[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / X86 / X86RegisterInfo.cpp
blobff625325b4c9312b8a564b2b630c82549baf33a9
1 //===-- X86RegisterInfo.cpp - X86 Register Information --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of the TargetRegisterInfo class.
10 // This file is responsible for the frame pointer elimination optimization
11 // on X86.
13 //===----------------------------------------------------------------------===//
15 #include "X86RegisterInfo.h"
16 #include "X86FrameLowering.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetFrameLowering.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
37 #define GET_REGINFO_TARGET_DESC
38 #include "X86GenRegisterInfo.inc"
40 static cl::opt<bool>
41 EnableBasePointer("x86-use-base-pointer", cl::Hidden, cl::init(true),
42 cl::desc("Enable use of a base pointer for complex stack frames"));
44 X86RegisterInfo::X86RegisterInfo(const Triple &TT)
45 : X86GenRegisterInfo((TT.isArch64Bit() ? X86::RIP : X86::EIP),
46 X86_MC::getDwarfRegFlavour(TT, false),
47 X86_MC::getDwarfRegFlavour(TT, true),
48 (TT.isArch64Bit() ? X86::RIP : X86::EIP)) {
49 X86_MC::initLLVMToSEHAndCVRegMapping(this);
51 // Cache some information.
52 Is64Bit = TT.isArch64Bit();
53 IsWin64 = Is64Bit && TT.isOSWindows();
55 // Use a callee-saved register as the base pointer. These registers must
56 // not conflict with any ABI requirements. For example, in 32-bit mode PIC
57 // requires GOT in the EBX register before function calls via PLT GOT pointer.
58 if (Is64Bit) {
59 SlotSize = 8;
60 // This matches the simplified 32-bit pointer code in the data layout
61 // computation.
62 // FIXME: Should use the data layout?
63 bool Use64BitReg = TT.getEnvironment() != Triple::GNUX32;
64 StackPtr = Use64BitReg ? X86::RSP : X86::ESP;
65 FramePtr = Use64BitReg ? X86::RBP : X86::EBP;
66 BasePtr = Use64BitReg ? X86::RBX : X86::EBX;
67 } else {
68 SlotSize = 4;
69 StackPtr = X86::ESP;
70 FramePtr = X86::EBP;
71 BasePtr = X86::ESI;
75 bool
76 X86RegisterInfo::trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
77 // ExecutionDomainFix, BreakFalseDeps and PostRAScheduler require liveness.
78 return true;
81 int
82 X86RegisterInfo::getSEHRegNum(unsigned i) const {
83 return getEncodingValue(i);
86 const TargetRegisterClass *
87 X86RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
88 unsigned Idx) const {
89 // The sub_8bit sub-register index is more constrained in 32-bit mode.
90 // It behaves just like the sub_8bit_hi index.
91 if (!Is64Bit && Idx == X86::sub_8bit)
92 Idx = X86::sub_8bit_hi;
94 // Forward to TableGen's default version.
95 return X86GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
98 const TargetRegisterClass *
99 X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
100 const TargetRegisterClass *B,
101 unsigned SubIdx) const {
102 // The sub_8bit sub-register index is more constrained in 32-bit mode.
103 if (!Is64Bit && SubIdx == X86::sub_8bit) {
104 A = X86GenRegisterInfo::getSubClassWithSubReg(A, X86::sub_8bit_hi);
105 if (!A)
106 return nullptr;
108 return X86GenRegisterInfo::getMatchingSuperRegClass(A, B, SubIdx);
111 const TargetRegisterClass *
112 X86RegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
113 const MachineFunction &MF) const {
114 // Don't allow super-classes of GR8_NOREX. This class is only used after
115 // extracting sub_8bit_hi sub-registers. The H sub-registers cannot be copied
116 // to the full GR8 register class in 64-bit mode, so we cannot allow the
117 // reigster class inflation.
119 // The GR8_NOREX class is always used in a way that won't be constrained to a
120 // sub-class, so sub-classes like GR8_ABCD_L are allowed to expand to the
121 // full GR8 class.
