructionSelector::selectFCmp(MachineInstr &I,
994 MachineRegisterInfo &MRI,
995 MachineFunction &MF) const {
996 assert((I.getOpcode() == TargetOpcode::G_FCMP) && "unexpected instruction");
998 Register LhsReg = I.getOperand(2).getReg();
999 Register RhsReg = I.getOperand(3).getReg();
1000 CmpInst::Predicate Predicate =
1001 (CmpInst::Predicate)I.getOperand(1).getPredicate();
1003 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1004 static const uint16_t SETFOpcTable[2][3] = {
1005 {X86::COND_E, X86::COND_NP, X86::AND8rr},
1006 {X86::COND_NE, X86::COND_P, X86::OR8rr}};
1007 const uint16_t *SETFOpc = nullptr;
1008 switch (Predicate) {
1009 default:
1010 break;
1011 case CmpInst::FCMP_OEQ:
1012 SETFOpc = &SETFOpcTable[0][0];
1013 break;
1014 case CmpInst::FCMP_UNE:
1015 SETFOpc = &SETFOpcTable[1][0];
1016 break;
1019 // Compute the opcode for the CMP instruction.
1020 unsigned OpCmp;
1021 LLT Ty = MRI.getType(LhsReg);
1022 switch (Ty.getSizeInBits()) {
1023 default:
1024 return false;
1025 case 32:
1026 OpCmp = X86::UCOMISSrr;
1027 break;
1028 case 64:
1029 OpCmp = X86::UCOMISDrr;
1030 break;
1033 Register ResultReg = I.getOperand(0).getReg();
1034 RBI.constrainGenericRegister(
1035 ResultReg,
1036 *getRegClass(LLT::scalar(8), *RBI.getRegBank(ResultReg, MRI, TRI)), MRI);
1037 if (SETFOpc) {
1038 MachineInstr &CmpInst =
1039 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp))
1040 .addReg(LhsReg)
1041 .addReg(RhsReg);
1043 Register FlagReg1 = MRI.createVirtualRegister(&X86::GR8RegClass);
1044 Register FlagReg2 = MRI.createVirtualRegister(&X86::GR8RegClass);
1045 MachineInstr &Set1 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
1046 TII.get(X86::SETCCr), FlagReg1).addImm(SETFOpc[0]);
1047 MachineInstr &Set2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
1048 TII.get(X86::SETCCr), FlagReg2).addImm(SETFOpc[1]);
1049 MachineInstr &Set3 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
1050 TII.get(SETFOpc[2]), ResultReg)
1051 .addReg(FlagReg1)
1052 .addReg(FlagReg2);
1053 constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI);
1054 constrainSelectedInstRegOperands(Set1, TII, TRI, RBI);
1055 constrainSelectedInstRegOperands(Set2, TII, TRI, RBI);
1056 constrainSelectedInstRegOperands(Set3, TII, TRI, RBI);
1058 I.eraseFromParent();
1059 return true;
1062 X86::CondCode CC;
1063 bool SwapArgs;
1064 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1065 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1067 if (SwapArgs)
1068 std::swap(LhsReg, RhsReg);
1070 // Emit a compare of LHS/RHS.
1071 MachineInstr &CmpInst =
1072 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp))
1073 .addReg(LhsReg)
1074 .addReg(RhsReg);
1076 MachineInstr &Set =
1077 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::SETCCr), ResultReg).addImm(CC);
1078 constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI);
1079 constrainSelectedInstRegOperands(Set, TII, TRI, RBI);
1080 I.eraseFromParent();
1081 return true;
1084 bool X86InstructionSelector::selectUadde(MachineInstr &I,
1085 MachineRegisterInfo &MRI,
1086 MachineFunction &MF) const {
1087 assert((I.getOpcode() == TargetOpcode::G_UADDE) && "unexpected instruction");
1089 const Register DstReg = I.getOperand(0).getReg();
1090 const Register CarryOutReg = I.getOperand(1).getReg();
1091 const Register Op0Reg = I.getOperand(2).getReg();
1092 const Register Op1Reg = I.getOperand(3).getReg();
1093 Register CarryInReg = I.getOperand(4).getReg();
1095 const LLT DstTy = MRI.getType(DstReg);
1097 if (DstTy != LLT::scalar(32))
1098 return false;
1100 // find CarryIn def instruction.
