1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the X86 specific subclass of TargetSubtargetInfo.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_X86_X86SUBTARGET_H
14 #define LLVM_LIB_TARGET_X86_X86SUBTARGET_H
16 #include "X86FrameLowering.h"
17 #include "X86ISelLowering.h"
18 #include "X86InstrInfo.h"
19 #include "X86SelectionDAGInfo.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
23 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
24 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
25 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/Target/TargetMachine.h"
32 #define GET_SUBTARGETINFO_HEADER
33 #include "X86GenSubtargetInfo.inc"
39 /// The X86 backend supports a number of different styles of PIC.
44 StubPIC
, // Used on i386-darwin in pic mode.
45 GOT
, // Used on 32 bit elf on when in pic mode.
46 RIPRel
, // Used on X86-64 when in pic mode.
47 None
// Set when not in pic mode.
50 } // end namespace PICStyles
52 class X86Subtarget final
: public X86GenSubtargetInfo
{
54 // NOTE: Do not add anything new to this list. Coarse, CPU name based flags
55 // are not a good idea. We should be migrating away from these.
56 enum X86ProcFamilyEnum
{
67 NoSSE
, SSE1
, SSE2
, SSE3
, SSSE3
, SSE41
, SSE42
, AVX
, AVX2
, AVX512F
71 NoThreeDNow
, MMX
, ThreeDNow
, ThreeDNowA
74 /// X86 processor family: Intel Atom, and others
75 X86ProcFamilyEnum X86ProcFamily
= Others
;
77 /// Which PIC style to use
78 PICStyles::Style PICStyle
;
80 const TargetMachine
&TM
;
82 /// SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or none supported.
83 X86SSEEnum X86SSELevel
= NoSSE
;
85 /// MMX, 3DNow, 3DNow Athlon, or none supported.
86 X863DNowEnum X863DNowLevel
= NoThreeDNow
;
88 /// True if the processor supports X87 instructions.
91 /// True if the processor supports CMPXCHG8B.
92 bool HasCmpxchg8b
= false;
94 /// True if this processor has NOPL instruction
95 /// (generally pentium pro+).
98 /// True if this processor has conditional move instructions
99 /// (generally pentium pro+).
100 bool HasCMov
= false;
102 /// True if the processor supports X86-64 instructions.
103 bool HasX86_64
= false;
105 /// True if the processor supports POPCNT.
106 bool HasPOPCNT
= false;
108 /// True if the processor supports SSE4A instructions.
109 bool HasSSE4A
= false;
111 /// Target has AES instructions
113 bool HasVAES
= false;
115 /// Target has FXSAVE/FXRESTOR instructions
116 bool HasFXSR
= false;
118 /// Target has XSAVE instructions
119 bool HasXSAVE
= false;
121 /// Target has XSAVEOPT instructions
122 bool HasXSAVEOPT
= false;
124 /// Target has XSAVEC instructions
125 bool HasXSAVEC
= false;
127 /// Target has XSAVES instructions
128 bool HasXSAVES
= false;
130 /// Target has carry-less multiplication
131 bool HasPCLMUL
= false;
132 bool HasVPCLMULQDQ
= false;
134 /// Target has Galois Field Arithmetic instructions
135 bool HasGFNI
= false;
137 /// Target has 3-operand fused multiply-add
140 /// Target has 4-operand fused multiply-add
141 bool HasFMA4
= false;
143 /// Target has XOP instructions
146 /// Target has TBM instructions.
149 /// Target has LWP instructions
152 /// True if the processor has the MOVBE instruction.
153 bool HasMOVBE
= false;
155 /// True if the processor has the RDRAND instruction.
156 bool HasRDRAND
= false;
158 /// Processor has 16-bit floating point conversion instructions.
159 bool HasF16C
= false;
161 /// Processor has FS/GS base insturctions.
162 bool HasFSGSBase
= false;
164 /// Processor has LZCNT instruction.
165 bool HasLZCNT
= false;
167 /// Processor has BMI1 instructions.
170 /// Processor has BMI2 instructions.