122 if (RC == &X86::GR8_NOREXRegClass)
123 return RC;
125 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
127 const TargetRegisterClass *Super = RC;
128 TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
129 do {
130 switch (Super->getID()) {
131 case X86::FR32RegClassID:
132 case X86::FR64RegClassID:
133 // If AVX-512 isn't supported we should only inflate to these classes.
134 if (!Subtarget.hasAVX512() &&
135 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
136 return Super;
137 break;
138 case X86::VR128RegClassID:
139 case X86::VR256RegClassID:
140 // If VLX isn't supported we should only inflate to these classes.
141 if (!Subtarget.hasVLX() &&
142 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
143 return Super;
144 break;
145 case X86::VR128XRegClassID:
146 case X86::VR256XRegClassID:
147 // If VLX isn't support we shouldn't inflate to these classes.
148 if (Subtarget.hasVLX() &&
149 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
150 return Super;
151 break;
152 case X86::FR32XRegClassID:
153 case X86::FR64XRegClassID:
154 // If AVX-512 isn't support we shouldn't inflate to these classes.
155 if (Subtarget.hasAVX512() &&
156 getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
157 return Super;
158 break;
159 case X86::GR8RegClassID:
160 case X86::GR16RegClassID:
161 case X86::GR32RegClassID:
162 case X86::GR64RegClassID:
163 case X86::RFP32RegClassID:
164 case X86::RFP64RegClassID:
165 case X86::RFP80RegClassID:
166 case X86::VR512_0_15RegClassID:
167 case X86::VR512RegClassID:
168 // Don't return a super-class that would shrink the spill size.
169 // That can happen with the vector and float classes.
170 if (getRegSizeInBits(*Super) == getRegSizeInBits(*RC))
171 return Super;
173 Super = *I++;
174 } while (Super);
175 return RC;
178 const TargetRegisterClass *
179 X86RegisterInfo::getPointerRegClass(const MachineFunction &MF,
180 unsigned Kind) const {
181 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
182 switch (Kind) {
183 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
184 case 0: // Normal GPRs.
185 if (Subtarget.isTarget64BitLP64())
186 return &X86::GR64RegClass;
187 // If the target is 64bit but we have been told to use 32bit addresses,
188 // we can still use 64-bit register as long as we know the high bits
189 // are zeros.
190 // Reflect that in the returned register class.
191 if (Is64Bit) {
192 // When the target also allows 64-bit frame pointer and we do have a
193 // frame, this is fine to use it for the address accesses as well.
194 const X86FrameLowering *TFI = getFrameLowering(MF);
195 return TFI->hasFP(MF) && TFI->Uses64BitFramePtr
196 ? &X86::LOW32_ADDR_ACCESS_RBPRegClass
197 : &X86::LOW32_ADDR_ACCESSRegClass;
199 return &X86::GR32RegClass;
200 case 1: // Normal GPRs except the stack pointer (for encoding reasons).
201 if (Subtarget.isTarget64BitLP64())
202 return &X86::GR64_NOSPRegClass;
203 // NOSP does not contain RIP, so no special case here.
204 return &X86::GR32_NOSPRegClass;
205 case 2: // NOREX GPRs.
206 if (Subtarget.isTarget64BitLP64())
207 return &X86::GR64_NOREXRegClass;
208 return &X86::GR32_NOREXRegClass;
209 case 3: // NOREX GPRs except the stack pointer (for encoding reasons).
210 if (Subtarget.isTarget64BitLP64())
211 return &X86::GR64_NOREX_NOSPRegClass;
212 // NOSP does not contain RIP, so no special case here.
213 return &X86::GR32_NOREX_NOSPRegClass;
214 case 4: // Available for tailcall (not callee-saved GPRs).
215 return getGPRsForTailCall(MF);
219 bool X86RegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
220 unsigned DefSubReg,
221 const TargetRegisterClass *SrcRC,
222 unsigned SrcSubReg) const {
223 // Prevent rewriting a copy where the destination size is larger than the
224 // input size. See PR41619.
225 // FIXME: Should this be factored into the base implementation somehow.
