[Alignment][NFC] Use Align with TargetLowering::setMinFunctionAlignment
[llvm-core.git] / lib / Target / X86 / X86SelectionDAGInfo.cpp
blob1ae8df977f83707109e21dc42e7c514c98172ae3
1 //===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86SelectionDAGInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "X86SelectionDAGInfo.h"
14 #include "X86ISelLowering.h"
15 #include "X86InstrInfo.h"
16 #include "X86RegisterInfo.h"
17 #include "X86Subtarget.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/IR/DerivedTypes.h"
22 using namespace llvm;
24 #define DEBUG_TYPE "x86-selectiondag-info"
26 bool X86SelectionDAGInfo::isBaseRegConflictPossible(
27 SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
28 // We cannot use TRI->hasBasePointer() until *after* we select all basic
29 // blocks. Legalization may introduce new stack temporaries with large
30 // alignment requirements. Fall back to generic code if there are any
31 // dynamic stack adjustments (hopefully rare) and the base pointer would
32 // conflict if we had to use it.
33 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
34 if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
35 return false;
37 const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
38 DAG.getSubtarget().getRegisterInfo());
39 Register BaseReg = TRI->getBaseRegister();
40 for (unsigned R : ClobberSet)
41 if (BaseReg == R)
42 return true;
43 return false;
46 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
47 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
48 SDValue Size, unsigned Align, bool isVolatile,
49 MachinePointerInfo DstPtrInfo) const {
50 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
51 const X86Subtarget &Subtarget =
52 DAG.getMachineFunction().getSubtarget<X86Subtarget>();
54 #ifndef NDEBUG
55 // If the base register might conflict with our physical registers, bail out.
56 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
57 X86::ECX, X86::EAX, X86::EDI};
58 assert(!isBaseRegConflictPossible(DAG, ClobberSet));
59 #endif
61 // If to a segment-relative address space, use the default lowering.
62 if (DstPtrInfo.getAddrSpace() >= 256)
63 return SDValue();
65 // If not DWORD aligned or size is more than the threshold, call the library.
66 // The libc version is likely to be faster for these cases. It can use the
67 // address value and run time information about the CPU.
68 if ((Align & 3) != 0 || !ConstantSize ||
69 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
70 // Check to see if there is a specialized entry-point for memory zeroing.
71 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
73 if (const char *bzeroName = (ValC && ValC->isNullValue())
74 ? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
75 : nullptr) {
76 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
77 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
78 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
79 TargetLowering::ArgListTy Args;
80 TargetLowering::ArgListEntry Entry;
81 Entry.Node = Dst;
82 Entry.Ty = IntPtrTy;
83 Args.push_back(Entry);
84 Entry.Node = Size;
85 Args.push_back(Entry);
87 TargetLowering::CallLoweringInfo CLI(DAG);
88 CLI.setDebugLoc(dl)
89 .setChain(Chain)
90 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
91 DAG.getExternalSymbol(bzeroName, IntPtr),
92 std::move(Args))
93 .setDiscardResult();
95 std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
96 return CallResult.second;
99 // Otherwise have the target-independent code call memset.
100 return SDValue();
103 uint64_t SizeVal = ConstantSize->getZExtValue();
104 SDValue InFlag;
105 EVT AVT;
106 SDValue Count;
107 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
108 unsigned BytesLeft = 0;
109 if (ValC) {
110 unsigned ValReg;
111 uint64_t Val = ValC->getZExtValue() & 255;
113 // If the value is a constant, then we can potentially use larger sets.
114 switch (Align & 3) {
115 case 2: // WORD aligned
116 AVT = MVT::i16;
117 ValReg = X86::AX;
118 Val = (Val << 8) | Val;
119 break;
120 case 0: // DWORD aligned
121 AVT = MVT::i32;
122 ValReg = X86::EAX;
123 Val = (Val << 8) | Val;
124 Val = (Val << 16) | Val;
125 if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
126 AVT = MVT::i64;
127 ValReg = X86::RAX;
128 Val = (Val << 32) | Val;
130 break;
131 default: // Byte aligned
132 AVT = MVT::i8;
133 ValReg = X86::AL;
134 Count = DAG.getIntPtrConstant(SizeVal, dl);
135 break;
138 if (AVT.bitsGT(MVT::i8)) {
139 unsigned UBytes = AVT.getSizeInBits() / 8;
140 Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
141 BytesLeft = SizeVal % UBytes;
144 Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
145 InFlag);
146 InFlag = Chain.getValue(1);
147 } else {
148 AVT = MVT::i8;
149 Count = DAG.getIntPtrConstant(SizeVal, dl);
150 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
151 InFlag = Chain.getValue(1);
154 bool Use64BitRegs = Subtarget.isTarget64BitLP64();
155 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
156 Count, InFlag);
157 InFlag = Chain.getValue(1);
158 Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
159 Dst, InFlag);
160 InFlag = Chain.getValue(1);
162 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
163 SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
164 Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
166 if (BytesLeft) {
167 // Handle the last 1 - 7 bytes.