171 bool HasBMI2
= false;
173 /// Processor has VBMI instructions.
174 bool HasVBMI
= false;
176 /// Processor has VBMI2 instructions.
177 bool HasVBMI2
= false;
179 /// Processor has Integer Fused Multiply Add
180 bool HasIFMA
= false;
182 /// Processor has RTM instructions.
185 /// Processor has ADX instructions.
188 /// Processor has SHA instructions.
191 /// Processor has PRFCHW instructions.
192 bool HasPRFCHW
= false;
194 /// Processor has RDSEED instructions.
195 bool HasRDSEED
= false;
197 /// Processor has LAHF/SAHF instructions.
198 bool HasLAHFSAHF
= false;
200 /// Processor has MONITORX/MWAITX instructions.
201 bool HasMWAITX
= false;
203 /// Processor has Cache Line Zero instruction
204 bool HasCLZERO
= false;
206 /// Processor has Cache Line Demote instruction
207 bool HasCLDEMOTE
= false;
209 /// Processor has MOVDIRI instruction (direct store integer).
210 bool HasMOVDIRI
= false;
212 /// Processor has MOVDIR64B instruction (direct store 64 bytes).
213 bool HasMOVDIR64B
= false;
215 /// Processor has ptwrite instruction.
216 bool HasPTWRITE
= false;
218 /// Processor has Prefetch with intent to Write instruction
219 bool HasPREFETCHWT1
= false;
221 /// True if SHLD instructions are slow.
222 bool IsSHLDSlow
= false;
224 /// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
226 bool IsPMULLDSlow
= false;
228 /// True if the PMADDWD instruction is slow compared to PMULLD.
229 bool IsPMADDWDSlow
= false;
231 /// True if unaligned memory accesses of 16-bytes are slow.
232 bool IsUAMem16Slow
= false;
234 /// True if unaligned memory accesses of 32-bytes are slow.
235 bool IsUAMem32Slow
= false;
237 /// True if SSE operations can have unaligned memory operands.
238 /// This may require setting a configuration bit in the processor.
239 bool HasSSEUnalignedMem
= false;
241 /// True if this processor has the CMPXCHG16B instruction;
242 /// this is true for most x86-64 chips, but not the first AMD chips.
243 bool HasCmpxchg16b
= false;
245 /// True if the LEA instruction should be used for adjusting
246 /// the stack pointer. This is an optimization for Intel Atom processors.
247 bool UseLeaForSP
= false;
249 /// True if POPCNT instruction has a false dependency on the destination register.
250 bool HasPOPCNTFalseDeps
= false;
252 /// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
253 bool HasLZCNTFalseDeps
= false;
255 /// True if its preferable to combine to a single shuffle using a variable
256 /// mask over multiple fixed shuffles.
257 bool HasFastVariableShuffle
= false;
259 /// True if there is no performance penalty to writing only the lower parts
260 /// of a YMM or ZMM register without clearing the upper part.
261 bool HasFastPartialYMMorZMMWrite
= false;
263 /// True if there is no performance penalty for writing NOPs with up to
265 bool HasFast11ByteNOP
= false;
267 /// True if there is no performance penalty for writing NOPs with up to
269 bool HasFast15ByteNOP
= false;
271 /// True if gather is reasonably fast. This is true for Skylake client and
272 /// all AVX-512 CPUs.
273 bool HasFastGather
= false;
275 /// True if hardware SQRTSS instruction is at least as fast (latency) as
276 /// RSQRTSS followed by a Newton-Raphson iteration.
277 bool HasFastScalarFSQRT
= false;
279 /// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
280 /// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
281 bool HasFastVectorFSQRT
= false;
283 /// True if 8-bit divisions are significantly faster than
284 /// 32-bit divisions and should be used when possible.
285 bool HasSlowDivide32
= false;
287 /// True if 32-bit divides are significantly faster than
288 /// 64-bit divisions and should be used when possible.
289 bool HasSlowDivide64
= false;
291 /// True if LZCNT instruction is fast.