226 if (DefRC->hasSuperClassEq(&X86::GR64RegClass) && DefSubReg == 0 &&
227 SrcRC->hasSuperClassEq(&X86::GR64RegClass) && SrcSubReg == X86::sub_32bit)
228 return false;
230 return TargetRegisterInfo::shouldRewriteCopySrc(DefRC, DefSubReg,
231 SrcRC, SrcSubReg);
234 const TargetRegisterClass *
235 X86RegisterInfo::getGPRsForTailCall(const MachineFunction &MF) const {
236 const Function &F = MF.getFunction();
237 if (IsWin64 || (F.getCallingConv() == CallingConv::Win64))
238 return &X86::GR64_TCW64RegClass;
239 else if (Is64Bit)
240 return &X86::GR64_TCRegClass;
242 bool hasHipeCC = (F.getCallingConv() == CallingConv::HiPE);
243 if (hasHipeCC)
244 return &X86::GR32RegClass;
245 return &X86::GR32_TCRegClass;
248 const TargetRegisterClass *
249 X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
250 if (RC == &X86::CCRRegClass) {
251 if (Is64Bit)
252 return &X86::GR64RegClass;
253 else
254 return &X86::GR32RegClass;
256 return RC;
259 unsigned
260 X86RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
261 MachineFunction &MF) const {
262 const X86FrameLowering *TFI = getFrameLowering(MF);
264 unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
265 switch (RC->getID()) {
266 default:
267 return 0;
268 case X86::GR32RegClassID:
269 return 4 - FPDiff;
270 case X86::GR64RegClassID:
271 return 12 - FPDiff;
272 case X86::VR128RegClassID:
273 return Is64Bit ? 10 : 4;
274 case X86::VR64RegClassID:
275 return 4;
279 const MCPhysReg *
280 X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
281 assert(MF && "MachineFunction required");
283 const X86Subtarget &Subtarget = MF->getSubtarget<X86Subtarget>();
284 const Function &F = MF->getFunction();
285 bool HasSSE = Subtarget.hasSSE1();
286 bool HasAVX = Subtarget.hasAVX();
287 bool HasAVX512 = Subtarget.hasAVX512();
288 bool CallsEHReturn = MF->callsEHReturn();
290 CallingConv::ID CC = F.getCallingConv();
292 // If attribute NoCallerSavedRegisters exists then we set X86_INTR calling
293 // convention because it has the CSR list.
294 if (MF->getFunction().hasFnAttribute("no_caller_saved_registers"))
295 CC = CallingConv::X86_INTR;
297 switch (CC) {
298 case CallingConv::GHC:
299 case CallingConv::HiPE:
300 return CSR_NoRegs_SaveList;
301 case CallingConv::AnyReg:
302 if (HasAVX)
303 return CSR_64_AllRegs_AVX_SaveList;
304 return CSR_64_AllRegs_SaveList;
305 case CallingConv::PreserveMost:
306 return CSR_64_RT_MostRegs_SaveList;
307 case CallingConv::PreserveAll:
308 if (HasAVX)
309 return CSR_64_RT_AllRegs_AVX_SaveList;
310 return CSR_64_RT_AllRegs_SaveList;
311 case CallingConv::CXX_FAST_TLS:
312 if (Is64Bit)
313 return MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR() ?