1101 MachineInstr *Def = MRI.getVRegDef(CarryInReg);
1102 while (Def->getOpcode() == TargetOpcode::G_TRUNC) {
1103 CarryInReg = Def->getOperand(1).getReg();
1104 Def = MRI.getVRegDef(CarryInReg);
1107 unsigned Opcode;
1108 if (Def->getOpcode() == TargetOpcode::G_UADDE) {
1109 // carry set by prev ADD.
1111 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), X86::EFLAGS)
1112 .addReg(CarryInReg);
1114 if (!RBI.constrainGenericRegister(CarryInReg, X86::GR32RegClass, MRI))
1115 return false;
1117 Opcode = X86::ADC32rr;
1118 } else if (auto val = getConstantVRegVal(CarryInReg, MRI)) {
1119 // carry is constant, support only 0.
1120 if (*val != 0)
1121 return false;
1123 Opcode = X86::ADD32rr;
1124 } else
1125 return false;
1127 MachineInstr &AddInst =
1128 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode), DstReg)
1129 .addReg(Op0Reg)
1130 .addReg(Op1Reg);
1132 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), CarryOutReg)
1133 .addReg(X86::EFLAGS);
1135 if (!constrainSelectedInstRegOperands(AddInst, TII, TRI, RBI) ||
1136 !RBI.constrainGenericRegister(CarryOutReg, X86::GR32RegClass, MRI))
1137 return false;
1139 I.eraseFromParent();
1140 return true;
1143 bool X86InstructionSelector::selectExtract(MachineInstr &I,
1144 MachineRegisterInfo &MRI,
1145 MachineFunction &MF) const {
1146 assert((I.getOpcode() == TargetOpcode::G_EXTRACT) &&
1147 "unexpected instruction");
1149 const Register DstReg = I.getOperand(0).getReg();
1150 const Register SrcReg = I.getOperand(1).getReg();
1151 int64_t Index = I.getOperand(2).getImm();
1153 const LLT DstTy = MRI.getType(DstReg);
1154 const LLT SrcTy = MRI.getType(SrcReg);
1156 // Meanwile handle vector type only.
1157 if (!DstTy.isVector())
1158 return false;
1160 if (Index % DstTy.getSizeInBits() != 0)
1161 return false; // Not extract subvector.
1163 if (Index == 0) {
1164 // Replace by extract subreg copy.
1165 if (!emitExtractSubreg(DstReg, SrcReg, I, MRI, MF))
1166 return false;
1168 I.eraseFromParent();
1169 return true;
1172 bool HasAVX = STI.hasAVX();
1173 bool HasAVX512 = STI.hasAVX512();
1174 bool HasVLX = STI.hasVLX();
1176 if (SrcTy.getSizeInBits() == 256 && DstTy.getSizeInBits() == 128) {
1177 if (HasVLX)
1178 I.setDesc(TII.get(X86::VEXTRACTF32x4Z256rr));
1179 else if (HasAVX)
1180 I.setDesc(TII.get(X86::VEXTRACTF128rr));
1181 else
1182 return false;
1183 } else if (SrcTy.getSizeInBits() == 512 && HasAVX512) {
1184 if (DstTy.getSizeInBits() == 128)
1185 I.setDesc(TII.get(X86::VEXTRACTF32x4Zrr));
1186 else if (DstTy.getSizeInBits() == 256)
1187 I.setDesc(TII.get(X86::VEXTRACTF64x4Zrr));
1188 else
1189 return false;
1190 } else
1191 return false;
1193 // Convert to X86 VEXTRACT immediate.