292 bool HasFastLZCNT
= false;
294 /// True if SHLD based rotate is fast.
295 bool HasFastSHLDRotate
= false;
297 /// True if the processor supports macrofusion.
298 bool HasMacroFusion
= false;
300 /// True if the processor supports branch fusion.
301 bool HasBranchFusion
= false;
303 /// True if the processor has enhanced REP MOVSB/STOSB.
304 bool HasERMSB
= false;
306 /// True if the short functions should be padded to prevent
307 /// a stall when returning too early.
308 bool PadShortFunctions
= false;
310 /// True if two memory operand instructions should use a temporary register
312 bool SlowTwoMemOps
= false;
314 /// True if the LEA instruction inputs have to be ready at address generation
316 bool LEAUsesAG
= false;
318 /// True if the LEA instruction with certain arguments is slow
319 bool SlowLEA
= false;
321 /// True if the LEA instruction has all three source operands: base, index,
322 /// and offset or if the LEA instruction uses base and index registers where
323 /// the base is EBP, RBP,or R13
324 bool Slow3OpsLEA
= false;
326 /// True if INC and DEC instructions are slow when writing to flags
327 bool SlowIncDec
= false;
329 /// Processor has AVX-512 PreFetch Instructions
332 /// Processor has AVX-512 Exponential and Reciprocal Instructions
335 /// Processor has AVX-512 Conflict Detection Instructions
338 /// Processor has AVX-512 population count Instructions
339 bool HasVPOPCNTDQ
= false;
341 /// Processor has AVX-512 Doubleword and Quadword instructions
344 /// Processor has AVX-512 Byte and Word instructions
347 /// Processor has AVX-512 Vector Length eXtenstions
350 /// Processor has PKU extenstions
353 /// Processor has AVX-512 Vector Neural Network Instructions
354 bool HasVNNI
= false;
356 /// Processor has AVX-512 bfloat16 floating-point extensions
357 bool HasBF16
= false;
359 /// Processor supports ENQCMD instructions
360 bool HasENQCMD
= false;
362 /// Processor has AVX-512 Bit Algorithms instructions
363 bool HasBITALG
= false;
365 /// Processor has AVX-512 vp2intersect instructions
366 bool HasVP2INTERSECT
= false;
368 /// Deprecated flag for MPX instructions.
369 bool DeprecatedHasMPX
= false;
371 /// Processor supports CET SHSTK - Control-Flow Enforcement Technology
372 /// using Shadow Stack
373 bool HasSHSTK
= false;
375 /// Processor supports Invalidate Process-Context Identifier
376 bool HasINVPCID
= false;
378 /// Processor has Software Guard Extensions
381 /// Processor supports Flush Cache Line instruction
382 bool HasCLFLUSHOPT
= false;
384 /// Processor supports Cache Line Write Back instruction
385 bool HasCLWB
= false;
387 /// Processor supports Write Back No Invalidate instruction
388 bool HasWBNOINVD
= false;
390 /// Processor support RDPID instruction
391 bool HasRDPID
= false;
393 /// Processor supports WaitPKG instructions
394 bool HasWAITPKG
= false;
396 /// Processor supports PCONFIG instruction
397 bool HasPCONFIG
= false;
399 /// Processor has a single uop BEXTR implementation.
400 bool HasFastBEXTR
= false;
402 /// Try harder to combine to horizontal vector ops if they are fast.
403 bool HasFastHorizontalOps
= false;
405 /// Prefer a left/right scalar logical shifts pair over a shift+and pair.
406 bool HasFastScalarShiftMasks
= false;
408 /// Prefer a left/right vector logical shifts pair over a shift+and pair.
409 bool HasFastVectorShiftMasks
= false;
411 /// Use a retpoline thunk rather than indirect calls to block speculative
413 bool UseRetpolineIndirectCalls
= false;
415 /// Use a retpoline thunk or remove any indirect branch to block speculative
417 bool UseRetpolineIndirectBranches
= false;
419 /// Deprecated flag, query `UseRetpolineIndirectCalls` and
420 /// `UseRetpolineIndirectBranches` instead.