314 CSR_64_CXX_TLS_Darwin_PE_SaveList : CSR_64_TLS_Darwin_SaveList;
315 break;
316 case CallingConv::Intel_OCL_BI: {
317 if (HasAVX512 && IsWin64)
318 return CSR_Win64_Intel_OCL_BI_AVX512_SaveList;
319 if (HasAVX512 && Is64Bit)
320 return CSR_64_Intel_OCL_BI_AVX512_SaveList;
321 if (HasAVX && IsWin64)
322 return CSR_Win64_Intel_OCL_BI_AVX_SaveList;
323 if (HasAVX && Is64Bit)
324 return CSR_64_Intel_OCL_BI_AVX_SaveList;
325 if (!HasAVX && !IsWin64 && Is64Bit)
326 return CSR_64_Intel_OCL_BI_SaveList;
327 break;
329 case CallingConv::HHVM:
330 return CSR_64_HHVM_SaveList;
331 case CallingConv::X86_RegCall:
332 if (Is64Bit) {
333 if (IsWin64) {
334 return (HasSSE ? CSR_Win64_RegCall_SaveList :
335 CSR_Win64_RegCall_NoSSE_SaveList);
336 } else {
337 return (HasSSE ? CSR_SysV64_RegCall_SaveList :
338 CSR_SysV64_RegCall_NoSSE_SaveList);
340 } else {
341 return (HasSSE ? CSR_32_RegCall_SaveList :
342 CSR_32_RegCall_NoSSE_SaveList);
344 case CallingConv::Cold:
345 if (Is64Bit)
346 return CSR_64_MostRegs_SaveList;
347 break;
348 case CallingConv::Win64:
349 if (!HasSSE)
350 return CSR_Win64_NoSSE_SaveList;
351 return CSR_Win64_SaveList;
352 case CallingConv::X86_64_SysV:
353 if (CallsEHReturn)
354 return CSR_64EHRet_SaveList;
355 return CSR_64_SaveList;
356 case CallingConv::X86_INTR:
357 if (Is64Bit) {
358 if (HasAVX512)
359 return CSR_64_AllRegs_AVX512_SaveList;
360 if (HasAVX)
361 return CSR_64_AllRegs_AVX_SaveList;
362 if (HasSSE)
363 return CSR_64_AllRegs_SaveList;
364 return CSR_64_AllRegs_NoSSE_SaveList;
365 } else {
366 if (HasAVX512)
367 return CSR_32_AllRegs_AVX512_SaveList;
368 if (HasAVX)
369 return CSR_32_AllRegs_AVX_SaveList;
370 if (HasSSE)
371 return CSR_32_AllRegs_SSE_SaveList;
372 return CSR_32_AllRegs_SaveList;
374 default:
375 break;
378 if (Is64Bit) {
379 bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
380 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
381 if (IsSwiftCC)
382 return IsWin64 ? CSR_Win64_SwiftError_SaveList
383 : CSR_64_SwiftError_SaveList;
385 if (IsWin64)
386 return HasSSE ? CSR_Win64_SaveList : CSR_Win64_NoSSE_SaveList;
387 if (CallsEHReturn)
388 return CSR_64EHRet_SaveList;
389 return CSR_64_SaveList;
392 return CallsEHReturn ? CSR_32EHRet_SaveList : CSR_32_SaveList;
395 const MCPhysReg *X86RegisterInfo::getCalleeSavedRegsViaCopy(
396 const MachineFunction *MF) const {
397 assert(MF && "Invalid MachineFunction pointer.");
398 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
399 MF->getInfo<X86MachineFunctionInfo>()->isSplitCSR())
400 return CSR_64_CXX_TLS_Darwin_ViaCopy_SaveList;
401 return nullptr;
404 const uint32_t *
405 X86RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
406 CallingConv::ID CC) const {
407 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
408 bool HasSSE = Subtarget.hasSSE1();
409 bool HasAVX = Subtarget.hasAVX();
410 bool HasAVX512 = Subtarget.hasAVX512();
412 switch (CC) {
413 case CallingConv::GHC:
414 case CallingConv::HiPE:
415 return CSR_NoRegs_RegMask;
416 case CallingConv::AnyReg:
417 if (HasAVX)
418 return CSR_64_AllRegs_AVX_RegMask;
419 return CSR_64_AllRegs_RegMask;
420 case CallingConv::PreserveMost:
421 return CSR_64_RT_MostRegs_RegMask;
422 case CallingConv::PreserveAll:
423 if (HasAVX)
424 return CSR_64_RT_AllRegs_AVX_RegMask;
425 return CSR_64_RT_AllRegs_RegMask;
426 case CallingConv::CXX_FAST_TLS:
427 if (Is64Bit)
428 return CSR_64_TLS_Darwin_RegMask;
429 break;
430 case CallingConv::Intel_OCL_BI: {
431 if (HasAVX512 && IsWin64)
432 return CSR_Win64_Intel_OCL_BI_AVX512_RegMask;
433 if (HasAVX512 && Is64Bit)
434 return CSR_64_Intel_OCL_BI_AVX512_RegMask;
435 if (HasAVX && IsWin64)
436 return CSR_Win64_Intel_OCL_BI_AVX_RegMask;
437 if (HasAVX && Is64Bit)
438 return CSR_64_Intel_OCL_BI_AVX_RegMask;
439 if (!HasAVX && !IsWin64 && Is64Bit)
440 return CSR_64_Intel_OCL_BI_RegMask;
441 break;
443 case CallingConv::HHVM:
444 return CSR_64_HHVM_RegMask;
445 case CallingConv::X86_RegCall:
446 if (Is64Bit) {
447 if (IsWin64) {
448 return (HasSSE ? CSR_Win64_RegCall_RegMask :
449 CSR_Win64_RegCall_NoSSE_RegMask);
450 } else {
451 return (HasSSE ? CSR_SysV64_RegCall_RegMask :
452 CSR_SysV64_RegCall_NoSSE_RegMask);
454 } else {
455 return (HasSSE ? CSR_32_RegCall_RegMask :
456 CSR_32_RegCall_NoSSE_RegMask);
458 case CallingConv::Cold:
459 if (Is64Bit)
460 return CSR_64_MostRegs_RegMask;
461 break;
462 case CallingConv::Win64:
463 return CSR_Win64_RegMask;
464 case CallingConv::X86_64_SysV:
465 return CSR_64_RegMask;
466 case CallingConv::X86_INTR:
467 if (Is64Bit) {
468 if (HasAVX512)
469 return CSR_64_AllRegs_AVX512_RegMask;
470 if (HasAVX)
471 return CSR_64_AllRegs_AVX_RegMask;
472 if (HasSSE)
473 return CSR_64_AllRegs_RegMask;
474 return CSR_64_AllRegs_NoSSE_RegMask;
475 } else {
476 if (HasAVX512)
477 return CSR_32_AllRegs_AVX512_RegMask;
478 if (HasAVX)
479 return CSR_32_AllRegs_AVX_RegMask;
480 if (HasSSE)
481 return CSR_32_AllRegs_SSE_RegMask;
482 return CSR_32_AllRegs_RegMask;
484 default:
485 break;
488 // Unlike getCalleeSavedRegs(), we don't have MMI so we can't check
489 // callsEHReturn().
490 if (Is64Bit) {
491 const Function &F = MF.getFunction();
492 bool IsSwiftCC = Subtarget.getTargetLowering()->supportSwiftError() &&
493 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError);
494 if (IsSwiftCC)
495 return IsWin64 ? CSR_Win64_SwiftError_RegMask : CSR_64_SwiftError_RegMask;
496 return IsWin64 ? CSR_Win64_RegMask : CSR_64_RegMask;
499 return CSR_32_RegMask;
502 const uint32_t*
503 X86RegisterInfo::getNoPreservedMask() const {
504 return CSR_NoRegs_RegMask;
507 const uint32_t *X86RegisterInfo::getDarwinTLSCallPreservedMask() const {
508 return CSR_64_TLS_Darwin_RegMask;
511 BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
512 BitVector Reserved(getNumRegs());
513 const X86FrameLowering *TFI = getFrameLowering(MF);
515 // Set the floating point control register as reserved.
516 Reserved.set(X86::FPCW);
518 // Set the stack-pointer register and its aliases as reserved.
519 for (MCSubRegIterator I(X86::RSP, this, /*IncludeSelf=*/true); I.isValid();
520 ++I)
521 Reserved.set(*I);
523 // Set the Shadow Stack Pointer as reserved.
524 Reserved.set(X86::SSP);
526 // Set the instruction pointer register and its aliases as reserved.
527 for (MCSubRegIterator I(X86::RIP, this, /*IncludeSelf=*/true); I.isValid();
528 ++I)
529 Reserved.set(*I);
531 // Set the frame-pointer register and its aliases as reserved if needed.