1194 Index = Index / DstTy.getSizeInBits();
1195 I.getOperand(2).setImm(Index);
1197 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1200 bool X86InstructionSelector::emitExtractSubreg(unsigned DstReg, unsigned SrcReg,
1201 MachineInstr &I,
1202 MachineRegisterInfo &MRI,
1203 MachineFunction &MF) const {
1204 const LLT DstTy = MRI.getType(DstReg);
1205 const LLT SrcTy = MRI.getType(SrcReg);
1206 unsigned SubIdx = X86::NoSubRegister;
1208 if (!DstTy.isVector() || !SrcTy.isVector())
1209 return false;
1211 assert(SrcTy.getSizeInBits() > DstTy.getSizeInBits() &&
1212 "Incorrect Src/Dst register size");
1214 if (DstTy.getSizeInBits() == 128)
1215 SubIdx = X86::sub_xmm;
1216 else if (DstTy.getSizeInBits() == 256)
1217 SubIdx = X86::sub_ymm;
1218 else
1219 return false;
1221 const TargetRegisterClass *DstRC = getRegClass(DstTy, DstReg, MRI);
1222 const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcReg, MRI);
1224 SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubIdx);
1226 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
1227 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
1228 LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC\n");
1229 return false;
1232 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), DstReg)
1233 .addReg(SrcReg, 0, SubIdx);
1235 return true;
1238 bool X86InstructionSelector::emitInsertSubreg(unsigned DstReg, unsigned SrcReg,
1239 MachineInstr &I,
1240 MachineRegisterInfo &MRI,
1241 MachineFunction &MF) const {
1242 const LLT DstTy = MRI.getType(DstReg);
1243 const LLT SrcTy = MRI.getType(SrcReg);
1244 unsigned SubIdx = X86::NoSubRegister;
1246 // TODO: support scalar types
1247 if (!DstTy.isVector() || !SrcTy.isVector())
1248 return false;
1250 assert(SrcTy.getSizeInBits() < DstTy.getSizeInBits() &&
1251 "Incorrect Src/Dst register size");
1253 if (SrcTy.getSizeInBits() == 128)
1254 SubIdx = X86::sub_xmm;
1255 else if (SrcTy.getSizeInBits() == 256)
1256 SubIdx = X86::sub_ymm;
1257 else
1258 return false;
1260 const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcReg, MRI);
1261 const TargetRegisterClass *DstRC = getRegClass(DstTy, DstReg, MRI);
1263 if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
1264 !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
1265 LLVM_DEBUG(dbgs() << "Failed to constrain INSERT_SUBREG\n");
1266 return false;
1269 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY))
1270 .addReg(DstReg, RegState::DefineNoRead, SubIdx)
1271 .addReg(SrcReg);
1273 return true;
1276 bool X86InstructionSelector::selectInsert(MachineInstr &I,
1277 MachineRegisterInfo &MRI,
1278 MachineFunction &MF) const {
1279 assert((I.getOpcode() == TargetOpcode::G_INSERT) && "unexpected instruction");
1281 const Register DstReg = I.getOperand(0).getReg();
1282 const Register SrcReg = I.getOperand(1).getReg();
1283 const Register InsertReg = I.getOperand(2).getReg();
1284 int64_t Index = I.getOperand(3).getImm();
1286 const LLT DstTy = MRI.getType(DstReg);
1287 const LLT InsertRegTy = MRI.getType(InsertReg);
1289 // Meanwile handle vector type only.
1290 if (!DstTy.isVector())
1291 return false;
1293 if (Index % InsertRegTy.getSizeInBits() != 0)
1294 return false; // Not insert subvector.
1296 if (Index == 0 && MRI.getVRegDef(SrcReg)->isImplicitDef()) {
1297 // Replace by subreg copy.