421 bool DeprecatedUseRetpoline
= false;
423 /// When using a retpoline thunk, call an externally provided thunk rather
424 /// than emitting one inside the compiler.
425 bool UseRetpolineExternalThunk
= false;
427 /// Use software floating point for code generation.
428 bool UseSoftFloat
= false;
430 /// The minimum alignment known to hold of the stack frame on
431 /// entry to the function and which must be maintained by every function.
432 unsigned stackAlignment
= 4;
434 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
436 // FIXME: this is a known good value for Yonah. How about others?
437 unsigned MaxInlineSizeThreshold
= 128;
439 /// Indicates target prefers 256 bit instructions.
440 bool Prefer256Bit
= false;
442 /// Threeway branch is profitable in this subtarget.
443 bool ThreewayBranchProfitable
= false;
445 /// What processor and OS we're targeting.
448 /// GlobalISel related APIs.
449 std::unique_ptr
<CallLowering
> CallLoweringInfo
;
450 std::unique_ptr
<LegalizerInfo
> Legalizer
;
451 std::unique_ptr
<RegisterBankInfo
> RegBankInfo
;
452 std::unique_ptr
<InstructionSelector
> InstSelector
;
455 /// Override the stack alignment.
456 unsigned StackAlignOverride
;
458 /// Preferred vector width from function attribute.
459 unsigned PreferVectorWidthOverride
;
461 /// Resolved preferred vector width from function attribute and subtarget
463 unsigned PreferVectorWidth
= UINT32_MAX
;
465 /// Required vector width from function attribute.
466 unsigned RequiredVectorWidth
;
468 /// True if compiling for 64-bit, false for 16-bit or 32-bit.
471 /// True if compiling for 32-bit, false for 16-bit or 64-bit.
474 /// True if compiling for 16-bit, false for 32-bit or 64-bit.
477 /// Contains the Overhead of gather\scatter instructions
478 int GatherOverhead
= 1024;
479 int ScatterOverhead
= 1024;
481 X86SelectionDAGInfo TSInfo
;
482 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
483 // X86TargetLowering needs.
484 X86InstrInfo InstrInfo
;
485 X86TargetLowering TLInfo
;
486 X86FrameLowering FrameLowering
;
489 /// This constructor initializes the data members to match that
490 /// of the specified triple.
492 X86Subtarget(const Triple
&TT
, StringRef CPU
, StringRef FS
,
493 const X86TargetMachine
&TM
, unsigned StackAlignOverride
,
494 unsigned PreferVectorWidthOverride
,
495 unsigned RequiredVectorWidth
);
497 const X86TargetLowering
*getTargetLowering() const override
{
501 const X86InstrInfo
*getInstrInfo() const override
{ return &InstrInfo
; }
503 const X86FrameLowering
*getFrameLowering() const override
{
504 return &FrameLowering
;
507 const X86SelectionDAGInfo
*getSelectionDAGInfo() const override
{
511 const X86RegisterInfo
*getRegisterInfo() const override
{
512 return &getInstrInfo()->getRegisterInfo();
515 /// Returns the minimum alignment known to hold of the
516 /// stack frame on entry to the function and which must be maintained by every
517 /// function for this subtarget.
518 unsigned getStackAlignment() const { return stackAlignment
; }
520 /// Returns the maximum memset / memcpy size
521 /// that still makes it profitable to inline the call.
522 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold
; }
524 /// ParseSubtargetFeatures - Parses features string setting specified
525 /// subtarget options. Definition of function is auto generated by tblgen.
526 void ParseSubtargetFeatures(StringRef CPU
, StringRef FS
);
528 /// Methods used by Global ISel
529 const CallLowering
*getCallLowering() const override
;
530 InstructionSelector
*getInstructionSelector() const override
;
531 const LegalizerInfo
*getLegalizerInfo() const override
;
532 const RegisterBankInfo
*getRegBankInfo() const override
;
535 /// Initialize the full set of dependencies so we can use an initializer
536 /// list for X86Subtarget.