532 if (TFI->hasFP(MF)) {
533 for (MCSubRegIterator I(X86::RBP, this, /*IncludeSelf=*/true); I.isValid();
534 ++I)
535 Reserved.set(*I);
538 // Set the base-pointer register and its aliases as reserved if needed.
539 if (hasBasePointer(MF)) {
540 CallingConv::ID CC = MF.getFunction().getCallingConv();
541 const uint32_t *RegMask = getCallPreservedMask(MF, CC);
542 if (MachineOperand::clobbersPhysReg(RegMask, getBaseRegister()))
543 report_fatal_error(
544 "Stack realignment in presence of dynamic allocas is not supported with"
545 "this calling convention.");
547 Register BasePtr = getX86SubSuperRegister(getBaseRegister(), 64);
548 for (MCSubRegIterator I(BasePtr, this, /*IncludeSelf=*/true);
549 I.isValid(); ++I)
550 Reserved.set(*I);
553 // Mark the segment registers as reserved.
554 Reserved.set(X86::CS);
555 Reserved.set(X86::SS);
556 Reserved.set(X86::DS);
557 Reserved.set(X86::ES);
558 Reserved.set(X86::FS);
559 Reserved.set(X86::GS);
561 // Mark the floating point stack registers as reserved.
562 for (unsigned n = 0; n != 8; ++n)
563 Reserved.set(X86::ST0 + n);
565 // Reserve the registers that only exist in 64-bit mode.
566 if (!Is64Bit) {
567 // These 8-bit registers are part of the x86-64 extension even though their
568 // super-registers are old 32-bits.
569 Reserved.set(X86::SIL);
570 Reserved.set(X86::DIL);
571 Reserved.set(X86::BPL);
572 Reserved.set(X86::SPL);
573 Reserved.set(X86::SIH);
574 Reserved.set(X86::DIH);
575 Reserved.set(X86::BPH);
576 Reserved.set(X86::SPH);
578 for (unsigned n = 0; n != 8; ++n) {
579 // R8, R9, ...
580 for (MCRegAliasIterator AI(X86::R8 + n, this, true); AI.isValid(); ++AI)
581 Reserved.set(*AI);
583 // XMM8, XMM9, ...
584 for (MCRegAliasIterator AI(X86::XMM8 + n, this, true); AI.isValid(); ++AI)
585 Reserved.set(*AI);
588 if (!Is64Bit || !MF.getSubtarget<X86Subtarget>().hasAVX512()) {
589 for (unsigned n = 16; n != 32; ++n) {
590 for (MCRegAliasIterator AI(X86::XMM0 + n, this, true); AI.isValid(); ++AI)
591 Reserved.set(*AI);
595 assert(checkAllSuperRegsMarked(Reserved,
596 {X86::SIL, X86::DIL, X86::BPL, X86::SPL,
597 X86::SIH, X86::DIH, X86::BPH, X86::SPH}));
598 return Reserved;
601 void X86RegisterInfo::adjustStackMapLiveOutMask(uint32_t *Mask) const {
602 // Check if the EFLAGS register is marked as live-out. This shouldn't happen,
603 // because the calling convention defines the EFLAGS register as NOT
604 // preserved.
606 // Unfortunatelly the EFLAGS show up as live-out after branch folding. Adding
607 // an assert to track this and clear the register afterwards to avoid
608 // unnecessary crashes during release builds.
609 assert(!(Mask[X86::EFLAGS / 32] & (1U << (X86::EFLAGS % 32))) &&
610 "EFLAGS are not live-out from a patchpoint.");
612 // Also clean other registers that don't need preserving (IP).
613 for (auto Reg : {X86::EFLAGS, X86::RIP, X86::EIP, X86::IP})
614 Mask[Reg / 32] &= ~(1U << (Reg % 32));
617 //===----------------------------------------------------------------------===//
618 // Stack Frame Processing methods
619 //===----------------------------------------------------------------------===//
621 static bool CantUseSP(const MachineFrameInfo &MFI) {
622 return MFI.hasVarSizedObjects() || MFI.hasOpaqueSPAdjustment();
625 bool X86RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
626 const MachineFrameInfo &MFI = MF.getFrameInfo();
628 if (!EnableBasePointer)
629 return false;
631 // When we need stack realignment, we can't address the stack from the frame
632 // pointer. When we have dynamic allocas or stack-adjusting inline asm, we
633 // can't address variables from the stack pointer. MS inline asm can
634 // reference locals while also adjusting the stack pointer. When we can't
635 // use both the SP and the FP, we need a separate base pointer register.