1298 if (!emitInsertSubreg(DstReg, InsertReg, I, MRI, MF))
1299 return false;
1301 I.eraseFromParent();
1302 return true;
1305 bool HasAVX = STI.hasAVX();
1306 bool HasAVX512 = STI.hasAVX512();
1307 bool HasVLX = STI.hasVLX();
1309 if (DstTy.getSizeInBits() == 256 && InsertRegTy.getSizeInBits() == 128) {
1310 if (HasVLX)
1311 I.setDesc(TII.get(X86::VINSERTF32x4Z256rr));
1312 else if (HasAVX)
1313 I.setDesc(TII.get(X86::VINSERTF128rr));
1314 else
1315 return false;
1316 } else if (DstTy.getSizeInBits() == 512 && HasAVX512) {
1317 if (InsertRegTy.getSizeInBits() == 128)
1318 I.setDesc(TII.get(X86::VINSERTF32x4Zrr));
1319 else if (InsertRegTy.getSizeInBits() == 256)
1320 I.setDesc(TII.get(X86::VINSERTF64x4Zrr));
1321 else
1322 return false;
1323 } else
1324 return false;
1326 // Convert to X86 VINSERT immediate.
1327 Index = Index / InsertRegTy.getSizeInBits();
1329 I.getOperand(3).setImm(Index);
1331 return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
1334 bool X86InstructionSelector::selectUnmergeValues(
1335 MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) {
1336 assert((I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES) &&
1337 "unexpected instruction");
1339 // Split to extracts.
1340 unsigned NumDefs = I.getNumOperands() - 1;
1341 Register SrcReg = I.getOperand(NumDefs).getReg();
1342 unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
1344 for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
1345 MachineInstr &ExtrInst =
1346 *BuildMI(*I.getParent(), I, I.getDebugLoc(),
1347 TII.get(TargetOpcode::G_EXTRACT), I.getOperand(Idx).getReg())
1348 .addReg(SrcReg)
1349 .addImm(Idx * DefSize);
1351 if (!select(ExtrInst))
1352 return false;
1355 I.eraseFromParent();
1356 return true;
1359 bool X86InstructionSelector::selectMergeValues(
1360 MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) {
1361 assert((I.getOpcode() == TargetOpcode::G_MERGE_VALUES ||
1362 I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS) &&
1363 "unexpected instruction");
1365 // Split to inserts.
1366 Register DstReg = I.getOperand(0).getReg();
1367 Register SrcReg0 = I.getOperand(1).getReg();
1369 const LLT DstTy = MRI.getType(DstReg);
1370 const LLT SrcTy = MRI.getType(SrcReg0);
1371 unsigned SrcSize = SrcTy.getSizeInBits();
1373 const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI);
1375 // For the first src use insertSubReg.
1376 Register DefReg = MRI.createGenericVirtualRegister(DstTy);
1377 MRI.setRegBank(DefReg, RegBank);
1378 if (!emitInsertSubreg(DefReg, I.getOperand(1).getReg(), I, MRI, MF))
1379 return false;
1381 for (unsigned Idx = 2; Idx < I.getNumOperands(); ++Idx) {
1382 Register Tmp = MRI.createGenericVirtualRegister(DstTy);
1383 MRI.setRegBank(Tmp, RegBank);
1385 MachineInstr &InsertInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
1386 TII.get(TargetOpcode::G_INSERT), Tmp)
1387 .addReg(DefReg)
1388 .addReg(I.getOperand(Idx).getReg())
1389 .addImm((Idx - 1) * SrcSize);
1391 DefReg = Tmp;
1393 if (!select(InsertInst))
1394 return false;
1397 MachineInstr &CopyInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
1398 TII.get(TargetOpcode::COPY), DstReg)
1399 .addReg(DefReg);
1401 if (!select(CopyInst))
1402 return false;
1404 I.eraseFromParent();
1405 return true;
1408 bool X86InstructionSelector::selectCondBranch(MachineInstr &I,
1409 MachineRegisterInfo &MRI,
1410 MachineFunction &MF) const {
1411 assert((I.getOpcode() == TargetOpcode::G_BRCOND) && "unexpected instruction");
1413 const Register CondReg = I.getOperand(0).getReg();
1414 MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
1416 MachineInstr &TestInst =
1417 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::TEST8ri))
1418 .addReg(CondReg)
1419 .addImm(1);
1420 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::JCC_1))
1421 .addMBB(DestMBB).addImm(X86::COND_NE);
1423 constrainSelectedInstRegOperands(TestInst, TII, TRI, RBI);
1425 I.eraseFromParent();
1426 return true;
1429 bool X86InstructionSelector::materializeFP(MachineInstr &I,
1430 MachineRegisterInfo &MRI,
1431 MachineFunction &MF) const {
1432 assert((I.getOpcode() == TargetOpcode::G_FCONSTANT) &&
1433 "unexpected instruction");
1435 // Can't handle alternate code models yet.