537 X86Subtarget
&initializeSubtargetDependencies(StringRef CPU
, StringRef FS
);
538 void initSubtargetFeatures(StringRef CPU
, StringRef FS
);
541 /// Is this x86_64? (disregarding specific ABI / programming model)
542 bool is64Bit() const {
546 bool is32Bit() const {
550 bool is16Bit() const {
554 /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
555 bool isTarget64BitILP32() const {
556 return In64BitMode
&& (TargetTriple
.getEnvironment() == Triple::GNUX32
||
557 TargetTriple
.isOSNaCl());
560 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
561 bool isTarget64BitLP64() const {
562 return In64BitMode
&& (TargetTriple
.getEnvironment() != Triple::GNUX32
&&
563 !TargetTriple
.isOSNaCl());
566 PICStyles::Style
getPICStyle() const { return PICStyle
; }
567 void setPICStyle(PICStyles::Style Style
) { PICStyle
= Style
; }
569 bool hasX87() const { return HasX87
; }
570 bool hasCmpxchg8b() const { return HasCmpxchg8b
; }
571 bool hasNOPL() const { return HasNOPL
; }
572 // SSE codegen depends on cmovs, and all SSE1+ processors support them.
573 // All 64-bit processors support cmov.
574 bool hasCMov() const { return HasCMov
|| X86SSELevel
>= SSE1
|| is64Bit(); }
575 bool hasSSE1() const { return X86SSELevel
>= SSE1
; }
576 bool hasSSE2() const { return X86SSELevel
>= SSE2
; }
577 bool hasSSE3() const { return X86SSELevel
>= SSE3
; }
578 bool hasSSSE3() const { return X86SSELevel
>= SSSE3
; }
579 bool hasSSE41() const { return X86SSELevel
>= SSE41
; }
580 bool hasSSE42() const { return X86SSELevel
>= SSE42
; }
581 bool hasAVX() const { return X86SSELevel
>= AVX
; }
582 bool hasAVX2() const { return X86SSELevel
>= AVX2
; }
583 bool hasAVX512() const { return X86SSELevel
>= AVX512F
; }
584 bool hasInt256() const { return hasAVX2(); }
585 bool hasSSE4A() const { return HasSSE4A
; }
586 bool hasMMX() const { return X863DNowLevel
>= MMX
; }
587 bool has3DNow() const { return X863DNowLevel
>= ThreeDNow
; }
588 bool has3DNowA() const { return X863DNowLevel
>= ThreeDNowA
; }
589 bool hasPOPCNT() const { return HasPOPCNT
; }
590 bool hasAES() const { return HasAES
; }
591 bool hasVAES() const { return HasVAES
; }
592 bool hasFXSR() const { return HasFXSR
; }
593 bool hasXSAVE() const { return HasXSAVE
; }
594 bool hasXSAVEOPT() const { return HasXSAVEOPT
; }
595 bool hasXSAVEC() const { return HasXSAVEC
; }
596 bool hasXSAVES() const { return HasXSAVES
; }
597 bool hasPCLMUL() const { return HasPCLMUL
; }
598 bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ
; }
599 bool hasGFNI() const { return HasGFNI
; }
600 // Prefer FMA4 to FMA - its better for commutation/memory folding and
601 // has equal or better performance on all supported targets.