636 bool CantUseFP = needsStackRealignment(MF);
637 return CantUseFP && CantUseSP(MFI);
640 bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
641 if (!TargetRegisterInfo::canRealignStack(MF))
642 return false;
644 const MachineFrameInfo &MFI = MF.getFrameInfo();
645 const MachineRegisterInfo *MRI = &MF.getRegInfo();
647 // Stack realignment requires a frame pointer. If we already started
648 // register allocation with frame pointer elimination, it is too late now.
649 if (!MRI->canReserveReg(FramePtr))
650 return false;
652 // If a base pointer is necessary. Check that it isn't too late to reserve
653 // it.
654 if (CantUseSP(MFI))
655 return MRI->canReserveReg(BasePtr);
656 return true;
659 bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
660 unsigned Reg, int &FrameIdx) const {
661 // Since X86 defines assignCalleeSavedSpillSlots which always return true
662 // this function neither used nor tested.
663 llvm_unreachable("Unused function on X86. Otherwise need a test case.");
666 // tryOptimizeLEAtoMOV - helper function that tries to replace a LEA instruction
667 // of the form 'lea (%esp), %ebx' --> 'mov %esp, %ebx'.
668 // TODO: In this case we should be really trying first to entirely eliminate
669 // this instruction which is a plain copy.
670 static bool tryOptimizeLEAtoMOV(MachineBasicBlock::iterator II) {
671 MachineInstr &MI = *II;
672 unsigned Opc = II->getOpcode();
673 // Check if this is a LEA of the form 'lea (%esp), %ebx'
674 if ((Opc != X86::LEA32r && Opc != X86::LEA64r && Opc != X86::LEA64_32r) ||
675 MI.getOperand(2).getImm() != 1 ||
676 MI.getOperand(3).getReg() != X86::NoRegister ||
677 MI.getOperand(4).getImm() != 0 ||
678 MI.getOperand(5).getReg() != X86::NoRegister)
679 return false;
680 Register BasePtr = MI.getOperand(1).getReg();
681 // In X32 mode, ensure the base-pointer is a 32-bit operand, so the LEA will
682 // be replaced with a 32-bit operand MOV which will zero extend the upper
683 // 32-bits of the super register.
684 if (Opc == X86::LEA64_32r)
685 BasePtr = getX86SubSuperRegister(BasePtr, 32);
686 Register NewDestReg = MI.getOperand(0).getReg();
687 const X86InstrInfo *TII =
688 MI.getParent()->getParent()->getSubtarget<X86Subtarget>().getInstrInfo();
689 TII->copyPhysReg(*MI.getParent(), II, MI.getDebugLoc(), NewDestReg, BasePtr,
690 MI.getOperand(1).isKill());
691 MI.eraseFromParent();
692 return true;
695 static bool isFuncletReturnInstr(MachineInstr &MI) {
696 switch (MI.getOpcode()) {
697 case X86::CATCHRET:
698 case X86::CLEANUPRET:
699 return true;
700 default:
701 return false;
703 llvm_unreachable("impossible");
706 void
707 X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
708 int SPAdj, unsigned FIOperandNum,
709 RegScavenger *RS) const {
710 MachineInstr &MI = *II;
711 MachineBasicBlock &MBB = *MI.getParent();
712 MachineFunction &MF = *MBB.getParent();
713 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
714 bool IsEHFuncletEpilogue = MBBI == MBB.end() ? false
715 : isFuncletReturnInstr(*MBBI);
716 const X86FrameLowering *TFI = getFrameLowering(MF);
717 int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
719 // Determine base register and offset.