1436 CodeModel::Model CM = TM.getCodeModel();
1437 if (CM != CodeModel::Small && CM != CodeModel::Large)
1438 return false;
1440 const Register DstReg = I.getOperand(0).getReg();
1441 const LLT DstTy = MRI.getType(DstReg);
1442 const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI);
1443 unsigned Align = DstTy.getSizeInBits();
1444 const DebugLoc &DbgLoc = I.getDebugLoc();
1446 unsigned Opc = getLoadStoreOp(DstTy, RegBank, TargetOpcode::G_LOAD, Align);
1448 // Create the load from the constant pool.
1449 const ConstantFP *CFP = I.getOperand(1).getFPImm();
1450 unsigned CPI = MF.getConstantPool()->getConstantPoolIndex(CFP, Align);
1451 MachineInstr *LoadInst = nullptr;
1452 unsigned char OpFlag = STI.classifyLocalReference(nullptr);
1454 if (CM == CodeModel::Large && STI.is64Bit()) {
1455 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
1456 // they cannot be folded into immediate fields.
1458 Register AddrReg = MRI.createVirtualRegister(&X86::GR64RegClass);
1459 BuildMI(*I.getParent(), I, DbgLoc, TII.get(X86::MOV64ri), AddrReg)
1460 .addConstantPoolIndex(CPI, 0, OpFlag);
1462 MachineMemOperand *MMO = MF.getMachineMemOperand(
1463 MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad,
1464 MF.getDataLayout().getPointerSize(), Align);
1466 LoadInst =
1467 addDirectMem(BuildMI(*I.getParent(), I, DbgLoc, TII.get(Opc), DstReg),
1468 AddrReg)
1469 .addMemOperand(MMO);
1471 } else if (CM == CodeModel::Small || !STI.is64Bit()) {
1472 // Handle the case when globals fit in our immediate field.
1473 // This is true for X86-32 always and X86-64 when in -mcmodel=small mode.
1475 // x86-32 PIC requires a PIC base register for constant pools.
1476 unsigned PICBase = 0;
1477 if (OpFlag == X86II::MO_PIC_BASE_OFFSET || OpFlag == X86II::MO_GOTOFF) {
1478 // PICBase can be allocated by TII.getGlobalBaseReg(&MF).
1479 // In DAGISEL the code that initialize it generated by the CGBR pass.
1480 return false; // TODO support the mode.
1481 } else if (STI.is64Bit() && TM.getCodeModel() == CodeModel::Small)
1482 PICBase = X86::RIP;
1484 LoadInst = addConstantPoolReference(
1485 BuildMI(*I.getParent(), I, DbgLoc, TII.get(Opc), DstReg), CPI, PICBase,
1486 OpFlag);
1487 } else
1488 return false;
1490 constrainSelectedInstRegOperands(*LoadInst, TII, TRI, RBI);
1491 I.eraseFromParent();
1492 return true;
1495 bool X86InstructionSelector::selectImplicitDefOrPHI(
1496 MachineInstr &I, MachineRegisterInfo &MRI) const {
1497 assert((I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF ||
1498 I.getOpcode() == TargetOpcode::G_PHI) &&
1499 "unexpected instruction");
1501 Register DstReg = I.getOperand(0).getReg();
1503 if (!MRI.getRegClassOrNull(DstReg)) {
1504 const LLT DstTy = MRI.getType(DstReg);
1505 const TargetRegisterClass *RC = getRegClass(DstTy, DstReg, MRI);
1507 if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) {
1508 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
1509 << " operand\n");
1510 return false;
1514 if (I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
1515 I.setDesc(TII.get(X86::IMPLICIT_DEF));
1516 else
1517 I.setDesc(TII.get(X86::PHI));
1519 return true;
1522 // Currently GlobalIsel TableGen generates patterns for shift imm and shift 1,
1523 // but with shiftCount i8. In G_LSHR/G_ASHR/G_SHL like LLVM-IR both arguments
1524 // has the same type, so for now only shift i8 can use auto generated
1525 // TableGen patterns.