602 bool hasFMA() const { return HasFMA
; }
603 bool hasFMA4() const { return HasFMA4
; }
604 bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
605 bool hasXOP() const { return HasXOP
; }
606 bool hasTBM() const { return HasTBM
; }
607 bool hasLWP() const { return HasLWP
; }
608 bool hasMOVBE() const { return HasMOVBE
; }
609 bool hasRDRAND() const { return HasRDRAND
; }
610 bool hasF16C() const { return HasF16C
; }
611 bool hasFSGSBase() const { return HasFSGSBase
; }
612 bool hasLZCNT() const { return HasLZCNT
; }
613 bool hasBMI() const { return HasBMI
; }
614 bool hasBMI2() const { return HasBMI2
; }
615 bool hasVBMI() const { return HasVBMI
; }
616 bool hasVBMI2() const { return HasVBMI2
; }
617 bool hasIFMA() const { return HasIFMA
; }
618 bool hasRTM() const { return HasRTM
; }
619 bool hasADX() const { return HasADX
; }
620 bool hasSHA() const { return HasSHA
; }
621 bool hasPRFCHW() const { return HasPRFCHW
|| HasPREFETCHWT1
; }
622 bool hasPREFETCHWT1() const { return HasPREFETCHWT1
; }
623 bool hasSSEPrefetch() const {
624 // We implicitly enable these when we have a write prefix supporting cache
625 // level OR if we have prfchw, but don't already have a read prefetch from
627 return hasSSE1() || (hasPRFCHW() && !has3DNow()) || hasPREFETCHWT1();
629 bool hasRDSEED() const { return HasRDSEED
; }
630 bool hasLAHFSAHF() const { return HasLAHFSAHF
; }
631 bool hasMWAITX() const { return HasMWAITX
; }
632 bool hasCLZERO() const { return HasCLZERO
; }
633 bool hasCLDEMOTE() const { return HasCLDEMOTE
; }
634 bool hasMOVDIRI() const { return HasMOVDIRI
; }
635 bool hasMOVDIR64B() const { return HasMOVDIR64B
; }
636 bool hasPTWRITE() const { return HasPTWRITE
; }
637 bool isSHLDSlow() const { return IsSHLDSlow
; }
638 bool isPMULLDSlow() const { return IsPMULLDSlow
; }
639 bool isPMADDWDSlow() const { return IsPMADDWDSlow
; }
640 bool isUnalignedMem16Slow() const { return IsUAMem16Slow
; }
641 bool isUnalignedMem32Slow() const { return IsUAMem32Slow
; }
642 int getGatherOverhead() const { return GatherOverhead
; }
643 int getScatterOverhead() const { return ScatterOverhead
; }
644 bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem
; }
645 bool hasCmpxchg16b() const { return HasCmpxchg16b
&& is64Bit(); }
646 bool useLeaForSP() const { return UseLeaForSP
; }
647 bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps
; }
648 bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps
; }
649 bool hasFastVariableShuffle() const {
650 return HasFastVariableShuffle
;
652 bool hasFastPartialYMMorZMMWrite() const {
653 return HasFastPartialYMMorZMMWrite
;
655 bool hasFastGather() const { return HasFastGather
; }
656 bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT
; }
657 bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT
; }
658 bool hasFastLZCNT() const { return HasFastLZCNT
; }
659 bool hasFastSHLDRotate() const { return HasFastSHLDRotate
; }
660 bool hasFastBEXTR() const { return HasFastBEXTR
; }
661 bool hasFastHorizontalOps() const { return HasFastHorizontalOps
; }
662 bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks
; }
663 bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks
; }
664 bool hasMacroFusion() const { return HasMacroFusion
; }
665 bool hasBranchFusion() const { return HasBranchFusion
; }
666 bool hasERMSB() const { return HasERMSB
; }
667 bool hasSlowDivide32() const { return HasSlowDivide32
; }
668 bool hasSlowDivide64() const { return HasSlowDivide64
; }
669 bool padShortFunctions() const { return PadShortFunctions
; }
670 bool slowTwoMemOps() const { return SlowTwoMemOps
; }
671 bool LEAusesAG() const { return LEAUsesAG
; }
672 bool slowLEA() const { return SlowLEA
; }
673 bool slow3OpsLEA() const { return Slow3OpsLEA
; }
674 bool slowIncDec() const { return SlowIncDec
; }