720 int FIOffset;
721 unsigned BasePtr;
722 if (MI.isReturn()) {
723 assert((!needsStackRealignment(MF) ||
724 MF.getFrameInfo().isFixedObjectIndex(FrameIndex)) &&
725 "Return instruction can only reference SP relative frame objects");
726 FIOffset = TFI->getFrameIndexReferenceSP(MF, FrameIndex, BasePtr, 0);
727 } else if (TFI->Is64Bit && (MBB.isEHFuncletEntry() || IsEHFuncletEpilogue)) {
728 FIOffset = TFI->getWin64EHFrameIndexRef(MF, FrameIndex, BasePtr);
729 } else {
730 FIOffset = TFI->getFrameIndexReference(MF, FrameIndex, BasePtr);
733 // LOCAL_ESCAPE uses a single offset, with no register. It only works in the
734 // simple FP case, and doesn't work with stack realignment. On 32-bit, the
735 // offset is from the traditional base pointer location. On 64-bit, the
736 // offset is from the SP at the end of the prologue, not the FP location. This
737 // matches the behavior of llvm.frameaddress.
738 unsigned Opc = MI.getOpcode();
739 if (Opc == TargetOpcode::LOCAL_ESCAPE) {
740 MachineOperand &FI = MI.getOperand(FIOperandNum);
741 FI.ChangeToImmediate(FIOffset);
742 return;
745 // For LEA64_32r when BasePtr is 32-bits (X32) we can use full-size 64-bit
746 // register as source operand, semantic is the same and destination is
747 // 32-bits. It saves one byte per lea in code since 0x67 prefix is avoided.
748 // Don't change BasePtr since it is used later for stack adjustment.
749 Register MachineBasePtr = BasePtr;
750 if (Opc == X86::LEA64_32r && X86::GR32RegClass.contains(BasePtr))
751 MachineBasePtr = getX86SubSuperRegister(BasePtr, 64);
753 // This must be part of a four operand memory reference. Replace the
754 // FrameIndex with base register. Add an offset to the offset.
755 MI.getOperand(FIOperandNum).ChangeToRegister(MachineBasePtr, false);
757 if (BasePtr == StackPtr)
758 FIOffset += SPAdj;
760 // The frame index format for stackmaps and patchpoints is different from the
761 // X86 format. It only has a FI and an offset.
762 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
763 assert(BasePtr == FramePtr && "Expected the FP as base register");
764 int64_t Offset = MI.getOperand(FIOperandNum + 1).getImm() + FIOffset;
765 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset);
766 return;
769 if (MI.getOperand(FIOperandNum+3).isImm()) {
770 // Offset is a 32-bit integer.
771 int Imm = (int)(MI.getOperand(FIOperandNum + 3).getImm());
772 int Offset = FIOffset + Imm;
773 assert((!Is64Bit || isInt<32>((long long)FIOffset + Imm)) &&
774 "Requesting 64-bit offset in 32-bit immediate!");
775 if (Offset != 0 || !tryOptimizeLEAtoMOV(II))
776 MI.getOperand(FIOperandNum + 3).ChangeToImmediate(Offset);
777 } else {
778 // Offset is symbolic. This is extremely rare.
779 uint64_t Offset = FIOffset +
780 (uint64_t)MI.getOperand(FIOperandNum+3).getOffset();
781 MI.getOperand(FIOperandNum + 3).setOffset(Offset);
785 Register X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
786 const X86FrameLowering *TFI = getFrameLowering(MF);
787 return TFI->hasFP(MF) ? FramePtr : StackPtr;
790 unsigned
791 X86RegisterInfo::getPtrSizedFrameRegister(const MachineFunction &MF) const {
792 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
793 Register FrameReg = getFrameRegister(MF);
794 if (Subtarget.isTarget64BitILP32())
795 FrameReg = getX86SubSuperRegister(FrameReg, 32);
796 return FrameReg;
799 unsigned
800 X86RegisterInfo::getPtrSizedStackRegister(const MachineFunction &MF) const {
801 const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
802 Register StackReg = getStackRegister();
803 if (Subtarget.isTarget64BitILP32())
804 StackReg = getX86SubSuperRegister(StackReg, 32);
805 return StackReg;