1526 bool X86InstructionSelector::selectShift(MachineInstr &I,
1527 MachineRegisterInfo &MRI,
1528 MachineFunction &MF) const {
1530 assert((I.getOpcode() == TargetOpcode::G_SHL ||
1531 I.getOpcode() == TargetOpcode::G_ASHR ||
1532 I.getOpcode() == TargetOpcode::G_LSHR) &&
1533 "unexpected instruction");
1535 Register DstReg = I.getOperand(0).getReg();
1536 const LLT DstTy = MRI.getType(DstReg);
1537 const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
1539 const static struct ShiftEntry {
1540 unsigned SizeInBits;
1541 unsigned OpLSHR;
1542 unsigned OpASHR;
1543 unsigned OpSHL;
1544 } OpTable[] = {
1545 {8, X86::SHR8rCL, X86::SAR8rCL, X86::SHL8rCL}, // i8
1546 {16, X86::SHR16rCL, X86::SAR16rCL, X86::SHL16rCL}, // i16
1547 {32, X86::SHR32rCL, X86::SAR32rCL, X86::SHL32rCL}, // i32
1548 {64, X86::SHR64rCL, X86::SAR64rCL, X86::SHL64rCL} // i64
1551 if (DstRB.getID() != X86::GPRRegBankID)
1552 return false;
1554 auto ShiftEntryIt = std::find_if(
1555 std::begin(OpTable), std::end(OpTable), [DstTy](const ShiftEntry &El) {
1556 return El.SizeInBits == DstTy.getSizeInBits();
1558 if (ShiftEntryIt == std::end(OpTable))
1559 return false;
1561 unsigned Opcode = 0;
1562 switch (I.getOpcode()) {
1563 case TargetOpcode::G_SHL:
1564 Opcode = ShiftEntryIt->OpSHL;
1565 break;
1566 case TargetOpcode::G_ASHR:
1567 Opcode = ShiftEntryIt->OpASHR;
1568 break;
1569 case TargetOpcode::G_LSHR:
1570 Opcode = ShiftEntryIt->OpLSHR;
1571 break;
1572 default:
1573 return false;
1576 Register Op0Reg = I.getOperand(1).getReg();
1577 Register Op1Reg = I.getOperand(2).getReg();
1579 assert(MRI.getType(Op1Reg).getSizeInBits() == 8);
1581 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(TargetOpcode::COPY),
1582 X86::CL)
1583 .addReg(Op1Reg);
1585 MachineInstr &ShiftInst =
1586 *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode), DstReg)
1587 .addReg(Op0Reg);
1589 constrainSelectedInstRegOperands(ShiftInst, TII, TRI, RBI);
1590 I.eraseFromParent();
1591 return true;
1594 bool X86InstructionSelector::selectDivRem(MachineInstr &I,
1595 MachineRegisterInfo &MRI,
1596 MachineFunction &MF) const {
1597 // The implementation of this function is taken from X86FastISel.