675 bool hasCDI() const { return HasCDI
; }
676 bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ
; }
677 bool hasPFI() const { return HasPFI
; }
678 bool hasERI() const { return HasERI
; }
679 bool hasDQI() const { return HasDQI
; }
680 bool hasBWI() const { return HasBWI
; }
681 bool hasVLX() const { return HasVLX
; }
682 bool hasPKU() const { return HasPKU
; }
683 bool hasVNNI() const { return HasVNNI
; }
684 bool hasBF16() const { return HasBF16
; }
685 bool hasVP2INTERSECT() const { return HasVP2INTERSECT
; }
686 bool hasBITALG() const { return HasBITALG
; }
687 bool hasSHSTK() const { return HasSHSTK
; }
688 bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT
; }
689 bool hasCLWB() const { return HasCLWB
; }
690 bool hasWBNOINVD() const { return HasWBNOINVD
; }
691 bool hasRDPID() const { return HasRDPID
; }
692 bool hasWAITPKG() const { return HasWAITPKG
; }
693 bool hasPCONFIG() const { return HasPCONFIG
; }
694 bool hasSGX() const { return HasSGX
; }
695 bool threewayBranchProfitable() const { return ThreewayBranchProfitable
; }
696 bool hasINVPCID() const { return HasINVPCID
; }
697 bool hasENQCMD() const { return HasENQCMD
; }
698 bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls
; }
699 bool useRetpolineIndirectBranches() const {
700 return UseRetpolineIndirectBranches
;
702 bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk
; }
704 unsigned getPreferVectorWidth() const { return PreferVectorWidth
; }
705 unsigned getRequiredVectorWidth() const { return RequiredVectorWidth
; }
707 // Helper functions to determine when we should allow widening to 512-bit
709 // TODO: Currently we're always allowing widening on CPUs without VLX,
710 // because for many cases we don't have a better option.
711 bool canExtendTo512DQ() const {
712 return hasAVX512() && (!hasVLX() || getPreferVectorWidth() >= 512);
714 bool canExtendTo512BW() const {
715 return hasBWI() && canExtendTo512DQ();
718 // If there are no 512-bit vectors and we prefer not to use 512-bit registers,
719 // disable them in the legalizer.
720 bool useAVX512Regs() const {
721 return hasAVX512() && (canExtendTo512DQ() || RequiredVectorWidth
> 256);
724 bool useBWIRegs() const {
725 return hasBWI() && useAVX512Regs();
728 bool isXRaySupported() const override
{ return is64Bit(); }
730 X86ProcFamilyEnum
getProcFamily() const { return X86ProcFamily
; }
732 /// TODO: to be removed later and replaced with suitable properties
733 bool isAtom() const { return X86ProcFamily
== IntelAtom
; }
734 bool isSLM() const { return X86ProcFamily
== IntelSLM
; }
736 return X86ProcFamily
== IntelGLM
||
737 X86ProcFamily
== IntelGLP
||
738 X86ProcFamily
== IntelTRM
;
740 bool useSoftFloat() const { return UseSoftFloat
; }
742 /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
743 /// no-sse2). There isn't any reason to disable it if the target processor
745 bool hasMFence() const { return hasSSE2() || is64Bit(); }
747 const Triple
&getTargetTriple() const { return TargetTriple
; }
749 bool isTargetDarwin() const { return TargetTriple
.isOSDarwin(); }
750 bool isTargetFreeBSD() const { return TargetTriple
.isOSFreeBSD(); }
751 bool isTargetDragonFly() const { return TargetTriple
.isOSDragonFly(); }
752 bool isTargetSolaris() const { return TargetTriple
.isOSSolaris(); }
753 bool isTargetPS4() const { return TargetTriple
.isPS4CPU(); }
755 bool isTargetELF() const { return TargetTriple
.isOSBinFormatELF(); }
756 bool isTargetCOFF() const { return TargetTriple
.isOSBinFormatCOFF(); }
757 bool isTargetMachO() const { return TargetTriple
.isOSBinFormatMachO(); }
759 bool isTargetLinux() const { return TargetTriple
.isOSLinux(); }
760 bool isTargetKFreeBSD() const { return TargetTriple
.isOSKFreeBSD(); }
761 bool isTargetGlibc() const { return TargetTriple
.isOSGlibc(); }
762 bool isTargetAndroid() const { return TargetTriple