168 unsigned Offset = SizeVal - BytesLeft;
169 EVT AddrVT = Dst.getValueType();
170 EVT SizeVT = Size.getValueType();
172 Chain = DAG.getMemset(Chain, dl,
173 DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
174 DAG.getConstant(Offset, dl, AddrVT)),
175 Val,
176 DAG.getConstant(BytesLeft, dl, SizeVT),
177 Align, isVolatile, false,
178 DstPtrInfo.getWithOffset(Offset));
181 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
182 return Chain;
185 /// Emit a single REP MOVS{B,W,D,Q} instruction.
186 static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
187 const SDLoc &dl, SDValue Chain, SDValue Dst,
188 SDValue Src, SDValue Size, MVT AVT) {
189 const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
190 const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
191 const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
192 const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
194 SDValue InFlag;
195 Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
196 InFlag = Chain.getValue(1);
197 Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
198 InFlag = Chain.getValue(1);
199 Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
200 InFlag = Chain.getValue(1);
202 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
203 SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
204 return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
207 /// Emit a single REP MOVSB instruction for a particular constant size.
208 static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
209 const SDLoc &dl, SDValue Chain, SDValue Dst,
210 SDValue Src, uint64_t Size) {
211 return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
212 DAG.getIntPtrConstant(Size, dl), MVT::i8);
215 /// Returns the best type to use with repmovs depending on alignment.
216 static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
217 uint64_t Align) {
218 assert((Align != 0) && "Align is normalized");
219 assert(isPowerOf2_64(Align) && "Align is a power of 2");
220 switch (Align) {
221 case 1:
222 return MVT::i8;
223 case 2:
224 return MVT::i16;
225 case 4:
226 return MVT::i32;
227 default:
228 return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
232 /// Returns a REP MOVS instruction, possibly with a few load/stores to implement
233 /// a constant size memory copy. In some cases where we know REP MOVS is
234 /// inefficient we return an empty SDValue so the calling code can either
235 /// generate a load/store sequence or call the runtime memcpy function.
236 static SDValue emitConstantSizeRepmov(
237 SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
238 SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
239 unsigned Align, bool isVolatile, bool AlwaysInline,
240 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
242 /// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
243 /// efficient.
244 if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
245 return SDValue();
247 /// If we have enhanced repmovs we use it.
248 if (Subtarget.hasERMSB())
249 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
251 assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
252 /// We assume runtime memcpy will do a better job for unaligned copies when
253 /// ERMS is not present.
254 if (!AlwaysInline && (Align & 3) != 0)
255 return SDValue();
257 const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
258 const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
259 const uint64_t BlockCount = Size / BlockBytes;
260 const uint64_t BytesLeft = Size % BlockBytes;
261 SDValue RepMovs =
262 emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
263 DAG.getIntPtrConstant(BlockCount, dl), BlockType);
265 /// RepMov can process the whole length.
266 if (BytesLeft == 0)
267 return RepMovs;
269 assert(BytesLeft && "We have leftover at this point");
271 /// In case we optimize for size we use repmovsb even if it's less efficient
272 /// so we can save the loads/stores of the leftover.
273 if (DAG.getMachineFunction().getFunction().hasMinSize())
274 return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
276 // Handle the last 1 - 7 bytes.
277 SmallVector<SDValue, 4> Results;
278 Results.push_back(RepMovs);
279 unsigned Offset = Size - BytesLeft;
280 EVT DstVT = Dst.getValueType();
281 EVT SrcVT = Src.getValueType();
282 Results.push_back(DAG.getMemcpy(
283 Chain, dl,
284 DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
285 DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
286 DAG.getConstant(BytesLeft, dl, SizeVT), Align, isVolatile,
287 /*AlwaysInline*/ true, /*isTailCall*/ false,
288 DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
289 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
292 SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
293 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
294 SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline,
295 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
296 // If to a segment-relative address space, use the default lowering.
297 if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
298 return SDValue();
300 // If the base registers conflict with our physical registers, use the default
301 // lowering.
302 const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
303 X86::ECX, X86::ESI, X86::EDI};
304 if (isBaseRegConflictPossible(DAG, ClobberSet))
305 return SDValue();
307 const X86Subtarget &Subtarget =
308 DAG.getMachineFunction().getSubtarget<X86Subtarget>();
310 /// Handle constant sizes,
311 if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
312 return emitConstantSizeRepmov(DAG, Subtarget, dl, Chain, Dst, Src,
313 ConstantSize->getZExtValue(),
314 Size.getValueType(), Align, isVolatile,
315 AlwaysInline, DstPtrInfo, SrcPtrInfo);
317 return SDValue();