1598 assert((I.getOpcode() == TargetOpcode::G_SDIV ||
1599 I.getOpcode() == TargetOpcode::G_SREM ||
1600 I.getOpcode() == TargetOpcode::G_UDIV ||
1601 I.getOpcode() == TargetOpcode::G_UREM) &&
1602 "unexpected instruction");
1604 const Register DstReg = I.getOperand(0).getReg();
1605 const Register Op1Reg = I.getOperand(1).getReg();
1606 const Register Op2Reg = I.getOperand(2).getReg();
1608 const LLT RegTy = MRI.getType(DstReg);
1609 assert(RegTy == MRI.getType(Op1Reg) && RegTy == MRI.getType(Op2Reg) &&
1610 "Arguments and return value types must match");
1612 const RegisterBank *RegRB = RBI.getRegBank(DstReg, MRI, TRI);
1613 if (!RegRB || RegRB->getID() != X86::GPRRegBankID)
1614 return false;
1616 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1617 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1618 const static bool S = true; // IsSigned
1619 const static bool U = false; // !IsSigned
1620 const static unsigned Copy = TargetOpcode::COPY;
1621 // For the X86 IDIV instruction, in most cases the dividend
1622 // (numerator) must be in a specific register pair highreg:lowreg,
1623 // producing the quotient in lowreg and the remainder in highreg.
1624 // For most data types, to set up the instruction, the dividend is
1625 // copied into lowreg, and lowreg is sign-extended into highreg. The
1626 // exception is i8, where the dividend is defined as a single register rather
1627 // than a register pair, and we therefore directly sign-extend the dividend
1628 // into lowreg, instead of copying, and ignore the highreg.
1629 const static struct DivRemEntry {
1630 // The following portion depends only on the data type.
1631 unsigned SizeInBits;
1632 unsigned LowInReg; // low part of the register pair
1633 unsigned HighInReg; // high part of the register pair
1634 // The following portion depends on both the data type and the operation.
1635 struct DivRemResult {
1636 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1637 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1638 // highreg, or copying a zero into highreg.
1639 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1640 // zero/sign-extending into lowreg for i8.
1641 unsigned DivRemResultReg; // Register containing the desired result.
1642 bool IsOpSigned; // Whether to use signed or unsigned form.
1643 } ResultTable[NumOps];
1644 } OpTable[NumTypes] = {
1646 X86::AX,
1649 {X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S}, // SDiv
1650 {X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S}, // SRem
1651 {X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U}, // UDiv
1652 {X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U}, // URem
1653 }}, // i8
1654 {16,
1655 X86::AX,
1656 X86::DX,
1658 {X86::IDIV16r, X86::CWD, Copy, X86::AX, S}, // SDiv
1659 {X86::IDIV16r, X86::CWD, Copy, X86::DX, S}, // SRem
1660 {X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U}, // UDiv
1661 {X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U}, // URem
1662 }}, // i16
1663 {32,
1664 X86::EAX,
1665 X86::EDX,
1667 {X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S}, // SDiv
1668 {X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S}, // SRem
1669 {X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U}, // UDiv
1670 {X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U}, // URem
1671 }}, // i32
1672 {64,
1673 X86::RAX,
1674 X86::RDX,
1676 {X86::IDIV64r, X86::CQO, Copy, X86::RAX, S}, // SDiv
1677 {X86::IDIV64r, X86::CQO, Copy, X86::RDX, S}, // SRem
1678 {X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U}, // UDiv
1679 {X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U}, // URem
1680 }}, // i64
1683 auto OpEntryIt = std::find_if(std::begin(OpTable), std::end(OpTable),
1684 [RegTy](const DivRemEntry &El) {
1685 return El.SizeInBits == RegTy.getSizeInBits();
1687 if (OpEntryIt == std::end(OpTable))
1688 return false;
1690 unsigned OpIndex;
1691 switch (I.getOpcode()) {
1692 default:
1693 llvm_unreachable("Unexpected div/rem opcode");
1694 case TargetOpcode::G_SDIV:
1695 OpIndex = 0;
1696 break;
1697 case TargetOpcode::G_SREM:
1698 OpIndex = 1;
1699 break;
1700 case TargetOpcode::G_UDIV:
1701 OpIndex = 2;
1702 break;
1703 case TargetOpcode::G_UREM:
1704 OpIndex = 3;
1705 break;
1708 const DivRemEntry &TypeEntry = *OpEntryIt;
1709 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1711 const TargetRegisterClass *RegRC = getRegClass(RegTy, *RegRB);
1712 if (!RBI.constrainGenericRegister(Op1Reg, *RegRC, MRI) ||
1713 !RBI.constrainGenericRegister(Op2Reg, *RegRC, MRI) ||
1714 !RBI.constrainGenericRegister(DstReg, *RegRC, MRI)) {
1715 LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
1716 << " operand\n");
1717 return false;
1720 // Move op1 into low-order input register.