.isAndroid(); }
763 bool isTargetNaCl() const { return TargetTriple
.isOSNaCl(); }
764 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
765 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
766 bool isTargetMCU() const { return TargetTriple
.isOSIAMCU(); }
767 bool isTargetFuchsia() const { return TargetTriple
.isOSFuchsia(); }
769 bool isTargetWindowsMSVC() const {
770 return TargetTriple
.isWindowsMSVCEnvironment();
773 bool isTargetWindowsCoreCLR() const {
774 return TargetTriple
.isWindowsCoreCLREnvironment();
777 bool isTargetWindowsCygwin() const {
778 return TargetTriple
.isWindowsCygwinEnvironment();
781 bool isTargetWindowsGNU() const {
782 return TargetTriple
.isWindowsGNUEnvironment();
785 bool isTargetWindowsItanium() const {
786 return TargetTriple
.isWindowsItaniumEnvironment();
789 bool isTargetCygMing() const { return TargetTriple
.isOSCygMing(); }
791 bool isOSWindows() const { return TargetTriple
.isOSWindows(); }
793 bool isTargetWin64() const { return In64BitMode
&& isOSWindows(); }
795 bool isTargetWin32() const { return !In64BitMode
&& isOSWindows(); }
797 bool isPICStyleGOT() const { return PICStyle
== PICStyles::GOT
; }
798 bool isPICStyleRIPRel() const { return PICStyle
== PICStyles::RIPRel
; }
800 bool isPICStyleStubPIC() const {
801 return PICStyle
== PICStyles::StubPIC
;
804 bool isPositionIndependent() const { return TM
.isPositionIndependent(); }
806 bool isCallingConvWin64(CallingConv::ID CC
) const {
808 // On Win64, all these conventions just use the default convention.
810 case CallingConv::Fast
:
811 case CallingConv::Swift
:
812 case CallingConv::X86_FastCall
:
813 case CallingConv::X86_StdCall
:
814 case CallingConv::X86_ThisCall
:
815 case CallingConv::X86_VectorCall
:
816 case CallingConv::Intel_OCL_BI
:
817 return isTargetWin64();
818 // This convention allows using the Win64 convention on other targets.
819 case CallingConv::Win64
:
821 // This convention allows using the SysV convention on Windows targets.
822 case CallingConv::X86_64_SysV
:
824 // Otherwise, who knows what this is.
830 /// Classify a global variable reference for the current subtarget according
831 /// to how we should reference it in a non-pcrel context.
832 unsigned char classifyLocalReference(const GlobalValue
*GV
) const;
834 unsigned char classifyGlobalReference(const GlobalValue
*GV
,
835 const Module
&M
) const;
836 unsigned char classifyGlobalReference(const GlobalValue
*GV
) const;
838 /// Classify a global function reference for the current subtarget.
839 unsigned char classifyGlobalFunctionReference(const GlobalValue
*GV
,
840 const Module
&M
) const;
841 unsigned char classifyGlobalFunctionReference(const GlobalValue
*GV
) const;
843 /// Classify a blockaddress reference for the current subtarget according to
844 /// how we should reference it in a non-pcrel context.
845 unsigned char classifyBlockAddressReference() const;
847 /// Return true if the subtarget allows calls to immediate address.
848 bool isLegalToCallImmediateAddr() const;
850 /// If we are using retpolines, we need to expand indirectbr to avoid it
851 /// lowering to an actual indirect jump.
852 bool enableIndirectBrExpand() const override
{
853 return useRetpolineIndirectBranches();
856 /// Enable the MachineScheduler pass for all X86 subtargets.
857 bool enableMachineScheduler() const override
{ return true; }
859 bool enableEarlyIfConversion() const override
;
861 void getPostRAMutations(std::vector
<std::unique_ptr
<ScheduleDAGMutation
>>
862 &Mutations
) const override
;
864 AntiDepBreakMode
getAntiDepBreakMode() const override
{
865 return TargetSubtargetInfo::ANTIDEP_CRITICAL
;
868 bool enableAdvancedRASplitCost() const override
{ return true; }
871 } // end namespace llvm
873 #endif // LLVM_LIB_TARGET_X86_X86SUBTARGET_H