1721 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpEntry.OpCopy),
1722 TypeEntry.LowInReg)
1723 .addReg(Op1Reg);
1724 // Zero-extend or sign-extend into high-order input register.
1725 if (OpEntry.OpSignExtend) {
1726 if (OpEntry.IsOpSigned)
1727 BuildMI(*I.getParent(), I, I.getDebugLoc(),
1728 TII.get(OpEntry.OpSignExtend));
1729 else {
1730 Register Zero32 = MRI.createVirtualRegister(&X86::GR32RegClass);
1731 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::MOV32r0),
1732 Zero32);
1734 // Copy the zero into the appropriate sub/super/identical physical
1735 // register. Unfortunately the operations needed are not uniform enough
1736 // to fit neatly into the table above.
1737 if (RegTy.getSizeInBits() == 16) {
1738 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy),
1739 TypeEntry.HighInReg)
1740 .addReg(Zero32, 0, X86::sub_16bit);
1741 } else if (RegTy.getSizeInBits() == 32) {
1742 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy),
1743 TypeEntry.HighInReg)
1744 .addReg(Zero32);
1745 } else if (RegTy.getSizeInBits() == 64) {
1746 BuildMI(*I.getParent(), I, I.getDebugLoc(),
1747 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1748 .addImm(0)
1749 .addReg(Zero32)
1750 .addImm(X86::sub_32bit);
1754 // Generate the DIV/IDIV instruction.
1755 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpEntry.OpDivRem))
1756 .addReg(Op2Reg);
1757 // For i8 remainder, we can't reference ah directly, as we'll end
1758 // up with bogus copies like %r9b = COPY %ah. Reference ax
1759 // instead to prevent ah references in a rex instruction.
1761 // The current assumption of the fast register allocator is that isel
1762 // won't generate explicit references to the GR8_NOREX registers. If
1763 // the allocator and/or the backend get enhanced to be more robust in
1764 // that regard, this can be, and should be, removed.
1765 if ((I.getOpcode() == Instruction::SRem ||
1766 I.getOpcode() == Instruction::URem) &&
1767 OpEntry.DivRemResultReg == X86::AH && STI.is64Bit()) {
1768 Register SourceSuperReg = MRI.createVirtualRegister(&X86::GR16RegClass);
1769 Register ResultSuperReg = MRI.createVirtualRegister(&X86::GR16RegClass);
1770 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy), SourceSuperReg)
1771 .addReg(X86::AX);
1773 // Shift AX right by 8 bits instead of using AH.
1774 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::SHR16ri),
1775 ResultSuperReg)
1776 .addReg(SourceSuperReg)
1777 .addImm(8);
1779 // Now reference the 8-bit subreg of the result.
1780 BuildMI(*I.getParent(), I, I.getDebugLoc(),
1781 TII.get(TargetOpcode::SUBREG_TO_REG))
1782 .addDef(DstReg)
1783 .addImm(0)
1784 .addReg(ResultSuperReg)
1785 .addImm(X86::sub_8bit);
1786 } else {
1787 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(TargetOpcode::COPY),
1788 DstReg)
1789 .addReg(OpEntry.DivRemResultReg);
1791 I.eraseFromParent();
1792 return true;
1795 bool X86InstructionSelector::selectIntrinsicWSideEffects(
1796 MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) const {
1798 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS &&
1799 "unexpected instruction");
1801 if (I.getOperand(0).getIntrinsicID() != Intrinsic::trap)
1802 return false;
1804 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::TRAP));
1806 I.eraseFromParent();
1807 return true;
1810 InstructionSelector *
1811 llvm::createX86InstructionSelector(const X86TargetMachine &TM,
1812 X86Subtarget &Subtarget,
1813 X86RegisterBankInfo &RBI) {
1814 return new X86InstructionSelector(TM, Subtarget, RBI);